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ABSTRACT

Data acquisition has improved substantially over recent years, with devices ac-
quiring data at faster rates and increased resolution. The interpretation process,
however, has only recently begun to benefit from computer technology and still

struggling especially for high dimensional and noisy data. We are still short of tools to
convert all such data to useful information. Traditional support vector machines (SVMs)
require data to reshape each matrix into a vectors, which ultimately results in losing
the important structural information of the originally featured matrix. On the other-
hand, the classification of high dimensional domains poses significant challenges. In
contrast, modern classification approaches such as support matrix machine assume that
all entities within each input matrix can serve as the explanatory features for its label.
These methods are able to capture explanatory features by regularizing the regression
matrix to be low-rank. However, in real-world, the data is noisy and most of the features
may be redundant as well as may be useless, which in turn affect the classification
performance. Thus it is important to perform robust feature selection under robust
metric learning to filter out redundant features and ignore the noisy data points for
more interpretable modelling. To overcome this challenge, in this work, we have adapted
two different approaches. The first problem we address is the issue of dimensionality
reduction. In our first approach, we introduce two-dimensional outliers-robust principal
component analysis (ORPCA) by imposing the joint constraints on the objective function
(chapter 4). ORPCA relaxes the orthogonal constraints and penalizes the regression
coefficient, thus, it selects most important features and in the meantime, it ignores
the same features that have already been selected in other principal components. To
overcome the data redundancy, we further extend ORPCA and introduced additional
sparsity-inducing regularization that relaxes the orthogonal constraints resulting the
joint features selection (chapter 5). The introduced regularization terms penalizes all
regression coefficients corresponding to single feature as a whole to features jointly.
Hence, 2D-JSPCA approximates to high-dimensional data in flexible manner as it has
more freedom to learn low-dimensional space efficiently.

Since the nuclear norm is the best convex approximation of the matrix rank over the
unit ball of matrices, this makes it more tractable to solve the resulting optimization
problem. Inspired by this, in our second approach, we propose a new model to address the
classification problem of high dimensionality data by jointly optimizing the both regular-
izer terms (||.||2,1 and ||.||∗) and hinge loss. In our first approach (chapter 6), we combine
the hinge loss and regularization terms as spectral elastic net penalty. The regulariza-
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tion term which promotes the structural sparsity and shares similar sparsity patterns
across multiple predictors. It is a spectral extension of the conventional elastic net that
combines the property of low-rank and joint sparsity together, to deal with complex high
dimensional noisy data. Furthermore, it also leverages the structural information as
well as the intrinsic structure of data and avoids the inevitable upper bound. The opti-
mization problem for the RSMM is convex, non-smooth and non-differentiable, however,
the combination of hinge loss, `2,1-norm and nuclear norm makes the problem nontrivial
to be solved directly. To tackle this issue, we split the problem into sub-problems with
the Generalized Forward-Backward (GFB) splitting approach to solve the optimization
problem efficiently.

Support matrix machine is fragile to the presence of outliers: even few corrupted
data points can arbitrarily alter the quality of the approximation, What if a fraction
of columns are corrupted? Combining the recovery along with feature selection and
classification could significantly improve the performance. We assume that the data
consists of a low rank clean matrix plus a sparse noise matrix. We extended our work
and present support matrix machine (chapter 7) based on matrix recovery framework
under the incoherence and ambiguity conditions and able to recover intrinsic matrix of
higher rank and recover data with much denser corruption. We perform matrix recovery,
feature selection and classification through joint minimization of `2,1 and nuclear norm.
We assume that the data consists of a low rank clean matrix plus a sparse noise matrix
i.e. the data matrix can be decomposed as X = L+S. S is the column-sparse matrix that
corresponds to corrupted columns, thus at most αn columns are non zeros, L corresponds
to non corrupted matrix, thus rank(L) = r and (1−α)n columns of matrix L are non
zeros, corresponding to the outliers. Since the objective function is convex, non-smooth
and non-differentiable, however, the combination of hinge loss, `2,1-norm and nuclear
norm makes the problem nontrivial to be solved directly. To decouple the hinge loss and
nuclear norm with respect to W in SMMRe, we have introduced an auxiliary variable,
and applied Lagrange multiplier.

Although, above both methods takes full advantage of low rank assumption to exploit
the strong correlation between columns and rows of each matrix and able to extract useful
features, however, are originally built for binary classification problems. To improve
the robustness against data that is rich in outliers, we further extend this problem
and present a novel multiclass support matrix machine (chapter 8) by utilizing the
maximization of the inter-class margins (i.e. margins between pairs of classes). The
proposed model is a combination of binary hinge loss for models fitting, and elastic
net penalty as a regularization on regression matrix. The binary hinge loss uses C
matrices to simulate one-vs-one classifier of all classes rather than c(c−1)

2 models. The
optimization problem is convex but non-smooth and non-differentiable, thus, stochastic
gradient descent and the Nesterov methods cannot be applied (i.e. in convex optimization
setting, sub gradient of the nuclear norm function cannot be used in standard descent
approaches and as a result solving it directly is difficult). Thus, an alternative approach
is required to solve it, we devise an alternating direction method (GFB splitting) that
can handle an arbitrary non-differentiable with a proximal operator.

Several non-convex and bounded loss function has been presented to substitute the
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hinge loss function in order to suppress the affect of outliers and improve the robustness
of support vector machines. However, there is no work done for the improvement of one-
class tensor machines. Furthermore, computational complexity of traditional support
tensor machines is high and increases with the increase of training samples. Thus, it
limits the applicability of OCSTM for large dataset. We consider one class support tensor
machines and introduce a scalable algorithm for large dataset by replacing the traditional
hinge loss with bounded loss function resulting in reduction of classification error caused
by outliers (chapter 9). For larger dataset, we further used randomized features rather
than finding the optimized support tensors which results in not only improving the
robustness against outliers as well as significantly reduces the training time. To solve
the corresponding optimization problem, we have presented half quadratic optimization
to transform the objective function to same like traditional OCSTM, followed by solving
it like a typical OCSTM optimization problem.

We demonstrate the significance and advantage of our methods on different available
benchmark datasets such as person identification, face recognition and EEG classification.
Results showed that our methods achieved significantly better performance both in terms
of time and accuracy for solving the classification problem of highly correlated matrix
data as compared to state-of-the-art methods.
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INTRODUCTION

It is a capital mistake to theorize before one has data.
S. Holmes

Classification is one of the major fields in machine learning and pattern recognition

with the aim to identify which set of entities belong to which class based on the set of

seen observations. The classification is the process of constructing the decision boundary

between classes (also called targets/ labels or categories) based on a set of a-priori known

examples that helps to predict the class (Y ) of unknown input sample (X ) [82]. Some of

the examples of classification are diagnosis of a disease in a patient based on the patient

data (EEG signal, vital signs, gender, presence of certain symptoms, etc.), assigning a

given email to the either "spam" or "non-spam" class based on its features (count of each

word in the email, sender country, sender IP etc. ), identifying person based on gesture

or handwriting. There are two types of classification binomial (binary) and multiclass.

Email classification into spam or non-spam is a binary class problem since there are only

two target classes (spam or not spam). In this case, aim of the classifier is to segregate

the new emails into a spam or not-spam emails. The classifier uses some trained data

that consist of both not-spam and spam examples to learn how the given set of input

variables relates to a particular class. Once the classifier is trained on both examples, it

is able to classify unknown emails into spam and not spam emails.

Data analyst uses different types of machine learning methods to discover the hidden

patterns in the data that provide actionable insight into the data. These methods

1



CHAPTER 1. INTRODUCTION

are classified into two groups based on the way they learn to predict something, are

supervised learning and unsupervised learning. Support vector machines are one of

the simplest and commonly used supervised machine learning algorithms for both

classification or regression. It constructs a hyperplane or set of hyperplanes by implicitly

mapping the training data into high dimensional or infinite-dimensional space, that

can be used for data classification. Intuitively, we can achieve good separation by the

only hyperplane that has the largest distance to the nearest data point of any class,

since in general, larger the margin results lower generalization error of the classifier.

Support vector machines construct hyperplane by bisecting the two classes in a way that

maximizes the margins of separation.

With the advent of recent data acquisition devices, generally, data is diverse, noisy,

and high dimensional in real-world applications such as face recognition, hyperspectral

image classification, action recognition, and object categorization, whereas the underlying

structure in many cases is based on a small set of features, hence poses several challenges.

This complex nature of data poses a serious challenge especially with data of limited

size. The data has to be reshaped into vectors for classification [10, 87, 88] which could

ultimately destroy the structural information embedded in e.g. spatial relationship of a

neighboring pixel in an image, that is a very important factor for certain classification

tasks. Representation of such data in the form of a matrix can preserve its structural

information i.e. EEG signals which consist of voltage fluctuations at several electrodes

during a time period, has a strong correlation with respect to certain frequency band

and channels. Furthermore, reshaping of high dimensional data to vector results in an

increase in dimensionality [141].

Vector-based methods have been successively applied for the classification and shown

good results. State of the art vector-based methods are linear discriminant analysis

(LDA) [67, 104, 130], support vector machines (SVM) [18, 31, 131], K nearest neighbor

(KNN) [17, 41, 56, 57]. For these methods, the data has to be reshaped into vectors for

classification purpose which could in-turn destroy the structural information embedded

in. An alternative solution for this problem is to concatenate the matrix into a vectors for

classification. However, it results in an increase in dimensionality that leads to model

over-fitting. Recently, some efforts have been made to suppress the matrix into vectors

using common spatial patterns [2, 35, 39, 45, 107, 128]. Most of these methods ignore

the topological structure embedded in the matrix data, whereas considering structural

information is of great interest and helps to improve the classification. Moreover, one of

the major disadvantages of these methods is that each new feature in a low-dimensional

2



1.1. BACKGROUND

Figure 1.1: Real-world data in the form of matrix

subspace is the linear combination of all the original features in high-dimensional space.

Thus, usually, it affects the classification performance due to the redundant features.

Besides, it is often difficult to interpret new features.

The focus of this work is laid on solving the problem of high dimensional and noisy

data classification. In this thesis, we address both of these challenges (dimensionality

reduction and classification) for the analysis of high dimensional and corrupted data.

