
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

ClusPath: A Temporal-driven Clustering to Infer Typical
Evolution Paths

Marian-Andrei Rizoiu · Julien Velcin ·
Stéphane Bonnevay · Stéphane Lallich

Received: date / Accepted: date

Abstract We propose ClusPath, a novel algorithm for detecting general evolution tenden-
cies in a population of entities. We show how abstract notions, such as the Swedish socio-
economical model (in a political dataset) or the companies fiscal optimization (in an eco-
nomical dataset) can be inferred from low-level descriptive features. Such high-level regular-
ities in the evolution of entities are detected by combining spatial and temporal features into
a spatio-temporal dissimilarity measure and using semi-supervised clustering techniques.
The relations between the evolution phases are modeled using a graph structure, inferred si-
multaneously with the partition, by using a “slow changing world” assumption. The idea is
to ensure a smooth passage for entities along their evolution paths, which catches the long-
term trends in the dataset. Additionally, we also provide a method, based on an evolutionary
algorithm, to tune the parameters of ClusPath to new, unseen datasets. This method assesses
the fitness of a solution using four opposed quality measures and proposes a balanced com-
promise.

Keywords detection of long-term trends · evolutionary clustering · temporal clustering ·
temporal cluster graph · semi-supervised clustering · Pareto front estimation.

1 Introduction

Knowledge is often hidden in plain view, within the sheer amount of available data. Refining
data into information by discovering patterns is the main purposes of Data Mining. In this
paper, we are interested in the more specific problem of discovering general temporal trends,
also known as typical evolution paths. This makes the problem of pattern mining more diffi-
cult, by adding to it the temporal dimension of data. It changes the definition of the learning
problem, since the description of entities is temporally contextualized. We study a popula-
tion of entities, described over a period of time by low-level descriptive features. Our final

Marian-Andrei Rizoiu
NICTA & Australian National University, 7 London Circuit, Canberra, Australia.
E-mail: Marian-Andrei.Rizoiu@nicta.com.au

Julien Velcin · Stéphane Bonnevay · Stéphane Lallich
ERIC laboratory, Université de Lyon, Lyon, France.
E-mail: Julien.Velcin@univ-lyon2.fr, Stephane.Bonnevay@univ-lyon1.fr,
Stephane.Lallich@univ-lyon2.fr

ar
X

iv
:1

51
2.

03
50

1v
1

 [
cs

.D
B

]
 1

1
D

ec
 2

01
5

2 Marian-Andrei Rizoiu et al.

aim is to detect the typical paths of evolution taken by most of these entities over the extent
of recorded time. Considering that an entity’s description can change over time, we define
an evolution phase as a period of limited extent in time during which multiple entities in the
dataset share similar descriptions. Therefore, to be informative, evolution phases should be
coherent in time and in the descriptive space. An evolution path is defined as a succession
of evolution phases followed by a large number of entities in the dataset, which can also be
seen as a typical trajectory through the evolution space. Such general evolution trends can
reveal information about the more complex hidden phenomena which happen in the popula-
tion of entities. We show, in Sect. 4, that high-level concepts such as socio-political regimes
or fiscal strategies can be detected from the low-level descriptive features. For example, the
“Swedish Social and Economical Model” [Erixon(2000)] can be mapped on the evolution
path followed by the northern European countries, in a dataset described using features such
as debt-to-GDP ratio, unemployment rate and political coloring of the parliament. Simi-
larly, we detect a strong trend in a population of companies, in which significantly less tax is
payed, while the net income increases: the fiscal optimization of international corporations.

To this end, we propose ClusPath, an algorithm that organizes a set of observations into
a structured partition, coherent both in the descriptive space and in the temporal space. We
use a temporal-aware dissimilarity measure for assessing the similarity between observa-
tions. Furthermore, we use a semi-supervised technique using must-link pairwise constraints
to ensure the contiguous segmentation of observations associated to an entity. The resulted
clusters are interpreted as evolution phases. The main novelty of ClusPath is that the three
components of the clusters: i) descriptive, ii) temporal and iii) the graph of relations between
them are inferred simultaneously, in one optimization procedure. This creates an intertwin-
ing, which allows the three components to influence each other, during the optimization
process. The major advantage over other approaches (like co-clustering or post-clustering
structure inference) is that it allows more flexibility during the optimization process and cre-
ates a partition more adequate to describe the data. Furthermore, it ensures that the entities
have a smooth passage between the phases on the evolution path. While we run the risk of
losing non-smooth entity evolutions, the purpose of our application is to detect the evolution
paths followed by the majority of the population. This is due to the “slow changing world”
assumption, which states that the long-term trends detectable in a population have a higher
inertia and they evolve more slowly than entities. This assumption might not be desirable
for all contexts, for example i) in applications in which it is important to capture the fined-
grained evolutions of entities. (e.g., stock exchange market) or ii) in which the general trend
does not possess a high inertia (e.g., popularity in social networks, online memes etc.). For
these applications, ClusPath has a parameter (i.e. λ2, defined in Sect. 3.2) which allows the
modulation of the degree in which this hypothesis is enforced. Additionally, we propose an
optional method, based on an evolutionary algorithm, to automatically tune the parameters
of ClusPath on new, unseen datasets.

The remainder of this paper is structured as follows. In Sect. 2, we present some previous
related work. In Sect. 3, we define the learning objectives, we translate them into an opti-
mization problem, we introduce ClusPath and the evolutionary heuristic for automatically
tuning the values of parameters. Sect. 4 presents the datasets we use, the quality measures
and the performed experimentations. We conclude in Sect. 5 and plan some future work.

2 State of the Art

The purpose of Evolutionary clustering is to capture the temporal evolution of clusters,
given data observations and their creation time. A good clustering result should fit the
current data well, while simultaneously not deviate too dramatically from the recent his-

Inferring Typical Evolution Paths 3

tory [Chi et al(2007)Chi, Song, Zhou, Hino, and Tseng]. Initial frameworks have been de-
signed for distance-based clustering, such as K-Means and agglomerative hierarchical clus-
tering [Chakrabarti et al(2006)Chakrabarti, Kumar, and Tomkins]. [Chi et al(2007)Chi, Song, Zhou, Hino, and Tseng]
have extended the evolutionary framework to spectral clustering with the emphasis on smooth-
ing clustering results over time to avoid sudden changes. [Xu et al(2012)Xu, Zhang, Yu, and Long]
take a generative models approach and apply it to dynamic social network analysis. All of
these evolutionary clustering approaches rely on time discretization into temporal windows
of arbitrary size, whereas ClusPath integrates the temporal dimension as a variable, without
the need of discretization.

TDCK-Means [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich] was introduced to detect
typical evolution phases in a population of entities. The main contributions of this work
were i) proposing a temporal-aware dissimilarity measure, used to assess the similarity
between two observations, both in the multidimensional descriptive and temporal spaces
and ii) assuring a contiguous segmentation by imposing semi-supervised must-link con-
straints [Wagstaff et al(2001)Wagstaff, Cardie, Rogers, and Schroedl] and a continuous time-
dependent penalty function for breaking the constraints. Other algorithms in the literature
use constraints for segmentation purposes. tcK-Means [Lin and Hauptmann(2006)] uses
must-link constraints and inflicts a fixed penalty when the following conditions are fulfilled
simultaneously: the observations are not assigned to the same cluster and the time difference
between their timestamps is less than some threshold. Similarly, [De la Torre and Agell(2007)]
detect tasks performed during a day, based on video, sound and GPS data. Aligned Cluster
Analysis [Araujo and Kamel(2014)] is an extension of the kernel k-means clustering algo-
rithm, in which side information is added in the form of pairwise constraints to its objective
function. Its purpose is segmenting time-series and clustering them together.

A recent extension of TDCK-Means [Rizoiu et al(2014)Rizoiu, Velcin, and Lallich] pro-
poses an a posteriori method for organizing the constructed clusters as a graph. The con-
struction is based on the transitions of entities between phases. While the aim of ClusPath
is also to identify the links between clusters, it differs fundamentally from the a posteriori
construction by inferring the relations simultaneously while clustering of the observations.
This creates an intertwining, by allowing the partitioning to influence the structure of clus-
ters, and, conversely, the links between clusters influence the assignment of observations to
clusters.

ClusPath infers the relations between clusters by combining multiple criteria into an
objective function and optimizing it using a gradient descent method. A related learning
problem is relational multicriteria clustering. The aim is to detect clusters of alternatives in a
multicriteria context and to identify relations between these clusters. In [Rocha et al(2013)Rocha, Dias, and Dimas],
a classical clustering is first applied to the set of possible alternative and each cluster is eval-
uated using predefined measures. A partial order outranking relation is established between
clusters, based on the scores of the evaluation measures and the preferences of the decision
maker. The outranking relations are constructed as a post-treatment (after clustering), using
a multi-criteria pair-wise comparison procedure. [De Smet and Eppe(2009)] use a distance
measure that is based on binary preference relations between different alternatives. The dis-
tance is extended to construct a binary outranking matrix between clusters. The outranking
matrix is constructed at each clustering iteration, but it has no influence over the assignment
of actions to clusters and it is calculated solely based on the composition of clusters.

A distinct, but somewhat related field is that of clustering of multi-dimensional trajecto-
ries. The crucial difference between this field and our work is that the former usually seeks
to find similarities between entire multi-dimensional data series (e.g., storm path trajecto-
ries, drug therapy response) in order to find connections between the evolution of different

4 Marian-Andrei Rizoiu et al.

entities. These approaches usually treat the entire temporal series as single data points. For
example, [Gaffney and Smyth(1999)] model the set of trajectories as individual sequences of
points generated from a finite mixture model. [Liang et al(2013)Liang, Tomioka, Murata, Asaoka, and Yamanishi]
predict glaucoma evolution in patients by using previous recorded disease evolutions. In
the first step, clustering is applied to gather patients similar to the target patient. The second
step fits a predictive model on the set of patients found in the first step, and predicts the fu-
ture disease condition. In [Siddiqui et al(2012)Siddiqui, Oliveira, Gama, and Spiliopoulou],
a mixture model of Markov Chains is learned and used to predict the next most likely
state/cluster per object. Apart from serving a different purpose, the first approach is un-
supervised, the second and the third are supervised, whereas ClusPath is a semi-supervised
algorithm. [Kalnis et al(2005)Kalnis, Mamoulis, and Bakiras] approach a related learning
problem: detecting of trajectories of moving clusters. Their underlying assumption is that
the data contains dense groups of individuals which move together in space and time (i.e., the
moving clusters). They construct individual partitions at each timestep and detecting pairs
of clusters in successive timesteps, susceptible of belonging to the same moving cluster. Our
problem differs mainly because an evolution path is not a unitary entity as a moving clus-
ter. The individual evolution phases have arbitrary extents of time and each one can be part
of multiple evolution phases. Unlike the temporal instantiations of a single moving cluster,
evolution phases have meaning by themselves and they are loosely connected in evolution
paths.

