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Abstract
In recent years, there have been an increasing number of extreme weather events that have had major impacts on the built
environment and particularly on people living in urban areas. As the frequency and intensity of such events are predicted
to increase in the future, innovative response strategies to cope with potential emergency conditions, particularly
evacuation planning and management, are becoming more important. Although mass transit evacuation of populations at
risk is recognized to play a potentially important role in reducing injury and mortality rates, there is relatively little research
in this area. In answering the need for more research in this increasingly important and relatively new field of research, this
study proposes a hybrid simulation–optimization approach to maximize the number of evacuees moved from
disaster-affected zones to safe locations. In order to improve the efficiency of the proposed optimization approach, a novel
multipopulation differential evolution approach based on an opposition-based learning concept is developed. The results
indicate that even for large populations the proposed approach can produce high-quality options for decision makers in
reasonable computational times. The proposed approach enables emergency decision makers to apply the procedure in
practice to find the best strategies for evacuation, even when the time for decision making is severely limited.
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1. Introduction

The past century has witnessed significant changes in Earth’s
climate system (Tong & Ebi, 2019). Anthropogenic changes are
affecting the world’s climate patterns (Head, Adams, McGregor,
& Toole, 2014; Pearce, Rodrı́guez, Fawcett, & Ford, 2018), exacer-
bating the frequency, intensity, and duration of extreme weather
events (EWEs) such as bush fires, heavy rainfall, major flooding
events, and severe tropical cyclones (Alizadeh-Choobari & Na-
jafi, 2018). EWEs are often associated with disasters, which may
disrupt the normal functioning of society (Aghapour, Yazdani,
Jolai, & Mojtahedi, 2019; Chand & Loosemore, 2015; Mohammad,
2014; Mojtahedi & Oo, 2017). Despite many recent technologi-

cal advances, EWEs cannot be prevented or predicted with cer-
tainty (Yaghoubi et al., 2017). However, the vulnerability of cities
to EWEs and the associated challenges are increasingly being
recognized (Luu, von Meding, & Mojtahedi, 2019).

During the past five decades, the world’s population has dou-
bled and the proportion of people living in urban areas has
increased from 36% to 55%. It is estimated by the United Na-
tions that this rate will reach 66% by 2050 (Mandache, 2013). In
many countries, a large number of cities have been built or de-
veloped in disaster-prone regions (Handayani, Fisher, Rudiarto,
Sih Setyono, & Foley, 2019), and in recent decades natural dis-
asters from EWEs such as Hurricanes Katrina, Rita, and Wilma
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2 Evacuation using public transportation systems

have turned global attention to effective urban evacuation plan-
ning and management to reduce potential injury and mortality
rates (Yin, Cordahi, Roden, & Wolshon, 2018). The United Na-
tions International Strategy for Disaster Reduction (UNISDR) has
defined “Evacuation” as “Moving people and assets temporarily
to safer places before, during or after the occurrence of a haz-
ardous event in order to protect them.” (UNISDR, 2009). Evacu-
ation management is one of the most important parts of disas-
ter operations management, and is widely recognized as playing
a prominent role in reducing mortality and injury rates during
such events (Lindell, Kang, & Prater, 2011; Na & Banerjee, 2019;
Shahabi & Wilson, 2018; Wei & Lindell, 2017), one of the key tar-
gets of the Sendai Framework for Disaster Risk Reduction (Meyer,
Mitchell, Purdum, Breen, & Iles, 2018).

Public transportation is one critical element of evacuation
management. However, despite its criticality as a resource to
evacuation management, it has received relatively little atten-
tion from researchers. This is somewhat surprising given rapid
changes in mass transportation systems and technologies in
many urban areas. For example, during Hurricane Katrina in
2005, the evacuation was only based on private vehicles, and
did not adequately consider those without access to personal
transportation (Bayram, 2016; Litman, 2006). It is known that this
was one of the main reasons for the failure of the evacuation
process during Hurricane Katrina (Bayram, 2016; Litman, 2006)
where more than 1800 people died. A closer look at the mortality
data reveals that a large proportion of the fatalities, near to 70%,
were older people who did not have access to private vehicles
(Bayram, 2016; Litman, 2006), highlighting the critical need to in-
corporate public transportation systems in evacuation planning
to provide necessary assistance to the aging, disabled, immobi-
lized population or those who do not have access to a personal
vehicle. This issue has been largely unaddressed in official evac-
uation plans (Hess & Gotham, 2007; Urbina & Wolshon, 2003) and
there is critical need for both researchers and decision makers
to pay more attention to public transport (such as bus transit
systems) as an evacuation resource (Hu, Gao, Yu, Liu, & Li, 2016).

Evacuation planning problems are known for their high com-
plexity and the need to produce optimum solutions in short
times. In solving many complex optimization problems such
as evacuation strategies, metaheuristics have proven success-
ful (Azadeh, Seif, Sheikhalishahi, & Yazdani, 2016; Mostafa Bo-
zorgi & Yazdani, 2019; Yazdani, Aleti, Khalili, & Jolai, 2017; Yaz-
dani, Babagolzadeh, Kazemitash, & Saberi, 2019; Yazdani & Jo-
lai, 2016; Yazdani, Jolai, Taleghani, & Yazdani, 2018; Yazdani,
Khalili, Babagolzadeh, & Jolai, 2017; Yazdani, Khalili, & Jolai,
2016). However, one of the main limitations of metaheuristic
methods is that parameters are deterministic and conflict with
real-world conditions such as those presented by EWE evacua-
tions (Juan, Faulin, Grasman, Rabe, & Figueira, 2015). To address
this problem, simheuristics is an innovative and potentially ef-
ficient method that integrates simulation into metaheuristic-
driven frameworks to take account of uncertainties presented
by real-world evacuation problems. However, this method has
never been used in an evacuation context. To address this gap
in the EWE disaster management and evacuation research liter-
ature and find a fast method in order to reach the most appro-
priate decision in reasonable time, this paper proposes a new
approach for evacuation planning by using a novel framework
that was proposed by Juan et al. (2015) to take advantages of both
simulation and metaheuristic algorithm.

