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PAPER

Travel Time Prediction System Based on Data Clustering for Waste
Collection Vehicles

Chi-Hua CHEN†a), Member, Feng-Jang HWANG††, and Hsu-Yang KUNG†††, Nonmembers

SUMMARY In recent years, intelligent transportation system (ITS)
techniques have been widely exploited to enhance the quality of public
services. As one of the worldwide leaders in recycling, Taiwan adopts
the waste collection and disposal policy named “trash doesn’t touch the
ground”, which requires the public to deliver garbage directly to the col-
lection points for awaiting garbage collection. This study develops a travel
time prediction system based on data clustering for providing real-time in-
formation on the arrival time of waste collection vehicle (WCV). The de-
veloped system consists of mobile devices (MDs), on-board units (OBUs),
a fleet management server (FMS), and a data analysis server (DAS). A
travel time prediction model utilizing the adaptive-based clustering tech-
nique coupled with a data feature selection procedure is devised and em-
bedded in the DAS. While receiving inquiries from users’ MDs and rel-
evant data from WCVs’ OBUs through the FMS, the DAS performs the
devised model to yield the predicted arrival time of WCV. Our experiment
result demonstrates that the proposed prediction model achieves an accu-
racy rate of 75.0% and outperforms the reference linear regression method
and neural network technique, the accuracy rates of which are 14.7% and
27.6%, respectively. The developed system is effective as well as efficient
and has gone online.
key words: travel time prediction, arrival time prediction, intelligent trans-
portation system, waste collection vehicle, data clustering

1. Introduction

In recent years, intelligent transportation system (ITS) tech-
niques have been widely exploited to enhance the qual-
ity of public services, e.g. mass rapid transit [1], railway
traffic [2], bus system [3], bicycle-sharing system [4], and
garbage truck fleet management [5], etc. One of these appli-
cations which have not been extensively studied could be the
utilization of transportation information in waste collection
service. As one of the worldwide leaders in recycling, Tai-
wan adopts the waste collection and disposal policy named
“trash doesn’t touch the ground”, which requires the public
to deliver garbage directly to the specific locations for await-
ing garbage collection during specific time periods. Under
this effective waste collection and disposal system, the waste
collection vehicle (WCV) collects garbage from the collec-
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tion points (CPs) along the route that is defined by a spe-
cific sequence of CPs. Denote by CPn the n-th collection
point in a considered waste collection route. Define the time
when a WCV arrived at CPn by tn. Consider the route seg-
ment from CPn−1 to CPn+1 as shown in Fig. 1. The real-
ized travel time of WCV from CPn−1 to CPn is defined by
xn,n+1 = tn+1 − tn. When the WCV arrived at CPn at time tn,
the predicted travel time of WCV from CPn to CPn+1, which
is denoted by x′n,n+1, can be generated by the travel time pre-
diction methods [1], [2], [6]–[11]. Then the predicted arrival
time of WCV at CPn+1, i.e. t′n+1 = tn+x′n,n+1, can be obtained.
Then the predicted arrival time t′n+1 can be announced to the
public through the mobile application so that the public can
avoid suffering a long waiting for garbage disposal or miss-
ing the garbage collection.

Several approaches to travel or arrival time predic-
tion have been proposed, e.g. statistical mean value (SMV)
method, linear regression (LR) method, neural networks
(NNs), etc [1], [2], [6]–[11]. Although the statistical meth-
ods such as SMV and LR can provide the predicted in-
formation quickly, the accuracy of predicted information
would be lowered when a large variation exists in histori-
cal records. The NN and deep learning techniques can pro-
vide relatively precise prediction, but a relatively high com-
putational cost is required. To develop an effective and ef-
ficient WCV arrival time prediction system, this study de-
vises a travel time prediction model utilizing the adaptive-
based clustering technique coupled with a data feature se-
lection procedure. Our utilized clustering method can ef-
fectively merge high-similarity data clusters to extract and
analyze the characteristics of traffic information and further
enhance the accuracy of the devised prediction model. The
developed travel time prediction system consists of mobile
devices (MDs), on-board units (OBUs), a fleet management
server (FMS), and a data analysis server (DAS). While re-
ceiving inquiries from users’ MDs and relevant data from
WCVs’ OBUs through the FMS, the DAS performs the de-
vised travel time prediction model to yield the predicted ar-
rival time of WCV, which is then sent to users’ MDs via the
FMS.