3 Our Proposal

3.1 Formalization and learning objectives

Definitions and intuitions. Each studied entity φl ∈Φ is described using multiple attributes,
which form the multidimensional description space. To each entity correspond N observa-
tions (entity, timestamp, description). An observation xi = (φl , tm,xd

i), i ∈ 1..N means that
the entity φl is described by the vector xd

i at the moment of time tm. To identify the entity
associated with a particular observation xi, we use the notation xφ

i . Therefore the notations
xφ

i and φl both denote the entities, and we use one or the other depending on the point of
view (i.e., observation- or entity- oriented). Similarly, xt

i is the timestamp associated with
the observation xi. Our learning problem, starting from such a dataset, aims at detecting typ-
ical evolution phases and evolution paths. There is a double interest: a) obtaining a broader
understanding of the phases that the collection of entities went through over time (e.g.,
detecting the periods of global political instability, economic crisis, wealthiness etc.); b)
constructing the trajectory of an entity through the different phases (e.g. a country may have
gone through a period of military dictatorship, followed by a period of wealthy democracy).
We define an evolution phase C as a set of observations xi, so that observations belong-
ing to C are as similar (in terms of a similarity function) as possible among themselves
and dissimilar to observations in other phases. Unlike in classical clustering (for example
K-Means [MacQueen(1967)]), observations should be similar both in the descriptive and in
the temporal space. We consider that each entity φl is associated at every moment of time
with one and only one evolution phase, i.e., each observation xi belongs to a single evolution
phase. Furthermore, phases are assumed to be linked to each other, to allow entities to tem-
porally navigate between them. A temporal succession of evolution phases forms an evolu-
tion path. Therefore, the “slow changing world” hypothesis, which assumes that long-term
trends evolve slowly, translates into evolution paths in which successive evolution phases
have high connection strengths.

Inferring Typical Evolution Paths 5

C
4

ϕ
1
,ϕ

3 ϕ
1

ϕ
2

ϕ
3

C
3

C
2

C
5

C
1

(a)

ϕ
1

 C∈
1

ϕ
1

 C∈
3

 ϕ
1

 C∈
5

ϕ
1

ϕ
2

ϕ
3

 C∈
1

ϕ
3

 C∈
3

ϕ
3

ϕ
2

 C∈
4

ϕ
3

 C∈
4

tt
1

x
1
 = (ϕ

1
, t

1
, x

1

d) x
2
 = (ϕ

3
, t

1
, x

2

d)

ϕ
2

 C∈
2

(b)

Fig. 1: An example of a desired output, in which the evolutions of 3 entities (φ1,φ2 and
φ3) are described using 5 phases (Ci, i = 1, . . . ,5). For example, the evolution path of φ3 is
C1→C3→C3. (a) The graph structure of the evolution phases. The arcs between two phases
(Ci,C j) are labeled with the entities presenting the transition Ci→ C j. (b) The observations
of the 3 entities are partitioned contiguously into the 5 phases.

Prototypes. We define µ = (µ t ,µd),µ ∈M the prototype of an evolution phase C ,
where M is the set of all prototypes. Just like centroids in traditional clustering, prototypes
behave likes “central tendencies” of their phases and characterize the phases both in the
temporal and in the descriptive space. Unlike centroids, the prototypes cannot be rigorously
defined outside the learning problem, as they are dependent not only on the observations
assigned with a phase, but also on the other prototypes and the choice of parameters (shown
in Sect. 3.3).

Method. We infer typical evolution paths, by clustering the observations corresponding
to entities into k clusters, which serve as evolution phases. The links between the evolution
phases are represented using a graph structure, defined by its adjacency matrix A = (ai j),
where ai, j ∈ [0,1] is the strength of the link between clusters Ci and C j. A value of 0 denotes
the absence of a link. The connection strength of the link is proportional to i) the similarity of
their prototypes µi and µ j, both in the temporal and descriptive space, and ii) the number of
entities presenting the passage from Ci to C j. The graph is oriented and, therefore, the matrix
A is not symmetrical. Fig. 1 shows the desired result of our clustering algorithm. Fig. 1a
shows how the phases C j are structured into a graph structure and, in Fig. 1b, the series
of observations belonging to each entity are assigned to phases, thus forming continuous
segments. The succession of segments is interpreted as the entity’s evolution path.

We define the following objectives for the resulting partition:
• Obj. 1: construct clusters which are coherent in the temporal and the descriptive space.

Observations under a cluster should have similar descriptions (just as traditional cluster-
ing does) and they should be temporally close. Each cluster should provide a trade-off
between the temporal and descriptive coherence, since the two might be contradictory.
For example, two different periods with similar evolutions (e.g., two economical crises)
should be regrouped separately, as they represent two distinct evolution phases;

• Obj. 2: segment, as contiguously as possible, the series of observations for each entity.
The sequence of segments is interpreted as the entity’s evolution path;

• Obj. 3: present smooth passages between phases on evolution paths. An evolution path
should take an entity through highly similar evolution phases, i.e., changes should come
in small increments.

3.2 Constructing the Objective Measure

ClusPath fulfills the aforementioned objectives by a) translating them into several objectives
and combining them into an overall objective function J and b) applying a gradient descent

6 Marian-Andrei Rizoiu et al.

optimization method, in which J is minimized, using a K-Means-like iterative relocation
framework. To optimize Obj 1, we use the temporal-aware dissimilarity measure proposed
by [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich]:

||xi− x j||TA = 1−
(

1− γd
||xd

i − xd
j ||2

∆d2
max

)(
1− γt

||xt
i− xt

j||2
∆ t2

max

)
(1)

where γd and γt are controlled by the parameter α ∈ [−1,1], which acts like a slider, favoring
the temporal component for α =−1 or the descriptive component for α = 1:

γd =

{
1+α, if α ∈ [−1,0]
1, if α ∈ (0,1]

; γt =

{
1, if α ∈ [−1,0]
1−α, if α ∈ (0,1]

, (2)

||• ||TA ∈ [0,1] and a value of zero means identical observations. ∆dmax and ∆ tmax are the di-
ameters of the descriptive and temporal space respectively (the largest distance encountered
between two observations). The temporal-aware measure allows to simultaneously take into
account the similarity in the descriptive and temporal spaces, between two observations. By
using this measure, ClusPath minimizes the term: ∑µp∈M ∑xi∈Cp ||xi−µp||TA , where µp is
the abstraction of cluster Cp, to which the observation xi is assigned.

The second objective (Obj. 2) states that, for comprehension reasons, the series of ob-
servations belonging to an entity should be segmented contiguously. We extend the initial
segmentation mechanism of TDCK-Means, by setting temporally-oriented must-link soft
constraints between each pair of observations, belonging to the same entity. Each entity is
associated with N observations, therefore each observation is involved in N−1 constraints,
linking it to all the other observations. Each constraint xi has a direction, i.e., it is temporally-
oriented. i−1 of these constraints are incoming (from preceding observations to xi), while
N− i are outgoing, towards the subsequent observations. A total of (N−1)(N−2)/2 con-
straints are set for each entity. A must-link constraint indicates that the two observations
should be placed into the same cluster. Being soft constraints, ClusPath is allowed to break
any number of them, while a time-decaying penalty is inflicted for each violation. The
penalty is more severe when the observations are closer in time and less severe when the
two assigned clusters have a strong link (high value for ai, j). The penalty function is:

w(xi,xk) = β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2
(
1−a2

j,l
)
1

[
xφ

i = xφ

k

]
1

[
xt

i < xt
k
]

, (3)

where xi ∈ C j, xk ∈ Cl and β ∈ R+ is the weight of the penalty function; δ ∈ R+ is a pa-
rameter which controls the width of the function. The penalty function in Eq. 3 is inspired
from the Normal Distribution function and it does not require the discretization of time.
Respecting all constraints involves associating all observations of an entity to the same evo-
lution phase. Therefore, the segmentation mechanism strives to acquire a trade-off between
clustering observations together and putting them into separate, yet well connected clusters.
We obtain the first term (T1) of the objective function, dealing with assigning observations
to clusters:

T1 = ∑
µp∈M

∑
xi∈Cp

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq

q 6=p,xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2
(
1−a2

p,q
)

 . (4)

Inferring Typical Evolution Paths 7

The following terms of the objective function, leverage the influence of the graph struc-
ture into the objective function. In Sect. 3.1, we stated that the strength of the link between
Cp to Cq is proportional to the similarity of their respective prototypes, µp and µq. We
use the temporal-aware dissimilarity measure to assess the similarity of the prototypes. A
low value for ||µp− µq||TA (high similarity) results in a high value for ap,q (powerful link
between Cp and Cq). This translates into the second term of the objective function:

T2 = ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,q||µp−µq||TA . (5)

T2, together with
(
1−a2

p,q
)

in term T1 (Eq. 4), assures the smooth passage for entities. T1
encourages successive observations to be assigned to clusters with a high value for ap,q.
T2 ensures that similar clusters have a strong link (high value for ap,q). Therefore, succes-
sive observations belonging to an entity are assigned to similar clusters, satisfying the third
learning objective (Obj. 3). The strength of the link between two clusters Cp and Cq is also
dependent on the number of entities which present a transition from Cp to Cq. We con-

sider that an entity φl presents a transition between Cp to Cq (Cp
φl−→ Cq) if and only if two

consecutive observations exist, associated with the given entity, where the first observation
(ordered by their timestamp) is clustered under Cp and the second one under Cq. We define
the intersection similarity measure between two phases, based on the normalized number of
entities that present the transition between the two phases:

interφ (Cp,Cq) = 1− |{φl ∈Φ |Cp
φl−→ Cq}|

|Φ | , (6)

where interφ (Cp,Cq) ∈ [0,1] and a value of zero means that all entities present a transition
from Cp to Cq. We construct the third term of the objective function:

T3 = ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,qinter2

φ (Cp,Cq) . (7)

We construct the objective function J as the weighted sum of the three terms in Eq. 4,
5 and 7:

J = λ1T1 +λ2T2 +λ3T3 =

= λ1 ∑
µp∈M

∑
xi∈Cp

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq

q 6=p, xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2
(
1−a2

p,q
)

+λ2 ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,q||µp−µq||TA +λ3 ∑

µp∈M
∑

µq∈M
p 6=q

a2
p,qinter2

φ (Cp,Cq) , (8)

where λ1,λ2,λ3 ∈ R+ are parameters of the algorithm and they represent the weights of the
different components. They allow to fine-tune the impact of each of the stated objectives.
For example, if it is desirable to obtain evolution paths with small increments, in which the
successive phases are very similar, it suffices to set λ2 to a high value. It would also result
in paths with a larger number of phases than for a combination of weights featuring a lower
λ2.

8 Marian-Andrei Rizoiu et al.

The objective function J in Eq. 8 is artificially minimized if apq = 0,∀p,q. Given that
J ∈ R+, we constrain the 1-norm of the adjacency matrix A:

||A||1 = 1⇔
k

∑
p=1

k

∑
q=1

ap,q = 1 . (9)

This strategy allows to set high values of ap,q for pairs of clusters for which
i) ||µp − µq||TA is low (similar prototypes) and ii) inter2

φ
(Cp,Cq) is low (a high number

of entities present a transition from Cp to Cq).

3.3 Optimizing the Objective Function. The ClusPath Algorithm.

We minimize the objective function J using a K-Means-like algorithm, by estimating the
inner variables: i) the assignment of observations to clusters, ii) the prototypes of clusters
and iii) the adjacency matrix. ClusPath uses an iterative relocation strategy, at each step con-
sidering as fixed two of the variables (e.g., the observations assignment and the prototypes)
and analytically computing the values of the third (the adjacency matrix).

Assignment of observations to clusters. For each observation xi, ClusPath chooses a
cluster Cp so that J is minimized. Considering that T2 and T3 in Eq. 8 are not dependent on
the assignment of observations to clusters, choosing a cluster for xi boils down to minimizing
T1:

best cluster(xi) = argmin
p=1,2,...,k

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq
q 6=p

xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2
(
1−a2

p,q
)

(10)

This guaranties that the contribution of xi to the value of J diminishes or stays constant.
Overall, this assures that J does not increase in the assignment phase.