In addition, although there are many studies that utilize a
simheuristic approach, the majority of prior research has ap-
plied single-solution-based metaheuristics (S-metaheuristics)

in their simheuristic framework (e.g. Gruler, Panadero, de Ar-
mas, Moreno Pérez, & Juan, 2020; Panadero, Doering, Kizys,
Juan, & Fito, 2018). S-metaheuristics apply generation and re-
placement procedure to a single solution (Gogna & Tayal, 2013),
but most of them suffer from fast convergence to local op-
tima, and also they are not able to efficiently explore the search
space (Gogna & Tayal, 2013). This gap can be filled by apply-
ing population-based metaheuristic algorithms like differential
evolution (DE) into simheuristic methods. DE first proposed by
Storn and Price (1997) is a potentially powerful population-based
metaheuristic algorithm to solve a wide range of complex prob-
lems.

Although DE has been known as a powerful population-
based metaheuristic algorithm to solve a wide range of com-
plex problems, it suffers from slow convergence. Therefore, in
this study, the basic version of DE has been combined with the
opposition-based learning (OBL) concept to increase the explo-
ration of the search space. Using OBL in the proposed method
can significantly increase the chance of finding better solutions
because current candidate solutions and their corresponding
opposite are evaluated simultaneously, and the algorithm con-
tinues with more desirable ones. In addition, it has been proven
that appropriate mutation strategies and parameters are not
constant and can change from one optimization problem to an-
other one (Qin, Huang, & Suganthan, 2009). Furthermore, nu-
merous studies reveal that using different mutation strategies
may improve exploitation and exploration capabilities of a DE al-
gorithm (Das & Suganthan, 2011). Therefore, different mutation
strategies are used in the proposed DE. Thus, the proposed al-
gorithm uses a set of mutation strategies randomly to maintain
its exploitation and exploration capabilities. In addition, previ-
ous studies on multipopulation metaheuristic algorithms show
that using multipopulation can maintain population diversity
(Ali, Awad, & Suganthan, 2015). Therefore, the proposed DE is
designed based on a multipopulation strategy with the objec-
tive that the outcomes of this research can help decision makers
and disaster planners to make better decisions for evacuation in
EWE disaster scenarios.

The rest of this paper is structured as follows: Section 2 in-
vestigates related works. The problem statement is discussed in
Section 3. Section 4 introduces the proposed approach to solv-
ing the considered problem. The results are presented in Section
5. Concluding remarks and some future research directions are
given and discussed in the last section.

2. Literature Review

A review of the related literature is presented next in two
streams: bus evacuation problems and simheuristic applica-
tions.

2.1. Bus evacuation problem

Bish (2011) was among the first researchers who considered
bus routing in an evacuation problem context, presenting two
mathematical programming formulations for the problem and
developing a heuristic algorithm to minimize entire network
evacuation time. In the model, buses and shelters have limited
capacity, and each pickup location can be visited by several
buses to satisfy the evacuation demand. For a variant of this
problem, Goerigk, Grün, and Heßler (2013) suggested several
methods to find lower and upper bounds and then proposed a
branch-and-bound framework based on them for the bus evacu-
ation problem. Sayyady and Eksioglu (2010) also studied the use
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Figure 1: Overview schema of the simulation–optimization approach adopted
from Juan et al. (2015).

Figure 2: Steps in the bus evacuation problem adopted from Lakshay and Bolia
(2019).

of public transport in an emergency evacuation. They proposed
a mixed-integer linear programming model to find optimal
evacuation routes in order to minimize the total evacuation
time and the number of casualties, simultaneously. Due to the
high complexity of the problem, a Tabu search algorithm was
developed to find evacuation routes for transit vehicles. Dikas
and Minis (2016) considered a variant of bus evacuation problem
where the buses must return to the single depot at the end of
the route. They presented a heuristic and a mixed-integer linear
formulation for the problem. Goerigk and Grün (2014) proposed
a mixed-integer programming formulation for a bus evacuation
problem under uncertainty, where the objective was minimizing
the network clearance time. In their model, uncertainty could
occur in some parameters such as travel time or capacity in
addition to demand. Due to the high complexity of the problem,
they presented a Tabu search algorithm in order to find an
acceptable quality solution within short computation time.
Goerigk, Grün, and Heßler (2014) formulated the integrated
bus evacuation problem to determine both the shelter and
collection points for evacuating a region using buses. To solve
the problem, they proposed a branch-and-price method, where
the pricing problem was the shortest path in a round-expanded
path, and compared its efficiency using a commercial IP solver.
Goerigk, Deghdak, and T’Kindt (2015) considered a different
robust version of the problem, which allows buses to change
their route as the uncertainty on the number of evacuees dimin-
ishes. For this, they proposed a scenario-generation algorithm
since the model was too large to be solved. Kulshrestha, Lou,
and Yin (2014) presented a mixed-integer linear program to
determine the optimal locations of transit pickup points and
trip allocations for buses in transit-based evacuation planning
under demand uncertainty. The proposed model was solved
by a cutting plane scheme. Zheng (2014) studied an evacuation
problem based on public transit in which buses run contin-
uously, based upon the spatial and temporal information of
evacuee needs. Zheng developed a Lagrangian relaxation-based
solution algorithm to minimize the exposed casualty time. Qazi,
Nara, Okubo, and Kubota (2017) investigated the effects of intro-
ducing demand variations and evacuation route flexibility in a
bus-based evacuation problem. They presented a case study for
the evacuation of elderly people living in a small town, Kawa-
jima, surrounded by two rivers on its two sides and exposed to
flood hazards. Pereira and Bish (2015) studied a bus evacuation
problem where evacuees arrive at pickup locations at a constant
rate. Minimizing the total waiting time at pickup locations was
considered the objective function. Hu et al. (2016) introduced a
nonlinear integer programming model and a genetic algorithm
to plan a bus bridging evacuation to best plan the bus bridging
evacuation in both upstream and downstream directions along
a rail transit line during a disruption. Shahabi and Wilson (2018)
presented an iterative algorithm for a large-scale evacuation
routing, considering unexpected roads’ capacity change during
evacuation. They used heuristics and dynamic data structures
to improve evacuation routing running time. Swamy, Kang,
Batta, and Chung (2017) provided a mass evacuation strategy
using public transportation before the strike of a hurricane.
They assumed that shelter locations, evacuation zones, and the
time of strike of the hurricane are predetermined. They devel-
oped a simulation tool to model the dispatching of the given
number of buses, stochastic arrival of evacuees, queuing effects
at the pickup locations, and the transportation of evacuees
to the safe regions. Vitali, Riff, and Montero (2017) presented
an algorithm based on a greedy randomized adaptive search
procedure to solve the bus evacuation problem. Most recently,
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4 Evacuation using public transportation systems

Figure 3: Evacuation network.