Fig. 1 The WCV route segment from CPn−1 to CPn+1.
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The remainder of the paper is as follows. Vari-
ous exiting travel time prediction methods are reviewed in
Sect. 2. The devised travel time prediction model utilizing
the adaptive-based clustering technique coupled with a data
feature selection procedure is introduced in Sect. 3. The ex-
perimental results and online implementation are presented
in Sect. 4. Finally, the conclusions are given in Sect. 5.

2. Literature Reviews

This section discusses the existing approaches for travel
time prediction in literature and the relevant machine learn-
ing techniques for data clustering. The SMV, LR, NN, recur-
rent neural network (RNN) and auto-encoder (AE) methods
are demonstrated in Sect. 2.1. The partition-based clustering
(PBC), density-based clustering (DBC), grid-based cluster-
ing (GBC), and adaptive-based clustering (ABC) methods
are introduced in Sect. 2.2.

2.1 Existing Travel Time Prediction Methods

The SMV, LR, NN, RNN and AE methods proposed to es-
timate and predict the travel time [1], [2], [6]–[10] are dis-
cussed and compared as follows.

2.1.1 Statistical Mean Value (SMV) Method

The SMV method for travel time prediction [6] contains the
following two steps.
Step 1: This method generates the predicted travel time
x′n,n+1 based on the mean value of historical travel times from
CPn to CPn+1 within a specific recent time period. Denote
the realized travel time from CPn to CPn+1 in the k-th record
by xn,n+1,k for k = 1, 2, . . . ,m. Then the predicted travel time
x′n,n+1 can be estimated by Eq. (1). To demonstrate the SMV
method, we consider a real-world example from Hsinchu
City WCV route, where n = 2 and m = 10 as showed in
Fig. 2. The predicted travel time x′2,3 is about 364 seconds
calculated by Eq. (1).

x′n,n+1 = xn,n+1 =

∑m

k=1
xn.n+1,k

m
(1)

Step 2: The predicted arrival time at CP3, i.e. t′3 = t2 + x′2,3,
can then be obtained.

To evaluate the performance of the SMV method, the
mean absolute error (MAE), i.e. the absolute value of the
difference between the predicted and realized values, is

Fig. 2 Ten historical travel times from CP2 to CP3 and the SMV.

used. In this Hsinchu WCV example, the MAE of the pre-
dicted travel time x′2,3 by the SMV method is equal to 218
seconds. Since the SMV method only employs the mean
value of historical records to predict travel time, the signif-
icant inaccuracy of estimation would be incurred due to the
dynamic traffic conditions.

2.1.2 Linear Regression (LR) Method

The application of LR method in analyzing real-time traffic
conditions for travel time prediction can be found in previ-
ous studies [1], [6], [11]. In the setting of LR method, the
realized travel time xn−1,n is used as the input for estimat-
ing the predicted travel time x′n,n+1, i.e. the output. The LR
procedure consists of the following two steps.
Step 1: An LR model can be defined by Eq. (2), where the
intercept parameter b and the slope parameter w can be cal-
culated by Eqs. (3) and (4). Consider again the Hsinchu City
WCV example with n = 2 and m = 10 as shown in Fig. 3.
The LR equation (5) can be obtained using Eqs. (2)–(4).

x′n,n+1 = b + w × xn−1,n (2)

w =

∑m

k=1
(xn−1,n,k − xn−1,n)(xn,n+1,k − xn,n+1)∑m

k=1
(xn−1,n,k − xn−1,n)2

(3)

b = xn,n+1 − w × xn−1,n (4)

x′2,3 = −77.242 + 1.3895x1,2 (5)

Step 2: Since the realized travel time x1,2 is collected as
the input of the LR equation, the predicted travel time x′2,3
can be estimated by Eq. (5). Then the predicted arrival time
t′3 = t2 + x′2,3 can then be obtained.

The MAE of the predicted travel time x′2,3 by the LR
equation (5) is equal to 150 seconds. Although the accuracy
of LR model is better than the SMV method, it could not be
effectively applied to the practical traffic conditions with the
property of non-linearity.