Recomputing the prototypes of the clusters. ClusPath updates the prototypes by re-
computing one prototype at a time (e.g., µ j), while considering all the other prototypes fixed
at their values from the previous iteration. Each of the k prototypes µ j ∈M is composed
from a descriptive component and a temporal component: µ j = (µd

j ,µ
t
j). Given that the

subproblem of recomputing one prototype is quadratic and no additional constraints are im-
posed on µ j, each of the two components is updated individually, by calculating the fixed
point. Given that only the first two terms of the function J are dependent of µ j, from Eq. 8
we obtain the prototype update formulas (details of the complete calculations are in the
Supplementary Materials (SM) [Rizoiu et al(2016)Rizoiu, Velcin, Bonnevay, and Lallich]):

µ
d
j =

λ1 ∑xi∈C j xd
i

(
1− γt

||xt
i−µt

j ||2
∆ t2

max

)
+λ2 ∑µp∈M

p 6= j
µd

p

(
1− γt

||µt
p−µt

j ||2
∆ t2

max

)
(a2

j,p +a2
p, j)

λ1 ∑xi∈C j

(
1− γt

||xt
i−µt

j ||2
∆ t2

max

)
+λ2 ∑µp∈M

p 6= j

(
1− γt

||µt
p−µt

j ||2
∆ t2

max

)
(a2

j,p +a2
p, j)

µ
t
j =

λ1 ∑xi∈C j xt
i

(
1− γd

||xd
i −µd

j ||2
∆d2

max

)
+λ2 ∑µp∈M

p6= j
µ t

p

(
1− γd

||µd
p−µd

j ||2
∆d2

max

)
(a2

j,p +a2
p, j)

λ1 ∑xi∈C j

(
1− γd

||xd
i −µd

j ||2
∆d2

max

)
+λ2 ∑µp∈M

p 6= j

(
1− γd

||µd
p−µd

j ||2
∆d2

max

)
(a2

j,p +a2
p, j)

.

(11)

Inferring Typical Evolution Paths 9

Similarly to K-Means, the prototypes computed in Eq. 11 represent prototypes of their
clusters. Unlike K-Means, µ j the prototype of a cluster C j is not only the average of the ob-
servations regrouped under C j, but it is also influenced by the prototypes of the other clus-
ters linked to C j. Moreover, it represents the average of the assigned observations on both
the temporal dimension, as well as on the descriptive dimension, with the two dimensions
weighting each other. E.g., temporally central observations weight more in the calculation
of µd

j , the descriptive component of the new prototype. Furthermore, the contributions of
the other prototypes (µp) are weighted by the strength of the link between Cp and C j, the
cluster of the currently recomputed prototype µ j. Inferring the relations between clusters si-
multaneously with the clustering represents one of the advantages of ClusPath: the relations
between clusters can also influence their content. The orientation of the link is not important,
since both ap, j and a j,p appear in the update formula.

Updating the adjacency matrix. Similarly to recomputing the prototypes, the update of
the adjacency matrix is a quadratic problem. The difference is that the additional constraint
in Eq. 9 is imposed, in order to avoid a trivial null solution. A typical solution to optimizing
an equality constraint problem is to use a Lagrange multiplier on the constraint, similarly
to [Dunn(1973)]. Consequently, the update formula for the adjacency matrix is the solution
of the following:

∂J ∗

∂ar,s
= 0, where J ∗ = J −λ

(
k

∑
p=1

k

∑
q=1

ap,q−1

)
. (12)

By computing the point in which the derivative of J ∗ is null, we obtain the adjacency ma-
trix update formulas (for complete calculations see SM [Rizoiu et al(2016)Rizoiu, Velcin, Bonnevay, and Lallich]):

ar,s =
1

Kr,s ∑
k
p=1 ∑

k
q=1

1
Kp,q

,

with Kr,s =−λ1 pen(Cr
φ−→ Cs)+λ2||µr−µs||TA +λ3 inter2

φ (Cp,Cq) ,

and pen(Cr
φ−→ Cs) = ∑

xi∈Cr

xt
i<xt

k

∑
xk∈Cs

xφ

i =xφ

k

β ∗ e

− 1
2

(
||xt

i−xt
k ||

δ

)2
 . (13)

The pen(Cr
φ−→Cs) function in Eq. 13 is the influence that the contiguous penalty defined

in Eq. 3 has on the adjacency update process. Intuitively, this mechanism allows to take into
account the transitions of entities between phases, when computing the adjacency matrix. If
many entities present transitions between clusters Cr and Cs, then ar,s will be recomputed at
a large value. This, in turn, allows in the subsequent iteration to lower the contiguity penalty,
by lowering the 1−a2

r,s term in Eq. 3. The similarity between the prototypes µr and µs and
the number of entities presenting a transition between Cr and Cs also impact the adjacency
matrix update through Kr,s.

The ClusPath Algorithm. The outline of ClusPath is given in Algorithm 1. ClusPath
seeks to minimize J by iterating an assignment phase, a prototype update phase and an
adjacency matrix update phase until the partition does not change between two iterations.
Aside from k (the number of clusters), ClusPath uses six parameters: α , β , δ , λ1,λ2,λ3. In
Sect. 3.4, we discuss a technique for tuning these parameters to an unseen dataset. A random
subset of observations xl ∈X ,1 = 1,2, ..k can be used as M (0), the initial set of prototypes.
The up cluster and up adjacency are two functions used to recompute, respectively, the

10 Marian-Andrei Rizoiu et al.

Algorithm 1: Outline of the ClusPath Algorithm.
Data: observations xi ∈X , set of initial prototypes M (0)

Result: prototypes µ j, j = 1, ..,k, clusters C j, j = 1, ..,k, adjacency matrix A
Parameters: number of clusters k, α , β , δ , λ1,λ2,λ3
// adjacency matrix initialization
a(0)i, j = 0, ∀i, j = 1,2, ..,k
iter← 0
P(iter)← /0 //set of phases
repeat

iter← iter+1
for j = 1,2, ...,k do

C
(iter)
j ← /0

// S1. observation assignment to phases
for xi ∈X do

j = best cluster(xi, X , M (iter−1), P(iter−1), A(iter−1))

C
(iter)
j = C

(iter)
j ∪{xi}

// S2. update prototypes
for j = 1,2, ...,k do

(µ
d,(iter)
j ,µ

t,(iter)
j)← up prototype(j, X , M (iter−1), P(iter−1), A(iter−1))

// S3. update adjacency matrix
A(iter)← up adjacency(X , M (iter−1), P(iter−1))

M (iter)←{µ(iter)
j | j = 1,2, ..,k}

P(iter)←{C (iter)
j | j = 1,2, ..,k}

until C
(iter)
j = C

(iter−1)
j ,∀ j = 1,2, ..,k

prototypes and the adjacency matrix, as shown before in this section. Similarly to other gra-
dient descent algorithms, ClusPath may present the usual shortcomings, such as converging
to a local optima or slow convergence speeds near the minimum. While the convergence
speed of ClusPath has not been theoretically studied, the experiments in Section 4 show that
the optimization process practically stops in a few steps.

Algorithm complexity. We denote by T (x) the time complexity of subroutine x. From
Algorithm 1 is results T (ClusPath) = T (S1)+T (S2)+T (S3). If p is the number of entities
and N is the number of observations associated with each entity, then n = p×N is the total
number of observations. We assume that k << n. We compute T (S1) as nT (best cluster) =
pNT (best cluster). Due to the penalty term in Eq. 10, T (best cluster) = O(kN), therefore
T (S1) = O(pN2k). The complexity of updating centroids (S2) is kT (up prototype). From
Eq. 11 results T (up prototype) = 2(O(n)+O(k)) = O(n), therefore T (S2) = O(pNk)).
Lastly, T (S3) = T (up adjacency) = k2T (Kr,s), which can be obtained from Eq. 13. Com-
puting ar,s is dependent on computing Kr,s, which need be computed only once per iteration.

T (Kr,s)=T
(

inter2
φ
(Cp,Cq)

)
+T

(
pen(Cr

φ−→ Cs)
)

. From Eq. 6 results T
(

inter2
φ
(Cp,Cq)

)
=

O(pN) (since we need to iterate only once through the observations of an entity to detect

transitions). Furthermore, T
(

pen(Cr
φ−→ Cs)

)
=O(nN)=O(pN2). Consequently, T (Kr,s)=

O(pN2)⇒ T (S3) = O(pN2k2). This amounts to a complexity of ClusPath of O(pN2k2),
which is well adapted to Social Science and Humanities datasets, where often a large number
of entities is studied over a relatively short period of time (p > N).

Heuristics for Displaying the Constructed Graph. The adjacency matrix A = (ai, j)
shows the strength of the link between each pair of clusters. ai, j ∈ R, i, j = 1,2, ..,k. To
display the relation between clusters as a graph, we construct a binary matrix A∗, using a

Inferring Typical Evolution Paths 11

simple heuristic: a threshold λ is chosen so that only the k−1 scores are retained. This value
is chosen to favor a tree structure, even if a tree cannot be guaranteed given the structure of
the graph (i.e., some nodes may be central, with many connections, while others are marginal
or even unconnected). All arcs having the selected scores are plotted, consequently, more
than k− 1 arcs might be used. a∗i, j = 1 iff ai, j > λ , and a∗i, j = 0 iff ai, j ≤ λ . Unconnected
nodes are eliminated, as they are considered isolated evolution phases and, therefore, not
suitable for an evolution path. Given the adjacency matrix update formula in Eq. 13, ai, j
is low when entities do not present transitions between Ci and C j and µi and µ j are very
dissimilar. Therefore, entities which find themselves in these unconnected phases do not
transition into other phases and are dissimilar to the others. In other words, they act as
outliers of the typical evolution path.

3.4 Automatically Tuning the Parameters Using Evolutionary Algorithms

ClusPath uses six parameters: α , β , δ , λ1,λ2,λ3, which can prove challenging to tune,
especially on new, unseen datasets. Datasets issued from different domains, like the ones
presented in Sect. 4, may have different requirements for the ratio between the descriptive
and temporal dimensions (the α parameter) or the smoothness of the evolution path (the
λ2 parameter). We provide an optional method for automatically tunning the parameters of
ClusPath, at the expense of repeated runs of the algorithm. Using an evolutionary technique,
we optimize over the 6-dimensional space of the parameters in order to find a solution which
provides a balance between the four opposite measures used to evaluate its output.

