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Abstract
In this paper, we study the problem of selectivity estimation on set containment search. Given a query record Q and a record 
dataset S , we aim to accurately and efficiently estimate the selectivity of set containment search of query Q over S . We first 
extend existing distinct value estimating techniques to solve this problem and develop an inverted list and G-KMV sketch-
based approach IL-GKMV. We analyze that the performance of IL-GKMV degrades with the increase in vocabulary size. 
Motivated by limitations of existing techniques and the inherent challenges of the problem, we resort to developing effective 
and efficient sampling approaches and propose an ordered trie structure-based sampling approach named OT-Sampling. OT-
Sampling partitions records based on element frequency and occurrence patterns and is significantly more accurate compared 
with simple random sampling method and IL-GKMV. To further enhance the performance, a divide-and-conquer-based 
sampling approach, DC-Sampling, is presented with an inclusion/exclusion prefix to explore the pruning opportunities. 
Meanwhile, we consider weighted set containment selectivity estimation and devise stratified random sampling approach 
named StrRS. We theoretically analyze the proposed techniques regarding various accuracy estimators. Our comprehensive 
experiments on nine real datasets verify the effectiveness and efficiency of our proposed techniques.

Keywords  Selectivity · Sampling · Trie

1  Introduction

Set-valued attributes are ubiquitous and play an important 
role in modeling database systems in many applications such 
as information retrieval, data cleaning, machine learning and 
user recommendation. For instance, such set-valued attributes 
may correspond to the profile of a person, the tags of a post, the 
domain information of a webpage and the tokens or q-grams 
of a document. In the literature, there has been a variety of 

interests in the computation of set-valued records including set 
containment search (e.g., [9, 21, 28, 36]), set similarity joins 
(e.g., [31, 33]) and set containment joins (e.g., [13, 24, 25, 34]).

In this paper, we focus on the problem of selectivity 
estimation of set containment search. Considering a query 
record Q and a collection of records S where a record con-
sists of an identifier and a set of elements (i.e., terms), a set 
containment search retrieves records from S which are con-
tained by Q, i.e., {X|X ∈ S ∧ Q ⊇ X} , where Q contains X 
( Q ⊇ X ) if all the elements in X are also in Q. Table 1 shows 
an example with eight records in a dataset and a query record 
Q where Q contains X2 , X3 and X5 . Selectivity (cardinality) 
of a query refers to the size of the query result. For instance, 
the selectivity of Q in Table 1 is 3.

Selectivity estimation on set containment search aims at esti-
mating the cardinality of the containment search. As an essential 
and fundamental tool on massive collections of set values, the 
problem has a wide spectrum of applications because it can pro-
vide users with fast and useful feedback. As a simple example, 
when introducing a new product to the market, its characteristics 
and features could be described as a set of keywords. Assume a 
preference dataset consists of such characteristics and features 
desired by users from online survey. Size estimation of the new 
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product descriptions on the preference dataset estimates the total 
number of users who may be interested in the product and could 
serve as a prediction of the product’s market potential. In another 
example, companies may post positions in an online job market 
Web site where a position description contains a set of required 
skills. A job seeker may want to have a basic understanding 
of the job market by obtaining the total number of active job 
vacancies that he/she perfectly matches (i.e., the skill set of the 
job seeker contains the required skills of the job).

1.1 � Challenges

The key challenges of selectivity estimation on set contain-
ment search come from the following three aspects. First, 
the dimensionality (i.e., the number of distinct elements) 
is high. Shingle (n-gram)-based representations for strings 
are common in practice [26]. Typical (first-order) shingle-
based representations of a string of sentence are a collec-
tion of words each of which is separated by a space. High-
order shingles are used to represent the strings with different 
combinations of words. As shown in our empirical studies, 
the vocabulary size in real-world dataset could reach more 
than 3 million when the high-order shingles are used. This 
makes the selectivity estimation techniques which are sensi-
tive to dimensionality inapplicable to our problem. Second, 
the number of records in the dataset could be very large. 
Moreover, the length of query and data record may also be 
large. To deal with the sheer volume of the data, it is desir-
able to efficiently and effectively provide approximate solu-
tions. Third, the distribution of element frequency may be 
highly skewed in real applications. It is desirable to devise 
sophisticated data-dependent techniques to properly handle 
the skewness of data distribution to boost the accuracy.

Even though selectivity estimation has been widely 
explored, most of the existing techniques cannot be trivially 
applied to handle the problem studied in this paper. We dis-
cuss two categories of techniques which can be extended to 
support the selectivity estimation problem, range counting 
estimating (e.g., [8, 15]) and distinct value estimating [12, 16].

Given the element universe (vocabulary) E , a record Xi 
can be regarded as an |E|-dimensional binary vector, where 
Xij = 1 if element ej appears in Xi ( ej ∈ Xi ) and Xij = 0 oth-
erwise, for 1 ≤ j ≤ |E| . Let n denote the vocabulary size |E| . 
Under this context, the dataset S can be modeled as a set 
of points in {0, 1}n where each record corresponds to an 
n-dimensional point and the query is a hypercube in {0, 1}n . 
Thus, we can rewrite the selectivity estimation problem as 
the approximate range counting problem in computational 
geometry. However, the approximate range counting prob-
lem suffers from the curse of dimensionality where the com-
puting cost is exponentially dependent on dimensionality n 
[16, 27]. As the vocabulary size is usually large, applying 
range counting estimating methods to our problem is not 
applicable.

Distinct value estimators (e.g., KMV [12], bottom-k, 
min-hash [16]) can effectively support size estimation for 
set operations (e.g., union and intersection) and are widely 
used for problems of size estimation under different con-
texts. In Sect. 3.2, we show how to extend the distinct value-
based estimator to the problem studied in this paper com-
bining with inverted list techniques. We also analyze that 
the performance of distinct value estimator-based approach 
degrades when the vocabulary size is large due to the inher-
ent superset containment semantics of the problem studied 
in this paper. Wang et al. [32] study selectivity estimation 
on streaming spatio-textual data where the textual data are 
a set of keywords/terms (i.e., elements). However, the query 
semantic is different as it specifies a subset containment 
search on the textual data, i.e., the keywords (elements) in 
the query should be contained by the keywords from spatial 
objects. This is different from the superset query semantic 
in our problem which is more challenging to handle using 
distinct value estimators as discussed in Sect. 3.2.