2.1.3 Neural Networks (NNs)

The NN techniques were proposed to analyze the interac-
tion effects among the input parameters and produce the
non-linear prediction models [2], [6], [10]. A NN consists
of an input layer, hidden layers (e.g., dense layers, convolu-
tional layers, or recurrent layers), and an output layer. The

Fig. 3 Ten pairs of historical travel times and the LR equation.
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sigmoid function can be applied as the activation function
for obtaining a non-linear model, and the gradient descent
method can be applied in the optimization of each weight
in the NN [12], [13]. A NN model consists of the following
two stages.
Stage 1 (Training stage): The structure of a NN is defined
and the NN model is trained at this stage. The realized travel
time xn−1,n is used as the input layer of the NN, and the pre-
dicted travel time x′n,n+1 is set as the output layer. The dense
layers can be defined as hidden layers for the analyses of
the interaction effects among parameters. Then the histori-
cal records can be used to train the NN, and the optimized
value of each weight in the NN model can be calculated by
the gradient descent method.
Stage 2 (Runtime stage): At the runtime stage, the trained
NN model can be exploited to predict the travel time x′n,n+1
in accordance with the input parameter xn−1,n. Then the pre-
dicted arrival time t′n+1 = tn + x′n,n+1 can be obtained.

Although the NN model can yield non-linear solutions,
it does not take into account different data features, which
may influence the accuracy of WCV travel time prediction
according to our preliminary study.

2.1.4 Recurrent Neural Network (RNN)

In recent years, the RNNs and long short term memory
(LSTM) networks have been proposed to analyse the time
series datasets. The features of the past sequence elements
can be encoded as several neurons (i.e. vectors) by recurrent
layers in RNNs and LSTM networks. The records of traf-
fic flow and travel time can be expressed as time series data
and sequential vectors which can be adopted into RNNs and
LSTM networks for extracting the significant features of se-
quence elements and improving the accuracies of traffic in-
formation [14]–[18]. However, the higher computation time
and cost are required by RNNs and LSTM networks. Fur-
thermore, the prediction results of RNNs may be the same
as the prediction results of NNs if the length of sequential
input vectors is short.

2.1.5 Auto-Encoder (AE)

For data generalization and over-fitting prevention, the AE
method has been proposed to reduce dimensions and extract
the significant features. For performing AE method, a mul-
tilayer NN model can be constructed with a hidden layer
which has lower dimensions, and the input vectors are the
same as the output vectors in the NN model. The input vec-
tors can be encoded as significant features from the input
layer to the hidden layer, and the significant features can
be decoded as the output vectors from the hidden layer to
the output layer accordance with trained NN model [18]–
[20]. Therefore, the significant features of traffic informa-
tion may be extracted and encoded by AE method for the
improvement of prediction accuracies. However, perform-
ing AE method needs higher computation time and cost.

Fig. 4 PBC with m = 10 and k = 3 for the travel time prediction.

2.2 Data Clustering Methods

Data clustering techniques are the important tool to extract
and analyze the characteristics of traffic information. The
clustering methods can be categorized into four classes,
i.e. partition-based clustering (PBC) [21], [22], density-
based clustering (DBC) [23], [24], grid-based clustering
(GBC) [25], [26], and adaptive-based clustering (ABC) [27],
[28].

2.2.1 Partition-Based Clustering (PBC)

The PBC methods (e.g., the k-means clustering) can cluster
data into several groups in accordance with the similarities
or distances between the data and cluster centers [21], [22].
The four steps of the PBC are shown as follows.
Step 1: Given m data points, we determine the number of
clusters denoted by k. Consider the example with m = 10
and k = 3 as shown in Fig. 4. Each realized travel time
record is depicted as a dot, and each cluster center is marked
with a star.
Step 2: Among the m data points, k points are randomly
selected as the centers of the k individual clusters.
Step 3: The similarity or distance between each of the m
data points and each of the k cluster centers is calculated.
Step 4: Each data point is grouped into a cluster in accor-
dance with the highest similarity between the data point and
cluster center. The center of each cluster is then updated af-
ter grouping. Steps (3) and (4) will be repeated until each
cluster center remains unchanged.

Although the data records can be clustered with the rel-
atively low time complexity O(mk) by the PBC, the outliers
cannot be filtered out. Furthermore, it could be difficult to
determine the value of k, which influences the clustering
quality.