Evaluating a partition. We use the classical Information Theory measures to numeri-
cally assess the four objectives defined in Sect. 3.1. The first three objectives are evaluated
using measures proposed by [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich]. The coherence
of the obtained partition in the descriptive and temporal dimensions are measured using
the classical variance on, respectively, the multidimensional component (MDvar measure)
and the temporal component (Tvar measure). We compute the variance as the mean within-
cluster dissimilarity between observations and their associated prototype. The contiguous
segmentation of the series of observations corresponding to an entity is measured using a pe-
nalized Shannon entropy (ShaP), in which a sequentiality component is added by weighting
the value of the classical entropy by a penalty factor depending on the number of continuous
segments in the series of each entity:

ShaP =
1
|Φ | ∑

φ∈Φ

k

∑
i=1

[
−pφ (Ci) log2(pφ (Ci))

](
1+

nch−nmin

N−1

)
, pφ (Ci) = ∑

x j∈Ci

xφ

j =φ

1
N

where nch is the number of changes in the cluster assignment series of an entity, nmin is the
minimal required number of changes and N is the number of observations for an entity. We
add a forth measure (SPass) to assess the smooth passage of entities along an evolution path
measure:

SPass = ∑
φ∈Φ

i, j∈1,...,k

∑

Ci
φ−→C j

||µi−µ j||TA

nch
.

which measures the average temporal-aware dissimilarity between successive phases. There-
fore, to each solution constructed by ClusPath corresponds a point in the four-dimensional
space of the measures: (MDvar, Tvar, ShaP, SPass)

Defining a balanced solution. The parameter tuning heuristic. The four objectives
defined in Sect. 3.1 and the four corresponding measures defined here above are contra-
dicting; completely fulfilling them at the same time is not possible. To acquire a trade-off

12 Marian-Andrei Rizoiu et al.

between the mutually contradicting objectives, we pose the problem of automatically tun-
ing the parameters of ClusPath as an optimization problem. We consider the parameters
of ClusPath as internal variables over which the search is performed and we evaluate us-
ing the four evaluation criteria. To chose a balanced solution, we use the concept of Pareto
optimality [Sawaragi et al(1985)Sawaragi, Nakayama, and Tanino], originally developed in
economics. Given a set of solutions, a given solution is considered to be Pareto optimal if
there exists no other that, simultaneously, is better on all objectives. The set of Pareto opti-
mal solutions form the Pareto front. Consequently, no single optimum can be constructed,
but rather a class of optima, depending on the ratio between the objectives. With no a priori
information, selecting the point on the Pareto front closest (in terms of Euclidean distance) to
the ideal point provides a good compromise between the different objectives. All measures
need to be minimized, therefore the ideal point is (0,0,0,0). By default, we use no weights
on the dimensions when calculating the distance from a solution to this point. Before com-
puting the Euclidean distance to the ideal point, the values of all measures are normalized,
in order to receive equal importance. Having the Pareto constructed allows using another
methodologies for selecting the “good trade-off” without re-executing the lengthy optimiza-
tion procedure.

Approximating the Pareto frontier using evolutionary algorithms. The heuristic
we propose is, for a given dataset, to construct the Pareto front in the measures space,
which is the 4-dimensional envelope of all the possible compromises. The solution clos-
est to the ideal point is chosen as the “best” compromise and its corresponding parame-
ter values are presented as the tuned values for the particular dataset. We formulate the
problem of parameter tunning as a multi-objective optimization problem, optimizing in
the 4-dimensional space of evaluation measures, with the parameters of ClusPath serving
as internal variables over which the search is performed. Solving multiobjective optimiza-
tion problems using evolutionary algorithms (MOEAs) has been investigated by many au-
thors [Deb et al(2002)Deb, Pratap, Agarwal, and Meyarivan,Halsall-Whitney and Thibault(2006),
Kafafy et al(2011)Kafafy, Bounekkar, and Bonnevay,Mihăiţă et al(2014)Mihăiţă, Camargo, and Lhoste,
Zitzler et al(2001)Zitzler, Laumanns, and Thiele]. Pareto dominance based MOEAs such as
NSGAII [Deb et al(2002)Deb, Pratap, Agarwal, and Meyarivan], SPEA2 [Zitzler et al(2001)Zitzler, Laumanns, and Thiele]
and HEMH [Kafafy et al(2011)Kafafy, Bounekkar, and Bonnevay] have been dominantly
used in the recent studies. In multiobjective optimization, the set of Pareto optimal solu-
tions is approximated using a large number of non-dominated points. MOEAs operates on
individuals of an initial population to generate the individuals of the population of the next
generation. The new population is generated by applying some processes of selection, re-
combination and mutation.

Our technique The genome of each individual is a vector composed of the six param-
eters of ClusPath: α , β , δ , λ1,λ2,λ3. For each individual, ClusPath is executed with the
parameters in its genome, a solution is obtained and it is evaluated. Therefore, to each in-
dividual corresponds a point in the 4-dimensional space of the measures. The size of each
evolutionary population is fixed to 100. We use the Pareto dominance to evaluate the fitness
function: the number of individuals which dominate the given individual. An elitist selection
is used to filter the population: all the non-dominated solutions and 10% of the dominated
solutions are promoted in the next generation, while the rest are removed. We use two oper-
ators to construct, based on the selected elite, new solutions until the population reaches the
nominal size. We duplicate and mutate 5% of the survivors. The mutations affect one or two
parameters in the genome, which are set to a random value in their domain of definition.
New offsprings are generated through a Path-Relinking strategy: two parents are selected
from the survivors and the values for the newly generated individuals are averaged means

Inferring Typical Evolution Paths 13

of the values of the parents. The weights are randomly generated. The process is iterated
until all the constructed solutions are Pareto non-dominated or until a maximum number
of generations (100) is reached. We choose as the “best” solution, the individual in the last
generation which is the closest to the ideal point. Given the elitist strategy, non-dominated
solutions always survive into successive generations.

The complexity of the evolutionary heuristic. For a given partition constructed by
ClusPath, we have T (MDvar) = T (T var) = T (ShaP) = O(pNk) and T (SPass) = O(pN).
Given m the number of individuals in each evolutionary generation, evaluating all the indi-
viduals in a generation takes O(mpNk). Calculating the fitness function at each generation
has the complexity O(m2). Sorting the individuals by their fitness is done in O(m× log(m)).
ClusPath is executed for each individual, therefore a complexity of m×O(pN2k2)=O(mpN2k2)
(cf. complexity of ClusPath calculated in Sect. 3.3). Therefore, the complexity of each evo-
lutionary generation is O(mpNk)+O(m2)+O(mpN2k2) = O(mpN2k2), considering that
m << pN2k2. This results in a total complexity of the evolutionary heuristic of O(ngmax×
mpN2k2), where ngmax is the maximum number of generations.

Note that the calculated complexity is the worst case scenario. In practice, the elitist
technique speeds up the computation considerably, since the solutions promoted from the
previous generation do not require a re-execution of the ClusPath algorithm. Furthermore,
the elitist technique speeds up convergence and reduces the actual number of required gen-
erations. Finally, evolutionary algorithms are very well adapted for massive parallelization.
Each individual execution of ClusPath is independent of the others and all the individuals
in a generation can be computed in parallel, provided that the heuristic is ran on a machine
with at least m execution cores. In our experiments in Section 4, the evolutionary algorithm
proved to be only 6.12 times slower than ClusPath (standard deviation of 0,46 over 200 runs,
all runtimes and hardware specs in SM [Rizoiu et al(2016)Rizoiu, Velcin, Bonnevay, and Lallich]).

4 Experiments

The experiments are conducted on two real-life datasets, one issued from political sciences:
Comparative Political Data Set I (CPDS1) [Armingeon, Klaus, Christian Isler, Laura Knöpfel and Engler(2011)]
and the second containing financial and accounting data: European Companies (EC) [Siddiqui et al(2012)Siddiqui, Oliveira, Gama, and Spiliopoulou].
CPDS1 is a collection of political and institutional data, which consists of annual data for 23
democratic countries for the period from 1960 to 2009. The dataset was cleaned by removing
redundant variables (e.g. country identifier and postal code), resulting in each country be-
ing described using 207 political, demographic, social and economic variables. The corpus
was preprocessed by removing entity-specific, time-invariant bias from the data. For every
attribute, we compute its mean for each entity. For every pair (attribute, observation) we sub-
stract from the attribute value the mean of the corresponding entity. The obtained dataset1 is
under the form of triples (country,year,description). The EC dataset describes the activity
of 836 companies over a period of 5 years (2003-2007), using 7 economic variables. The
dataset is preprocessed similarly to CPDS1, by removing the entity specific means from
each variable. Note that the EC dataset is very different from CPDS1, in the sense that a
consistently larger number of entities are studied over a short time span (5 timepoints for EC
vs. 50 for CPDS1) and are described using few attributes (7 for EC vs. 207 for CPDS1). As
the experiments in the following sections show, this leads to less diverse evolution phases
and shorter evolution paths. All attributes are normalized prior to the execution of the algo-
rithms (to avoid setting artificial weights), whatsoever the results presented in this section
are non-normalized, in order to appreciate the amplitude of the time-varying component.

1 Download pretreated version of the CPDS1 dataset here: http://goo.gl/17ihsf

http://goo.gl/17ihsf

14 Marian-Andrei Rizoiu et al.
T
v
a
r

MDvar

Evolutionary populations, MDvar-Tvar

S
h
a
P

MDvar

Evolutionary populations, MDvar-ShaP

S
P

a
s
s

MDvar

Evolutionary populations, MDvar-SPass

0

5

10

15

20

25

30

115 120 125 130
0.5

1

1.5

2

2.5

3

115 120 125 130

0.5

1

1.5

2

115 120 125 130

T
v
a
r

MDvar

Evolutionary populations, MDvar-Tvar
S

h
a
P

MDvar

Evolutionary populations, MDvar-ShaP

S
P

a
s
s

MDvar

Evolutionary populations, MDvar-SPass

Final generation Chosen solution local 2D Pareto FrontPrevious generations

0

0.5

1

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

3 3.5 4 4.5 5 5.5 6 6.5 7

Fig. 2: Typical example of execution of the evolutionary algorithm on CPDS1 (top row) and
on EC (bottom row). The obtained 4-dimensional Pareto front is projected onto the (MDvar,
Tvar) space (left), (MDvar, ShaP) space (middle) and (MDvar, SPass) space (right).

4.1 Choosing the Best Possible Solution Using an Evolutionary Algorithm

Throughout our experiments, the parameters of ClusPath (except for k, the number of clus-
ters) are chosen using the evolutionary heuristic described in Sect. 3.4. Being a clustering
algorithm, ClusPath suffers from the classical drawback of selecting the number of evolution
phases. Setting k to large values results in clusters containing less observations, more com-
pact in description and time, adapted for detecting granular evolutions. It also result in longer
evolution paths. Setting k to a low number results in more general evolution phases, more
adapted to detecting more general evolutions. Fig. 2 presents a typical execution of the evo-
lutionary algorithm, together with the obtained Pareto front and the chosen solution. Each
individual in each evolutionary generation is associated with a point in the 4-dimensional
space of the measures: (MDvar, Tvar, ShaP, SPass). For presentation reasons, we project the
4-dimensional space onto 2-dimensional spaces, by selecting pairs of measures. In Fig. 2,
some of the points on the 4-dimensional Pareto front (indicated by the red triangles) seem
Pareto dominated in the 2-dimensional spaces. The 2-dimensional graphics present only
projections and, as discussed in Sect. 3.4, optimizing multiple criteria means finding a com-
promise which rarely yields the best results on the individual criteria. Similarly, the chosen
global solution is not necessarily the optimum in each of the 2-dimensional spaces. Whatso-
ever, Fig. 2 clearly shows that the chosen point is never too far from the local Pareto fronts
and, thus, it provides a good trade-off. On EC, the Tvar measure (bottom row, left and center
graphics) presents levels. This is due to the very limited temporal extent of the dataset (5
years, i.e., 5 data points), which in turn limits the number of values that can be taken by the
temporal variance.

Runtime An average run of ClusPath on CPDS1 takes 122.81s (stdev = 11.37) on our
24 cores Intel(R) Xeon(R) E5-2430 machine (see SM [Rizoiu et al(2016)Rizoiu, Velcin, Bonnevay, and Lallich]
for full machine specs), while the evolutionary technique takes 750.69s (stdev = 53.8). This

Inferring Typical Evolution Paths 15

0

5

10

15

20

23

1960 1970 1980 1990 2000 2010

Cluster distribution over time

C
lu

s
te

r
d
is

tr
ib

u
ti

o
n

Time

(a)

1960 1970 1980 1990 2000 2010

Entity segmentation over time

Time

Japan

Switzerland
Sweden

Spain
Portugal
Norway

New Zealand
Netherlands
Luxembourg

Italy
Ireland

Greece
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia

USA
UK

Iceland

(b)

4 | 1967
11 | 1983

7 | 1969

6 | 1969

`

3 ent. | 0.32

2 ent. | 0.29

2 ent. | 0.29

1 ent. | 0.27
12 | 1983

2 ent. | 0.29

2 ent. | 0.29

1 ent. | 0.27

11 ent. | 1.30

1 ent. | 0
.27

10 | 1978

5 | 1968 3 ent. | 0.32

1 ent. | 0.27

16 | 1999

19 | 2002

15 | 1998

20 | 2003

18 ent. | 5.23

2 ent. | 0.29

2
en

t.
| 0

.2
9

1 ent. | 0.27

3 en
t. | 0.32

1 en
t. | 0.27

(c)

Fig. 3: Typical evolution phases constructed by ClusPath on CPDS1, with 20 clusters. Num-
ber of entities in each phase per year (a), segmentation of entities over phases (b) and the
phase evolution graph (c)

makes an execution of the evolutionary technique as long as roughly six sequential execu-
tions of ClusPath.