1.2 � Contributions

Motivated by the challenges and limitations of existing tech-
niques, in the paper we aim to develop efficient and effective 
sampling-based approaches to tackle the problem. Naively 
applying random sampling over the dataset ignores the ele-
ment frequency distribution and results in the compromised 
performance. Intuitively, combinations of high-frequency 
elements (i.e., frequent patterns) occur among data records 
with high frequency, and records with similar frequent pat-
terns are more likely to be contained by the same query. 
Thus, we use the frequent patterns as labels and partition 
records by these labels to boost the efficiency and accuracy. 
Moreover, assume that the elements are ordered based on 
frequency, we use ordered trie structure to maintain par-
titions of the dataset and present OT-Sampling method. 
This ordered trie-based approach, though demonstrated to 
be highly efficient and accurate, does not consider element 

Table 1   A record dataset with 
eight records and a query Q 

Id Record

X1 {e1, e2, e3, e4, e7}

X2 {e2, e3, e5}

X3 {e2, e5, e7}

X4 {e1, e2, e6, e10}

X5 {e1, e3, e5, e7}

X6 {e2, e6, e7, e8}

X7 {e4, e8}

X8 {e4, e10}

Q {e1, e2, e3, e5, e7, e9}
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distribution of the query Q. Inspired by the observation that 
query Q must include a subset of record X in order to contain 
X, efficient pruning techniques are developed on the parti-
tions of dataset. We further propose a divide-and-conquer-
based sampling approach named DC-Sampling which only 
conducts sampling on the qualified partitions surviving from 
the pruning.

The principle contributions of this paper are summarized 
as follows.

•	 This is the first work to systematically study the prob-
lem of selectivity estimation on set containment search, 
which is an essential tool for set-valued attributes analy-
ses in a wide range of applications.

•	 Two baseline algorithms are devised. The first algorithm 
is based on random sampling. We also extend distinct 
value estimator G-KMV sketch and propose an inverted 
list-based approach IL-GKMV. Insights about the limi-
tations of the two baseline approaches are theoretically 
analyzed and empirically studied.

•	 We develop two novel sampling-based techniques: OT-
Sampling and DC-Sampling. OT-Sampling integrates 
ordered trie index structure to group the dataset and 
achieves higher accuracy by capturing the element fre-
quency and frequent patterns. DC-Sampling employs 
divide-and-conquer philosophy and an exclusion/inclu-
sion-set prefix to further improve the performance by 
exploring pruning opportunities and skipping sampling 
on pruned partitions of the dataset.

•	 We consider the selectivity estimation problem with 
respect to weighted set containment search, which is a 
generalization of the simple set containment search prob-
lem. A naive random sampling method and a stratified 
sampling approach are proposed to tackle this problem.

•	 Comprehensive experiments on a variety of real-life 
datasets demonstrate the superior performance of the 
proposed techniques compared with baseline algorithms.

2 � Preliminary

In this section, we first formally present the problem of con-
tainment selectivity estimation and then give some prelimi-
nary knowledge. The notations used throughout this paper 
are summarized in Table 2.

2.1 � Problem Definition

Suppose the element universe is E = {e1, e2,… , en} . Each 
record X consists of a set of elements from domain E . Let 
S be a collection of records {X1,X2,… ,Xm} . Given two 
records X and Y, we say X contains Y, denoted as X ⊇ Y  , if 
all elements of Y can be found in X. In the paper, we also 

say X is a superset of Y or Y is a subset of X. Given a query 
record Q and a dataset S , a set containment search of Q 
over S returns all records from S which are contained by 
Q, i.e., {X|X ∈ S,Q ⊇ X} . We use t to denote the selectivity 
(cardinality) of the set containment search. The selectivity 
of Q measures the number of records returned by the search; 
namely, t = |{X|X ∈ S,Q ⊇ X}|.

Considering the containment relationship between a 
given query Q and a record Xi ∈ S ( 1 ≤ i ≤ m ), let �i be the 
indicator function such that

 and then, the selectivity of the set containment search on 
dataset S with respect to the query Q can also be calculated 
as t =

∑
Xi∈S

�i.

2.1.1 � Problem Statement

In this paper, we investigate the problem of selectivity esti-
mation on set containment search. Given a query record Q 
and a dataset S , we aim to accurately and efficiently estimate 
the selectivity of the set containment search of Q on S.

Hereafter, whenever there is no ambiguity, selectivity 
estimation on set containment search is abbreviated to con-
tainment selectivity estimation.

2.1.2 � Weighted Set Containment Search

Weighted records are common in real world. For example, 
the product reviews in Amazon can be modeled as weighted 
dataset, where each user corresponds to one record and every 
entry in the record is a rating score of one product. The for-
mal definition of weighted records is as follows.

Definition 1  (Weighted records) Given the element uni-
verse E = {e1, e2,… , en} , an n-dimensional weighted record 

(1)�i ∶=

{
1 if Q ⊇ Xi,

0 otherwise

Table 2   Summary of notations

Notation Definition

X, Q, S A record, a query record, a set of records
e, E An element, element domain (vocabulary)
m Number of records in S
n Number of distinct elements (vocabulary size)
t ( ̂t) Containment selectivity (estimation of t)
Pi , P A partition of dataset, all partitions
mi Size of partition Pi

m′
i

Sampling size in partition Pi

pi Sampling probability in Pi

ti Containment selectivity of Q in Pi
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Xi is a set of n elements wij ’s (i.e., Xi = {wi1,wi2,… ,win} ), 
where wij is the weight of Xi with respect to ej and wij belongs 
to the domain Dj ∈ R (R is one-dimensional real space).

When setting Dj = {0, 1} , the (unweighted) records are 
obtained. Next, we present the definition of set containment 
search problem on weighted records.

Definition 2   (Weighted records inclusion)  A 
weighted record Xi = {wi1,… ,win} is said to be 
contained by Xj = {wj1,wj2,… ,wjn} ,  denoted by 
Xi ⊆w Xj  ,  if  the cor responding weights satisfy 
wi1 ≤ wj1 ∧ wi2 ≤ wj2 ∧… ∧ win ≤ wjn.

Given the definition of weighted records inclusion, we 
formally present the set containment search problem on 
weighted records.

Definition 3  (Weighted set containment search) Given a 
weighted query record Q = {q1, q2,… , qn} , the weighted 
set containment search retrieves all the records Xi ’s from 
weighed dataset S that satisfy Xi ⊆w Q.

Our goal is to estimate the size of the query result given 
a query Q, i.e., the selectivity of weighted set containment 
search. Obviously, when the domains of weight are set as 
{0, 1} , the weighted set containment search problem degen-
erates to the simple set containment search problem.

2.1.3 � Estimation Measure

In order to evaluate the accuracy of containment selectiv-
ity estimation, we apply the mean square error (MSE) to 
measure the expected difference between an estimator and 
the true value. The MSE formula is as follows,

where t̂ is an estimator for t. If t̂ is an unbiased estimator, the 
MSE is simply the variance.

