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ABSTRACT

multi-relational network structure, is widely used as a core technique in real-

world applications including search engine, question answering system, and
recommender system. Knowledge Graph is used to provide extra info box for user query
in Google search engine, the WolframAlpha site provides question answering service
relying on Knowledge Graph, and the eBay uses Knowledge Graph as semantic enhance
for their recommendation service.

Motivated by several characteristics of Knowledge Graph including incompleteness,
structural inferability, and semantical application enhancement, a few efforts have been
put into the Knowledge Graph analysis area. Some works contribute to Knowledge
Graph construction and maintenance through crowdsourcing. Some previous network
embedding learning models show good performance on homogeneous network analysis,
while the performance of directly using them on Knowledge Graph is limited because
the multiple relationship information of the Knowledge Graph is ignored. Then, the
concept of Knowledge Graph embedding learning is given, by learning representation
for Knowledge Graph components including entities and relations, the latent semantic
information is extracted into embedding representation. And the embedding techniques
are also utilized in collaborative learning for Knowledge Graph and external application
scenarios, the target is to use Knowledge Graph as a semantic enhancement to improve
the performance of external applications.

However, some problems still remain in Knowledge Graph completion, reasoning,
and external application. First, a proper model is required for Knowledge Graph self-
completion, and a proper integration solution is also required to add extra conceptual
taxonomy information into the process of Knowledge Graph completion. Then, a frame-
work to use sub-structure information of Knowledge Graph network into knowledge
reasoning is needed. After that, a collaborative learning framework for knowledge graph
completion and downstream machine learning tasks is needed to be designed. In this
thesis, we take recommender systems as an example of downstream machine learning
tasks.

To address the aforementioned research problems, a few approaches are proposed in
the works introduced in this thesis.

Knowledge Graph stores a large number of human knowledge facts in form of

* A bipartite graph embedding based Knowledge Graph completion approach for
Knowledge Graph self-completion, each knowledge fact is represented in the form
of bipartite graph structure for more reasonable triple inference.



* An embedding based cross completion approach for completing the factual Knowl-
edge Graph with additive conceptual taxonomy information, the components of
factual Knowledge Graph and conceptual taxonomy, entities, relations, types, are
jointly represented by embedding representation.

* Two sub-structure based Knowledge Graph transitive relation embedding ap-
proaches for knowledge reasoning analysis based on Knowledge Graph sub-structure,
the transitive structural information contained in Knowledge Graph network sub-
structure is learned into relation embedding.

¢ Two hierarchical collaborative embedding approaches for proper collaborative
learning on Knowledge Graph and Recommender System through linking Knowl-
edge Graph entities with Recommender items, then entities, relations, items, and
users are represented by embedding in collaborative space.

The main contributions of this thesis are proposing a few approaches which can
be used in multiple Knowledge Graph related domains, Knowledge Graph completion,
reasoning and application. Two approaches achieve more accurate Knowledge Graph
completion, other two approaches model knowledge reasoning based on network sub-
structure analysis, and the other approaches apply Knowledge Graph into a recommender
system application.
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