Qualitative Results Fig. 3 shows the typical evolution paths constructed by ClusPath on
CPDS1, when asked for 20 clusters. The heuristic used for displaying the constructed graph
eliminates unconnected phases. Fig. 3a shows how many countries belong in a certain cluster
for each year. Clusters C7 (black), C11 (magenta) and C15 (blue) contain most of the obser-
vations, suggesting that the path C7 −→ C11 −→ C15 is a typical evolution path followed by
most entities. The meaning of each constructed cluster unravels when studying the segmen-
tation of countries over clusters, in Fig. 3b, as well as the proposed graph structure in Fig. 3c.
For example, the succession C5 −→ C11 is followed by Spain, Portugal and Greece at the
beginning of their evolution. Historically, this coincides with the non-democratic regimes in
those countries (Franco’s dictatorship in Spain, the “Regime of the Colonels” in Greece).
Likewise, the succession C4 −→ C11 (and the slightly longer C4 −→ C7 −→ C11) is present
for countries like Denmark, Finland, Iceland, Norway and Sweden. This evolution path maps
onto the “Swedish Social and Economical Model” of the Nordic countries. For completeness
reasons, we present in Fig. 7, the graph of phases constructed a posteriori by the extensions
of TDCK-Means, proposed in [Rizoiu et al(2014)Rizoiu, Velcin, and Lallich]. Visibly, the
constructed paths are longer (most transitions are followed by a single entity) and more dif-
ficult to interpret. Furthermore, the entities evolution through the graph is not constrained
during the clustering, which results in a significant number of backwards links from phases
with a higher timestamp to phases with a lower timestamp. Overall, the graph generated

16 Marian-Andrei Rizoiu et al.

2003 2004 2005 2006 2007

Phases distribution over time

Time

0
20

0
40

0
60

0
80

0

1
2
3
4
5
6
7
8
9
10

(a)

9 | 6/2006

3 | 8/2003

1 ent. | 0.02

807 ent. | 8.49

2 | 1/2003

6 | 6/2004

13 ent. | 1.29

2 ent. | 0.03

824 ent. | 8.98

1 ent. | 0.02

1 ent. | 0.02

Tax Rate lessmore

N
et

 I n
co

m
e

le
ss

m
o
re

(b)

Fig. 4: Typical evolution phases constructed by ClusPath on EC, with 10 clusters. Num-
ber of entities in each phase per year (a) the evolution graph projected in the space Net-
Income/TaxRate (b)

by ClusPath is more synthetic and easier to interpret, since it contains less specific arcs
(followed by a single entity) and less backward links. This makes is more adapted for our
application: identifying typical evolution paths.

On the EC dataset, ClusPath is executed with 10 clusters, because of the considerably
shorter temporal extent of the dataset. Figure 4a shows that the phases C2, C3, C6 and C9 are
the predominant evolution phases, with the evolution C2 −→ C6 −→ C9 being the typical
evolution in the population of companies. The descriptions of these phases are given in
Table 1. Considering that the dataset was preprocessed to remove entity-specific values, the
negative and positive values in Table 1 indicate negative, respectively positive, tendencies.
For example, phase C3 is a crisis phase, in which companies reduce slightly their debt, while
considerably reducing their revenues and income.

Figure 4b shows the obtained evolution graph, projected onto the 2-dimensional space
defined by NetIncome and TaxRate, two of the descriptive variables in the dataset EC. The
series of the NetIncome on the C2 −→ C6 −→ C9 evolution path is −0.09 −→−0.04 −→
0.15, whereas the TaxRate on the same evolution path is 0.08 −→ −0.04 −→ −0.06. It
depicts the “tax optimization” undertook by most companies in the dataset: most companies
arrive to decrease significantly their tax rate, while increasing the net income. Phase C3 is
a crisis phase, out of the 15 companies that enter it and only one exits it. This seems to
indicate that in the economical climate preceding the crisis of 2009, one of the ways to keep
a company profitable was fiscal optimization.

Table 1: Most common evolution phases in EC, described over the 7 dimensions of the
dataset. The evolution path C2 −→ C6 −→ C9 is the path followed by most companies

Ph. Time FCFF TotalDebt Revenues NetCapExp EBITDA TaxRate NetIncome

C2 01/2003 -0.00 -0.01 -0.02 -0.00 -0.04 0.08 -0.09
C3 08/2003 -0.94 -0.06 -1.82 -0.67 -2.02 -0.07 -4.04
C6 06/2004 -0.01 -0.01 -0.02 -0.04 -0.02 -0.04 -0.04
C9 06/2006 0.05 0.01 0.07 0.04 0.07 -0.06 0.15

Inferring Typical Evolution Paths 17

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
3.09

3.59

4.09

4.59

5.09

5.59

6.09

6.59

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.41

1.61

1.81

MDvar and Tvar vs. α

MDvar

Tvar

α

M
D

v
a

r

T
v

a
r

(a)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

5.20

5.25

5.30

1.98

2.03

2.08

2.13

2.18

2.23

MDvar and ShaP vs. β

MDvar

ShaP

M
D

v
a

r

S
h

a
P

β * 103

(b)

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

2.23

2.24

2.24

2.25

2.25

2.26

2.26

2.27

2.27

2.28

Tvar and ShaP vs. δ

Tvar

ShaP

δ

T
v

a
r

S
h

a
P

(c)

Fig. 5: Determine, using the heuristics described in the original paper, the values of
TDCK-Means’ parameters for dataset EC: α (a), β (b) and δ (c)

4.2 Quantitative Results

To handle the initialization bias present in clustering, we have constructed 20 sets of initial
prototypes. Each of the tested algorithms was initialized identically, with each of the sets
of initial prototypes and only the average values of the measures are reported. The perfor-
mances of six algorithms are compared:
• Simple K-Means [MacQueen(1967)] clusters the observations based solely on their re-

semblance in the multidimensional space. Optimizes MDvar;
• Temporal-Driven K-Means [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich] uses K-Means

with the the temporal-aware measure. Optimizes MDvar and Tvar. Parameters: α = 0
and β = 0;

• Constrained K-Means [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich] uses the Euclidean
distance and a penalty. Optimizes MDvar and ShaP. Parameters: α = 1, β = 0.0005 and
δ = 3;

• tcK-Means [Lin and Hauptmann(2006)] is a temporal constrained clustering algorithm.
It uses a threshold penalty function, adapted to the multi-entity case. Optimizes MDvar
and ShaP. Parameters: α∗ = 2,d∗ = 4.

• TDCK-Means [Rizoiu et al(2012)Rizoiu, Velcin, and Lallich] uses the temporal-aware
dissimilarity measure, as well as contiguity constraints. Optimizes MDvar, Tvar and
ShaP. Parameters: α = 0.95, β = 0.0002 and δ = 3;

• ClusPath is the algorithm we propose in Sect. 3. Unlike the aforementioned algorithms,
ClusPath is the sole algorithm to infer a graph structure for the clusters during the clus-
tering. Optimizes MDvar, Tvar, ShaP and SPass. Parameters: determined automatically
using the heuristic in Sect. 3.4.
Obtained results. The parameters of all algorithms, except ClusPath, are determined

as shown in their original articles. For example, in Figure 5 we reproduce the heuristic
of determining TDCK-Means’ parameters on EC. Table 2 shows the average values of the
measures, as well as the standard deviation (in italic) obtained by each algorithm. The best
results on each measure are indicated in boldface. Note that, while ClusPath is designed to
provide a compromise between the learning objectives, Simple K-Means, Temporal-Driven
K-Means and Constrained K-Means are designed to optimize mainly one component. Not
surprisingly, they show the best scores for, respectively, MDvar, Tvar and ShaP. ClusPath
shows the best SPass score, proving that constructing the structure between clusters during
the clustering process results in evolution paths with smoother passages. Both TDCK-Means
and ClusPath seek to provide a trade-off between the measures, but ClusPath consistently
outperforms TDCK-Means, except for the temporal variance on EC. Overall, ClusPath suc-

18 Marian-Andrei Rizoiu et al.

ceeds in providing a good trade-off between the different contradicting measures, obtaining
the best SPass value and limited loss on the other measures.

4.3 Impact of Parameters and Result Stability

We launch the evolutionary heuristic on CPDS1 100 times with the same parameters of the
evolutionary algorithm and with the same initial prototypes for each execution of ClusPath.
This allows to i) assess the correlations between the chosen parameters and the obtained
measures and ii) study the stability of the chosen solution, while lowering th impact of
initialization randomness present in K-Means-like algorithms.

Impact of parameters on the evaluation measures Table 3 shows the Pearson correla-
tion between i) the parameters and the measure, ii) between the parameters and iii) between
the measures. Statistically significant correlations (with p = 0.05) are shown in boldface.
The table on the right shows that the evaluation measures are, by pairs of two, correlated
among themselves. The pairs a) MDvar and ShaP and b) Tvar and SPass are correlated pos-
itively. Conversely, MDvar and ShaP seem to be negatively correlated with Tvar and SPass.
The result is consistent with the multiobjective optimization task: all solutions are scattered
closely around the optimum solution and improving a measure mechanically involves de-
grading others, hence the negative correlations. The parameters with the most impact in
ClusPath are α and β . They also have a weak correlation among themselves. α is statisti-
cally significantly correlated, negatively with MDvar and ShaP, and positively with Tvar.
This was expected, considering that α is a slider variable, giving priority to the temporal
component for higher values. β is negatively correlated with MDvar and SPass and posi-
tively correlated with ShaP: the higher β , the higher the contiguity penalty, which results in
a more contiguous segmentation of observations for each entity.