2.2 � KMV Synopses

The k minimum value (KMV) technique first introduced 
in [11] is to estimate the number of distinct elements in a 
large dataset. Given a no-collision hash function h which 
maps elements to range [0, 1], a KMV synopses of a record 
(set) X, denoted by LX , is to keep k minimum hash values of 
X. Then, the number of distinct elements |X| can be estimated 
by |̂X| = k−1

U(k)

 where U(k) is kth smallest hash value. Beyer 
et al. [12] also methodically analyze the problem of distinct 
element estimation under set operations. As for union opera-
tion, consider two records X and Y with corresponding KMV 
synopses LX and LY of size kX and kY , respectively. In [12], 

(2)E(t̂ − t)2 = Var(t̂) + (E(t̂) − t)2

LX ⊕ LY represents the set consisting of the k smallest hash 
values in LX ∪ LY where k = min(kX , kY ) . Then, the KMV 
synopses of X ∪ Y  is L = LX ⊕ LY . An unbiased estimator 
for the number of distinct elements in X ∪ Y  , denoted by 
D∪ = |X ∪ Y| , is as follows.

The variance of D̂∪ , as shown in [12], is

As shown in [12],  Eq.  3 can be modified to com-
pound set operation where L = LA1

⊕⋯⊕ LAn
 and 

k = min(kA1
,… , kAn

).
An improved KMV sketch, named G-KMV, is proposed 

to estimate the multi-union size in [32]. G-KMV imposes 
a global threshold and ensures that all hash values smaller 
than the threshold will be kept. Considering a union opera-
tion 

⋃
Xi with the sketch as L = LX1

∪ LX2
…∪ LXn

 , the 
sketch size k for the union is k = |LX1

∪ LX2
…∪ LXn

| . The 
estimation variance by G-KMV method is smaller than that 
of simple KMV method under reasonable assumptions as 
analyzed in [35].

3 � Baseline Solutions

In this section, we introduce two baseline solutions follow-
ing simple random sampling and G-KMV sketching tech-
niques, respectively.

3.1 � Random Sampling Approach

A simple way to tackle the set containment estimation prob-
lem is to adopt the random sampling techniques and conduct 
set containment search over a sampled dataset S′ which is 
usually much smaller compared with the original dataset S . 
After getting the selectivity of Q on sampled dataset S′ , we 
scale it up to get an estimation of containment selectivity 
regarding S.

Given sampling size budget b in terms of number of 
records, we describe the random sampling-based approach 
in the following two steps: (1) uniformly at random sample b 
( b ≪ m ) records X1,X2,… ,Xb from Sand (2) compare each 
sampled record Xi ( 1 ≤ i ≤ b ) with the query Q and assign �i 
accordingly. Recall that �i is the containment indicator for a 
record Xi as shown in Eq. 1. Based on this, the containment 
selectivity estimator ( ̂tR ) of the random sampling approach is:

(3)D̂∪ =
k − 1

U(k)

(4)Var[D̂∪] =
D∪(D∪ − k + 1)

k − 2

(5)t̂R =
m

b

b∑

i=1

�i
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Note that �i is a binary random variable because of the 
random sampling on records. Next, we show that the esti-
mator for baseline solution ̂tR is an unbiased estimator 
and then derive its variance. We first compute the prob-
ability of the event {�i = 1} . Let t denote the containment 
selectivity over dataset S with respect to query Q, i.e., t 
= |{X|X ∈ S,Q ⊇ X}| , then Pr[�i = 1] =

t

m
 where m is 

total number of records, and thus, the expectation of �i 
is E[�i] =

t

m
 . By the linearity of expectation, we get the 

expectation of the estimator for baseline solution in Eq. 5 is 
E[ ̂tR] = t , and the variance is

3.2 � IL‑GKMV: Inverted List and G‑KMV Sketch‑Based 
Approach

The random sampling method, which is very efficient, may 
result in poor accuracy because it ignores the data distribu-
tion information, e.g., the distribution of element frequency 
or record length. In this section, we develop containment 
selectivity estimation techniques which are data dependent 
by utilizing the inverted list and G-KMV sketch techniques.

In the first step, we build an inverted index I  on the data-
set S where an element (token) ei is associated with a list 
of record identifiers such that the corresponding records 
contain the element ei [10]. For instance, in Table 1, the 
inverted list of element e3 is {X1,X2,X5} . Let fi denote the 
frequency of an element ei , i.e., the size of the inverted list 
Iei ; let Pr[ei = 1] denote the probability that a record in a 
dataset contains the element ei , then we have Pr[ei = 1] =

fi

m
 . 

Similarly, given a record X = {e1, e2,… , e|X|} , the probabil-
ity of X appearing in the dataset is

Note that record X can be duplicated in the dataset S ; given 
a query Q, the containment selectivity t of Q is calculated as

where the sum is over all subsets of Q. The above equa-
tion enumerates every subset of the query Q to check if it 
appears in the dataset. In order to compute Eq. 7, we need to 
compute the joint probability Pr[X = 1] for each subset X of 
Q. Clearly, the complexity in Eq. 7 is exponentially depend-
ent on the query size |Q| which is not acceptable when |Q| 
is large. Furthermore, the joint probability computation of 
Pr[X = 1] is complicated and expensive.

Given the difficulty of directly computing the contain-
ment selectivity, we consider the complement version of set 

(6)Var[ ̂tR] =
t(m − t)

b
.

Pr[X = 1] = Pr

[
⋂

e∈X

{e = 1},
⋂

e∈E⧵X

{e = 0}

]
.

(7)t̂ =
∑

X∈2Q

m ∗ Pr[X = 1]

containment search. It is easy to see that Xi ⊆ Q if and only 
if E∖Xi ⊃ E∖Q ; this implies that if an element e ∈ E⧵Q and 
there exists a record X with e ∈ X , then record X is defi-
nitely not a subset of the query Q. Thus, if we exclude all 
the records that contain any element in E∖Q , the remaining 
records in dataset S are all subsets of Q, namely, satisfy-
ing the set containment search. Given that, the containment 
selectivity t of query Q can be computed as

where Pr[e = 1] denotes the probability that some record in 
the dataset S contains the element e. Remind that the event 
{e = 1} corresponds to all the records containing element e 
in dataset S , i.e., the inverted list Ie = {X|e ∈ X} , we can 
rewrite Eq. 8 as

The key point in the above equation is to calculate the union 
size of the inverted lists, which has the time complexity 
of 

∑
e∈E�Q �Ie� by merge join. Since the set of E∖Q and the 

inverted list Ie could both be very large, directly computing 
the multi-union operation could result in unaffordable time 
consumption. Based on this, we adopt approximate meth-
ods (e.g., G-KMV sketch) to estimate the union size of the 
inverted lists.