Figure 4: An example of the proposed problem.

Table 1. A random solution.

Bus Routes

Bus 1 (2a, 1, 1, 2, 2, 1, 2, 1)
Bus 2 (1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1)

aBold numbers are route numbers.

Lakshay and Bolia (2019) developed mathematical models for
mass evacuation problems. The model computed the minimum
number of buses that are required to carry out the evacuation
for any given scenario and determine the optimal trip sequence
of each available bus.

Despite all of the above-mentioned studies, uncertainty in
parameters has only been considered in a limited way and too
little attention has been paid to disruption in road networks.
A major problem with bus evacuation is associated with com-
putational complexity and to find the best optimum solution

in a reasonable time is challenging. Finally, we can find no
research that uses an efficient optimization approach or that
proposes a hybrid optimization–simulation approach for bus
evacuation.

2.2. Simheuristic methods for complex problems
under uncertainty

The combination of metaheuristic algorithms with other
methodologies is gaining more attention as a method to tackle a
wide variety of disciplines, including complex combinatorial op-
timization problems (Ferreira, 2013). A simulation–optimization
algorithm is one such method that has widely been used to
solve complex large-scale real-world problems under uncer-
tainty conditions (Rabbani, Heidari, & Yazdanparast, 2019). The
general structure of an integrated simulation–optimization ap-
proach and their interaction to find near-optimal solutions in
search space is presented in Fig. 1.
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Figure 5: The proposed approach flowchart.

Simheuristics are approaches that benefit both simulation
and (meta-)heuristic approaches. In fact, simheuristics incorpo-
rate simulation into a (meta-)heuristic-driven framework (Juan
et al., 2015). Simheuristics can be applied in solving many
combinatorial optimization problems with stochastic compo-
nents (Rabbani et al., 2019). Recently, Juan et al. (2015) have
reviewed and classified the studies on the simheuristic meth-
ods proposing a simple but efficient framework where simu-
lation is applied to a subset of the obtained solutions. Over
the past few years, Gonzalez-Neira, Ferone, Hatami, and Juan
(2017) proposed an approach based on the integration of bi-
ased randomization and simulation techniques inside a meta-
heuristic framework for a distributed assembly permutation
flow shop problem with stochastic processing times. Hatami,
Calvet, Fernández-Viagas, Framiñán, and Juan (2018) investi-
gated setup starting times in the stochastic parallel flow shop
problem. They proposed a simheuristic algorithm based on iter-

ated local search metaheuristic with Monte Carlo simulation to
minimize makespan-related criteria in a stochastic parallel flow
shop problem. Panadero et al. (2018) proposed a simheuristic
approach to maximize the net present value in a project port-
folio selection problem under uncertainty and rich conditions.
Their algorithm integrated Monte Carlo simulation inside a vari-
able neighborhood search framework. Furthermore, their algo-
rithm used other components inspired in simulated annealing
and biased randomization techniques. Guimarans, Dominguez,
Panadero, and Juan (2018) investigated a 2D vehicle routing prob-
lem with stochastic travel times. A hybrid simheuristic algo-
rithm was proposed based on Monte Carlo simulation, an it-
erated local search framework, and biased randomized rout-
ing and packing heuristics. Gruler, Panadero, de Armas, Moreno
Pérez, and Juan (2018) presented a simheuristic approach that
integrates Monte Carlo simulation within a variable neighbor-
hood search framework to solve the multiperiod inventory rout-
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6 Evacuation using public transportation systems

Figure 6: A sample of solution presentation.

Table 2. The parameter setting for the experiments.

Disruption probability = 0.1 Disruption probability = 0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of pickup points 28 32 36 40 50 60 70 80 90 100 28 32 36 40 50 60 70 80 90 100
Number of shelters 28 32 36 40 50 60 70 80 90 100 28 32 36 40 50 60 70 80 90 100
Number of buses 5 5 6 6 7 7 8 8 9 9 5 5 6 6 7 7 8 8 9 9

Table 3. Parameters values of the proposed DE.

Parameter Value

Population size (NP) 100
Crossover factor (Cr) 0.5
Scaling factor (F) 0.1
Number of groups 2

ing problem with stochastic customer demands. The proposed
approach allowed to consider the inventory changes between
periods generated by the realization of the random demands in
each period, which have an impact on the quantities to be deliv-
ered in the next period and therefore on the associated routing
plans. In another study, Gruler et al. (2018) presented a variable
neighborhood search metaheuristic hybridized with simulation
to solve the inventory routing problem with stochastic demands.
They claimed that the proposed approach could solve large-
sized problems for the single-period inventory routing problem
with stochastic demands and stock-outs in very short comput-
ing times. Gonzalez-Martin, Juan, Riera, Elizondo, and Ramos
(2018) combined Monte Carlo simulation with the RandSHARP
metaheuristic to cope with the stochastic variant of the arc
routing problem, where demands are indeterministic. Calvet,
Wang, Juan, and Bové (2019) presented a simheuristic frame-
work combining Monte Carlo simulation with different meta-
heuristics, including a multi-start, an iterated local search, and
a variable neighborhood search to deal with a stochastic multi-
depot vehicle routing problem with limited fleets. Rabbani et al.
(2019) proposed a multi-objective simheuristic approach based
on the integration of nondominated sorting genetic algorithm-II
and Monte Carlo simulation for a stochastic multiperiod indus-
trial hazardous waste location-routing problem. González-Neira

and Montoya-Torres (2019) proposed a multi-objective greedy
randomized adaptive search procedure metaheuristic procedure
coupled with a Monte Carlo simulation and a Pareto archived
evolution strategy algorithm to obtain a complete set of Pareto-
optimal solutions for a bi-objective stochastic permutation flow
shop scheduling problem.