In the following sections, we first present an introduction to the field of knowledge,

basic problem with classification of high dimensional and noisy data followed by the

motivation and aim behind this work. Following on from this, specific research questions

aligned with the aims are presented to address the research and guide the investigation

through certain objectives. Finally, given a separate list of key contributions, a high-level

overview of each chapter is shown through a relational map as shown in figure 1.2,

which illustrates how the research progress has been carried out through linking the

contributions.

1.1 Background

Generally, the data is corrupt and high in dimension in the real-world. The complex

nature of such data poses some serious challenges for its dimensionality reduction and

3



CHAPTER 1. INTRODUCTION

classification, especially with data of limited size. Such persistent or non-probabilistic

data corruption may stem from failures of the sensor or malicious tampering. In addition

to the corruption, some of the available data may not conform to the presumed low-

dimensional model i.e. most of the columns are in low dimensional space, thus the

corresponding matrix is low rank and a small number of columns are the outliers that

correspond to column-sparse matrix [73]. Thus, usually, this type of data significantly

affects the classification performance due to the redundant features and extensive noise.

Feature selection, the process of selecting the subset of discriminant patterns, is

the key component for any machine learning problem, aiming to identify, to which

set of categories, a new unseen observation belongs on the basis of a training set of

data containing known observations. It plays an important role in many classification

applications, as it does not only help to improve the classification performance but also

speeds up the learning process, improves the generalization capability and alleviates the

effect of the curse of dimensionality [95]. Conventional dimensional reduction methods

such as PCA, LDA, etc. could be used for dimensionality reduction, however, they do not

solve the problems as the features have natural meanings and cannot be projected.

Recently, several efforts have been made to classify the matrix directly without

converting it into respective vectors, thus, exploiting the correlation between the columns

or rows of matrix. Rank-k SVM models the regression matrix as a sum of k rank-one

orthogonal matrix [119]. Pirsiavash et.al presented a bilinear classifier by applying

the hinge loss for model fitting through factorization of the regression matrix into a

low-rank matrix [65]. Zhang et. al. devised low-rank linearization to transform the

non-linear SVM to corresponding linear SVM, through kernel map computed from the

low-rank approximation of matrices [129]. One major disadvantage of these methods is

that each new feature in a low-dimensional subspace is the linear combination of all the

original features in high-dimensional space. Thus, usually, it affects the classification

performance due to the redundant features. Besides, it is often difficult to interpret new

features.

It is no surprise that most of the real-world data have such a high sparsity, i.e., only

a small number of features are important for spam detection. An ad-hoc approach to

deal with such problems is achieving the sparsity artificially by considering only those

loadings that are greater than the threshold. however, in general, it is an inefficient

approach. To tackle the challenge of robust feature selection, recently, the sparsity

regularization in dimensionality reduction has been widely investigated for feature

selection i.e. `1 [44, 102], `q [95], `2,0 [60], `2,1 [9]. Frobenius norm [37] has also been
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applied to introduce the sparsity property in a regression matrix. These approaches

work well and consider the correlation between columns and rows under the low-rank

assumptions and provide satisfactory performance [142]. However, these approaches

consider all the entities of the matrix as an explanatory factors, whereas in the real-

world, features might be redundant or useless for certain classification tasks and only a

small set of useful features could be used to classify the unseen data. For example, the

low-rank nature of gene or human facial images, obtaining relevant features by removing

irrelevant and redundant ones reduces the computational costs without significant loss

of information or negative degradation of the learning performance.

It turns out that the nuclear norm can also be used as a convex relaxation of this

optimization problem, which greatly simplifies the problem and allows further room

for interesting applications such as accelerated algorithms for matrix completion (com-

pressed sensing). Recently, classifier based on combination of hinge loss, nuclear norm

and Frobenius norm [1, 46, 142], `1 [140, 141] has been presented. Although these meth-

ods showed excellent performance by taking advantage of the correlation between rows

and columns of the regression matrix under the low-rank assumptions. But, they simply

consider entities in the matrix as explanatory factors and do not consider the intrinsic

group structure of data and are sensitive to outliers. Furthermore, they also tend to

select the features without considering all classes.

1.2 Motivation

As discussed above, the data is noisy and high in dimension. Existing approaches could

not deal well with nonlinear, high dimensional and noisy data efficiently. In result, it

is quite difficult to explain the resulting features i.e. projection procedure involves all

the original features and it may have redundant or irrelevant features. Furthermore,

the outliers and non-standard noises make it a challenging task. For classification

of high dimensional data, not only dimensional reduction but also important to find

salient features that belong to specific part of image as projection procedure involves

all the original features and it may have redundant or irrelevant features. To select

such salient patterns, the projection matrix should consist of a sparse element with

respect to such features. Thus, modeling sparsity into a support vector machine could

help to encode semantic information, as well. An alternative way to model sparsity is an

ad-hoc approach to deal achieve sparsity artificially by considering the loadings greater

than threshold only but it was inefficient. In this work, our concern is the classification
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problems on a set of the data matrix as structural information of the original features

is very important for certain data analytic tasks. Input data is high in dimensions and

noisy, hence, the complexity of the data motivated us to pay attention to regularizers

that have the ability to promote sparsity and robustness against outliers, so that they

can be used for selecting certain features. Moreover, our target is to endow the feature

space that does not penalize the features individually.

1.3 Aims

The aims of this work are to:

• As the real-world data is high in dimensional that has to be reshaped into vec-

tors for classification which could ultimately destroy the structural information

embedded in, which is a very important factor for certain classification tasks.

Representation of such data in the form of a matrix can preserve its structural

information. The main objective is to overcome challenges of high dimensional

sensitive data where structural information is important factor.

• Data in real-world is noisy. To overcome this limitation, we aim to develop an effi-

cient approach that simultaneously deals with outliers and selects useful features

across all data points resulting in improvement classification performance.

1.4 Objectives

To achieve the aim, the key objective of this work is to develop a robust support vector

machine for high dimensional and noisy data, that leverages the structural information

within matrices and able to select useful features by avoiding redundancy and ignoring

the outliers. To achieve our objectives, we adopted two approaches: (1) dimensionality

reduction followed by support matrix machine (briefly explained in part-I); (2) joint

dimensionality reduction and support matrix machine in one objective function (briefly

described in part-II and Part II).

1.5 Research Question

This research is structured to answer the following research questions:

6
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Q1: Reshaping the high dimensionality data into vectors ultimately destroys the

structural information embedded in it that results in affecting the classification ac-

curacy. How can this structural information be utilized to promote the classification

performance?

Q2: In the real-world, features might be redundant, noisy or useless for certain

classification tasks. Sparsity regularization could be used in dimensionality reduction.

How do sparsity regularization terms help to improve the classification for corrupted

and high dimensional data?

Q3: The outliers and non-standard noises make the classification task challenging.

What are the appropriate methods for addressing the robustness (both in terms of

accuracy and time) against outliers for efficient classification of corrupted and high

dimensional data?

Figure 1.2: Organisation of thesis, key contributions (publications) are marked with ?

1.6 Organization and Contributions

Compared to the state-of-art dimensionality reduction and feature selection methods, we

can describe the theoretical and empirical key contributions of this work as follows:
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1. We proposed an effective feature extraction approach by effectively combining the

robustness of 2DPCA and the sparsity-inducing lasso regularization that relaxes

the orthogonal constraint that has more freedom to jointly select low-dimensional

space features. Moreover, its joint sparse constraints to select features and learn

the optimal transformation matrix simultaneously. This approach is described in

chapter 4 and chapter 5.

2. We propose a novel classifier that works by effectively combining the hinge loss

function for model fitting, and the elastic net penalty for regularization on the

regression matrix. We achieve the goal stated above, by employing the regularizer

term which promotes structural sparsity . The regularization term helps to avoid

the inevitable upper bound for the number of selected features occurring in `2,1-

norm SVM. The linear combination of the nuclear norm, `2,1 inherits the property

of low-rank and sparsity together which not only helps to deal with outliers but also

selects features across all data points with joint sparsity (Q1 and Q2). Since the

optimization is convex and one of the major challenges is, how to efficiently solve

non-smooth optimization, we devised an efficient algorithm to solve the proposed

objective function based on the Generalized Forward-Backward (GFB) splitting

framework. The approach is described in chapter 6.

3. We propose a novel classifier effectively combining the hinge loss function for model

fitting, low-rank matrix recovery and the elastic net penalty for regularization on

the regression matrix. We performed a simultaneous matrix recovery and classifica-

tion, which first performs matrix recovery followed by clean feature extraction and

classification. SMMRe is able to classify data with denser corruptions ( L ≤ Crn
log(n)

and S ≤ Csn, Cs and Cr are numerical constant ) through exact recovery of intrin-

sic matrix of higher rank based on the incoherence conditions. Since the convex

optimization cannot perform an exact recovery of the corrupted matrix, thus, we

used an Oracle Problem for matrix recovery. As a result, convex optimization-based

SSMRe performs correct matrix recovery as well as the identification of outliers,

which improves the classification performance (Q1 and Q2). We achieve the goal

stated above, by employing the regularizer term (a combination of low rank and

`2,1)) which promotes structural sparsity and matrix recovery as well as selects

features across all data points with joint sparsity. The low-rank matrix recovery

helps to recover the unobserved entities as well as to avoid the inevitable upper

bound for the number of selected features occurring in `2,1-norm SVM. Since the

8
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optimization is convex but non-smooth and one of the major challenges is, how

to efficiently solve non-smooth optimization, we devised an efficient algorithm to

solve the proposed objective function. The approach is described in chapter 7 in

detail.

4. We present a novel classifier M-SMM which works by effectively combining the

binary hinge loss function (to maximize the inter-class hyperplane margin for

model fitting) and elastic net penalty (to promote low-rank plus sparsity), as a

regularization on regression matrix. Unlike one vs one classification strategy, we

have used C matrices to simulate the binary classification that not only helps to

overcome the complexity issue but also maximizes the inter-class margin. Since the

optimization is convex and one of the major challenges is how to efficiently solve

non-smooth optimization problem?. Thus, in this chapter, we devised an efficient

algorithm for solving the proposed objective functions (Q2 and Q3).

5. We present novel support tensor machines with bounded hinge loss which is

monotonic, bounded and nonconvex, thus robust to outliers by limiting the loss

due to outliers. We use a randomized non-linear set of features rather than finding

the support vectors, thus, eliminates the need to deal with large kernel matrices

for large datasets resulting in a reduction in time and space complexity. To solve

the non-convex objective function, we devised an iterative approach using the half

quadratic optimization (Q2 and Q3).