2.2.2 Density-Based Clustering (DBC)

The DBC methods (e.g., the density-based spatial clustering
of applications with noise) can analyze the density of each
considered data group to determine the clusters [23], [24].
The DBC consists of the following three steps.
Step 1: A radius r and the minimum number of points de-
noted by q are predefined for clustering. Consider an exam-
ple with r = 60 and q = 2. As shown in Fig. 5, each travel
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Fig. 5 DBC with m = 10, r = 60, and q = 2 for the travel time
prediction.

Fig. 6 GBC with m = 10, g = 70, and h = 2 for the travel time
prediction.

time record is depicted as a dot and the circle of each data
point has a radius r = 60 seconds.
Step 2: The similarity or distance between each pair of the
m records is calculated.
Step 3: If the number of data points in a circle is larger than
q, the circle is marked as a significant circle. Any adjacent
significant circles are grouped into a cluster.

Although outliers can be filtered out by the DBC, its
time complexity O(m2) is relatively high. Furthermore, it
again could be difficult to determine the values of q and r,
which influence the clustering quality.

2.2.3 Grid-Based Clustering (GBC)

The GBC methods utilize grids to filter out the outliers and
to reduce the time complexity [25], [26]. The GBC contains
the following four steps.
Step 1: The grid length g and the minimum number of
points h are predetermined for clustering. Consider an ex-
ample with g = 70 and h = 2. As shown in Fig. 6, each
travel time record is depicted as a dot.
Step 2: Denote by o the number of grids. All the m
points can be classified into the o girds according to the grid
length g.
Step 3: If the number of points in a grid is larger than h, the
grid is marked as a significant grid. Any adjacent significant
grids are then grouped into a cluster.

Although the time complexity of the GBC is O(mo),
the values of g and h would influence the clustering quality
and determining their values is an optimization problem.

Fig. 7 ABC with m = 10, v = 6, and θ = 90% for the travel time
prediction.

2.2.4 Adaptive-Based Clustering (ABC)

The ABC methods analyze the similarities or distances be-
tween the data and cluster centers and group these data into
several clusters in accordance with a threshold [27], [28].
The ABC consists of the following four steps.
Step 1: The data can be initially grouped into v clusters ac-
cording to the date features. Consider an example with v = 6
using the data feature of weekdays (including Saturday) as
shown in Fig. 7.
Step 2: A similarity threshold θ is selected. Consider θ =
90% in our example.
Step 3: The similarity between each pair of clusters can be
calculated using a similarity function.
Step 4: If the similarity between some pair of clusters is
higher than θ, they are grouped into a new cluster. Steps 3
and 4 are repeated until all the clusters remain unchanged.

Since our preliminary study indicates that some data
features, e.g. weekdays and humidity, may influence the
travel time prediction, the ABC would be a suitable tech-
nique for yielding an accurate travel time prediction model.

3. The Proposed Travel Time Prediction System

This study develops a travel time prediction system based
on data clustering for providing real-time information on the
arrival time of waste collection vehicle (WCV). The compo-
nents of the proposed system are presented in Sect 3.1, and
the proposed WCV travel time prediction method is illus-
trated in Sect. 3.2.

3.1 Components of the Proposed System

The architecture of the proposed system includes MDs,
OBUs, an FMS, and a DAS as shown in Fig. 8. Each com-
ponent is introduced as follows.

3.1.1 Mobile Devices (MDs)

The mobile application of the WCV arrival time informa-
tion needs to be installed in the public’s MDs. The users can
send inquiries about the current location of WCV and the
predicted WCV arrival time at each CP via the mobile ap-
plication. The FMS can immediately reply with the relevant
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Fig. 9 The three stages of the proposed travel time prediction model.

Fig. 8 The architecture of the proposed travel time prediction system.

traffic information of WCV to MDs.

3.1.2 On-Board Units (OBUs)

The OBUs including the global positioning system (GPS)
and network modules are equipped into the WCV for de-
tecting and reporting the WCV location. The location infor-
mation is then sent to the FMS via cellular networks [29] or
vehicular ad hoc networks (VANETs) [30], [31].

3.1.3 Fleet Management Server (FMS)

The FMS can receive and show the location information of
each WCV in a geographic information system. Further-
more, the FMS can detect the arrival events of WCVs at
CPs. The realized arrival times are sent to the DAS for the
travel time prediction. Then the FMS receives the predicted
WCV arrival times from the DAS and sends the information
to the users’ MDs.