For each element e ∈ E , Le denotes the G-KMV synopsis 
of its inverted list with k (=|Le| ) smallest hash values. Con-
sidering the union of inverted lists in Eq. 9, we have the 
sketch L =

⋃
e∈E⧵Q Le and k = |L| as introduced in Sect. 2.2, 

and then, the size D∪ of the multi-union set 
⋃

e∈E�Q Ie can be 
estimated as D̂∪ =

k−1

U(k)

 , where U(k) is the kth smallest hash 
value in the synopsis L . Thus, the containment selectivity of 
G-KMV sketch-based method is computed as t̂G = m − D̂∪ . 
Furthermore, the variance can be calculated as 
Var[t̂G] =

D∪(D∪−k+1)

k−2
 by Eq. 4.

3.2.1 � Analysis

Given the space budget b in terms of the number of records, 
the sketch size of IL-GKMV method is |L| ≈ b ∗ d̄ where d̄ 
denotes the average record length. By G-KMV sketch, the 
budget size is proportionally assigned to each inverted list. 
Apparently, with the very large vocabulary size, the per-
formance significantly deteriorates since each inverted list 
receives little sampling space. Remark that the time com-
plexity for simple random sampling method is O(b ∗ C) 
where C is the time cost for set comparison. The time cost 

(8)t = m − m ∗ Pr

[
⋃

e∈E�Q

e = 1

]

(9)t = m −

||||||

⋃

e∈E�Q

Ie

||||||
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of IL-GKMV is O(|L|) which is comparable with O(b ∗ C) 
since |L| ≈ b ∗ d̄.

4 � Our Approach

As analyzed in the previous section, the random sampling 
approach fails to capture the element frequency distribution. 
IL-GKMV approach, on the other hand, considers data distri-
bution by utilizing the inverted lists (i.e., frequent elements 
are associated with longer inverted lists) and G-KMV sketch 
(i.e., inverted lists with larger size keep more hashing values) 
techniques. However, because the inherent superset query 
semantics studied in this paper, the number of inverted lists 
involved in IL-GKMV method linearly depends on the vocab-
ulary size which leads to compromised accuracy. In this sec-
tion, we aim to develop sophisticated sampling approaches 
which strike a balance between accuracy and efficiency.

4.1 � Trie Structure‑Based Stratified Sampling 
Approach

Trie is a widely used tree data structure for storing a set 
of records (i.e., dataset). Observing that combinations of 

Figure 1 illustrates an ordered trie T built on dataset in 
Table 1. It is easy to see that each record in the trie is stored 
in a top-to-down manner with a start node as null. Next, we 
give an example about the labels.

Example 1  Consider the top-2 elements E2 in Fig. 1; {e2, e7} 
is the label for records X1,X3,X6 , {e2} is for records X4,X2, 
and {e7} is for X5.

e2 e7 e4

rootnull

e7 e1 e3 e1

e5 e3

e5

X7

e8
X8

e10

X5

e6

X6

e8

X4

e10

e1

X3

e5 e6

e3

X1

e4

X2

P1

P2 P3

P4

Fig. 1   Trie structure

high-frequency elements (i.e., frequent patterns) occur 
among records with high frequency, and records with simi-
lar frequent patterns are more likely to be included by the 
same query, we adopt the trie structure to partition the 
dataset using the combinations of high-frequency elements 
as labels. Assume that elements of the vocabulary E are 
ordered based on decreasing frequency in the underlying 
dataset. For example, the most frequent element in Table 1 
is e2 as it appears 5 times; e7 appears 4 times and is ranked 
second place. Based on this ordering, we refer the top-k 
high-frequency elements as Ek and adopt the combination 
of high-frequency elements within Ek as label. The choice 
of k will be discussed later in Sect. 6.

Algorithm 1: Ordered Trie Structure Based Estimation
Input : Q, a query set; b, sample size budget

S , a dataset; k, top-k high-frequency elements
Output : t̂: estimation of containment selectivity under query Q
Ek ← the top-k high-frequency elements;1

construct a trie T on dataset S ;2

L ← all labels in trie T w.r.t Ek;3

for each label Li ∈ L do4

Pi ← records with Li as the prefix in trie T ;5

Pi ← sample mi records from Pi based on sample size budget b;6

conduct containment search regarding Q over sampled records Pi ;7

t̂ ← estimator based on each partition P = {P1, ..., P|P|};8

return t̂9

It is interesting to notice that the left and upper part of 
the trie encompasses most of the datasets, since this part is 
made up of high-frequency elements in the dataset. Based 
on this, there is a natural partition strategy generated by the 
trie T. Namely, from the root node along the high-frequency 
part (left and upper of trie), each path (label for records) 
comprises a partition of the dataset since records in the cor-
responding partition are all made up of this path as prefix. 
Note that all the remaining records that do not share any 
high-frequency element are accumulated as a partition by 
themselves, and we set the label of this partition as � . Here 
is an example about the partition on trie.
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Example 2  In Fig. 1, there are four partitions as {X1,X3,X6} , 
{X2,X4} , {X5} and {X7,X8} with labels {e2, e7} , {e2} , {e7} and 
� , respectively.

Next, we propose an approximate method to compute the 
containment selectivity based on the par tition 
P = {P1,… ,P|P|} . Given a query record Q and sample size 
budget b (number of sampled records), we allocate the sam-
ple size budget proportionally to the size mi = |Pi| of each 
partition in P (i.e., stratified sampling). Namely, for partition 
Pi , there are m�

i
=

|Pi|
m

∗ b records uniformly at random sam-
pled from Pi . Let P′

i
 denote these sampled records, i.e., 

P�
i
= {Xi1,… ,Xim�

i
} , then in each partition, the query Q is 

compared with each sampled records Xij ; let �ij be the indica-
tor such that

then an estimator of the containment selectivity is

Algorithm 1 illustrates the ordered trie-based sampling 
approach (OT-Sampling). Line 1 collects the k most fre-
quent elements Ek , and Line 2 constructs the ordered trie 
structure based on the dataset S , followed by obtaining the 
labels according to Ek (Line 3). Lines 4–7 group the dataset 
based on the labels, and conduct the set containment search 
over each sampled P′

i
 from individual partitions regarding Q. 

Line 8 retrieves the final selectivity estimation.