1.7 Thesis Organization

We have divided the thesis into four sections. In the earlier section, we present an

introduction (chapter 1), background (chapter 2) and related work (chapter 3) of the

study. In part I, we present the dimensionality reduction methods. It consists of chapter

4 and chapter 5. In the second part, we worked on the optimization of regularizer terms

to improve the robustness of traditional support vector machines. We first present robust

support matrix machines, support matrix machines based on matrix recovery framework

followed by multiclass support matrix machines in chapter 6, chapter 7 and chapter 8

respectively. Finally in the third part, we focused on the optimization of hinge loss term

for the classification of noisy tonsorial data. In chapter 9, we present support tensor

machines with bounded hinge loss function. This thesis is organized as follows:

9
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• Chapter 2: This chapter presents the notation and preliminaries used throughout

this thesis. We further briefly describe the basic concept of principal component

analysis and support vector machines.

• Chapter 3: This chapter presents a survey of recent efforts to reduce to effect

of outliers and improves the effectiveness of dimensionality and support matrix

machines. This chapter is divided into two subsections. In the first section, we

highlighted the recent contribution and problem definition for dimensionality

reduction based on the principal component analysis. in the second section, we

describe the related work on optimization of support vector machine, support

matrix machine and support tensor machine.

Part-I:- In this section, we mainly targeted dimensionality reduction methods (vari-
ants of PCA) analysis by relaxing the orthogonal constraints of the transformation
matrix and imposing a penalty function on regularization term. Proposed method
have the freedom to jointly select the important features and rejecting the redun-
dant or irrelevant features, thus, only few features could represent the whole data
efficiently, which in results will help to improve the robustness of PCA against
outliers.

• Chapter 4: Since the principal component analysis and its variants are sensitive to

corrupted variables or observations that affect its performance and applicability in

the real-world. This chapter presents a dimensionality reduction method for matrix

data by introducing lasso regularization that relaxes the orthogonal constraint and

has more freedom to jointly select low-dimensional space features. ORPCA relaxes

the orthogonal constraints and penalizes the regression coefficient, thus, it selects

important features and ignores the same features that exist in other principal

components. Experimental results on four publicly available benchmark datasets

show the effectiveness of joint feature selection and provide better performance as

compared to state of the art dimensionality reduction methods ORPCA address the

the research question 1 and 2.

• Chapter 5: Data redundancy makes it a good candidate for sparse representation.

Most of the existing dimensionality reduction methods try to preserve a certain

kind of linear representation after projection. However, these methods either fail

to select useful features or are not that efficient in the presence of outliers. This

chapter introduces a novel approach called two-dimensional joint sparse principal

10
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component analysis by effectively combining the robustness of 2DPCA and sparsity-

inducing regularization. The proposed approach relaxes the orthogonal constraints

resulting in the joint features selection, besides avoiding the selection of the same

features in different principal components. In addition to providing sparse solution,

the regularization term in the proposed objective function improves the robustness

against outliers. This chapter address the the research question 1 and 2.

Part-II:- In this section, we focused on regularization terms to improve the robust-
ness of support matrix machines against outliers by utilizing the low rank property
of data as discriminant features exist in sparse structure and images are low rank.
The objective functions are the spectral extension of the conventional elastic net that
combines the property of matrix recovery along with low-rank and joint sparsity
together, to deal with complex high dimensional noisy data.

• Chapter 6: In many real-world classification problems of supervised tensor learning,

high-dimensional data is represented as a matrix, also referred to as second-order

tensors. Traditional support vector machines (SVMs) require data to reshape

each matrix into vectors, thus, resulting in loss of structural information of the

originally featured matrix. This chapter describes the proposed sparse support

tensor machines by combining the elastic net and nuclear norm along with hinge

loss function which helps to deal with outliers and selects useful features across

all data points. The regularization term which promotes the structural sparsity

and shares similar sparsity patterns across multiple predictors that is able to

select useful features jointly, which is a combination of `2,1 and nuclear norms. It

is a spectral extension of the conventional elastic net that combines the property

of low-rank and joint sparsity together, to deal with complex high dimensional

noisy data. Furthermore, it also leverages the structural information as well as

the intrinsic structure of data and avoids the inevitable upper bound. This chapter

address the the research question 1 and 2.

• Chapter 7: In this chapter, we consider the problem of high dimensional data

classification, when a number of the columns are arbitrarily corrupt. We proposed

an efficient Support Matrix Machine by simultaneously performing matrix recovery,

feature selection, and classification through joint minimization of `2,1 and nuclear

norm. We assume that the data consists of a low-rank clean matrix plus a sparse

noise matrix. We provide convex optimization formulation of the proposed objective

function and the sufficient conditions under which it classifies corrupted data

11
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efficiently through low-rank feature recovery process. The proposed approach

works under the incoherence and ambiguity conditions and able to recover the

intrinsic matrix of higher rank and recover data with much denser corruption. This

chapter address the the research question 1,2 and 3.

• Chapter 8: This chapter extends the proposed approach to a multiclass classification

problem by using C simulated metrics to simulate the binary classification that

not only helps to overcome the complexity issue but also maximizes the inter-class

margin. In this chapter, we present multiclass support matrix machine from the

perspective of maximizing the inter-class margins. The objective function is a

combination of binary hinge loss that works on C4 matrices and spectral elastic

net penalty as a regularization term. This regularization term is a combination

of Frobenius and nuclear norm, which promotes structural sparsity and shares

similar sparsity patterns across multiple predictors. It also maximizes the inter-

class margins that help deal with complex high dimensional noisy data. This

chapter address the the research question 2 and 3.

Part-III:- In this section, we consider the problem of one class classification and
replaced the traditional hinge loss term with bounded hinge loss on tensor data.

• Chapter 9: In this chapter, we consider of classification of tensor data and present

a novel anomaly detection approach for large scale tensor data. We first present

novel one-class support tensor machines with bounded loss function rather than

finding optimized support vectors with an unbounded loss function. This results in

improving the classification performance by limiting the loss caused by outliers.

We further extend our approach by leveraging the randomness to design a scalable

approach that can also be used for large scale anomaly detection. To solve the

corresponding optimization problem, we have presented half quadratic optimization

and transform the problem into typical OCSTM optimization problem. This chapter

address the the research question 2 and 3.

• Chapter 10: In final chapter, we summarize and conclude the key contributions of

this work.

12



C
H

A
P

T
E

R

2
BACKGROUND KNOWLEDGE

If you torture the data long enough, it will confess.
R. Coase

In this chapter, we first start by establishing the notation and preliminaries used

throughout this thesis followed by further discussion on basic concept of principal

component analysis and support vector machines.

2.1 Notations

Table 2.1 list the basic symbols used through out this thesis.

Definition 1. Scalar: A scalar x , generally speaking, is a quantity that can be

described by a real number, often accompanied by units of measurement. It is physical

quantity having only magnitude, not direction. For example 6, -6, 0.381, etc.

Definition 2. Vector: A vector x of dimension n is an ordered collection of n elements,

which are called components. Unlike scalar, the vector is a quantity consisting of both

direction and magnitude. For example: x = [4 6 9] is a vector of dimension 3.

Definition 3. Matrix: A matrix X ∈Rp×q is an array of numbers with one or more

rows and one or more columns. For example X =
[
4 8

2 6

]
is matrix of dimension 2×2.

Definition 4. Tensor: Just as vectors (are n-dimensional represented by one-dimensional

array), a tensors X ∈RI1,×.....,×IM are a multidimensional array of real numbers that is

13



CHAPTER 2. BACKGROUND KNOWLEDGE

Table 2.1: Notations and their description

Symbols Description
x Lowercase letter represents a scalar
x Boldface lowercase letter represents a vector
X Boldface uppercase letter represents a matrix
X Calligraphic letter represents a tensor
Ip p× p Identity matrix.
R Rank of tensor
yi yi ∈ 1,−1 are the corresponding class labels
[1 : M] Set of integers in the range of 1 to M inclusively
vec(·) Denotes column stacking operation
〈·, ·〉 Denotes inner product
⊗ Denotes tensor product
δ Denotes delta function
E Erro rate
C

∑
ξ Hinge loss

W ∈Rpq Vector of regression coefficients
b ∈Rpq an offset term
L Lagrangian multiplier
K (·, ·) Denotes kernel function
||.||2,1 `2,1 −norm
||.||1 `1 −norm
||.||F Frobenius norm
||.||2 `2 −norm
||.||∗, nuclear−norm
prox||X ||∗ Proximal operator for nuclear nor
prox||X ||2,1 Proximal operator for `2,1 −norm

higher-order generalization of vectors (first-order tensors) and matrices (second-order

tensors). Tensor is a geometric object that maps in a multilinear manner geometric

vectors, scalars, and other tensors to a resulting tensor. Let X = [x1, ..., xN] be the M×N
tensor containing n training samples such that X ∈ RI1×...×IM (means X is real Mth

order tensor and numbers I1, ..., IM are called the dimensions of the tensor). Their ele-

ments are denoted by indices ranging from 1 to capital letter N i.e. An element of tensor

is denoted by xi1,...,n where 1≤ n≤ N and 1≤ in ≤ In.

Definition 5. Tensor Product: The product of tensors also know as outer product

of two tensor X ∈RI1×...×IP and Z ∈RI
′
1×...×I

′
M can be represented as

(2.1) (X ⊗Z )i1,...,iP ,i′1,...,i′M
= xi1,...,iP zi′1,...,i′M

14
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for all values of the indices.

Definition 6: Inner Produce of Tensor The inner produce also know as scalar

product of two tensors of same size (X ,Z ∈RI1×...×IM ) is defined as the sum of products

of their entries

(2.2) 〈X ,Z 〉 =
I1∑

i1=1
· · ·

IM∑
iM=1

xi1,...,M zi1,...,M

Definition 7: Rank One Tensor A Mth order tensor X has rank one if it is the

tensor product of N vectors ui ∈RI i, where 1≤ i ≤ M

(2.3) X =ui ⊗·· ·⊗uM =
N∏

n=1
⊗un

The rank R of Mth order tensor X is determined by the minimum number of rank

one tensors that produces X in a linear combination. Storing the component vectors a

u1, ...,uM instead of the whole tensor U significantly reduces the required number of

storage elements, however, rank-1 tensor is rare in real-world applications.