Stability of the chosen solution for ClusPath We assess how stable are the solutions
constructed by the evolutionary technique by studying the variability of the obtained param-
eters of ClusPath and the the values of evaluation measures. For parameter α , for most of
the 100 execution described in this subsection, its values are distributed uniformly around
0.48. The exception are four cases in which α takes values around 0.35. These four “outlier”
values of α , together with another 16 samples “regular” values (only 16 for readability pur-
poses) are shown in Fig. 6a. There are no intermediary values between the two levels, which
indicates that the Pareto front has two regions close to the ideal point: a larger one defined
by values of α around 0.48 and a second, considerably smaller one, defined by α ≈ 0.35

Table 2: Mean value and standard deviation of evaluation measures for the different algo-
rithms. All measures need to be minimized (best results in bold)

Algorithm MDvar Tvar ShaP SPass

C
P
D
S
1

K-Means 114.89 3.8 46.08 8.03 1.80 0.18 3.19 0.63
Temporal Driven K-Means 125.32 3.4 4.56 0.35 2.96 0.07 1.52 0.31
Constrained K-Means 140.26 17.51 163.60 31.19 0.51 0.34 1.13 0.49
tcK-Means 131.54 10.8 156.15 19.23 0.61 0.20 2.15 0.51
TDCK-Means 121.27 4.34 38.58 7.16 1.60 0.13 1.52 0.55
ClusPath 118.68 5.18 6.26 3.21 2.81 0.31 0.86 0.23

E
C

K-Means 3.06 0.28 1.95 0.01 0.15 0.15 8.41 1.50
Temporal Driven K-Means 4.83 0.43 0.01 0.03 2.28 0.12 45.99 9.63
Constrained K-Means 4.96 0.69 1.99 0.01 0.21 0.03 4.49 6.56
tcK-Means 4.29 0.34 1.98 0.01 0.04 0.01 20.09 14.61
TDCK-Means 4.41 0.55 0.07 0.06 2.14 0.17 5.03 1.29
ClusPath 3.85 0.59 0.60 0.25 0.97 0.22 4.40 1.25

Inferring Typical Evolution Paths 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0,0

0,1

0,2

0,3

0,4

0,5

Value of parameter α for multiple executions

Execution number

V
a

lu
e

 o
f

α

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
116

117

117

118

118

119

119

120

120

0

1

2

3

4

5

6

7

8
Value of MDvar, Tvar and ShaP for multiple executions

MDvar Tvar ShaP

Execution number

V
a

lu
e

 o
f

T
v

a
r

a
n

d
 S

h
a

P

V
a

lu
e

 o
f

M
D

v
a

r

(b)

Fig. 6: Two local optima: the region identified by negative values of α is highlighted (a) and
the corresponding values for MDvar, Tvar and ShaP (b).

(highlighted in Fig. 6a). Fig. 6b highlights the corresponding values of MDvar, Tvar and
ShaP. This local minimum region of the Pareto front presents consistently elevated values
of MDvar, slightly higher values of ShaP and lower values of Tvar. These observations are
consistent with the conclusions of the previous paragraph, considering that α is correlated,
i) negatively with MDvar and ShaP and ii) positively with Tvar. The existence of two local
optima is confirmed by Table 4, which shows the mean and the coefficient of variation for
the six parameters and four measures of ClusPath over all the executions (denoted by *) and
after removing the four solutions corresponding to the local minima (denoted by **). The
coefficients of variation of the evaluation measures for case * consistently decrease in the
** case. This proves that the removed solutions were caught in a local optimum region and
the remaining solutions are grouped even more densely in the 4-dimensional space of the
measures.

Table 3: Correlation matrix i) between parameters and quality measures and ii) between
parameters (left table) and iii) between quality measures (right table).

MDvar Tvar ShaP SPass α β δ λ1 λ2 λ3

α -0.92 0.72 -0.90 0.14 1.00 0.34 0.15 -0.07 -0.08 -0.08
β -0.31 0.09 0.30 -0.21 1.00 -0.07 -0.20 -0.12 -0.06
δ -0.17 0.05 -0.15 0.14 1.00 -0.08 0.07 -0.11
λ1 0.05 -0.06 0.08 0.13 1.00 0.09 0.03
λ2 0.11 -0.01 0.09 -0.09 1.00 0.00
λ3 0.03 -0.06 0.03 0.07 1.00

MDvar Tvar ShaP SPass

MDvar 1.00 -0.68 0.95 -0.31
Tvar 1.00 -0.76 0.34
ShaP 1.00 -0.37
SPass 1.00

Table 4: Result stability: averages and coefficients of variation for all solutions (rows with
*) and after removing the local optimum corresponding to lower α values (rows with **)

α β ×105 δ λ1 λ2 λ3 MDvar Tvar ShaP SPass

* Average 0.477 7.727 3.02 484.74 536.51 522.35 117.69 7.33 2.61 0.76
Coef. var. 7.11% 54.48% 18.35% 55.97% 52.76% 56.34% 0.32% 3.12% 1.35% 1.83%

**

Average 0.480 7.5 2.99 587.54 535.91 502.65 117.65 7.39 2.61 0.77
Coef. var. 4.28% 59.63% 16.24% 37.22% 34.34% 61.48% 0.17% 2.07% 0.85% 0.91%

20 Marian-Andrei Rizoiu et al.

5 Conclusion and Future Work

In this paper, we have studied the construction of typical evolution paths followed by a
collection of entities. We have proposed a novel algorithm, ClusPath, that partitions the ob-
servations belonging to entities into clusters, coherent in both the descriptive and temporal
spaces. The connexions between clusters are inferred during the clustering process and suc-
cessions of linked clusters are interpreted as evolution paths. A semi-supervised technique is
used to leverage the strength of the links between clusters in the assignment of observations.
An evolutionary technique is used to find the set of optimum parameters and choose the
“best” trade-off of measures. We perform experiments on two real-live datasets, one issued
from political sciences and the other issued from economics. We have shown how complex
notions, such as socio-economical models (i.e., the “Swedish” model) or tax policies (i.e.,
the tax optimization performed by companies) can be detected from the temporal evolution
of descriptive features.

The main novelty of ClusPath over other approaches (such as co-clustering) is that i) it
joins the temporal and descriptive features in the same objective function and ii) it combines
into the same optimization procedure the descriptive-temporal construction of the prototypes
with the inference of the relations between clusters. The major advantage over constructing
each component sequentially (like in TDCK-Means with a posteriori graph structure con-
struction) is that the content of a cluster and relations between clusters influence each other
during the optimization process. ClusPath is based on a “slow changing world” hypothesis,
which assumes that changes in the population are gradual and “smooth”. This hypothesis
holds for many application domains, e.g., scientific discussion topics, online communities
etc. In applications in which this hypothesis does not hold (e.g., stock market transactions,
in which it is desirable to detect sudden changes), ClusPath can still be used, by lowering
the degree in which this hypothesis is enforced.

Future work. We are currently experimenting with applying the algorithm to other ap-
plications, e.g., detection of social roles in social networks, by passing through temporal be-
havioral roles. A social role is defined as a typical succession of behavioral roles. Another di-
rection of research is describing the clusters with an easily comprehensible description by in-
troducing temporal information into an unsupervised feature construction algorithm. Finally,
it would be useful to compare the solution constructed by ClusPath with those issued by al-
gorithms for detecting trajectories of moving clusters (e.g., [Kalnis et al(2005)Kalnis, Mamoulis, and Bakiras]).

6 Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.
Research involving Human Participants and/or Animals: The authors declare that no
part of the research presented in this manuscript involved any humans or animals.

Acknowledgements NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence Program.

References

Araujo and Kamel(2014). Araujo R, Kamel MS (2014) Semi-supervised Kernel-Based Temporal Clustering.
In: International Conference on Machine Learning and Applications, IEEE, ICMLA ’14, pp 123–128

Armingeon, Klaus, Christian Isler, Laura Knöpfel and Engler(2011). Armingeon, Klaus, Christian Isler,
Laura Knöpfel DW, Engler S (2011) Comparative Political Data Set 1960-2009. University of Berne.

Inferring Typical Evolution Paths 21

1
en

t.
| 4

.3
5

2
en

t.
 |

8.
70

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

5
| 1

97
1

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

12
 e

nt
. |

 5
2.

17

1
en

t.
| 4

.3
5

5
en

t.
 |

21
.7

4

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

9
en

t.
| 3

9.
13

5
en

t.
 |

21
.7

4

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

2
en

t.
| 8

.7
0

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

7
en

t.
 |

30
.4

3

1
en

t.
| 4

.3
5

3
en

t.
| 1

3.
04

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

2
en

t.
| 8

.7
0

1
| 1

96
3

10
 |1

98
3

7
| 1

97
3

4
| 1

97
0

11
 |1

98
7

8
| 1

97
4

3
| 1

96
6

9
| 1

97
8

2
| 1

96
6

12
 |

19
88

13
 |1

99
4

14
 |

19
96

16
 |

19
99

19
 |

20
03

15
 |

19
98

17
 |

20
00

18
 |

20
02

20
 |

20
03

6
| 1

97
1

Fig. 7: Graph structure constructed a posteriori by TDCK-Means, on Comparative Political
Data Set I with 20 clusters.

22 Marian-Andrei Rizoiu et al.

Chakrabarti et al(2006)Chakrabarti, Kumar, and Tomkins. Chakrabarti D, Kumar R, Tomkins A (2006) Evo-
lutionary Clustering. In: International Conference on Knowledge Discovery and Data Mining, ACM,
SIGKDD ’06, pp 554–560

Chi et al(2007)Chi, Song, Zhou, Hino, and Tseng. Chi Y, Song X, Zhou D, Hino K, Tseng BL (2007) Evo-
lutionary Spectral Clustering by Incorporating Temporal Smoothness. In: International Conference on
Knowledge Discovery and Data Mining (KDD), San Jose, USA, pp 153–162

De la Torre and Agell(2007). De la Torre F, Agell C (2007) Multimodal Diaries. In: Multimedia and Expo,
IEEE, pp 839–842

De Smet and Eppe(2009). De Smet Y, Eppe S (2009) Multicriteria Relational Clustering: The Case of Binary
Outranking Matrices. In: Evolutionary Multi-Criterion Optimization, vol 5467, pp 380–392

Deb et al(2002)Deb, Pratap, Agarwal, and Meyarivan. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A
fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation 6(2):182–197

Dunn(1973). Dunn JC (1973) A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact
Well-Separated Clusters. Journal of Cybernetics 3(3):32–57

Erixon(2000). Erixon L (2000) A Swedish Economic Policy: The Theory, Application and Validity of the
Rehn-Meidner Model. Tech. rep., Department of Economics, Stockholm University

Gaffney and Smyth(1999). Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression
models. In: International Conference on Knowledge Discovery and Data Mining, ACM Press, New York,
USA, SIGKDD ’99, pp 63–72, DOI 10.1145/312129.312198

Halsall-Whitney and Thibault(2006). Halsall-Whitney H, Thibault J (2006) Multi-objective optimization for
chemical processes and controller design : Approximating and classifying the pareto domain. Computers
& Chemical Engineering 30(6-7):1155–1168

Kafafy et al(2011)Kafafy, Bounekkar, and Bonnevay. Kafafy A, Bounekkar A, Bonnevay S (2011) A hybrid
evolutionary metaheuristics (HEMH) applied on 0/1 multiobjective knapsack problems. In: Genetic and
Evolutionary Computation, ACM Press, New York, USA, GECCO ’11, p 497

Kalnis et al(2005)Kalnis, Mamoulis, and Bakiras. Kalnis P, Mamoulis N, Bakiras S (2005) On Discover-
ing Moving Clusters in Spatio-temporal Data. In: Bauzer Medeiros C, Egenhofer M, Bertino E (eds)
Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science, vol 3633, Springer
Berlin Heidelberg, chap 21, pp 364–381

Liang et al(2013)Liang, Tomioka, Murata, Asaoka, and Yamanishi. Liang Z, Tomioka R, Murata H, Asaoka
R, Yamanishi K (2013) Quantitative Prediction of Glaucomatous Visual Field Loss from Few Measure-
ments. In: International Conference on Data Mining, ICDM ’13, pp 1121–1126

Lin and Hauptmann(2006). Lin WH, Hauptmann A (2006) Structuring continuous video recordings of ev-
eryday life using time-constrained clustering. In: Chang EY, Hanjalic A, Sebe N (eds) Multimedia Con-
tent Analysis, Management, and Retrieval, pp 60,730D–60,730D–9

MacQueen(1967). MacQueen J (1967) Some methods for classification and analysis of multivariate obser-
vations. In: Berkeley Symposium on Mathematical Statistics and Probability, vol 1, pp 281–297