Most studies in the field of hybrid optimization–simulation
methods have considered that each time the simulation com-
ponent is performed to evaluate the objective function; how-
ever, this procedure is very time consuming and imposes addi-
tional efforts to the method to find the suitable solution. In ad-
dition, most of the previous studies used single-solution-based
metaheuristics such as variable neighborhood search and Tabu
search in their framework, which are very simple and fast, but
most of them cannot guarantee escaping from local optima and
also fast convergence to global optima. Furthermore, almost all
the population-based metaheuristic algorithms used in the pre-
vious studies are basic methods and are not efficient enough to
find good solutions in reasonable time.

3. Problem Statement

This section presents a detailed description of bus evacuation
planning under disruption in a road network during an EWE. In
case of an approaching EWE, the population is exposed to signif-
icant risks; thus, authorities broadcast compulsory evacuation
warning messages. These messages advise assembly at some or-
ganized pickup locations. Then, some limited number of buses
are used to move evacuees to safe shelters via available routes.
In this case, some parts of road network infrastructures are likely
to be disrupted.

The first step in bus evacuation planning is to know all the
pickup locations in the endangered area and the number of evac-
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Table 4: Comparison of the proposed DE with basic DEs for the deterministic condition.

Instance
no. DE/rand/1 DE/rand/2 DE/best/1 DE/best/2

DE/current-to-
best/1

Proposed DE
without OBL Proposed DE

1 87.6% 96.3% 62.4% 91.4% 97.3% 54.7% 11.0%
2 83.3% 93.9% 61.4% 90.0% 97.0% 51.1% 9.8%
3 84.4% 93.4% 58.7% 88.3% 95.6% 55.6% 11.0%
4 86.4% 93.8% 63.8% 90.5% 95.7% 58.2% 15.1%
5 90.0% 95.9% 65.7% 91.2% 97.5% 62.1% 17.8%
6 86.1% 97.1% 57.0% 91.4% 97.3% 58.4% 9.9%
7 88.5% 94.5% 57.6% 91.8% 95.5% 65.4% 7.5%
8 90.6% 97.9% 63.9% 94.1% 97.6% 66.6% 19.0%
9 89.9% 94.5% 62.3% 91.4% 96.6% 67.4% 10.7%
10 88.9% 96.9% 54.7% 91.9% 97.2% 67.4% 9.5%

87.6% 95.4% 60.8% 91.2% 96.7% 60.7% 12.1%

uees in each pickup location. Then, based on a number of de-
mands and situations, safe shelters are identified. In addition,
available routes between pickup locations and selected shelters
should be calculated. The next step is confirming the number
of available buses at different depots. After selecting an appro-
priate objective, the optimal evacuation plan can be generated
using some advanced optimization method. Figure 2 presents
steps of evacuation planning based on buses.

The focus of this research is on the fifth step, “allocation and
planning of transport resources,” where transport resources in
this study are buses. In this problem, first, people are guided by
authorities to assemble at the pickup locations i = {1, 2, 3, . . . , I }
that are safe and accessible, and then are moved to a set of ca-
pacitated safe shelters j = {1, 2, 3, . . . , J } using b = {1, 2, 3, . . . , B}
buses. In this problem, there are I pickup locations in a disaster
area, and J candidate places for shelters. B is the total number
of buses used in the evacuation. Buses are assumed to carry a
fixed number of evacuees BCb at once. There might be k differ-
ent routes between pickup location i and the shelter j. Moreover,
as shown in Fig. 3, each route may contain several segments
and each of them will have a specific risk profile. Furthermore,
evacuation is subjected to disruption of road network infrastruc-
tures, and they may not remain accessible and available during
an evacuation horizon. The objective is to evacuate the disas-
ter zone in such a way as to maximize the number of evacuees
that are moved from a disaster zone to safe shelters in a prede-
fined time window (Fig. 3). In addition, due to the high number
of evacuees, it is assumed that each bus travels several times be-
tween pickup locations and the shelters within evacuation time
window constraint T .

Figure 4 illustrates a small sample of the problem. There are
two buses and the capacity of each of them is 50. There are two
pickup locations and two safe shelters. There are 150 and 100
evacuees in pickup locations 1 and 2, respectively. Also, the ca-
pacities of shelters 1 and 2 are 150. There are two routes between
each pair of pickup location and a safe shelter. The traveling
times between pickup locations and safe shelters for routes 1
and 2 are given in the figure.

Route 2 between pickup point 1 and shelter 1 and route 2 be-
tween pickup point 1 and shelter 2 are not available after time
640 due to disruption of the route. Table 1 presents a random
feasible solution to the presented example. For example, the first
bus goes from yard to pickup location 1 via route 2 and then goes
to shelter 2 via route 1, and so on. If it is assumed that window
time is 650, then only 200 evacuees can be moved within the
evacuation window time using this strategy.

4. Solution methodology

Simheuristics have shown good capability in solving a wide
range of problems with uncertainty in different fields (Gonzalez-
Neira et al., 2017; Guimarans et al., 2018; Hatami et al., 2018;
Juan et al., 2015; Rabbani et al., 2019). The proposed framework
by Juan et al. (2015) has been modified for this research. In this
study, the simheuristic approach assumes that a good solution
in the deterministic condition is also likely to be an accept-
able solution for its corresponding stochastic condition. How-
ever, it does not mean the best solutions for the determinis-
tic and stochastic version are the same (Juan et al., 2015). The
proposed integrated framework assumes that an efficient opti-
mization method already exists for the problem under the deter-
ministic condition. Therefore, a novel DE is developed for this
problem. The general framework of the proposed simheuristic
method is presented in Fig. 5. An initial population is generated
in search space, where some parameters are stochastic. In the
next step, stochastic values are replaced by their expected val-
ues, which are deterministic. Then, the optimization method,
which in this study is a novel DE algorithm, is run to find a set
of good solutions for the deterministic version (details of this
algorithm are discussed in the next sections). After passing a
predefined number of iterations, the quality of each of solutions
that have been obtained by the proposed DE is evaluated using a
simulation component. In this simulation phase, deterministic
parameters are replaced by their stochastic values. The obtained
solutions through simulation are ranked and then sent to meta-
heuristic. Once the stopping condition is satisfied, more accu-
rate evaluations can be obtained for obtained solutions by em-
ploying intensive simulation. Finally, the solutions are ranked,
and the best solution is obtained.