Definition 8: Tensor Factorization A tensor decomposition represent a d-way

tensor X as a d third order tensor. It can be factorized if it can be decomposed as a

rank-one tensor of length R.

(2.4) X =
R∑

r=1
x1

r ⊗·· ·⊗ xM
r

Definition 9: Frobenius Norm/ `2-norm The Frobenius norm also called the Eu-

clidean norm is a matrix norm of an p×q matrix X and can be defined as the square

root of the sum of the absolute squares of its elements. For example for vector x= [3 4],
||x||2 =

√
|3|2+|4|2 =p

9+16 =p
25 = 5

(2.5) ||X ||F =
√√√√ p∑

i=1

q∑
j=1

X i, j
2

15
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It is also equal to the square root of the matrix trace of X X H , where X H is the conjugate

transpose.

(2.6) ||X ||F =
√

Tr(X X H)

The Frobenius norm of a tensor X ∈Rn1×···×nd is defined as

(2.7) ||X ||F =
√
〈X ,X 〉

Definition 10: `1 Norm It is also known as Taxicab norm or Manhattan Distance

. `1-norm is the sum of the magnitudes of the vectors in a space. `1-norm is the most

natural way to measure the distance between vectors and can be defined by the sum of

absolute difference of the components of the vectors. For example: for vector x= [3 4],
||x||1 = |3|+ |4| = 7

(2.8) ||X ||1 =
n∑

i=0
|xi|

Definition 11: `2,1 Norm For a matrix X ∈Rp×q, `2,1, norm of matrix is denoted as

(2.9) ||X ||2,1 =
n∑

i=0
||xi||2 =

n∑
i=0

√√√√ m∑
j=0

||x2
i, j||

It is rotational invariant for rows for any rotational matrix R i.e. ||XR ||2,1 = ||X ||2,1.

It can be used for tensor factorization and multitask learning. The `2,1 norm can be

generalized to r, p-norm. Generally methods based on `2,1 are robust than that of based

on `1 norm due to its special definition

Definition 12: Randomized Nonlinear Projection Suppose φ is the feature map

X −→H such that the dot product in H can be computed using some kernel function as

K (x, x′)=<φ(X ),φ(X ′)> i.e. X is mapped from input space RM to feature space RH

via nonlinear function φ(X )=RM −→RH .

Definition 13: Sparse Matrix It is a matrix that consist of only few non-zero

elements. In case of 2-dimensional array,as there are only few non zero entries, thus

most of the space is a wasted i.e. consider matrix of size 50 x 50 with only 6 observed

non-zero elements.

Definition 14: Hinge Loss. It is a loss function used for training classifiers. The

hinge loss is used for "maximum-margin" classification, most notably for support vector

machines.
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2.2 Proximal Algorithm

A proximal algorithm is very useful in machine learning.It is an algorithm for solving

a convex but non-smooth optimization problem that uses the proximal operators of the

objective terms. Here, we first introduce the proximal operators, which serve as an

important components in proximal algorithms.

Definition:Proximal Operator Consider

f : Rm×n[−∞,+∞]

be a lower semi continuous convex function. The proximal operator

prox f : Rm×n →Rm×n

of f at point Z is defined by

prox f (Z)= argmin
W

(f (W)+ 1
2
||W −Z||2F)

2.2.1 Proximal Operator Nuclear Norm

Specifically, if f = τ||W ||∗, the proximal operator for the trace norm can be derived as

follows:

prox||X ||∗ =Dτ(Z)

(2.10) prox ||X ||∗ =USτ(Z)V T

2.2.2 Proximal Operatior `p,qnorm

For a matrix X ∈Rm×n, its `p,q norm is

||X ||p,q =
(∑

1
n

( m∑
1
|xi, j|p

) q
p
) 1

q

As our objective function is based on `2,1, the in the following formalization, we

consider `2,1 if f =γ||X ||2,1, the proximal operator for the `2,1 norm is given as

proxγ||.||2,1 = arg min
X∈Rm×n

(
||Y ||2,1+ 1

2
||Y − X ||2F

)
17
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= proxγ||.||2(X1), proxγ||||2(X2)...., proxγ||||2(Xn)

Here each proxγ||.||2 for i = 1,2.... is given as

proxγ||.||2 =


||x||2−γ

||X ||2 x, i f ||x||2 >γ

0 otherwise,
(2.11)

2.3 PCA

Principal Component Analysis is a commonly applied dimensionality reduction method

that uses orthogonal transformation to reduce a large set of variables to a small set

of variables without losing much information. In other words, it reduces data by geo-

metrically projecting it to much lower-dimensional space with the aim to find the best

representation of the original data point using a small number of principal components.

PCA converts the set of observations of possibly correlated variables into linearly

uncorrelated variables called principal components. Assume that X1, X2..., XN are a set

of training matrix (mean centered) with size m×n, where N is the number of training

matrix in the dataset. V = [v1,v2, ...vd] ∈Rn×d is the projection matrix, where v1 is the

first basis vector of 2DPCA that maximizes the `1-norm-based dispersion of projected

samples.

V∗ = argminV TV=Id

N∑
i=1

||X i − X iVV T ||2F

Where ‖·‖F denotes the Frobenius norm of matrix and is the sum of square of `2-norm

of row/column vectors of matrix. Above objective function is equivalent to the following

objective function based on the fact
∑N

n=1 ||X i −X iVV T ||2F +∑N
n=1 ||X iV ||2F =∑N

n=1 ||X i||2F

V∗ = argmaxV TV=Id

N∑
n=1

||X iV ||2F

Where tr(·) is the trace function of matrix. As V∗ = argmaxV TV=Id

∑N
n=1 ||X iV ||2F =

tr(
∑N

n=1 V T AT
i X iV), we let St =∑N

n=1 XT
i X i denotes the co-variance matrix. By finding

the orthogonal eigenvector of St corresponding to the first d largest eigenvalues. 2DPCA

is sensitive to noise and outliers, thus optimal projection matrix of objective function

mentioned above is not roubut in the sense that outlying measurement can skew the
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Figure 2.1: (a) Original dataset (b)PC1 vs PC2 (c) Original data along a pair of lines (d)
PC2 plotting shows small loss since it it contributes the least to the variation in the data
set. We can notice more variation in PC1 as compared to PC2

solution. To overcome this issue, 2DPCA-L1 was proposed which finds the basis vectors

that maximizes the dispersion of the projected image in terms of `1 norm.

(2.12) V∗ = argmaxV TV=Id

N∑
n=1

||X iV ||`1

subject to ‖V‖`2 = 1

where ‖ ·‖`1 denotes the `1 norm. Results showed that 2DPCA based on `1−norm
is robust to outliers than 2DPCA.

Although PCA and its variants are able to minimize the effect of outliers to some

extent, however one of the major disadvantage of these methods is the redundancy

of features. Moreover, these methods are not able to extract useful features, however,

the selection of unique and useful features is quite important especially in a case,

when features have the physical meaning in many high dimensional data analysis
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Figure 2.2: 3D Visualization of PCA. We can notice more variatin in PC1 as compared to PC2 and PC3
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applications. Considering the only loadings that are greater than threshold could help to

achieve sparsity somehow, however, it is an inefficient approach. It could be obtained by

imposing the `0 coefficient on the regression coefficient which penalizes the number of

non-zero coefficient whereas the loss term helps to minimize the reconstruction error

simultaneously.

(2.13) argmin
A,B

= argmin
A,B

‖X − ATBX‖2
F +λ1‖β j‖0

subject to AT A = Ik

The above objective function is able to determine informative features individually,

however, it does not consider the structural relationship among mulitple features. SCoT-

LASS successfully derives sparse loadings using the lasso constraint in PCA, yet it is

computationally inefficient, and lacks a good rule to pick tuning parameter [32].

Structured-sparsity regularization is popular for sparse learning because of its flex-

ibility of encoding the feature structures. To derive principal components with sparse

loadings, several methods have been proposed to achieve the sparseness goal. Sparse

PCA produces modified principal components with sparse loadings that are obtained by

imposing the lasso constraint on the regression coefficients [145].

(2.14) argmin
A,B

= argmin
A,B

n∑
i=1

‖xi − ABT xi‖2+

λ1
k∑

j=1
‖β j‖2+

k∑
j=1

λ2, j||β j||1

However, SPCA does not jointly select the useful features as ‚Ñì1-norm is imposed on

each transformation vector which is not able to select consistent features. In addition,

another regularization `2-norm is imposed on loss term, which makes it sensitive to

outliers. Yi et al. presented joint sparse principal component analysis (JSPCA) that

select useful features jointly which helps to enhance the robustness of objective function

against outliers [127] by imposing the joint sparse constraints (`2,1-norm is imposed on

both loss term and the regularization term) to improve the robustness of algorithms.

(2.15) argmin
B,A

J(B, A)= argmin
A,A

‖X − ABT X‖2,1+λ‖B‖2,1

Khan et al. presented joint group sparse PCA (JGSPCA) that ensure the group

sparsity and forces the basic coefficient corresponding to a group of features to be jointly

21



CHAPTER 2. BACKGROUND KNOWLEDGE

sparse [36]. The group sparsity ensures that the structural integrity of the features.

JGSPCA is able to select important features jointly and ensure the group sparsity,

however, it is sensitive to outliers due to sensitivity of F-norm against outliers.

(2.16) argmin
A,B

= argmin
A,B

‖X −
g∑

i=1
XGATBG‖2

F + λ
g∑

i=1
ηi‖BG‖F

2.4 Support Vector Machines

Support Vector Machine is a discriminative classifier introduced in the 1990s. Since then

it has been successfully applied for classification and regression to many engineering-

related applications. It is formally defined by a separating hyperplane in boundless

dimensional space by implicitly mapping the training data into high dimensional or

infinite-dimensional space. There exist many possible candidate hyperplanes that could

be chosen to successfully separate the data. Intuitively speaking, our target is to achieve

good separation by the only hyperplane that has the largest distance to the nearest data

point of any class, since in general, larger the margin results in lower generalization

error of the classifier. A simple example is a yellow line that marks the center road for

two-way traffic. Maximizing the hyperplane margin provides partial reinforcement that

helps to classify the future with confidence.