Mihăiţă et al(2014)Mihăiţă, Camargo, and Lhoste. Mihăiţă AS, Camargo M, Lhoste P (2014) Optimization
of a complex urban intersection using discrete event simulation and evolutionary algorithms. In: Interna-
tional Federation of Automatic Control, IFAC’14, vol 19, pp 8768–8774

Rizoiu et al(2012)Rizoiu, Velcin, and Lallich. Rizoiu MA, Velcin J, Lallich S (2012) Structuring typical evo-
lutions using Temporal-Driven Constrained Clustering. In: International Conference on Tools with Arti-
ficial Intelligence, IEEE, Athens, Greece, ICTAI ’12, vol 1, pp 610–617

Rizoiu et al(2014)Rizoiu, Velcin, and Lallich. Rizoiu MA, Velcin J, Lallich S (2014) How to Use Temporal-
Driven Constrained Clustering to Detect Typical Evolutions. International Journal on Artificial Intelli-
gence Tools 23(04):1460,013

Rizoiu et al(2016)Rizoiu, Velcin, Bonnevay, and Lallich. Rizoiu MA, Velcin J, Bonnevay S, Lallich S
(2016) Supplementary material: A temporal-driven clustering solution to inferring typical evolution
paths. http://goo.gl/KCWrSM

Rocha et al(2013)Rocha, Dias, and Dimas. Rocha C, Dias LC, Dimas I (2013) Multicriteria Classification
with Unknown Categories: A Clustering-Sorting Approach and an Application to Conflict Management.
Journal of Multi-Criteria Decision Analysis 20(1-2):13–27

Sawaragi et al(1985)Sawaragi, Nakayama, and Tanino. Sawaragi Y, Nakayama H, Tanino T (1985) Theory
of multiobjective optimization, vol 176. Academic Press New York

Siddiqui et al(2012)Siddiqui, Oliveira, Gama, and Spiliopoulou. Siddiqui ZF, Oliveira M, Gama J,
Spiliopoulou M (2012) Where Are We Going? Predicting the Evolution of Individuals. In: Hollmén
J, Klawonn F, Tucker A (eds) Advances in Intelligent Data Analysis V, Lecture Notes in Computer
Science, vol 7619, Springer Berlin Heidelberg, pp 357–368

Wagstaff et al(2001)Wagstaff, Cardie, Rogers, and Schroedl. Wagstaff K, Cardie C, Rogers S, Schroedl S
(2001) Constrained K-means Clustering with Background Knowledge. In: International Conference on
Machine Learning, ICML ’01, pp 577–584

http://goo.gl/KCWrSM

Inferring Typical Evolution Paths 23

Xu et al(2012)Xu, Zhang, Yu, and Long. Xu T, Zhang Z, Yu PS, Long B (2012) Generative models for evo-
lutionary clustering. ACM Transactions on Knowledge Discovery from Data (TKDD) 6(2):7

Zitzler et al(2001)Zitzler, Laumanns, and Thiele. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improv-
ing the strength Pareto evolutionary algorithm. In: Evolutionary Methods for Design, Optimisation and
Control with Applications to Industrial Problems, EUROGEN ’01, pp 95–100

Publication venue: Data Mining and Knowledge Discovery Research Article
10 December 2015

Supplementary Material:
ClusPath: A Temporal-driven Clustering
Solution to Inferring Typical Evolution Paths
Main article DOI: 10.1007/s10618-015-0445-7

Marian-Andrei Rizoiu 1,∗, Julien Velcin 2, Stéphane Bonnevay3 and Stéphane
Lallich 2

1NICTA Research Lab & Australian National University, Canberra, Australia
2Laboratory ERIC, University Lumière Lyon 2, Lyon, France
3Laboratory ERIC, University Claude Bernard Lyon 1, Lyon, France
Correspondence*:
Marian-Andrei Rizoiu
NICTA Research Lab, 7 London Circuit, Canberra, Australia,
Marian-Andrei.Rizoiu@nicta.com.au

The purpose of this document is to detail information, which would be i) cumbersome for the main article
and ii) of limited interest for the main scientific message presented in the main article. This document does
not introduce new notions and the information presented here-after is not necessary for the comprehension
of the main article. We present it for completeness and reproducibility reasons.

We produce hereafter, the complete calculations of the prototypes update formulas, as well as the
formulas for updating the adjacency matrix and runtimes for the algorithms.

1 INFERRING THE PROTOTYPES UPDATE FORMULAS

The objective function J that needs to be minimized using a gradient descend K-Means-like framework
is (defined in Equation 8 in the Main Text (MT)):

J = λ1T1 + λ2T2 + λ3T3 =

= λ1
∑

µp∈M

∑

xi∈Cp

||xi − µp||TA +

xti<xtk∑

xk∈Cq
q 6=p

xφi =xφk

β ∗ e
− 1

2

(
||xti−xtk||

δ

)2

(
1− a2p,q

)

+

+ λ2
∑

µp∈M

∑

µq∈M
p 6=q

a2p,q||µp − µq||TA+

+ λ3
∑

µp∈M

∑

µq∈M
p 6=q

a2p,qinter
2
φ(Cp, Cq) , (1)

1

Rizoiu et al. Supplementary Material

and the temporal-aware dissimilarity measure is defined as (in Equation 1 in MT):

||xi − xj ||TA = 1−
(
1− γd

||xdi − xdj ||2
∆d2max

)(
1− γt

||xti − xtj ||2
∆t2max

)
, (2)

where the weight of the descriptive component and, respectively, the temporal component, are controlled
by the parameter α ∈ [−1, 1]:

γd =

{
1 + α, if α ∈ [−1, 0]
1, if α ∈ (0, 1]

; γt =

{
1, if α ∈ [−1, 0]
1− α, if α ∈ (0, 1]

.

As stated in the main article, calculating the update formulas for the prototypes boils down to
recomputing each of the descriptive components (µdj) and temporal component (µtj) of the prototypes.
More precisely, we are searching for the fixed point, by calculating the derivative of the function J of the
variables µdj and µtj . Therefore, the following system of equations needs to be solved:

∂J
∂µdj

= 0 ;
∂J
∂µtj

= 0

We exemplify the calculation of the derivative of J of the variable µdj . From Equation 1 we obtain:

∂J
∂µdj

= λ1
∂T1

∂µdj
+ λ2

∂T2

∂µdj
+ λ3

∂T3

∂µdj
(3)

Knowing that the interφ function from the term T3 is defined as:

interφ(Cp, Cq) = 1− |{φl ∈ Φ|Cp φl−→ Cq}|
|Φ| ,

and, therefore, it is independent of µdj , the following holds:

∂T3

∂µdj
= 0, ∀µdj (4)

We augment the definition of the first two terms, by introducing the temporal-aware dissimilarity
measure (in Equation 2) into the formula of the objective function (Equation 1):

T1 =
∑

µp∈M

∑

xi∈Cp

1−

(
1− γd

||xdi − µdp||2
∆d2max

)(
1− γt

||xti − µtp||2
∆t2max

)
+

xti<xtk∑

xk∈Cq
q 6=p

xφi =xφk

β ∗ e
− 1

2

(
||xti−xtk||

δ

)2

(
1− a2p,q

)

T2 =
∑

µp∈M

∑

µq∈M
p 6=q

a2p,q

(
1−

(
1− γd

||µdp − µdq ||2
∆d2max

)(
1− γt

||µtp − µtq||2
∆t2max

))
.

This document is not included in the official proceedings. 2

Rizoiu et al. Supplementary Material

We calculate the derivative of T1. We observe that the penalty term
∑xti<xtk

xk∈Cq
q 6=p

xφi =xφk

β∗e
− 1

2

(
||xti−xtk||

δ

)2

(
1− a2p,q

)

is independent of µdj and, therefore, it is nullified when calculating the derivative:

∂T1

∂µdj
=

∂

∂µdj

 ∑

µp∈M

∑

xi∈Cp

(
1−

(
1− γd

||xdi − µdp||2
∆d2max

)(
1− γt

||xti − µtp||2
∆t2max

))
 (5)

Considering that the double sum iterates over all the observations:
∑

µp∈M

∑

xi∈Cp
1 = |X |

Equation 5 becomes:

∂T1

∂µdj
=

∂|X |
∂µdj

− ∂

∂µdj

 ∑

µp∈M

∑

xi∈Cp

(
1− γd

||xdi − µdp||2
∆d2max

)(
1− γt

||xti − µtp||2
∆t2max

)
 =

= − ∂

∂µdj

 ∑

µp∈M

∑

xi∈Cp

(
1− γd

||xdi − µdp||2
∆d2max

)(
1− γt

||xti − µtp||2
∆t2max

)
 =

= −
∑

xi∈Cj

∂

∂µdj

(
1− γd

||xdi − µdj ||2
∆d2max

)(
1− γt

||xti − µtj ||2
∆t2max

)
=

= − 2γd
∆d2max

∑

xi∈Cj

(
xdi − µdj

)(
1− γt

||xti − µtj ||2
∆t2max

)
. (6)

To ease the calculation of the derivative of T2, we make the following notation:

spq =

(
1− γt

||µtp − µtq||2
∆t2max

)
. (7)

Therefore:

∂T2

∂µdj
=

∂

∂µdj

∑

µp∈M

∑

µq∈M
p 6=q

a2p,q

(
1−

(
1− γd

||µdp − µdq ||2
∆d2max

)
spq

)
. (8)

The term µdj can appear twice: i) once in the first sum
∑

µp∈M, for p = j and ii) once in the second sum∑
µq∈M
p 6=q

, for q = j. Equation 8 can be rewritten as:

∂T2

∂µdj
=
∑

µq∈M
q 6=j

∂

∂µdj

(
a2j,q

(
1−

(
1− γd

||µdj − µdq ||2
∆d2max

)
sjq

))

Publication venue: Data Mining and Knowledge Discovery 3

Rizoiu et al. Supplementary Material

+
∑

µp∈M
p 6=j

∂

∂µdj

(
a2p,j

(
1−

(
1− γd

||µdp − µdj ||2
∆d2max

)
spj

))
=

=
∑

µq∈M
q 6=j

∂

∂µdj

(
a2j,qγd

∆d2max
||µdj − µdq ||2sjq

)
+
∑

µp∈M
p 6=j

∂

∂µdj

(
a2p,jγd

∆d2max
||µdp − µdj ||2spj

)
=

=
2γd

∆d2max

∑

µq∈M
q 6=j

a2j,q(µj − µq)sjq −
∑

µp∈M
p 6=j

a2p,j(µp − µj)spj

 . (9)

We re-note the sum indexes so that p = q and we observe that spq defined in Equation 7 is symmetric:
spq = sqp. Consequently, we re-write Equation 9 as:

∂T2

∂µdj
=

2γd
∆d2max

µ

d
j

∑

µp∈M
p 6=j

a2j,psjp −
∑

µp∈M
p 6=j

µdpa
2
j,psjp + µdj

∑

µp∈M
p 6=j

a2p,jspj −
∑

µp∈M
p 6=j

µdpa
2
p,jspj

 =

=
2γd

∆d2max

µ

d
j

∑

µp∈M
p 6=j

spj(a
2
j,p + a2p,j)−

∑

µp∈M
p 6=j

µdpspj(a
2
j,p + a2p,j)

 . (10)

By introducing Equations 4, 6 and 10 into Equation 3, we can calculate the formula of the derivative of
function J of variable µdj and we calculate the fixed point:

∂J
∂µdj

= 0 ⇔ 2γd
∆d2max

λ1µdj

∑

xi∈Cj

(
1− γt

||xti − µtj ||2
∆t2max

)
− λ1

∑

xi∈Cj
xdi

(
1− γt

||xti − µtj ||2
∆t2max

)
+

+ λ2µ
d
j

∑

µp∈M
p 6=j

spj(a
2
j,p + a2p,j)− λ2

∑

µp∈M
p 6=j

µdpspj(a
2
j,p + a2p,j)