As mentioned earlier, the basic version of DE, in this study,
is combined with the OBL concept. In addition, to maintain the
population diversity, the multipopulation strategy is applied in
the proposed DE algorithm. Moreover, different mutation strate-
gies are used to improve the exploitation and exploration capa-
bilities of the proposed method. Therefore, in the next section,
the basic DE algorithm and the most frequently used mutation
strategies are discussed.

4.1. Basic DE algorithm

In general, DE starts with generating a predefined number (N)
of solutions within the search space. At generation G, each in-
dividual is represented by a D-dimensional real-valued vector
XG

i = (xG
i,1, xG

i,2, xG
i,3, . . . , xG

i,D ), i = 1, 2, 3, . . . , N. After the initializa-
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8 Evacuation using public transportation systems

Figure 7: The proposed DE with and without considering OBL strategies.

Table 5: Summary of Wilcoxon’s test results for deterministic conditions.

Comparison Solution quality

Algorithm 1 versus Algorithm 2 R+ R− z ρ-value

Proposed DE DE/rand/1 100.00 00.00 − 8.6818 <0.00001
Proposed DE DE/rand/2 100.00 00.00 − 8.6818 <0.00001
Proposed DE DE/best/1 100.00 00.00 − 8.6818 <0.00001
Proposed DE DE/best/2 100.00 00.00 − 8.6818 <0.00001
Proposed DE DE/current-to-best/1 100.00 00.00 − 8.6818 <0.00001
Proposed DE Proposed DE without opposition 100.00 00.00 − 8.6818 <0.00001

tion phase, mutation and crossover operators are used to evolve
the solutions and generate trial vectors. Then, parents are com-
pared with their corresponding trial vector, and the solutions
for the next generation are selected at this stage. Steps of DE are
provided next.

There are N individuals in the population of DE. Gener-
ally, DE starts with a random population, where parameters of
the i th individual of the initial population are generated as
follows:

x0
i, j = xlow

j + rand ×
(

xup
j − xlow

j

)
, j = 1, 2, 3, . . . , D, (1)

where D denotes the number of decision variables and rand re-
turns a uniformly distributed random number in [0, 1]. In addi-
tion, xlow

j and xup
j are the lower and upper bounds of solutions in

the j-dimensional search space, respectively.
Following initialization, DE employs the mutation procedure

to create mutant vectors (Huang, Zhang, Song, Zhang, & Shi,
2019). The most frequently used mutation operators are

“rand/1:” VG
i = Xr 1G + F ·(XG

r2 − XG
r3), (2)

“rand/2:” VG
i = Xr 1G + F ·(XG

r2 − XG
r3) + F ·(XG

r4 − XG
r5), (3)

“best/1:” VG
i = XG

best + F ·(XG
r2 − XG

r3), (4)

“best/2:” VG
i = XG

best + F ·(XG
r1 − XG

r2) + F ·(XG
r3 − XG

r4), (5)

“current-to-best/1:” VG
i = XG

i + F ·(XG
best − XG

r1) + F ·(XG
r2 − XG

r3),

(6)

where ri
1 �= ri

2 �= ri
3 �= ri

4 �= ri
5 are random integer numbers selected

from (1, 2, . . . , N). The selected numbers are different from the
index i . XG

best is the best solution at the current generation. F is a
control parameter for scaling the difference vector.

After this stage, the crossover operator is used to mix the tar-
get vector and its corresponding mutant vector to yield a trial
vector (U G

i ):

uG
i, j =

{
vG

i, j , if (rand < Cr or j = jrand),

xG
i, j , otherwise,

(7)

where Cr is crossover rate and is between 0 and 1, and rand is a
uniformly distributed random integer between 0 and 1. In addi-
tion, jrand is a uniformly distributed random integer in [1, D].

In order to decide whether the target vector (XG
i ) or its cor-

responding trial vector (U G
i ) is retained for the next generation,

a selection operation is employed between these solutions. For
problems where the aim is minimizing, the selection operation
is performed as follows:

XG+1
i =

{
U G

i , f
(
U G

i

) ≤ f
(
XG

i

)
,

XG
i , otherwise,

(8)

where f (XG
i ) and f (U G

i ) are the objective functions of the target
vector and its corresponding trial vector, respectively.

4.2. Opposition in box-constrained optimization
problems

Since Tizhoosh (2005) proposed the basic concept of OBL in
the past decade, different variants of OBS have been used by
researchers to improve the performance of the metaheuristic al-
gorithms (Gupta & Deep, 2019; Li, Wang, Wang, & Li, 2019; Tran,
Luong-Duc, Duong, Le, & Pham, 2018).

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/advance-article-abstract/doi/10.1093/jcde/qw

aa017/5813879 by Joongbu U
niversity user on 03 April 2020



Journal of Computational Design and Engineering, 2020, 7(0), 1–16 9

Opposition-based (Rahnamayan, Tizhoosh, & Salama, 2008),
quasi-opposition-based (Rahnamayan, Tizhoosh, & Salama,
2007), quasi-reflection opposition-based (Ergezer, Simon, & Du,
2009), current optimum opposition-based (Xu, Wang, He, &
Wang, 2011), extended opposition-based (Seif & Ahmadi, 2015),
and reflected extended opposition-based (Seif & Ahmadi, 2015)
techniques are different variants of OBL that have been em-
ployed in the literature for solving optimization problems. In this
section, the concepts of these variants are reviewed.

Definition 1. If X(x1, x2, . . . , xd) is a point in a d-dimensional
space, where x1, x2, . . . , xd are real numbers and xi ∈ [ai , bi ], i =
1, 2, . . . , d, its opposite point X̆(x̆1, x̆2, . . . , x̆d) is defined as fol-
lows:

x̆i = ai + bi − xi , i = 1, 2, . . . , d. (9)

Definition 2. If X(x1, x2, . . . , xd) is a point in a d-dimensional
space, where x1, x2, . . . , xd are real numbers and xi ∈ [ai , bi ], i =
1, 2, . . . , d, its quasi-opposition point X̆qo

i (x̆qo
1 , x̆qo

2 , . . . , x̆qo
d ) is de-

fined as follows:

x̆qo
i = rand

(
ai + bi

2
, x̆i

)
, i = 1, 2, . . . , d. (10)