Suppose, we have given a set of training samples T = {X , yi}n
i=1, where X i ∈Rp×q is

the the ith input sample matrix and yi ∈ {1,−1} is its corresponding class label. Generally,

the data needs to be transformed into corresponding vector. In order to fit a classifier,

matrix X is needed to be stacked into vector.

Let xi = vec(XT
i )= ([X i]11, [X i]12, ...[X i]1q, [X i]2,1, [i]22, ...[X i]pq)T ∈Rpq.

The classical soft margin SVM is defined as

(2.17) argmin
1
2

tr(wTw)+C
∑

1− yi[tr(2T xi)+b]+

Where 1− yi[tr(WT X i)+b]+ is the hinge loss, W ∈ Rpq is the vector of regression

coefficients, b ∈Rpq is an offset term and C is a regularization parameter.

2.4.1 Support Matrix Machine

In equation 2.17, we need to reshape the matrix into vectors which result in losing the

correlation among columns or rows in the matrix. By directly transforming the equation

2.17 for matrix, we get
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Figure 2.3: (top) Linearly separable data and (bottom) non linearly separable data

(2.18) argmin
1
2

tr(WTW)+C
∑

1− yi[tr(WT X i)+b]+

It is known that tr(WWT) = vec(W)vec(WT) and tr(WT X i) = vec(W)Tvec(X i),
thus the above objective function cannot capture the intrinsic structure of each input

matrix efficiently, due to the loss of structural information during the reshaping process.

To take the advantage of intrinsic structural information within each matrix, one intu-

itive way is to capture the correlation within each matrix through low-rank constraints

on the regression parameter.

2.4.2 One-Class Support Vector Machines

One class support vector machines aims to identify suitable region that includes most

of the input samples from unknown probability distribution and correctly classify the

samples that resembles with training data. OCSVM can be used to identify outliers by

finding hypersphear with minimal radius. Consider X = {xi : i = 1, ..., N} are the training

23



CHAPTER 2. BACKGROUND KNOWLEDGE

samples with yi corresponding labels such that yi ∈ {1,0}. Traditional one class support

matrix can be formulated as the following quadratic optimization

(2.19) min
w,ζ

1
2
||w||22−

1
vN

N∑
i=1

ζi − p

subject to 〈w.φ(xi)〉 ≥ p−ζi

ζi ≥ 0 ∀i = 1,2, ..., N

where ζ are the slack variables for penalizing the outliers by segmenting them (some

of the data vectors that are outliers) to lie on the other side of the hyperplane. v ∈ (0,1]
is the regularization parameter which controls the fraction of anomalies and support

vectors thus, enables the analyzing of noisy data points. Since non-zero slack variables

are penalized in the objective function, the decision hyperplane that maximizes the

distance data points from the hyperplane is given by the equation

(2.20) 〈w,φ(xi)− p〉 = 0

Here, the weight vector w defines the hyperplane in the feature space separating the

projections of data from the hyperplane to the origin. A positive definite kernel function k

is defined as k(x, x′)≤ 〈φ(x),φ(x′)〉, that implicitly maps data x into a high dimensional

feature space. By introducing the Lagrange multiplier and setting weight vector w, slack

variable ζ and offset to zero, the quadratic program can be derived as the dual of the

primal program in Eq.2.23

(2.21) min
α

1
2

∑
i, j

αiα jk(xi, x j)

s.t. 0≤α− i ≤ 1
Mv

,
∑
i
αi = 1

where αi are the Lagrange multiplier. Finally, the decision function for input data space

X can be defined as

(2.22) f (x)= sgn(w.φ(x)− p)

(2.23) f (x)= sgn
(1
2

M∑
i
αik(xi, x j)− p

)

24



2.4. SUPPORT VECTOR MACHINES

Figure 2.4: Simulation of one class support vector machine on linearly separable data
point

2.4.3 Multiclass Support Vector Machine

Support vector machine is inherently two-class classifier. The traditional approach to

deal with multiclass classification problem with support vector machines is to break the

multiclass problem into series of binary class classification problem such as one-vs-rest

(OvR) or one-vs-one (OvO) strategies (e.g. In OvsR, the mutli-class problem is solved by

splitting it into n binary class classification problems, whereas OvsO approach splits the

problem into c(c−1)
2 binary classification problems. ) but are computationally expensive

and may results in unbalanced distribution of input samples.

(2.24) arg min
w j ,b j

1
2

tr(wT
j w j)+C

n∑
i=1

ξ
j
i

such that

wT
j xi +b ≥ 1−ξ

j
i , i f yi = j

wT
j xi +b ≤−1+ξ

j
i , i f yi 6= j

ξ
j
i ≥ 0

Where ξ
j
i = 1− yi[tr(WT X i)+b]+ is the hinge loss, W ∈Rpq is the vector of regres-

sion coefficients, b ∈ Rpq is an offset term and C is a regularization parameter. This

problem is considered unbalanced even though the number of training samples in class
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are balanced due to one-vs-all strategy. This property affects the classification perfor-

mance, and was resolved through one-vs-one classification strategy. To classify unseen

data, voting strategy is used and the class with maximum votes is considered as output.

In result, it is required to build c(c−1)
2 number of classification models in total and can be

defined as follow

(2.25) arg min
w jk,b jk

1
2

tr(wT
jkw jk)+C

n∑
i=1

ξ
jk
i

such that

wT
jkxi +b jk ≥ 1−ξ

jk
i , i f yi = j wT

jkxi +b jk ≤−1+ξ
jk
i , i f yi 6= k

ξ
jk
i ≥ 0

Later on, Guermeur formulated a theoretical SVM framework for multiclass classifi-

cation [25] which can be written as

(2.26) arg min
wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||w j −wk||22+
c∑

j=1
||w||22+

C
n∑

i=1

∑
j 6=yi

ξ
jk
i

such that

wT
yi

xi +byi ≥ wT
j xi +b j+1−ξi j

ξi j ≥ 0, ∀i ∈ 1, ...ci

2.4.4 One-Class Support Tensor Machines

Consider input samples in the dataset D = {Xi, yi}N
i=1 are the Mth-order tensors Xi ∈

RI1×···×IM with yi ∈ {1,0} corresponding class labels for i = 1,2, ..., N. One-class sup-

port tensor machines with traditional loss function can be formulated as the following

quadratic optimization

(2.27) min
W ,p,ζ

1
2
||W ||2F + 1

Nv

N∑
i=1

ζi − p

s.t.
(〈W ,φ(Xi〉+b

)≥ p−ζi,

ζi ≥ 0,∀i = 1, ..., N
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Figure 2.5: Simulation of multiclass support vector machine

where W tensor is a weight of the separating hyper-plane, v ∈ (0,1] is the regularizer

that controls the fraction of anomalies and fraction of support vectors. Let φ is the

mapping function that maps the dataset into Hilbert space H and can be formulated as

φ : X −→φ(X ) ∈RH1×H2×....×HM′ . ζi are the slack variables that allow some of the data

point on the other side of hyperplane. By applying the Lagrange multiplier and solving

Eq 2.27, we arrive at following quadratic problem

(2.28) min
α1,...,αN

1
2

∑
i, j

αiα jK (Xi,X j)

s.t. 0≤α− i ≤ 1
Nv

,
∑
i
αi = 1

The decision function for tensor can be written as

(2.29) f (X )= sgn
(1
2

N∑
i
αiK (Xi,X j)− p

)
The solution Eq.2.29 is characterized by the parameter v that sets lower bound on the

number of training examples used as support vectors and upper bound on the fraction of

anomalies. Using the Karush-Kuhn-Tucker optimality condition, the input tensor data

can be classified based on the its projection below, above or on the hyper-plane boundary

in the feature space based on the support tensors.
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3
RELATED WORK

The price of light is less than the cost of darkness.
A. C. Nielsen

In this chapter, we provide the brief description of the recent development for di-

mensionality reduction and classification problem of high dimensional data. We have

divided the below discussion into two subsections. In first section, we describe the recent

development for dimensionality reduction for matrix data followed by discussion on the

problem of classification for high dimensional data in the second seciton.

3.1 Dimensionality Reduction

The big data era exacerbates the curse of dimensionality from the computational perspec-

tive. Even when data dimensions are moderately high, many existing algorithms find it

difficult to handle such computational complexity. Furthermore, the underlying structure

in many cases is based on a small set of features, hence poses several challenges. Thus,

there is a need to develop fast and reliable algorithms without compromising the accu-

racy. In order to handle such real-world data adequately, dimensionality reduction plays

important roles with the aim to transform the high-dimensional data into meaningful

representation of the low-dimensional data by preserving the quality of the data, so

that it could be classified efficiently. An intuitive example of dimensionality reduction

can be discussed through a spam e-mail detection. Only few of features are involved in
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classification (i.e. title, structure and contents of the email etc.) while most of the features

are either irrelevant or overlapping. Hence, we can reduce the number of features in

such problems [83].

Ideally, the low dimensional representation has exhibited a dimensionality that corre-

sponds to intrinsic dimensionality of data, which is the minimum number of parameters

required to account for the observed properties of data. The other challenges with modern

data analytics are the presence of outliers and missing values. One might argue that

this is not not major issues as modern challenge as it was the case before. However,

high dimensionality, outliers and missing value problems, evolve with the modern data

formats and pose serious challenges that affect the accuracy significantly.

In past ten years, dimensionality reduction has seen much activity contribution,

primarily due the current high dimensional data. For example, DNA micro-array data,

measures the expression level of thousands of genes in single experiment. An alternative

solution is to use the deep learning methods, however, it is not necessary that we could

get access to large amount of annotated data i.e gene data usually is high dimensional

but consists of small number of samples [84]. Thus, dimensionality reduction tools are

used to extract low dimensional manifold and are common solution to deal with such

data. The low representation of the data describes the structure of original data.

In order to deal with the challenge of high dimensionality, several vector-based

methods are in use especially during the last two decades, such as PCA [108], LDA[5],

LPP [28], SPP [68] and NPE [28] etc. Among these, PCA is one of the most extensively

used statistical modeling approach, associated with multivariate analysis since its

introduction by Pearson [62] and Hotelling [30]. PCA projects the high-dimensional

input data into linear orthogonal space. The main objective of which is to, sequentially

extract uncorrelated orthogonal features, eventually maximizing data variability thus

guaranteeing minimal information loss. However, one of the major drawbacks is that

PCA is linear combination of all variables and loadings are typically non-zero. Each

sensed feature may have additional cost of acquisition, processing, and storage [36].