4.1.1 � Analysis

Next, we show that the estimator t̂P in Eq. 11 is unbiased, 
followed by an analysis of the variance Var[t̂P] . Recall that 
the containment selectivity is t = |{X|X ⊆ Q and X ∈ S}| ; 
for each partition Pi , let ti be the size of subsets of Q in parti-
tion Pi , i.e., ti = |{X|X ⊆ Q and X ∈ Pi}| , and t =

∑
Pi∈P

ti , 
then we have Pr[�ij = 1] =

ti

mi

 which means that the probabil-
ity of a sampled record Xij in partition Pi being the subset of 
Q is ti

mi

 ; the expectation of �ij is E[�ij] =
ti

mi

, and variance is 

Var[�ij] =
ti(mi−ti)

m2

i

 . Let t̂i =
mi

m�
i

∑m�
i

j=1
�ij , then E[t̂i] = ti and 

Var[t̂i] =
ti(mi−ti)

m�
i

 by linearity of expectation, and thus, the 
expectation of Eq. 11 is

which proves that t̂P is an unbiased estimator of containment 
selectivity. Similarly, the variance of t̂P is

(10)�ij ∶=

{
1 if Xij ⊆ Q,

0 otherwise,

(11)t̂P =
∑

Pi∈P

mi

m�
i

m�
i∑

j=1

�ij

E[t̂P] =
∑

Pi∈P

E[t̂i] = t

4.1.2 � Compare with Random Sampling (RS) Approach

Comparing the variance of OT-Sampling in Eq. 12 with that 
of RS-Sampling in Eq. 6, we show that Var[t̂P] ≤ Var[t̂B] as 
follows. Let pi denote the sampling probability in partition 
Pi , and there is pi =

m�
i

mi

=
b

m
 by the stratified sampling strat-

egy. Suppose that the number of partitions is q = |P| , then 
we have Var[t̂P] − Var[t̂B] = −

∑
(i,j)∈

�
q
2

�
∏q

k=1
mk

mimj

(timj − tjmi)
2

≤ 0.

4.1.3 � Time Complexity

The time complexity of the OT-Sampling method is 
O(b ∗ C) + O(P) where C is the containment check cost and 
O(P) is the preprocess time on trie partition. As demonstrated 
in our empirical studies, O(b ∗ C) is the dominating cost and 
O(P) is negligible since we only consider top-k (small k).

4.2 � Divide‑and‑Conquer‑Based Sampling Approach

In OT-Sampling, the sampling strategy is independent of 
query workload; that is, we do not distinguish the data infor-
mation (e.g., labels) of each partition with respect to the 
query. In this section, we propose a query-oriented sampling 
approach to improve the estimation accuracy.

Consider the records X’s in a dataset as binary vectors 
with respect to the element universe E = {e1,… , en} , i.e., 
each record is regarded as a size-n vector with ith position 
as 1 if ei ∈ X and 0 otherwise; divide the element universe E 
into two disjoint parts as E1 and E2 , and then, each record X 
can be written as two parts X1 and X2 corresponding E1 and 
E2 , respectively, and we have X = {X1;X2} where X1 is con-
catenated with X2 . We give a lemma based on the division.

Lemma 1  (Subset inclusion) Given a query record Q and 
a record X from the dataset S , Q and X are under the same 
division strategy described above and let Q = {Q1;Q2} and 
X = {X1;X2} . We have X ⊆ Q if and only if X1 ⊆ Q1 and 
X2 ⊆ Q2.

The proof of the lemma is straightforward. From this 
lemma, a simple pruning technique can be derived such that 
if X1 ⊈ Q1 then X ⊈ Q.

Recall the tire-based partition method, we partition the 
dataset into several groups by the labels of records, where 
the label can be regarded as the representative for each parti-
tion. Before drawing samples from a partition with label X1 , 

(12)Var[t̂P] =
∑

Pi∈P

Var[t̂i] =
∑

Pi∈P

ti(mi − ti)

m�
i
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we can calculate if X1 is a subset of query Q. If not, we can 
skip sampling from that collection of records with X1 as a 
label. In order to specify the grouping of records, we give a 
definition as follows.

Definition 4  ((E1,E2)-prefix collection) Given E1 and E2 
as the subsets of element universe E , the (E1,E2)-prefix 
collection of records denoted as S(E1,E2) consists of all 
records X’s from dataset S such that all elements of E1 are 
contained in X while no element of E2 appears in X, that is, 
S(E1,E2) = {X ∈ S|E1 ⊆ X and E2 ∩ X = Φ}.

Note that E1 and E2 are, respectively, named as inclusion 
element set and exclusion element set.

Example 3  An ({e2}, {e7})-prefix collection in Table 1 is 
{X2,X4}.

Now, we can present the lemma which lay the foundation of 
the divide-and-conquer algorithm.

Lemma 2  Considering a prefix collection S(E1,E2) and an 
element e which does not belong to E1 ∪ E2 , the contain-
ment selectivity of a given query Q within S(E1,E2) can be 
calculated as

The key point in the proof of Lemma 2 is to consider the 
conditional probability. We omit the detailed proof here due 
to space limitation.

(14)tS(E1,E2)
=

∑

X∈S(E1,E2)

�X ∗
Pr[X]

Pr[S(E1,E2)]

tS(E1,E2)
= Pr[e = 1|S(E1,E2)] ∗ tS(E1∪{e},E2)

+ Pr[e = 0|S(E1,E2)] ∗ tS(E1,E2∪{e})
.

Recall that in Sect. 3.2, we model the record X as a ran-
dom variable and give the probability that X appears in data-
set S . Similarly, we compute the generating probability of 
the prefix collection S(E1,E2) as follows:

Next, we compute the number of subsets of a given query Q 
within the prefix collection S(E1,E2) , i.e., the containment 
selectivity in regard to S(E1,E2) . Let �X denote the indicator 
function such that

then the containment selectivity of Q with respect to 
S(E1,E2) is

(13)Pr[S(E1,E2)] = Pr

[
⋂

e∈E1

{e = 1},
⋂

e∈E2

{e = 0}

]
.