 = 0

⇔ µdj

λ1

∑

xi∈Cj

(
1− γt

||xti − µtj ||2
∆t2max

)
+ λ2

∑

µp∈M
p 6=j

spj(a
2
j,p + a2p,j)

 =

= λ1
∑

xi∈Cj
xdi

(
1− γt

||xti − µtj ||2
∆t2max

)
+ λ2

∑

µp∈M
p 6=j

µdpspj(a
2
j,p + a2p,j)

This document is not included in the official proceedings. 4

Rizoiu et al. Supplementary Material

⇔ µdj =

λ1
∑

xi∈Cj x
d
i

(
1− γt

||xti−µt
j ||2

∆t2max

)
+ λ2

∑
µp∈M
p 6=j

µdpspj(a
2
j,p + a2p,j)

λ1
∑

xi∈Cj

(
1− γt

||xti−µt
j ||2

∆t2max

)
+ λ2

∑
µp∈M
p 6=j

spj(a2j,p + a2p,j)

. (11)

By introducing the notation for spq (defined in Equation 7) back into Equation 11, we obtain the final
centroid update formula for the descriptive component:

µdj =

λ1
∑

xi∈Cj x
d
i

(
1− γt

||xti−µt
j ||2

∆t2max

)
+ λ2

∑
µp∈M
p 6=j

µdp

(
1− γt

||µt
p−µt

j ||2
∆t2max

)
(a2j,p + a2p,j)

λ1
∑

xi∈Cj

(
1− γt

||xti−µt
j ||2

∆t2max

)
+ λ2

∑
µp∈M
p 6=j

(
1− γt

||µt
p−µt

j ||2
∆t2max

)
(a2j,p + a2p,j)

.

Similarly, we can deduce the update formula for the temporal component of prototypes:

µtj =

λ1
∑

xi∈Cj x
t
i

(
1− γd

||xdi−µd
j ||2

∆d2max

)
+ λ2

∑
µp∈M
p 6=j

µtp

(
1− γd

||µd
p−µd

j ||2
∆d2max

)
(a2j,p + a2p,j)

λ1
∑

xi∈Cj

(
1− γd

||xdi−µd
j ||2

∆d2max

)
+ λ2

∑
µp∈M
p 6=j

(
1− γd

||µd
p−µd

j ||2
∆d2max

)
(a2j,p + a2p,j)

.

2 UPDATING THE ADJACENCY MATRIX

The objective function J , in Equation 1, can be trivially minimized by setting ap,q = 0, ∀p, q ∈ [1, k].
To avoid this situation, an additional constraint is imposed on the 1-norm of the adjacency matrix (in
Equation 9 in MT):

||A||1 = 1 ⇔
k∑

p=1

k∑

q=1

ap,q = 1 . (12)

The purpose of updating the adjacency matrix is to find the best adjacency matrix A∗ which minimizes
the objective function J :

A∗ = argmin
A

J .

A classical strategy for finding the local maxima and minima of a function subject to equality constraints
is method of Lagrange multipliers. This constructs a new problem:

A∗ = argmin
A

J ∗, where J ∗ = J − λ

k∑

p=1

k∑

q=1

ap,q − 1

 .

By calculating the derivative of J ∗ of each ar,s, we obtain the formula of the local optimum:

∂J ∗

∂ar,s
=

∂

∂ar,s

J − λ

k∑

p=1

k∑

q=1

ap,q − 1

 =

∂J
∂ar,s

− λ
∂

∂ar,s

k∑

p=1

k∑

q=1

ap,q − 1

 =

∂J
∂ar,s

− λ .

(13)

Publication venue: Data Mining and Knowledge Discovery 5

Rizoiu et al. Supplementary Material

All three terms of the objective function are dependent on ar,s, therefore:

∂J
∂ar,s

= λ1
∂T1
∂ar,s

+ λ2
∂T2
∂ar,s

+ λ3
∂T3
∂ar,s

(14)

We calculate the derivatives of T1, T2 and T3 on ar,s:

∂T1
∂ar,s

=
∂

∂ar,s

∑

µp∈M

∑

xi∈Cp
||xi − µp||TA +

∑

µp∈M

∑

xi∈Cp

xti<xtk∑

xk∈Cq
q 6=p

xφi =xφk

β ∗ e

− 1
2

(
||xti−xtk||

δ

)2

(
1− a2p,q

)

=

= −2ar,s
∑

xi∈Cr

xti<xtk∑

xk∈Cs
xφi =xφk

β ∗ e

− 1
2

(
||xti−xtk||

δ

)2
 =

= −2ar,s pen(Cr φ−→ Cs), with the notation pen(Cr φ−→ Cs) =
∑

xi∈Cr

xti<xtk∑

xk∈Cs
xφi =xφk

β ∗ e

− 1
2

(
||xti−xtk||

δ

)2
 .

(15)
∂T2
∂ar,s

= 2ar,s ||µr − µs||TA . (16)

∂T3
∂ar,s

= 2ar,s inter
2
φ(Cp, Cq) . (17)

By introducing Equations 15, 16 and 17 into Equations 13 and 14, we obtain:

∂J ∗

∂ar,s
= 2ar,s

(
−λ1 pen(Cr φ−→ Cs) + λ2||µr − µs||TA + λ3 inter

2
φ(Cp, Cq)

)
− λ (18)

We note Kr,s = −λ1 pen(Cr φ−→ Cs) + λ2||µr − µs||TA + λ3 inter2φ(Cp, Cq), we introduce it into
Equation 18 and we calculate the fixed point:

∂J ∗

∂ar,s
= 0 ⇔ 2ar,sKr,s − λ = 0 ⇔ ar,s =

λ

2Kr,s
. (19)

By introducing the constraint in Equation 12 into the Equation 19, we obtain:

k∑

p=1

k∑

q=1

λ

2Kp,q
= 1 ⇔ λ =

1
∑k

p=1

∑k
q=1

1
2Kp,q

. (20)

This document is not included in the official proceedings. 6

Rizoiu et al. Supplementary Material

From Equations 19 and 20, we obtain the adjacency matrix update formulas:

ar,s =
1

2Kr,s
∑k

p=1

∑k
q=1

1
2Kp,q

=
1

Kr,s
∑k

p=1

∑k
q=1

1
Kp,q

,

with Kr,s = −λ1 pen(Cr φ−→ Cs) + λ2||µr − µs||TA + λ3 inter
2
φ(Cp, Cq) ,

and pen(Cr φ−→ Cs) =
∑

xi∈Cr

xti<xtk∑

xk∈Cs
xφi =xφk

β ∗ e

− 1
2

(
||xti−xtk||

δ

)2
 .

3 RUNTIME FOR CLUSPATH AND EVOLUTIONARY ALGORITHM

This section reports runtimes for ClusPath and evolutionary algorithm for determining the ClusPath’s
parameters. All reported runtimes are influenced by the used platform, as well as software and
implementation decisions. Consequently, they should be treated comparatively.

All experiments were run on a machine featuring 12 Intel(R) Xeon(R) CPU E5-2430 cores, each
running at 2.20GHz. Each core has hyper-threading activated, resulting in 24 logical cores. Each processor
disposes of 16MB of cache, while the system has 64GB of RAM space. The system runs Ubuntu Precise
12.04.5, with a 64bit Linux linux kernel version 3.5.0-43.

Both ClusPath and the evolutionary algorithm were programmed in the Matlab/Octave environment
and they were run in Octave 3.6.1, using the OpenBLAS 0.1alpha2.2-3 implementation of BLAS (Basic
Linear Algebra Subprograms). For the execution of the evolutionary algorithm, OpenBLAS was forced
into single threaded execution. The ClusPath algorithm itself is programmed single-threaded (even if it
can be easily parallelized, just like most clustering algorithms). Individuals in an evolutionary population
are computed in parallel, using the Octave multicore package. Therefore, at each generation, the
maximum number of ClusPath executions running in parallel at any given time was 24.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

200

400

600

800

1000

Runtime for ClusPath and the evolutionary technique

Evolutionary tech.

ClusPath exec.

Fixed initialisation number

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Supplementary Figure 1. Runtimes, in seconds, for ClusPath and the Evolutionary Technique, on
CPDS1. Each algorithm is run 10 times for each of the 20 initializations presented in Sect. 4.2 of MT.

Publication venue: Data Mining and Knowledge Discovery 7

Rizoiu et al. Supplementary Material

Supplementary Table 1. Runtimes, in seconds, for “single” ClusPath and the Evolutionary Technique,
on CPDS1. Each algorithm is run 10 times, for each of the 20 initializations presented in Sect. 4.2 of MT.
The table presents the mean of the 10 runs and the standard deviation (in italic). The Ratio shows how
many time slower was the Evolutionary technique compared to “single” ClusPath. The bottom two lines
present aggregated measurements over the 20 initializations.

Init. no. Evolutionary algo. “single” ClusPath Ratio

1 692,60 60,19 120,19 19,83 5,76
2 775,30 60,60 125,02 3,92 6,20
3 772,30 70,70 123,85 6,58 6,24
4 744,00 66,62 119,51 20,85 6,23
5 743,90 47,21 125,30 6,23 5,94
6 713,50 25,08 127,33 5,91 5,60
7 735,00 54,50 119,04 19,34 6,17
8 723,20 44,92 124,47 5,17 5,81
9 874,40 57,35 126,19 5,63 6,93

10 722,40 47,59 119,06 20,53 6,07
11 842,70 66,83 125,98 6,34 6,69
12 743,50 50,49 118,20 18,95 6,29
13 693,80 45,23 123,50 5,09 5,62
14 747,00 47,32 125,39 5,71 5,96
15 784,60 62,89 118,46 21,30 6,62
16 718,30 50,31 127,02 5,96 5,65
17 696,60 20,89 126,98 4,85 5,49
18 827,70 72,36 117,45 18,97 7,05
19 693,20 59,82 124,17 5,52 5,58
20 769,70 65,07 118,99 20,76 6,47

Average 750,69 53,80 122,81 11,37 6,12
StDev 51,05 13,61 3,48 7,33 0,46

Figure 1 presents the runtimes of both “single” ClusPath and the evolutionary technique, on CPDS1, for
each of the 20 initializations presented in Sect. 4.2 of MT. For each initialization, each algorithm is ran
10 times and the means and standard deviation are presented. Furthermore, when running ClusPath alone
(i.e., not as an individual in the evolutionary technique), its parameters are chosen randomly from their
domain of definition. The purpose of this choice is not to bias the execution of the “single” ClusPath. Fir
the first generation of the evolutionary technique, the parameters of the individual runs of ClusPath are
chosen similarly, at random from their domain of definition. Therefore, the runtime of ClusPath presented
hereafter is comparable to the execution time required for each individual in the evolutionary technique.
Table 1 further details these runtimes, presenting also the ratio between the evolutionary technique
and “single” ClusPath. More precisely, the evolutionary technique is, in average, 6.12 times slower
than ClusPath. That is consistent with our setup: given that each evolutionary population contains 100
executions of ClusPath and 24 executions are done in parallel, the first generations is roughly equivalent
to 4 subsequent executions of ClusPath. Given the elitist technique, each later generation requires a total
of ClusPath executions less than 24. Given that the entire optimization requires, in average, 3 generations,
we obtain a ratio between the evolutionary technique and ClusPath of approximately 6 times.

This document is not included in the official proceedings. 8

	1 Introduction
	2 State of the Art
	3 Our Proposal
	4 Experiments
	5 Conclusion and Future Work
	6 Compliance with Ethical Standards