3.1.4 Data Analysis Server (DAS)

Receiving the realized arrival times of WCVs at CPs, the
DAS performs the proposed travel time prediction model to
estimate the WCV arrival times at the next CPs. The pre-
dicted arrival times are then sent to the FMS for broadcast-
ing.

3.2 The Proposed Travel Time Prediction Model

For improvement of travel time prediction, this study uses
clustering method to evaluate and select significant features.
Furthermore, a linear regression method is considered to
be implemented and obtain predicted travel time for lower
computation time and cost. The proposed travel time pre-
diction model contains the three stages: (1) the pre-training
stage, (2) training stage, and (3) runtime stage, as shown in
Fig. 9.

3.2.1 Pre-Training Stage

The pre-training stage performs the ABC method for clus-
tering the historical travel time data. Two data features in-
cluding weekdays and humidity are considered for feature
extraction in this study. The revised chi-squared distribution
is utilized as the similarity function. The chi-squared distri-
bution can be used to test the significant difference between
two data groups. The cumulative distribution function of
the chi-squared distribution given in Eq. (6) can then esti-
mate the probability of difference [32]. We note that the chi-
squared value between the i-th cluster and the j-th cluster is
defined as vi, j. The degree of freedom between the i-th clus-
ter and the j-th cluster is denoted by di, j. Furthermore, the

function γ

(
di, j

2
,

vi, j

2

)
is the lower incomplete gamma func-

tion, and the function Γ

(
di, j

2

)
is the ordinary gamma func-

tion. Therefore, the similarity si, j between the i-th cluster
and the j-th cluster can be estimated by Eq. (7). Moreover,
the value of the similarity threshold θ is set as 90%. The
analyses of data features are presented in the following sub-
sections.
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F(vi, j, di, j) =

γ

(
di, j

2
,

vi, j

2

)

Γ

(
di, j

2

)

=

∫ vi, j
2

b=0
b

di, j
2 −1e−b db

∫ ∞

b=0
b

di, j
2 −1e−b db

(6)

si, j = 1 − F(vi, j, di, j) (7)

3.2.1.1 Data Feature of Weekdays

As aforementioned, we consider a real-world case with
Hsinchu City WCVs, where the garbage collection days
include Monday, Tuesday, Thursday, Friday, and Satur-
day. Thus, the historical travel time records can be initially
grouped into five clusters. The similarity between each pair
of clusters can be estimated by Eq. (7). The results of the
similarities in the first run are shown in Table 1. As the
value of s2,4 is higher than the similarity threshold θ = 90%
and is the highest similarity, the cluster 2 and cluster 4 can
be merged into a new cluster. The similarity results updated
in the second run are shown in Table 2. The value of s1,3

which is higher than θ = 90%, so the cluster 1 and 3 can be
merged into a new cluster. Then the third run is performed
to update the similarity as shown in Table 3, where no sim-
ilarity is higher than 90%. Therefore, the historical WCV
travel time records can be grouped into three clusters, i.e.
(i) Monday and Thursday, (ii) Tuesday and Friday, and (iii)
Saturday.

Our clustering result is exactly consistent with the prac-
tical insights. If the public’s behaviors are different in dif-
ferent weekdays, and the travel times in different weekdays
could be differentiated. In our real-life instance of Hsinchu

Table 1 The similarity results for weekdays in the first run.

Table 2 The similarity results for weekdays in the second run.

City WCVs, Sunday and Wednesday are the days without
garbage collection service. It implies that relatively more
trash would be accumulated for disposal on Monday and
Thursday. It is then expected that a longer WCV travel time
is required on Monday as well as Thursday, which perfectly
explains the reason why the data of Monday and Thurs-
day are grouped into Cluster 1 as shown in Fig. 9. Further-
more, most residents may choose to travel on Saturday, so
less trash would be collected by WCVs, which again clari-
fies why the data of Saturday individually form Cluster 3 as
shown in Fig. 9. The remaining data of Tuesday and Friday
are grouped into Cluster 2.

3.2.1.2 Data Feature of Humidity

We then investigate whether the humidity is an appropriate
data feature for clustering the WCV travel time records. The
humidity can be classified into four levels, i.e. Level 1 (0%–
25%, sunny day), Level 2 (25%–50%), Level 3 (50%–75%),
and Level 4 (75%–100%, raining day). Therefore, the his-
torical travel time records can be initially grouped into four
clusters. The similarity between each pair of clusters can be
estimated by Eq. (7), and the similarity results are shown in
Table 4. Since there is no similarity higher than 90%, the
humidity cannot be used to perform the data clustering for
the WCV travel time prediction.