Definition 3. If X(x1, x2, . . . , xd) is a point in a d-dimensional
space, where x1, x2, . . . , xd are real numbers and xi ∈ [ai , bi ], i =
1, 2, . . . , d, its quasi-reflection point X̆qr

i (x̆qr
1 , x̆qr

2 , . . . , x̆qr
d ) is de-

fined as follows:

x̆qr
i = rand

(
xi ,

ai + bi

2

)
, i = 1, 2, . . . , d. (11)

Definition 4. If X(x1, x2, . . . , xd) is a point in a d-dimensional
space and Xbest(xbest

1 , xbest
2 , . . . , xbest

d ) is the best solution in
passed iteration, where x1, x2, . . . , xd are real numbers and
xi , xbest

i ∈ [ai , bi ], i = 1, 2, . . . , d, its current optimum opposition
point X̆coo

i (x̆coo
1 , x̆coo

2 , . . . , x̆coo
d ) is defined as follows:

x̆coo
i = 2xbest

i − xi , i = 1, 2, . . . , d, (12)

x̆coo
i =

{
ai ,

bi ,

x̆coo
i < ai ,

x̆coo
i > bi .

(13)

Extended opposition is defined as follows (Seif & Ahmadi,
2015).

Definition 5. If X(x1, x2, . . . , xd) is a point in a d-dimensional
space, where x1, x2, . . . , xd are real numbers and xi ∈ [ai , bi ], i =
1, 2, . . . , d, its extended opposition point X̆eo

i (x̆eo
1 , x̆eo

2 , . . . , x̆eo
d ) is

defined as follows:

x̆eo
i =

{
rand (x̆i , bi ) ,

rand (ai , x̆i ) ,

xi < ai +bi
2 ,

xi > ai +bi
2 ,

i = 1, 2, . . . , d. (14)

Reflected extended opposition is defined as follows (Seif &
Ahmadi, 2015).

Definition 6. If X(x1, x2, . . . , xd) is a point in d-dimensional
search space, where x1, x2, . . . , xd are real numbers and xi ∈
[ai , bi ], i = 1, 2, . . . , d, its reflected extended opposition point
X̆reo

i (x̆reo
1 , x̆reo

2 , . . . , x̆reo
d ) is defined as follows:

x̆reo
i =

{
rand (xi , bi ) ,

rand (ai , xi ) ,

xi > ai +bi
2 ,

xi < ai +bi
2 ,

i = 1, 2, . . . , d. (15)

4.3. The proposed DE

In this section, a multipopulation opposition-based DE tech-
nique is proposed. The initial individuals are randomly gener-
ated in the search space. The structure shown in Fig. 6 is applied
to represent solutions. The length of each solution is twice the
maximum number of trips a bus can travel between pickup loca-
tions and shelters within the maximum available time window.
Thus, the maximum available time window is divided by the
shortest travel time of the available routes between pickup loca-
tions and shelters and the obtained number is multiplied by 2.

As an example, there are two pickup locations and two safe
shelters, and between each pair of pickup location and shelter,
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there are three routes. The solution S = (0.21, 0.71, 0.91, 0.82,
0.45, 0.42) indicates that bus 1 goes from yard to the first pickup
location, which here is 2 (because we have two pickup locations,
1 is divided by 2; since 0.71 is larger than 0.5, it means that it is
pickup location number 2), via route 1 (because we have three
routes, 1 is divided by 3; since 0.21 is smaller than 0.33, it means
that it is route number 1), then from pickup point 2 to shel-
ter 2 via route 3, and then from shelter 2 to pickup point 1 via
route 2.

Afterward, generated individuals are divided into subpopu-
lations. For each individual, one of the mutation strategies in
equations (2)–(6) is selected randomly to generate a mutant vec-
tor. Each subgroup is evolved separately for a predefined num-
ber of iterations. Then, some solutions are randomly selected to
migrate between subgroups. Before inserting selected individ-
uals into new groups, one of the opposition-based strategies is
randomly selected and applied to the individual. The process of
searching ends once the predefined criterion is satisfied. Pseu-
docode of the proposed algorithm is presented in Algorithm 1.

Algorithm 1. Pseudocode of the proposed DE algorithm.

1: The proposed algorithm
2: for i ←1 to NG do � NG is the number subpopulation.
3: for j ←1 to NP do � NP is the number of individuals in each subpopulation.
4: Generate a solution in the search space (Pi j ).
5: Calculate its fitness (f).
6: Add solution to the subpopulation i.
7: end for
8: end for
9: δ ← 0
10: while !termination criterion do
11: for i ←1 to NG do
12: for j ←1 to NP do
13: Select PBest and four solutions (Pi1, Pi2, Pi3, and Pi4) randomly from current subpopulation (i1 �= i2 �= i3 �= i4)
14: R ← rand i (imax) � Returns an integer between 1 and imax, which here is 5.
15: Switch R
16: Case 1
17: Vi j ← Pi1 + F (Pi2 − Pi3)
18: Case 2
19: Vi j ← Pi1 + F (Pi2 − Pi3) + F (Pi4 − Pi5)
20: Case 3
21: Vi j ← PBest + F (Pi1 − Pi2)
22: Case 4
23: Vi j ← PBest + F (Pi1 − Pi2) + F (Pi3 − Pi4)
24: Otherwise
25: Vi j ← Pi + F (PBest − Pi1) + F (Pi2 − Pi3)
26: end
27: for k ←1 to D do
28: if rand(0, 1) < Cr then
29: Ui j,k ← Vi j,k

30: else
31: Ui j,k ← Pi j,k

32: end if
33: end for
34: Evaluate Ui j

35: if ( f (Ui j ) ≤ f (Pi j )) then
36: P ′

i j ← Ui j

37: else
37: P ′

i j ← Pi j

39: end if
40: end for
41: end for
42: if mod(φ, δ) = = 0 then
43: for i ←1 to NG do � NG is the number subpopulation.
44: for j ←1 to NP do � NP is the number of individuals in each subpopulation.
45: if rand(0, 1) < ROBL then � Returns random number between 0 and 1 and ROBL is probability of doing OBL.
46: E ← rand i (imax) � Returns an integer between 1 and imax, which here is 5.
47: Switch E
48: Case 1
48: Xi j,k ← rand((ak + bk)/2, P̆i j,k), k = 1, 2, . . . , D � a and b are lower and upper bounds. P̆i j,k is opposite point of Pi j,k.
50: Case 2
51: Xi j,k ← rand(Pi j,k, (ak + bk)/2), k = 1, 2, . . . , D.
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Algorithm 1. Continued

52: Case 3
53: Xi j,k ← x̆coo

i = 2P best
k − xi , k = 1, 2, . . . , D .