Moreover, not all extracted features are important for potential application. This makes

PCA data interpretation difficult, and it is still sensitive to outliers (as its co-variance

matrix is derived from `2-norm that affects its performance). Furthermore, reshaping

the data into vectors could ultimately destroy the structural information embedded in,

which is a very important factor for certain classification tasks. For example, EEG signals

which consists of voltage fluctuations at several electrodes during a time period, has a

strong correlation with certain frequency band and channels [73]. Thus, it fails to deal
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with outliers which often appears in real-world data. Moreover, before applying PCA and

LDA, there is a need to convert the image into one-dimensional vector, consequently, it

may not exploit the spatial structural information very well which is very important

for image representation. To overcome these issues, several variants of PCA have been

proposed to improve the effectiveness of dimensionality reduction and robustness against

outliers [59].

Due to limitation of traditional PCA for high dimensional data, tensor based subspace

learning methods have been widely applied for dimensionality reduction. Results showed

that methods directly based on tensors are far more efficient than one-dimensional

PCA, due to their direct formulation based on high-dimensional space rather than one

dimensional vector. For example, two-dimensional subspace learning methods directly

calculate the class scatter metrics from images, hence can reveal the spatial structural

information of image, an important factor for the classification [85]. `1 norm based

subspace learning methods have shown great performance against outliers for tensor

data classification [112]. Ke and Kanade presented matrix factorization as a `1 norm

minimization problem that is able to handle missing data straightforwardly. Wang et al.

presented robust 2DPCA with non-greedy `1-norm maximization in which all projection

directions are optimized simultaneously [115]. Luo et al. extended it by learning the

optimization matrix by maximizing the sum of the projected difference between each pair

of instances, rather than the difference between each instance and the mean of the data

[47]. Although, `1 based methods provided great performance, however, these methods

do not relate to co-variance matrix which characterizes the geometric structure of the

data and works as a robust measure for sample dispersion, not the regularizing basis

vectors. Several efforts have been made to utilize F-norm as subspace learning such as

2DPCA [124, 125], 2D-PCA [105], F-norm 2DPCA [42], NM-2DPCA [12], Angle 2DPCA

[22], R1-2DPCA [23], Optimal 2DPCA [116],`1-2PCANet [43]. However, the limitation of

2DPCA is the dense basis which makes it difficult to explain the resulting features. As

such, it is desirable to select the most relevant or salient elements from a large number

of features.

Since outliers do not have a precise mathematical meaning, the problem of robust

PCA is still not well- defined. Several classical heuristics have been proposed to improve

the robustness against outliers. Compared to the traditional PCA, `1 and `2,1 based

on matrix recovery based methods effectively improve the robustness of algorithms

[109, 114, 118, 135]. Some work suggest that means, in the least squared sense, is not

optimal of distance metrics such as `1, `2,1 and nuclear norm [28, 52, 111, 115, 133].
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To improve their performance, simultaneously optimizing mean and projection matrix,

the criterion function has been introduced [116]. Later, Song et al. presented robust

PCA by simultaneously optimizing global mean and projection matrix [101]. Recently,

a novel robust PCA (RPCA-AOM) is presented by by maximizing the sum of projected

differences between each pair of data based on the `1-norm distance by avoiding the

mean computation in solving the projection matrix [47]. However, RPCA-AOM does not

well characterize the geometric structure of data and it is computationally expensive as

well as difficult to solve the local optimal solution of RPCA-AOM.

Combination of nuclear norm with other (`1,`2,1 ) has shown great performance

by providing sparse but also low-rank solution. Zhang combined nuclear norm and

`2,1-norm to extract neighborhood preserving features by minimizing reconstruction

error due to Frobenius norm that is very sensitive to outliers [133, 134]. `2,1 ensures

the projection to be sparse in rows so that discriminative features are learned in the

latent subspace whereas the nuclear-norm ensures the low-rank property by projecting

data into their respective subspaces. The addition of nuclear norm with `2,1-norm

results not only sparse but also low-rank feature representation. Zhao et al. presented

Local and global information (LLGDI) for effective semi-supervised dimensionality

reduction [137]. LLGDI adopts a set of local classification functions in order to preserve

local geometrical as well as discriminative information. Moreover, it also adopts global

classification function that preserve the global discriminative information by solving

the regression and dimensionality reduction simultaneously. 2DPCA and its variations

cannot reveal the spatial structural information which is one of the core components

in image representation [85, 116]. Moreover, features in low-dimensional subspace are

linear combination of all features in high-dimensional space, thus, it usually consists

of redundant features that affect the classification performance. However, it is quite

difficult to interpret new feature set whereas it is quite important to extract new features

especially when they have spatial meaning [73].

It is no surprise that most of the real world data have such a high sparsity i.e.

only small number of features are important for spam detection. An adhoc approach to

deal with such problems, is achieving the sparsity artificially by considering only those

loadings that are greater than threshold. however, in general, it is an inefficient approach.

Recently, addition of sparsity constraint into PCA is widely explored to overcome the

dimensionality issues and to reduce the number of explicitly used variables. Sparse

principal component (SPCA) analysis is presented to learn sparse projection matrix, yet

it can not jointly select the features. To overcome aforementioned issue, recently, joint
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sparse PCA is presented that relaxes the orthogonal constraints of transformation matrix

to select features jointly and can effectively integrate selection of the features process

into subspace to exclude redundant features. Though, it is able to select the features

jointly with robustness against outliers, however, it is based on 1D and as a result can

not utilize the structural information embedded in data. Whereas, direct computation of

2D-joint sparse PCA is not effective due to the sensitivity of F-norm against outliers, as

the square of F-norm remarkably enlarges the distance in criterion function that affects

its performance based on criterion function. Smallman et. al. developed a sparse method

for data from an exponential-family distribution by adding `1 and SCAD penalties to

introduce sparsity [100]. However, it suitable for only vectors. To address aforementioned

challenges, we have presented a novel approach called ORPCA and 2D robust Joint

Sparse PCA (2D-JSPCA) that combines the subspace learning and feature selection

together in order to exclude the effect of redundant patterns besides avoiding the selection

of same features in different principal components.

3.2 Support Matrix Machines

In this section, we provide a brief description of matrix classification problem. Practically,

it has been noticed that the selection of features and model designs, is far more important

than the choice of loss [51]. Hence, in this coherence, we focused the regularization term

in dealing the feature selection approach embedded in.

The classical soft margin SVM is defined as

(3.1) argmin
1
2

tr(wTw)+C
∑

1− yi[tr(2T xi)+b]+

Where 1− yi[tr(WT X i)+b]+ is the hinge loss, W ∈ Rpq is the vector of regression

coefficients, b ∈Rpq is an offset term and C is a regularization parameter.

In equation 3.1, we need to reshape the matrix into vector which results in losing the

correlation among columns or rows in the matrix. By directly transforming the equation

3.1 for matrix, we get

(3.2) argmin
1
2

tr(WTW)+C
∑

1− yi[tr(WT X i)+b]+
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It is known that tr(WWT) = vec(W)vec(WT) and tr(WT X i) = vec(W)Tvec(X i),
thus the above objective function cannot capture the intrinsic structure of each input

matrix efficiently, due to the loss of structural information during the reshaping process.

To take the advantage of intrinsic structural information within each matrix, one intu-

itive way is to capture the correlation within each matrix through low-rank constraints

on the regression parameter.

As the hinge loss enjoys the large margin principle, it also embodies sparseness and

robustness, which are two desirable properties for a good classifier. Motivated by this,

recently Luo et. al. presented sparse matrix machine shown in equation 3.3 [46]. The

objective function in equation 3.3 consists of hinge loss plus nuclear norm and Frobenius

norm as a reguarlizer.

(3.3) argmin
1
2

tr(WTW)+τ||W ||∗+C
∑

1− yi[tr(WT X i)+b]+

The spectral elastic net regularization 1
2 tr(WTW)+τ||W ||∗ captures the correlation

within each matrix. In addition, the nuclear norm in the reguarlizer is used to control the

rank of W that is NP-hard problem. In this scenario, it provides the best approximation of

rank of the matrix W . The objective function shown in equation 3.3 is capable of capturing

the latent structure within each matrix and further perform the classification based on

all entities of each matrix which effect the classification performance, thus, making the

model complicated . To overcome this challenge, Zheng et. al. presented sparse support

matrix machine that consists of loss plus nuclear norm and `1 as reguarlizer term [141].

(3.4) argminγ||W ||1+τ||W ||∗+C
∑

1− yi[tr(WT X i)+b]+

The classification function in equation 3.4 incorporates the loss and constraints on

the regression matrix which is a linear combination of `1 norm and nuclear norm. `1

norm encourages matrix W to be sparse by serving as a convex surrogate for non zeros

entries. The regularizer term in equation 3.4 is combination of `1 norm and nuclear norm

which provides structural sparsity. A common features of approach based on Frobenius

norm [46] and `1 norm [141] is that they treat both indices (row and column) in the

same way. However, they have different meanings i.e. i and j run through data points

and spatial dimension respectively. This subtle distinction makes it easy to get loss for

the matrix, whereas, `2,1 norm captures this subtle distinction and provides structural

sparsity. Furthermore, studies have shown that `2,1 is sparser than `1-regularization as
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it finds the joint solutions and encourages multiple predictors to share similar sparsity

patterns.

To tackle the challenge of robust feature selection, recently, the sparsity regularization

in dimensionality reduction has been widely investigated for feature selection i.e. `1

[44] , `q [95], `2,0 [60], `2,1 [9]. Forbenius norm [37] has also been applied to introduce

the sparsity property in a regression matrix. These approaches work well and consider

the correlation between columns and rows under the low-rank assumptions and provide

satisfactory performance [142]. However, these approaches consider all the entities of

the matrix as explanatory factor, whereas in real world, features might be redundant

or useless for certain classification tasks. Furthermore, it turns out that the nuclear

norm can also be used as a convex relaxation of this optimization problem, which greatly

simplifies the problem and allows further room for interesting applications such as

accelerated algorithms for matrix completion (compressed sensing). Recently, classifier

based on combination of hinge loss, nuclear norm and Forbenius norm [46, 142], `1

[140, 141] has been presented. Although these methods showed excellent performance by

taking advantage of correlation between rows and columns of the regression matrix under

the low-rank assumptions. But, they simply consider entities in matrix as explanatory

factors and do not consider the intrinsic group structure of data and are sensitive to

outliers. Furthermore, they tend to select features without considering all classes.

