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by

Haimin Zhang

Abstract

Today, recognition of emotions in images and videos has attracted increasing research

attention. In terms of video emotion recognition, most existing approaches are based

on spatial features extracted from video frames. The performance of these approaches

is mainly restricted due to the broad affective gap between spatial image features and

high-level emotions. To bridge the affective gap, we propose to recognize emotions with

kernelized features. A polynomial kernel function is constructed based on rewritten the

equation of the discrete Fourier transform as the linear kernel. Moreover, we propose

to apply the sparse representation method to kernelized features to reduce the impact of

noise contained in video frames. This method can further help contribute to performance

improvement.

In the second work, we develop a weighted sum pooling method for video emotion

representation. We present an end-to-end deep network for simultaneously image emotion

classification and emotion intensity map prediction. The proposed network is build based

on the feature pyramid network. The class activation mapping technique is utilized to

generate pseudo intensity maps to train the network. The proposed network is first trained

on a large-scale image emotion dataset and then used to extracted features and intensity

maps for video frames. We empirically show that this approach is effective to improve

recognition performance.

Recent work has shown that using local region information helps to improve image

emotion recognition performance. In the third work, we develop an end-to-end deep neu-

ral network for image emotion recognition by utilizing emotion intensity. The proposed

network is composed of an intensity prediction stream and a classification stream. The



class activation mapping technique is used to generated pseudo intensity maps to guide

the intensity prediction network for emotion intensity learning. The predicted intensity

maps are integrated to the classification stream for final recognition. The two streams are

trained cooperatively with each other to improve the overall performance.

In the fourth work, we present a dual pattern learning network architecture with adver-

sarial adaptation (DPLAANet). Unlike conventional networks, the proposed architecture

has two input branches. The dual input structure allows the network to have a considerably

large number of image pairs for training. This can help address the overfitting issue due

to limited training data. Moreover, we introduce to use the adversarial training approach

to reduce the domain difference between training data and test data. The experimental

results show that the DPLAANets are effective for several benchmark datasets.

Thesis Supervisor: A/Prof. Min Xu

School of Electrical and Data Engineering
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