54: if Xi j,k < ak then
55: Xi j,k ← ak

56: end if
57: if Xi j,k > bi then
58: Xi j,k ← bk

59: end if
60: Case 4
61: if Pi j,k < (ak + bk)/2 then
62: Xi j,k ← rand( P̆i j,k, bk)
63: end if
64: if Pi j,k > (ak + bk)/2 then
65: Xi j,k ← rand(ak, P̆i j,k)
66: end if
67: Otherwise
68: if Pi j,k > (ak + bk)/2 then
68: Xi j,k ← rand(Pi j,k, bk)
70: end if
71: if Pi j,k < (ak + bk)/2 then
72: Xi j,k ← rand(ak, Pi j,k)
73: end if
74: end
75: Evaluate Xi j

76: if ( f (Xi j ) ≤ f (Pi j )) then
77: Remove Pi j from subpopulation i and add Xi j solution to the temporary list T.
78: else
79: Remove Pi j from subpopulation i and add Pi j solution to the temporary list T.
80: end if
81: end if
82: end for
83: end for
84: Fill empty places in subpopulation with solutions in temporary list T.
85: end if
86: δ ← δ + 1
87: end while
88:

5. Results and Discussion

In this section, computational tests performed and results ob-
tained are presented and discussed in order to verify the perfor-
mance of the proposed novel DE algorithm against traditional
DE algorithms in deterministic conditions. We also compare
the performance of the proposed simheuristic algorithm against
a traditional simulation–optimization method when simula-
tion component is run in each iteration. This section there-
fore presents the random testing instances generated. Then,
parameters of algorithms are tuned and described. Finally, the
obtained results are discussed. It should be noted that the al-
gorithms described in the previous sections have been imple-
mented in MATLAB R2017b and all experiments were run on a PC
with an Intel QuadCore i7-7700 CPU at 3.60 GHz and 16.0 GB RAM.

5.1. Data generation

Since the variant of the bus evacuation problem discussed in
this study has not been studied in previous research works, in
order to compare the proposed approach with others we had to
generate some instances. Therefore, 20 instances are generated
with different sizes. Table 2 provides values for the number of
pickup points, the number of shelters, and the number of buses.
There are three routes between each pair of pickup location and

shelter. Stochastic travel time between nodes is generated us-
ing a truncated normal distribution, where means are randomly
generated between 10 and 200 for route 1, between 20 and 400
for route 2, and between 40 and 800 for route 3. The number of
evacuees at each pickup point is generated between 250 and 500.
The capacity of each bus is 50. Each route can be disrupted with
specific probability; thus, two different probabilities have been
considered in the generated instances, 0.1 and 0.3.

Each instance is run 10 times (Hatami et al., 2018). The best
results are recorded. In the proposed simheuristic, 100 and 20000
runs are employed during the solution approach and at the end,
respectively. In addition, stop condition is set at 60 s, because in
the evacuation problem a short time is available to make a good
decision; thus, to simulate this condition, the stopping condition
is fixed for all instances.

5.2. Parameter settings

Choosing the appropriate parameters can help the algorithm to
improve its convergence speed as well as the quality of the ob-
tained solutions. The proposed algorithm has several parame-
ters, which are population size (NP), crossover factor (Cr), num-
ber of groups, and scaling factor (F). To find the values of parame-
ters, several instances were randomly generated. Some param-
eters from similar algorithms in the literature were found and
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the algorithm run with their different combinations on the test-
ing set. Table 3 presents the most appropriate parameters for the
proposed problem. In addition, the parameters of other DE algo-
rithms are set at a population size (NP) of 100, a scaling factor (F)
of 0.5, and a crossover factor (Cr) of 0.9, based on Cai et al. (2017).

5.3. Experimental results

In this section, a performance measure is required to represent
the performance of algorithms. Therefore, the relative deviation
index (RDI) (Pan, Ruiz, & Alfaro-Fernández, 2017) is used to nor-
malize the values obtained. Smaller values of RPD are desirable.
RDI is calculated as

RDI = Algsol − Bestsol

Worstsol − Bestsol
× 100, (16)

where Algsol is the objective value obtained from each algorithm,
and Bestsoland Worstsol are the best and the worst solutions ob-
tained among all methods, respectively. First, to show the per-
formance of the proposed DE against previous traditional DEs,
instances 1–10 are selected and algorithms are run in determin-
istic condition. The experimental results of different sets are
shown in Table 4. In this table, the first column shows the in-
stance number, and the other columns indicate obtained RDI for
each algorithm. Furthermore, the last row presents the average
values in each column. The best RDI in each row is given in bold.
As it is clear in Table 4, the proposed DE with the average RDI of
12.1% is far superior to other DEs.

Furthermore, findings verify that using the OBL concept in
the proposed algorithm can significantly improve the perfor-
mance of the proposed algorithm. Figure 7 presents the perfor-
mance of the proposed algorithm with and without using the
OBL concept in different instances when RDI values of different
instances are calculated based on these two methods. As shown
in Fig. 7, in the presence of OBL, the proposed algorithm has bet-
ter outputs in all sizes.

The Wilcoxon signed-rank test as a nonparametric statisti-
cal analysis method is used to further verify the performance
of the proposed algorithm. The Wilcoxon signed-rank test is
used when we compare two related samples or matched sam-
ples. Therefore, it can be used to test the significance of the al-
gorithms (Biswas & Biswas, 2017). Wilcoxon’s test is conducted
with a 1% significance level. The obtained result using the
Wilcoxon signed-rank test is presented in Table 5. Based on the
obtained results, it is clear that the proposed method outper-
forms other DEs with the level of significance θ = 0.01 since the
P -value of each of the pairs is below 0.01. On the other hand, the
z-value exceeds the critical values. This indicates that the com-
parison is statistically significant.