3.2.1 Support Tensor Machines

Generally, outliers detection algorithms can be classified into three categories that are

supervised, unsupervised, and semi-supervised. Unsupervised anomaly detection meth-

ods detect the anomalies in an unlabeled data under the assumption that the majority of

the instances are normal and small fraction of data show anomalous behaviour. To im-

prove the robustness of anomaly detection, recently, Xiao et al. utilized non-convex ramp

loss function into OCSVM optimization to reduce the affect of outliers [120]. Similar to

[120], Yingjie et.al. [106] presented robust and sparse anomaly detection approach by

replacing the hing loss with non-convex ramp loss function to make robust and sparse

semi-supervised algorithm and used concave-convex procedure to solve the model that

is a non-differentiable non-convex optimization problem. Recently, to improve the ro-

bustness of traditional OCSVM against outliers, Xing et.al. presented replace the hinge

loss with rescaled hinge loss function [121]. Experimental results showed that these

methods can effectively reduce the influence of outliers to some extent, however, are

computationally complex.
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To improve the robustness of OCSTM against outliers and computational efficiency,

recently, many researchers have focused on the improvement of the loss function and

kernel methods respectively. He et al. presented a structure-preserving kernel for non-

linear tensor learning by deriving the kernel based on structure-preserving feature

mapping [27]. Erfani et al presented a randomized kernel support tensor machine based

on nonlinear randomized projection, however, it is sensitive to outliers [20]. Anaissi et al.

presented sparse and smooth representations by replacing with `1 regularized tensor

decomposition to overcome the sensitivity of OCSTM against outliers [3]. Yanyan et

al. developed Linear Support Tensor Domain Description (LSTDD) based on a linear

tensor-based algorithm to find a closed hypersphere with the minimal volume in the

tensor space [15]. Traditional support tensor machine is not robust to outliers as un-

boundedness of the loss function results in larger loss due to outliers and the decision

boundary may deviate from the optimal hyperplane [72]. Several non-convex substitution

of hinge loss function has been presented in order to suppress the effect of outliers and

improve the robustness for support vector machines. It is well known that methods

based on tensors are better in term of both computational complexity as well as accuracy

[1, 14, 20]. However, according to our knowledge, no work has been done so for on the

improvement of one-class tensor machines[1]. Extensive experimental analysis shows

that proposed bounded one-class support tensor machines considerably improves the

robustness against outliers and significantly reduces the computational complexity as

compared to state of the art anomaly detection methods.

3.3 Summary

This chapter presents the related work followed by the problem. We have divide the

discussion into two sections. In first section, we describes the recent development for

dimensionality reduction to improve the performance of traditional PCA. In the second

section, we focus on support matrix machine and briefly describe the recent approaches

for tensor data classification. Practically, it has been noticed that the selection of features

and model designs, is far more important than the choice of loss [51]. Hence, in this

coherence, we focused the regularization term in promoting the structural sparsity

and leveraging the intrinsic structure of data. Moreover, features in low-dimensional

subspace are linear combination all features in high-dimensional space, thus, it usually

consists of redundant features that effect the classification performance. Thus, modeling

sparsity into feature extraction or classification function could help to encode semantic

36



3.3. SUMMARY

information, as well. Thus, it is required to have classification function that promotes

sparseness as well as preserve the structural information.
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4
JOINT FEATURE SELECTION

If we have data, let’s look at data. If all we have are opinions, let’s go with mine.
J. Barksdale

The aim of dimensionality reduction is to transform the high-dimensional data into

low-dimensional representation by preserving the quality of the data so that it could be

classified efficiently. To deal with curse of dimensionality, recently several vector-based

methods are in use during the last two decades such as Principal Component Analysis

(PCA) [108], Linear Discriminant Analysis (LDA) [5, 83, 126], LPP [28], SPP [68], SPPE

[136], Isomap[132] and NPE [28]. Principal Component Analysis is one of the extensively

used unsupervised dimensionality reduction method that projects high-dimensional

representation into linear orthogonal space. However, one of the major drawbacks is that

PCA is linear combination and loading are non-zero. This makes PCA data interpretation

difficult, and it is still sensitive to outliers (as its covariance matrix is derived from `2-

norm that affects its performance. Thus, it fails to deal with outliers that often appears

in real-world data. Moreover, before applying PCA and LDA, there is need to convert

the image into one-dimensional vector, thus it may not exploit image’s spatial structural

information very well [21, 28, 55, 108, 109, 122, 127, 145] which is very important for

image representation. To overcome these issues, several variants of PCA have been

proposed to improve the effectiveness of dimensionality reduction and robustness against

outliers. Since the principal component analysis and its variants are sensitive to outliers

that affect their performance and applicability in real world. To overcome the issue
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of sensitivity of PCA against outliers, in this chapter, we introduce two dimensional

outliers robust principal component analysis (ORPCA) by imposing the joint constraints

on the objective function. ORPCA relaxes the orthogonal constraints and penalizes the

regression coefficient, thus, it selects important features and ignores the same features

that have already been selected (exist) in other principal components. It is commonly

known that square Frobenius norm is sensitive to outliers, in order to deal with the

sensitivity challenge for Frobenius norm issue, we have devised an alternative way to

derive objective function. Experimental results show the effectiveness of joint feature

selection and provides better performance as compared to state of the art dimensionality

reduction methods.

4.1 Motivation

As the aforementioned analysis in chapter 2 and chapter 3, for the classification of high

dimensional noisy data, it is always important to find salient features that belong to

specific part of image. To select such salient patterns, projection matrix should consist of

important features that could contribute in the classification and reconstruction. Most of

the PCA based methods are sensitive to outliers and are unable to select optimal set of

features. Which feature is important or ignoreable? selecting or rejecting it, could helps to

improve the performance. Moreover, integrating feature selection into subspace learning

could help to encode semantic information that helps to approximates high-dimensional

data in a flexible way. Based on these above hypothesis, we have imposed the joint

constraint on the objective and added a penalty term which helps to avoid redundant

feature selection by avoiding selection of same features in different principal components.

Furthermore, sensitivity of F-norm is another challenge. To overcome this issue, we have

devised an alternative approach to derive objective function. Compared with traditional

PCA based on Frobenius norm, ORPCA not only select feature jointly, but also weaken

the effect of large distance and has rotational invariance properties.

4.2 Outliers Robust 2DPCA

In this section, we present outliers robust dimensionality reduction approach (ORPCA) in

detail. As described in earlier sections, the projection procedure consist of all the original

features, thus, it may also have irrelevant and redundant features which could influence

the performance of dimensionality reduction, in result affecting the classification perfor-
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mance. Furthermore, outliers strongly affect the feature selection which depresses the

classification performance. In this work, we present a novel formulation for PCA that

combines the subspace learning and feature selection together in order to exclude the

effect of redundant patterns and joint feature selection. We employed Frobenius norm

as distance metric learning and seeks the projection matrix by joint minimization of

regularizer and penalty terms. We relaxes the orthogonal constraints of transformation

matrix and introduces another transformation that helps to jointly select important

features and discard the features that already selected in other principal components. To

overcome the sensitivity issue due to squared Frobenius norm, we devised an efficient

way to compute F-Norm, as a result, ORPCA has more freedom to select robust features

jointly for low dimensional representation that helps to minimizes the affect of outliers

as well as redundancy. However, it does not guarantee fully sparse solution. We present

the spare solution by adding additioanl regualizer term in chapter 5.

4.2.1 Objective Function

Considering the appearance of outliers in the input data, we propose the following

objective function

(4.1) min
P,Q

J(P,Q)=min
P,Q

N∑
j=1

∥∥∥A j − A jQPT
∥∥∥2

F
+λ‖Q‖2

F

where P,Q ∈Rn×d. Matrix Q is used to transforms each sub-image into low-dimensional

subspace and matrix P is used to recovers the matrix A such that A = [A1, ..., AN] , where A j ∈
Rm×n. Furthermore, while we require the matix P to be orthogonal (PTP = Id), we do

not require the orthogonality of the matrix Q,thus ORPCA has more freedom to learn

low dimensional space. In addition, the regularization parameter ‖Q‖2
F reduces the

constraints and enables the ORPCA to select important features jointly select. The

penalty term penalizes the regression coefficient to makes PCA possible to select features

jointly and discard those features that have already been selected in other principal

components. Moreover, regularization term ‖Q‖2
F is convex that can be easily optimized.

The parameter λ≥ 0 balances the loss and regularization terms. In short, we relaxed

the orthogonal constraint of transformation matrix Q, introduce another transformation

matrix P and added an additional regularization parameter ‖Q‖2
F to make the objective

function robust and able to select features jointly.
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4.2.2 Optimization

Squared F-norm is not robust in the sense that outlying measurements can arbitrarily

skew the solution from the desired. We devised an efficient way to compute F-Norm to

overcome its sensitivity challenge. Although the objective function is shown in Eq 4.1 is

based on square F-norm, however, computation of P and Q are not squared. Compared

with squared F-norm, the proposed derivation can weaken the effect of large distance

but also has rotational invariance. ORPCA sees the projection matrix that makes the

value of objective function small. The objective function has two main unknown terms P
and Q. The following two theorems play a key role in determining the minimizers of the

optimization problem 4.1.