�X ∶=

{
1 if Q ⊇ X,

0 otherwise

Algorithm 2: Divide-And-Conquer Exact Algorithm
Input : S , a collection of records as dataset; Q, a query set

E1 (E2), elements included (excluded) in the prefix collection
Output : t̂: containment selectivity of query Q within S(E1, E2)
procedure T(S ,E1, E2, Q)1

if E1 Q then2

return 03

choose an element e /∈ E1 ∪ E2;4

return Pr[e = 1|S(E1, E2)] ∗T(S ,E1 ∪ {e}, E2, Q) + Pr[e =5

0|S(E1, E2)] ∗T(S , E1, E2 ∪ {e}, Q)

Based on Lemma 2, we propose the divide-and-conquer 
algorithm illustrated in Algorithm 2. We can calculate the 
containment selectivity of Q within dataset S by invoking 
procedure �(S,�,�,Q) ; by lemma 2, the dataset is parti-
tioned into two groups of records by choosing an element 
e ∈ E and we have

 and then compute the containment selectivity in each of the 
two groups recursively as shown in Line 4–5. When there 
is E1 ⊈ Q , we can prune this collection of records S(E1,E2) 
by Lemma 1. Obviously, the time complexity of the exact 
divide-and-conquer algorithm is O(C ∗ 2n) where n is the 
size of the element universe E and C is the cost of set com-
parison. Recall that the element frequency distribution is 

tS(�,�) = Pr[e = 1|S(�,�)] ∗ tS({e},�)

+ Pr[e = 0|S(�,�)] ∗ tS(�,{e})
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usually skew in real dataset, and we can arrange the elements 
by decreasing frequency order when choosing the element e 
in Line 4 of Algorithm 2, which can accelerate the compu-
tation by pruning more records corresponding to the high-
frequency elements.

4.2.1 � Approximate Divide‑and‑Conquer Algorithm

Next, we propose an approximate method based on the exact 
divide-and-conquer algorithm. In Algorithm 2, the dataset S 
is recursively partitioned into two collections of records by 
choosing an element e ∉ E1 ∪ E2 . In addition, we can order 
the elements by decreasing element frequency to boost the 
computation efficiency. However, the complexity is still 
O(C ∗ 2n) . In this section, we only consider the top-k high-
frequency elements Ek , from which the element is selected 
to partition the dataset. After finishing all the elements in Ek , 
we end up with 2k prefix collections of records Si(E1,E2) , 
i = 1, 2,… , 2k , which is much smaller than 2n . Note that 
(E1,E2) can be regarded as the label for each prefix collection.

Recall Lemma 1, all the records X’s can be described as 
the binary vector with X = {X1;X2} where X1 corresponds to 
the top-k high-frequency elements part Ek and X2 is the rest 
part concatenated with X1 . Similarly, when a query record Q 
arrives, let Q be Q = {Q1;Q2} following the same manner; 
then, by Lemma 1, we can exclude all the prefix collections 
S(E1,E2) with E1 ⊈ Q1 . For the remaining prefix collections, 
we sample some records from each group and conduct con-
tainment search of Q over sampled records. Let X = {X1;X2} 
be a sampled record, and it is only required to test if X2 ⊆ Q2 
since X1 ⊆ Q1 . In the following part, we formally demon-
strate how to estimate the containment selectivity of Q by 
the divide-and-conquer method.

Let �i denote the indicator function for prefix collection 
Si(E1,E2) ( Si for short) such that �i = 1 when E1 ⊆ Q1 other-
wise 0. The size of prefix collection Si(E1,E2) can be com-
puted as mi = |Si(E1,E2)| = m ∗ Pr[Si(E1,E2)] by Eq. 13. 
Let pi be the sampling probability in Si , then the sample 
size is m�

i
= mi ∗ pi . For any sampled record, Xj = {X1;X2} 

in this prefix collection Si , and let �ij be the indicator for 
which �ij = 1 if X2 ⊆ Q2 otherwise 0. Then, an estimator 
for the containment selectivity of Q by divide-and-conquer 
algorithm can be expressed as

It can be verified that t̂D is an unbiased estimator and the 
variance of t̂D is

(15)t̂D =
∑

Si

�i

m�
i∑

j=1

�ij

pi

(16)Var[t̂D] =
∑

Si

�i ∗
ti(mi − ti)

pimi

where ti is the number of records satisfying X2 ⊆ Q2 in Si . 
Let Si , i = 1, 2,… , l be all the prefix collections with 
E1 ⊆ Q1 for a given query Q, then the variance can be writ-

ten as Var[t̂D] =
∑l

i=1

ti(mi−ti)

pimi

.

4.2.2 � Compare with OT‑Sampling

Obviously, in DC-Sampling method, we avoid allocating the 
space budget to unqualified partitions compared with OT-
Sampling. In formal, assume there are q partitions (corre-
sponding to prefix collections) in total with {P1,… ,Pq} ; 
after pruning, there remains l partitions, w.l.o.g, {P1,… ,Pl} . 
Then, for DC-Sampling, the sampling probability is 
pi =

b
∑l

i=1
mi

 where mi = |Pi| and b is space budget, and the 

sampling probability of OT-Sampling is p�
i
=

b∑q

i=1
mi

 . Thus, 

we have Var[t̂P] − Var[t̂D] =
∑l

i=1
(

1

p�
i
mi

−
1

pimi

)ti(mi − ti)+
∑q

i=l+1

1

p�
i
mi

ti(mi − ti) ≥ 0 since p′
i
≤ pi.

4.2.3 � Time Complexity

The time complexity of DC-Sampling method is 
O(b ∗ Ĉ) + O(P) whereĈ is the cost for two-record contain-
ment check. Here, we use merge join to check if one record 
is included by a given query record Q, and O(P) is the pre-
process time on partition the records by prefix. After pruning 
the unqualified partitions, we can skip comparing the prefix 
part of a record with the query by our algorithm, and thus, 
the time cost of Ĉ is smaller than that of OT-sampling, which 
leads to better efficiency than DC-Sampling.

5 � Selectivity Estimation on Weighted Set 
Containment Search

In this section, we consider the set containment search on 
weighted records. We first present a simple random sampling 
method to address the problem, followed by the stratified 
sampling method to boost the estimation accuracy.

5.1 � Random Sampling Approach

Similar to the selectivity estimation of simple set con-
tainment search problem, we can apply the naive random 
sampling method to selectivity estimation with regard to 
weighted datasets. Namely, given a (weighted) query record 
Q and a space budget b, we first uniformly and at random  
sample b weighted records ( X1,X2,… ,Xb ) from the dataset 
S , and then, we compare query Q with each sampled record 
Xi to verify if Xi is weighted included by Q (according to 
Definition 2) and count the number of sampled records satis-
fying Xi ⊆w Q ; we finally scale up the counting result to get 
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a selectivity estimation on weighted set containment search. 
Similar to Eq. 5, the estimator t̂w

R
 is denoted as:

where �w
i
 is the indicator function based on weighted records 

inclusion, i.e., �w
i
= 1 if Xi ⊆w Q ; otherwise, �w

i
= 0 . Obvi-

ously, the estimator t̂w
R

 is an unbiased estimator; the variance 
can be computed as

5.2 � Stratified Random Sampling

In order to boost the estimation accuracy, we can also uti-
lize the partition-based sampling method (e.g., stratified 
sampling). Unfortunately, it is not applicable to group the 
records by building a trie structure on the weighted data-
set, because the weights of each dimension among the 
records can be quite distinct and the number of partitions 
based on trie structure could be the same order of the num-
ber of records in the dataset. In the following part, we take 
into account the distribution of weights in each dimension 
and partition the dataset recursively on each dimension by 
dichotomizing the corresponding domain. Based on the 
partition, we present a divide-and-conquer algorithm given 
a query record to estimate the selectivity of weighted set 
containment search.