In the next step, the proposed simheuristic is compared
against other simheuristics when their search engines are basic
DEs. This comparison is conducted to show the role of the pro-
posed DE in increasing the efficiency of the proposed simheuris-
tic. In both groups of instances, the performances of the pro-
posed algorithm are the same. Table 6 summarizes the results
of the experiments and presents the RDI for each algorithm and
each instance. The best performing algorithm is the proposed
simheuristic with average RDI of 40.4% and 44.7% for two differ-
ent groups of instances.To check for statistical significance of
the results and to confirm which is the best algorithm, we per-
formed the Wilcoxon signed-rank test. According to Table 7, the
performance of the simheuristic algorithm is significantly better
than those for all problem instances. Ta
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Table 7: Summary of Wilcoxon’s test results for stochastic conditions.

Comparison Solution quality

Algorithm 1 versus Algorithm 2 R+ R− z ρ-value

Proposed simheuristic Simheuristic (with DE/rand/1) 192.00 6.00 − 11.9345 <0.00001
Proposed simheuristic Simheuristic (with DE/rand/2) 188.00 11.00 − 11.8608 <0.00001
Proposed simheuristic Simheuristic (with DE/best/1) 167.00 30.00 − 9.8423 <0.00001
Proposed simheuristic Simheuristic (with DE/best/2) 188.00 8.00 − 11.6745 <0.00001
Proposed simheuristic Simheuristic (with DE/current-to-best/1) 190.00 9.00 − 11.9266 <0.00001

Table 8: Comparison of the proposed simheuristic with the conventional simulation–optimization framework.

Disruption probability = 0.1 Disruption probability = 0.3

Instance no.
Proposed DE + full

simulation Proposed simheuristic
Instance

no.
Proposed DE + full

simulation Proposed simheuristic

1 82.3% 27.6% 11 93.5% 38.5%
2 89.8% 46.6% 12 93.4% 51.3%
3 87.4% 39.7% 13 93.5% 49.4%
4 79.4% 21.6% 14 86.2% 45.5%
5 85.1% 41.6% 15 91.0% 55.0%
6 85.3% 43.4% 16 83.8% 31.9%
7 84.5% 27.5% 17 71.5% 33.5%
8 88.1% 35.9% 18 82.9% 31.0%
9 81.7% 38.1% 19 71.2% 28.3%
10 85.4% 27.3% 20 93.5% 38.5%

84.9% 34.9% 84.4% 38.9%

Table 9: Summary of Wilcoxon’s test results (the proposed simheuristic with the conventional simulation–optimization framework).

Comparison Solution quality

Approach 1 versus approach 2 R+ R− z ρ-value

Proposed simheuristic Proposed DE + full simulation 199.00 1.00 −12.2218 <0.00001

In the majority of studies, simulation is run in each iteration,
which is a very time-consuming procedure. Therefore, in order
to investigate the effects of the proposed simheuristic, the re-
sults obtained by the proposed simheuristic are compared with
the results when simulation is run in each iteration of the meta-
heuristic. As it is clear in Table 8, using this simheuristic frame-
work can help the algorithm to find better solutions in different
instances.

Table 9 summarizes the results of the Wilcoxon signed-rank
test. The results reveal that at significance level of 0.01 the
proposed approach is statistically superior to the simulation–
optimization method when the simulation is run in each itera-
tion. Hence, the proposed approach can help to reduce the com-
putational efforts.

6. Conclusions

The aim of this paper was to propose a hybrid simulation–
optimization approach to maximize the number of evacuees
moved from disaster-affected zones to safe locations. Address-
ing a gap in both EWE disaster management research and oper-
ation research to solve complex evacuation planning using pub-
lic transport systems, this study developed an innovative solu-
tion to optimize the available buses to maximize the number of
evacuees in the affected area moved via the available emergency

evacuation routes to the available shelters during a specific pe-
riod and considering the evacuation route disruption risk. Many
cities across the world are prone to EWEs such as major floods.
In case of approaching some extreme natural hazards, the pop-
ulation at risk is advised to evacuate, but some evacuees do not
have access to personal transportation means. Therefore, buses
should be provided for these evacuees in order to move them
to safe shelters. In many situations, there are a limited num-
ber of buses; therefore, they need to be run continuously during
the planning horizon. In addition, evacuation planning is associ-
ated with considerable uncertainties such as travel time of buses
through the road network. Furthermore, the road network can
be affected by disasters, and it may affect travel time. Also, evac-
uees with personal vehicle tend to use some short routes, which
may further cause route congestion. Considering these uncer-
tainties in evacuation planning, finding an appropriate solution
is challenging and complex.

To address the challenges associated with the emergency bus
evacuation, this study focused on route planning of the avail-
able buses to maximize the number of evacuees in the affected
area moved via the available emergency evacuation routes to the
available shelters during a specific period and considering the
evacuation route disruption risk. This study presented an effi-
cient method based on combining a metaheuristic with a sim-
ulation method. To increase the chance of finding better solu-
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tions using the proposed method, a novel DE was developed for
the search engine of the approach. In the proposed DE, some
OBL strategies were used to evaluate current candidate solutions
and their corresponding opposite at the same time. In addition,
a random strategy was applied to use different mutation strate-
gies in order to improve the exploitation and exploration capa-
bilities of the proposed DE algorithm. Furthermore, to maintain
population diversity, the proposed DE was designed based on
the multipopulation strategy. In order to assess the performance
of the proposed solution approaches, a set of numerical exper-
iments was conducted to evaluate the proposed approach in
terms of solution quality. First, the proposed novel DE algorithm
was found to be more promising than traditional DE algorithms
in deterministic condition. Furthermore, the proposed hybrid
approach demonstrated a good performance when the proposed
DE algorithm is used as the search engine. Finally, the perfor-
mance of the proposed simheuristic algorithm was compared
against a traditional simulation–optimization method when the
simulation component is run in each iteration. The results indi-
cate that the proposed method can achieve more desirable solu-
tions. The proposed hybrid simulation–optimization approach
can be used as efficient, practical tools by emergency man-
agement authorities in improving the utilization of emergency
evacuation routes and emergency shelters and reducing the
travel time of evacuees during an emergency evacuation. More-
over, the proposed approach is expected to improve the over-
all effectiveness of the bus emergency evacuation process and
ensure the safety of evacuees, including aging and disabled
people.

One of the future research directions of this work is consid-
ering demand uncertainty in the problem. In addition, the ex-
act method could be used to obtain optimal solutions or lower
bounds in small-scale scenarios. Considering other objectives
for the problem can be an interesting future research direction.
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