3.2.2 Training Stage

In order to develop our model with the low computational
complexity, we adopt the LR method to train the predic-
tion model for each cluster yielded in the pre-training stage.
Then the historical travel time records in each cluster are
used to generate the linear regression equation according
to Eqs. (2), (3), and (4). Given the data in Fig. 9, the lin-
ear regression equations for Clusters 1, 2, 3 are yielded as
Eqs. (8), (9), and (10), respectively.

Cluster 1: x′2,3 = 1178.4 − 1.46x1,2 (8)

Cluster 2: x′2,3 = 103.53 + 0.2353x1,2 (9)

Table 3 The similarity results for weekdays in the third run.

Table 4 The similarity results for humidity in the first run.
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Cluster 3: x′2,3 = 127 − 0.0333x1,2 (10)

The travel time prediction models between each two consec-
utive CPs are trained in the training stage. For instance, the
travel time prediction model from the n-th CP to the (n+ 1)-
th CP is expressed as x′n,n+1 (shown in Eq. (11)) in accor-
dance with historical records.

x′n.n+1 = bn,n+1 + wn,n+1 × xn−1,n (11)

3.2.3 Runtime Stage

At the runtime stage, the yielded linear regression model
can be selected according to the weekdays and thus clusters.
Then the realized travel time x1,2 can be brought into the se-
lected linear regression model to predict the travel time x′2,3.
For instance, if on Monday the DAS receives the informa-
tion of realized travel time x1,2 = 300 seconds, it generates
the predicted travel time x2,3 = 740.4 seconds as shown in
Fig. 9. Furthermore, the predicted travel time x′n,n+1 can be
adopted into Eq. (12) to predict the travel time x′n+1,n+2 from
the (n+ 1)-th CP to the (n+ 2)-th CP when the WCV arrives
at the n-th CP.

x′n+1,n+2 = bn+1,n+2 + wn+1,n+2 × x′n,n+1 (12)

4. Computational Experiment and Online Implemen-
tation

The experimental results and discussions are provided in
Sect. 4.1 for evaluating the proposed predicted model. The
online implementation of the developed system is demon-
strated in Sect. 4.2.

4.1 Computational Experiment

This study considers LR, NN, RNN and AE for travel time
prediction. This section discusses the comparisons of ac-
curacy and computation time in 8 cases (i.e., Case 1: LR
without clustering; Case 2: NN without clustering; Case 3:
RNN without clustering; Case 4: using AE in pre-training
stage and using NN in training stage without clustering;
Case 5: LR with clustering; Case 6: NN with clustering;
Case 7: RNN with clustering; Case 8: using AE in pre-
training stage and using NN in training stage with cluster-
ing). Section 4.1.1 presents the accuracies of each case, and
Sect. 4.1.2 shows the computation time of each case.

4.1.1 Accuracy

In our computational experiments, the records of the
Hsinchu City WCV travel times from April to October were
collected to evaluate the performance of the proposed pre-
diction model. To justify the accuracy of travel time pre-
diction, we adopted the accuracy formula devised by the
Ministry of Transportation and Communications of Taiwan

(MTOC) as shown in Eq. (13). If the error ratio of a pre-
dicted travel time record is larger than 20%, it is labelled
as error. Otherwise, the record is labelled as precise. This
accuracy formula is used to calculate the ratio of precise
records.

Accuracy = 100% −

m∑
k=1

f

( xn,n+1,k − x′n,n+1,k

xn,n+1,k

)

m
,

where f (z) =

{
1, if |z| > 20%
0, otherwise

(13)

The accuracy results of the LR, NN, RNN and AE are shown
in Tables 5 and 6. The accuracies in Cases 1, 2, 3 and 4
are 14.7%, 27.6%, 27.6% and 75%, respectively. This study
considered one timestamp for RNN, so the accuracy of RNN
was the same as the accuracy of NN. For the evaluation of
the proposed method, the accuracy results of different meth-
ods with clustering are showed in Table 6. The accuracies
in Cases 5, 6, 7 and 8 are 75.00%, 76.72%, 76.72% and
77.59%, respectively. Therefore, the accuracy of travel time
prediction can be improved based on clustering method.
Figures 10 or 11 show that the distances between actual data
and the predicted equation are relatively large, which is re-
flected by the low accuracy value. Figure 12 illustrates that

Table 5 The accuracy comparisons of different methods without
clustering.