Consider the domain Dj of jth dimension corresponding 
to ej ; let wj = {w1j,w2j,… ,wmj} denote all the weights of 
dataset in jth dimension. Assume wij ( i = 1, 2,… ,m ) follows 
norm distribution with wij ∼ N(�j, �

2

j
) , and then, we can use 

the mean value �j as a boundary to partition the records; that 
is, records Xi s with ith weight wij < 𝜇j are grouped together 
and the remaining records are collected in another group. 
Also, we choose the top-k high-frequency weights to parti-
tion the dataset. Remark that the weights of each record are 
sorted by the decreasing order of weight frequency in the 
dataset, and the weight frequency of jth dimension ( ej ) is the 
number of nonzero weights in this dimension. Similar to the 
estimation in Sect. 4.1, Algorithm 3 illustrates the estimation 
strategy of stratified sampling.

(17)t̂w
R
=

m

b

b∑

i=1

�
w
i

(18)Var[t̂w
R
] =

t(m − t)

b
.

Note that when the weights are binary values, the 
above partition strategy is the same as Algorithm 2 for 
the simple (unweighted) case. Based on the partition 
Pw = {P1,… ,P|P|} , we can estimate the weighted set con-
tainment selectivity similar to Eq. 11 as

which is an unbiased estimator with variance computed as

Similarly, it can be proved that the variance of stratified sam-
pling approach is smaller than that of naive random sam-
pling method, i.e., Var[t̂w

Pw] ≤ Var[t̂w
R
].

5.3 � Query‑Oriented Sampling

Furthermore, the estimation accuracy can be improved by uti-
lizing the query record information. Given a weighted query 
record Q with top-k high-frequency weighted elements EQ , we 
first compare EQ with the labels of each partition in 
Pw = {P1,… ,P|Pw|} to prune some partitions with records 
that cannot be included by the query Q. With the pruned parti-
tion P� = {P�

1
,… ,P�

|P�|} , we can get an estimator as follows:

It can also be shown that the variance of t̂′ is smaller than 
that of t̂w

Pw , Var[t̂�] ≤ Var[t̂w
Pw].

6 � Experimental Evaluation

In this section, we evaluate the estimation accuracy and 
computation efficiency of different strategies on a variety 
of real-life datasets. All experiments are conducted on PCs 
with Intel Xeon 2 × 2.3 GHz CPU and 128 GB RAM run-
ning Debian Linux.

(19)t̂w
Pw =

∑

Pi∈P
w

mi

m�
i

m�
i∑

j=1

�ij

(20)Var[t̂w
Pw] =

∑

Pi∈P
w

Var[t̂w
i
] =

∑

Pi∈P
w

ti(mi − ti)

m�
i

(21)t̂� =
∑

Pi∈P
�

mi

m�
i

m�
i∑

j=1

�ij

Algorithm 3: Stratified Random Sampling Approach
Input : Q, a query set; b, sample size budget

S , a weighted dataset with weights sorted by decreasing frequency
k, top-k high-frequency weighted elements

Output : t̂: estimation of containment selectivity under query Q
Ew
k ← the top-k high-frequency elements;1

partition the weighted dataset by Ew
k into Pw = {P1, ..., P|Pw|} ;2

t̂ ← estimator based on each partition Pw = {P1, ..., P|Pw|};3

return t̂4
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6.1 � Experimental Setting

Algorithms Since there exists no previous work for tackling 
the problem of set containment selectivity estimation, we 
evaluate the following estimation methods introduced in this 
paper.

•	 RS Direct random sampling method in Sect. 3.1.
•	 IL-GKMV Inverted lists and G-KMV sketch-based 

method in Sect. 3.2.
•	 OT-Sampling Ordered trie structure-based sampling 

method in Sect. 4.1.
•	 DC-Sampling The divide-and-conquer-based sampling 

method in Sect. 4.2.

We also evaluate the methods for weighted set containment 
selectivity estimation as follows.

•	 RS Direct random sampling method in Sect. 5.
•	 StrRS Stratified random sampling method in Sect. 5.
•	 StrQRS Stratified query-oriented random sampling 

method in Sect. 5.

The above algorithms are implemented in C++. In verifying 
the inclusion relationship between the query and records, we 
apply the merge join method. For records with large size, 
we utilize the prefix tree structure to boost the computation 
efficiency.

Datasets We deploy nine real-life datasets which are cho-
sen from various domains with different data properties. In 
Table 3, we illustrate the characteristics of these nine data-
sets in details. Note that the last three are weighted datasets. 
For each dataset, we show the representations of record and 
element, the number of records, the average record length 
and the number of distinct elements in dataset.

Workload The workload for the selectivity estimation of 
set containment search is made up of 10,000 queries, each of 
which is uniformly and at random selected from the dataset. 
Note that we exclude the queries with size smaller than 10 
in order to evaluate the accuracy properly.

Measurement In the following part, we use relative error 
to measure the accuracy. Let t be the exact result, and t̂ be 
the estimation one, then the relative error denoted by � is cal-
culated as 𝜖 = |t−t̂|

t
 . The sampling size is in terms of the num-

ber of records. For IL-GKMV approach, the space budget is 
allocated as discussed at the end of Sect. 3.

Tuning k In order to evaluate the impact of the high-fre-
quency elements in OT-Sampling and DC-Sampling, we first 
tune the number of the highest frequency elements, i.e., top-
k. By experimental study, we set the k value as 12 which can 
well balance the trade-off between accuracy and efficiency.