Table 6 The accuracy comparisons of different methods with clustering.

Fig. 10 The travel time prediction equation by the LR method.

Fig. 11 The travel time prediction equation by the NN.
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Fig. 12 The travel time prediction equation by the proposed model.

Table 7 The computation time comparisons of different methods
without clustering. (unit: milliseconds)

Table 8 The computation time comparisons of different methods with
clustering. (unit: milliseconds)

the distances between actual data and the predicted equa-
tions are relatively small, which results in a high accuracy
of 75%. Our computational experiment demonstrates that
the proposed clustering method can effectively extract the
critical data feature for data clustering. Furthermore, our
proposed WCV travel time prediction model can fulfil the
accuracy of 70% required by MTOC in practice. There-
fore, the solutions of travel time prediction with clustering
method can be accepted by MTOC.

4.1.2 Computation Time

For the evaluation of computation time, this study used a
server with a GPU module (i.e., GeForce GTX 1080). The
regression and deep learning models based on TensorFlow
and Keras libraries were implemented to obtain predicted
travel time.

In the runtime stage, the number of runs is 20,000 for
each case, and the means of computation time are presented
in Tables 7 and 8. The practical experimental results show
that the lower computation time was needed for LR. Fur-
thermore, the higher computation time is required in the
cases of NN and RNN. The computation times in Cases
1, 2, 3 and 4 are 15.01 milliseconds, 161.48 milliseconds,
185.31 milliseconds, and 323.21 milliseconds, respectively.
For the evaluation of the proposed method, the computation
time comparisons of different methods with clustering are
showed in Table 8. The computation times in Cases 5, 6, 7
and 8 are 18.92 milliseconds, 165.39 milliseconds, 189.22
milliseconds, and 327.12 milliseconds, respectively. The
lower computation time is about 4 milliseconds for cluster-
ing method in the runtime stage.

Although the accuracy in Case 8 is higher than the ac-

Fig. 13 The user interfaces of the WCV mobile application.

curacy in Case 5, the computation time in Case 8 is higher
than the computation time in Case 5. Furthermore, the ac-
curacy in Case 5 which is higher than the accuracy of 70%
can be accepted by MTOC. Therefore, the linear regression
method with clustering can be adopted for travel time pre-
diction with lower computation time and cost.

4.2 Online Implementation

The proposed travel time prediction system has gone on-
line for providing the arrival time information of WCVs
in Hsinchu City, where there are 157,000 households and
434,000 residents. The developed WCV mobile application
which was published in the site of Google Play has been
downloaded over 15,000 times [33].

The usage of the WCV mobile application includes the
following two steps (as shown in Fig. 13).
Step 1: The mobile application can get the locations of
proximal CPs according to user’s location.
Step 2: The user can click the icon of CP, and the mobile
application can show the predicted WCV arrival time at each
CP in the selected route.

In Fig. 13, the red circle indicates the user’s location
and the blue circle illustrates the location of CP. The green
circle indicates the current location of WCV. The user
can query the locations of proximal CPs, and then select
a suitable CP for obtaining the predicted WCV arrival time.
When the user clicks the icon of CP, and the mobile appli-
cation shows the predicated WCV arrival time at the CP.

5. Conclusions and Future Work

This study developed a travel time prediction system based
on data clustering for providing real-time information on
the arrival time of waste collection vehicle (WCV). The
developed system consists of MDs, OBUs, an FMS, and a
DAS. A travel time prediction model utilizing the adaptive-
based clustering technique coupled with a data feature se-
lection procedure is devised and embedded in the DAS. Our
experiment result demonstrated that the proposed predic-
tion model achieves an accuracy rate of 75.0% and outper-
forms the reference linear regression method and neural net-
work technique, the accuracy rates of which are 14.7% and
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27.6%, respectively. The developed system is effective as
well as efficient and has gone online.

For further extension of this research, the NN model or
deep learning techniques instead of the LR method can be
utilized in the training stage of the devised prediction model
for further enhancing the prediction accuracy. Moreover,
our prediction model can be applied to different transporta-
tion services such as bus and logistics systems.
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