6.2 � Overall Performance

Figure 2a compares the estimation accuracy and time cost 
of the four algorithms on six datasets. The sample size is 

Table 3   Characteristics of 
datasets

Dataset Abbreviation Record Elements #Records AvgLength #Elements

Bookcrossing [1] BOOKC Book User 340,523 3.38 105,278
Delicious [2] DELIC User Tag 833,081 98.42 4,512,099
Livejournal [3] LIVEJ User Group 3,201,203 35.08 7,489,073
Netflix [13] NETFLIX Movie Rating 480,189 209.25 17,770
Sualize [4] SUALZ Picture Tag 495,402 3.63 82,035
Twitter [22] TWITTER Partition User 371,586 65.96 1318
MovieLens [5] MLENS Review Rating 138,000 110.25 27,000
Amazon [6] AMAZON Product Rating 7,781,990 4.67 548,552
Dating [7] DATING Review Rating 17,359,346 40.5 168,791

Fig. 2   Overall performance
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set as 1000 in terms of the number of records; for trie struc-
ture-based approach and divide-and-conquer algorithm, the 
k value is 12 as mentioned above. Overall, we can see that 
the divide-and-conquer (DC-Sampling) algorithm achieves 
the best performance in the accuracy on all datasets, which 
can reduce the relative error of the random sampling (RS) 
method by around 60% and cut the relative error of IL-
GKMV method by more than 80% . Also, the ordered trie 

structure-based approach (OT-Sampling) can diminish the 
relative error of RS by around 40% for most datasets and nar-
row the relative error of IL-GKMV by about 70% . Moreover, 
divide-and-conquer (DC-Sampling) algorithm outperforms 
the ordered tire structure-based approach (OT-Sampling) by 
decreasing the relative error about half.

Figure 2b reports the query response time on six datasets 
with 10,000 queries, where DC-Sampling method consumes 

Fig. 3   Accuracy versus space

(a) (b)
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Fig. 4   Efficiency versus space
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less time than the other three because of the pruning tech-
niques. It is remarkable that for each dataset, the time 
costs of the four algorithms are comparable since we keep 
the same sample size in every algorithm. Meanwhile, the 
response time varies among different datasets because of 
the diverse average record lengths, and datasets with larger 
average length, e.g., NETFLIX with AvgLength 209.25, con-
sume more query time.

6.3 � Estimation Accuracy Evaluation

In this section, we assess the effectiveness of the four meth-
ods in terms of relative error. We consider the effect of space 
budget on the estimation accuracy by changing the sampling 
size. Figure 3 illustrates superior accuracy achievement of 
DC-Sampling against the other three by varying the space 
budget. As anticipated, the accuracy performance of all algo-
rithms is ameliorated when more sampling size is provided.

6.4 � Computation Efficiency Evaluation

In this section, we evaluate the efficiency of the four algo-
rithms in terms of query response time with 10,000 queries. 
Figure 4 demonstrates the response time of four algorithms 
with different space budgets. Obviously, the query response 
time increases as the sampling size grows. The DC-Sampling 
method outperforms the other three algorithms because of 
the pruning techniques.

6.5 � Weighted Set Containment Search

In the last part of experiment, we assess the estimation accu-
racy and efficiency of selectivity estimation of weighted 
set containment search. As for the experiment setting, we 
choose the value k as 12 for top-k high-frequency weighted 
elements. Figure 5 illustrates the overall accuracy and effi-
ciency performance of WRS, StrRS and StrQRS method. 
We can see that the StrQRS method outperforms the other 
two algorithms under the same space budget, and StrRS 
method can achieve better accuracy than RS method. The 
time cost of the three algorithms (with 10,000 query records) 
is similar since the sample budget (1000 records) is same. 
Figure 6 compares the accuracy of the three algorithms. 
Obviously, with the space budget growing, the relative error 
gets smaller, i.e., the accuracy of the three methods keeps 
increasing. We can also find that the StrQRS method always 
beats the others with different sampling sizes.

7 � Related Work

To the best our knowledge, there is no existing work on 
selectivity estimation of set containment search. In this sec-
tion, we review two important directions closely related to 
the problem studied in this paper.

Fig. 5   Overall performance
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7.1 � Searching Set‑Valued Data

The study of set-valued data has attracted great attention 
from research communities and industrial organizations due 
to an ever increasing prevalence of set-valued data in a wide 
range of applications. The research in this area focuses on set 
containment search [18, 19, 28], set similarity and set con-
tainment joins [20, 22, 23, 30]. In one of the representative 
works on set containment search [28], Terrovitis et al. intro-
duce a OIF index combined the inverted index with B-tree to 
tackle three kinds of set containment queries: subset queries, 
equality queries and superset queries. In a recent work [34], 
Yang et al. propose a TT-join method for the set contain-
ment join problem, which is based on prefix tree structure 
and utilize the element frequency information; they also 
present a detailed summary of the existing set containment 
join methods. The containment queries can also be modeled 
as range searching problem in computational geometry [8]; 
nevertheless, the performance is exponentially dependent on 
dimension n which is unsuitable in practice for our problem.

7.2 � Selectivity Estimation

The problem of selectivity estimation has been studied for 
a large variety of queries and over a diverse range of data 
types such as range queries (e.g., [16]), Boolean queries 
(e.g., [14]), relational joins (e.g., [29]), spatial join (e.g., 
[17]) and set intersection (e.g., [16]). Nevertheless, many of 
the techniques developed above are sensitive to the dimen-
sion of data and not applicable to the problem studied in this 
paper. Moreover, the superset containment semantics brings 
in extra challenges in adopting existing techniques. Although 
the set containment search query can be naturally modeled 
as range counting problem as discussed in Sect. 1, exist-
ing range counting techniques are exponentially dependent 
on the dimensionality (i.e., the number of distinct elements 
in our problem) and not applicable to solving the contain-
ment selectivity estimation problem in our problem [16, 27]. 
Distinct value estimators (e.g., KMV [12], bottom-k, min-
hash [16]) are adopted in [32] to solve subset containment 
search (i.e., query record is a subset of data record). We also 
extend the distinct value estimator KMV and develop the 
IL-GKMV approach in Sect. 3 and demonstrate theoretically 
and through extensive experiments that distinct value esti-
mators cannot efficiently and accurately support the superset 
containment semantics studied in this paper.

8 � Conclusion

The prevalence of set-valued data generates a wide variety of 
applications that call for sophisticated processing techniques. 
In this paper, we investigate the problem of selectivity 

estimation on set containment search and develop novel and 
efficient sampling-based techniques, OT-Sampling and DC-
Sampling, to address the inherent challenges of set contain-
ment search and the limitations of existing techniques. Sim-
ple random sampling techniques and a G-KMV sketch-based 
estimating approach IL-GKMV are also devised as baseline 
solutions. Meanwhile, we consider the selectivity estimation 
of weighted set containment search and propose stratified 
sampling method to tackle this problem. We theoretically 
analyze the accuracy of the proposed techniques by means of 
expectation and variance. Our comprehensive experiments 
on six real-life datasets empirically verify the effectiveness 
and efficiency of the sampling-based approaches.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
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Creative Commons license, and indicate if changes were made.
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