Theorem 4.1. The minimizers of the objective function given in the Equation 4.1 satisfy
the following equation

(4.2) Q =
[

N∑
j=1

(
λIn + AT

j A j

)]−1 [
N∑

j=1
AT

j A j

]
P

Proof. According to the definition of Frobenius norm, the linearity and cyclic properties

of trace function, and orthogonality of matrix P, the above objective function can be

written in a more computationally traceable way as

(4.3) J(P,Q)=
N∑

j=1

∥∥∥A j − A jQPT
∥∥∥2

F
+λ‖Q‖2

F

(4.4) =
N∑

j=1
tr

[(
AT

j −PQT AT
j

)(
A j − A jQPT

)]
+ λtr

(
QTQ

)

(4.5) =
N∑

j=1
tr

(
AT

j A j − AT
j A jQPT −PQT AT

j A j +PQT AT
j A jQPT

)
+ λtr

(
QTQ

)

(4.6) =
N∑

j=1
tr

(
AT

j A j −2AT
j A jQPT + AT

j A jQQT
)

+ λtr
(
QTQ

)
Now, differentiation Eq (5.4),

(4.7)
∂J
∂Q

=
N∑

j=1

(
−2AT

j A jP +2AT
j A jQ

)
+2λQ.
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Therefore,

(4.8)
∂J
∂Q

= 0⇒
N∑

j=1

(
−2AT

j A jP +2AT
j A jQ

)
+2λQ = 0

Simplifying the above equation, we get

(4.9)
N∑

j=1
(AT

j A jP)=
N∑

j=1
(AT

j A jQ)+λQ

The above equation can be rewritten as

(4.10)

(
N∑

j=1
AT

j A j

)
P =

(
N∑

j=1
(λIn + AT

j A j)

)
Q

Hence, we can write

(4.11) P =
(

N∑
j=1

(λIn + AT
j A j)

)
Q

(
N∑

j=1
AT

j A j

)−1

�

Once, matrix Q is known, we can optimize matrix P with respect to matirx Q.

Theorem 4.2. If UDV T is the singular value decomposition (SVD) of
∑N

j=1 AT
j A jQ, then

(4.12) P =U In×dV T

is orthogonal and minimizes the Eq. (5.4) for a given matrix Q.

Proof. As we know that the matrices V and U are orthogonal matrices of sizes d×d
and n×n , respectively. As such,

PTP =V IT
n×dUTU In×dV T = Id

�

The orthogonal constraints on matrix P reduces the feature redundancy and forces the

objective function to be small. Below in table 4.1, we describe an iterative algorithm of

ORPCA for training samples A1, ..., An of size m×n, and regularization parameter λ.
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Table 4.1: Algorithmic procedure of ORPCA

Input: A j ∈ Rm×n for j = 1, ..., N where A is centralized, and pa-
rameter λ.
Output: Matrix P and Matrix Q
Step-I: Randomly initialize the matrix P

While do not converge do
Step-II: Minimize the objective function with respect to matrix Q

by finding the matrix Q using Eq.(4.2)
Step-III: Compute the Singular Value Decomposition of∑N
j=1 AT

j A jQ
Step-IV: Update the matrix P using Eq.(5.10) to minimize the

objective function with respect to matrix P
end while

4.2.3 Numerical Algorithm

Table 4.1 describe an iterative algorithm of ORPCA for training samples A1, ..., An of

size m×n, and regularization parameter λ.

4.2.4 Convergence Analysis

First, we provide to the following lemma

Lemma 4.1. For any nonzero matrix P,Q ∈ Rn×d, the following results hold:

(4.13) ‖P‖F − ‖P‖2
F

2‖Q‖F
≤ ‖Q‖F − ‖Q‖2

F
2‖Q‖F

Proof. We start with an obvious inequality (
p

S −√
St )2 ≥ 0, we have

(
p

S −
√

St )2 ≥ 0

⇒ S−2
√

SSt +St ≥ 0

⇒
p

S − S
2
√

St
≤ 1

2
St

⇒
p

S − S
2
√

St
≤

√
St − St

2
√

St

Now substituting S and St by ||P||F and ||Q||F respectively, we arrive at Eq. 4.13. �

Based on the above lemma 4.1, we provide the following convergence theorem.
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Theorem 4.3. Given all the variables in objective function equation 4.1, the iterative
scheme of proposed ORPCA described in table 4.1 shows that objective function value is
monotonically decreasing thus converges to local optima.

Proof. For given initial value of matrix P, say P0, we can compute the matrix Q0 by

minimizing the objective function J(P0,Q). Consequently,

J(P0,Q0)≤ J(P0,Q)

We can calculate matrix P1 by minimizing the objective function J(P,Q0). Hence,

J(P1,Q0)≤ J(P0,Q0)

Since the matrix Q1 minimizes the objective function J(P1,Q), we have

J(P1,Q1)≤ J(P1,Q0)≤ J(P0,Q0).

That is

N∑
j=1

∥∥∥A j − A jQ1PT
1

∥∥∥2

F
+λ‖Q1‖2

F

≤
N∑

j=1

∥∥∥A j − A jQ0PT
1

∥∥∥2

F
+λ‖Q0‖2

F

≤
N∑

j=1

∥∥∥A j − A jQ0PT
0

∥∥∥2

F
+λ‖Q0‖2

F

Iteratively, we obtain

J(Pt+1,Qt+1)≤ J(Pt,Qt) f or t= 0,1,2, .......

Since the singular value decomposition (SVD) provides optimal Pt which decreases

the value of objective function further. In other-words, the algorithms attains the optimal

solution of the objective function in each iteration. Once, we compute the optimal value

of matrix Q and P, in the following iteration, the matrix Pt converges to local optima.

Moreover, the objective function is convex. The sequence J(Pt,Qt) is monotonically

decreasing in each iteration. Thus, by the Monotonic Convergence Theorem, the objective

function J(Pt,Qt) converges to a local optimal value.

N∑
j=1

tr
[(

AT
j −P∞QT

∞AT
j

)(
A j − A jQ∞PT

∞
)]

+λtr
(
QT

∞Q∞
)

�
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4.2.5 Connections to Other PCA algorithm

In this section, we analyze the relations between our model and other PCA based method

(`2,1 norm). Below theorem validates our claim that proposed objective function provide

robust and stable solution as compared to `2,1 norm.

Theorem 4.4. If A is an m×n matrix, then ‖A‖F ≤ ‖A‖2,1.

Proof. Recall that

‖A‖F =
√

tr
(
AT A

) =
√√√√ m∑

i=1

n∑
j=1

a2
i j

‖A‖2,1 =
n∑

j=1
‖a j‖2 =

n∑
j=1

√
m∑

i=1
a2

i, j

where a j is the jth column of A. With that in mind,

‖A‖2
2,1 =

n∑
j=1

‖a j‖2
2+2

n∑
r=1

n∑
s=1,s 6=r

‖ar‖2 ‖as‖2︸ ︷︷ ︸
nonegative term

≥
n∑

j=1

m∑
i=1

a2
i, j = ‖A‖2

F

�

From Theorem 4.4, we can deduce that

(4.14) argmin
Q,P

‖X −PQT X‖2,1+λ‖Q‖2,1 ≥ argmin
Q,P

‖X−

PQT X‖F +λ‖Q‖F

The above Eq. 4.14 shows that the objective function is robust and provide stable

solution as compare to `2,1. In other words, `1 and `2,1 penalizes the coefficients more

than `F , however, robust solution can be obtained by selecting joint features using `F

norm.

Theorem 4.5. Notice that, if regression coefficient λ= 0 , then Q = P.(
N∑

j=1
AT

j A j

)
P =

(
N∑

j=1
AT

j A j

)
Q

48



4.3. EXPERIMENTAL RESULTS

Q =
[

N∑
j=1

AT
j A j

]−1 [
N∑

j=1
AT

j A j

]
P = P.

Moreover, the equation 4.11 simplifies to

J(Q,P)=
N∑

j=1

∥∥∥A j − A jPPT
∥∥∥2

F

Hence, we can say that the proposed objection function degenerates to traditional 2DPCA.
As such, the proposed objective function generalizes the 2DPCA. In this case, the optimal
solution in Eq. 4.1 aims to find robust feature matrix.

4.3 Experimental Results

In order to evaluate the performance of proposed ORPCA, in this section, we have

discussed and compared the performance of proposed ORPCA on four commonly used

image dataset including AR [50], Yale B [98] , ORL and CMU PIE [24]. We have used

k-nearest neighbour (where k = 1) for classification. The main contribution of this work

is introducing joint feature selection in order to select useful features by effectively

combining the robustness of traditional two dimensional principal component analysis

and the lasso regularization. Furthermore, we have introduced penalty term introduced

in the objective function to exclude redundant features and provide robustness against

outliers. Thus, to validate the our claims against outliers, we have corrupted the datasets

with outliers to visualize the robustness of proposed approach in the presence of outliers.

In addition, since 2D-RPCA is unsupervised method, we only compare its performance

with unsupervised methods including PCA, 2DPCA, PCA`1, 2DPCA-`1 OMF-2DPCA

and F-2DPCA on contaminated and non-contaminated benchmark datasets.

To validate the performance of of dimensionality reduction both persuasively and

objectively, we have conducted several experiments on both original (non-contaminated)

dataset and contaminated datasets. We have performed several of ORPCA at different λ

value (0<λ< 1 to find optimal λ. Once we have optimal value of λ, we have performed

10-fold validation.

4.3.1 Datasets

AR face dataset consist of 120 individual, 26 images per individual taken in two session,

with total images 3120 [49]. The dataset was captured in two different session at different
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Figure 4.1: Sample images of CMU PIE, ORL, Yale and AR First two rows real dataset,
Row 3 contaminated with block and Row 4 is contaminated with salt and chapter noise
15%

lightning condition and variable expressions. Face portion is cropped from their main

images and then normalized to 32x32. Moreover, AR dataset consists of few images that

are occluded with sunglasses, scarf or towels as shown in figure 4.1. In this experiment,

we have considered face images with occlusion considered as noise images. Yale dataset

consists of 64 images(except few 11-17,59-63), per subject with in total 2414 images

under different lightning conditions from 38 individuals whereas half the dataset is

corrupted by reflection or shadow. Figure 4.1 shows some reference of of Yale B dataset

[139]. The database contains 5850 single light source images of 10 subjects (9 poses x 64

illumination conditions). For every subject in a particular pose, an image with ambient

(background) illumination was also captured. ORL is face datset of 40 individuals with

10 images of each individual [94]. It consists of frontal views of faces with different

expression and lightning conditions. CMU PIE dataset consists of 2856 frontal face

images of 68 individual, 42 image per individual ( with variation in lighting condition.

We have selected 26 images randomly for training that consist of 7 noisy images [99].

We have resized the images in each dataset to 32 x 32 pixel. For training and evalu-

ation purpose on non-contaminated datasets, we have divided 70%/30% and 80%/20%

into training/testing. In order to validate the robustness of proposed method against

outliers, 20% images have been selected randomly and various types of noise (i.e. block

occlusions, salt and peeper etc). We have added random noise (salt and peeper) with

intensity of 10%, 15% on randomly selected images in each dataset as shown in figure

4.1. Similarly, we have added block occlusion of variable sizes at random locations with

variable size (5x5, 10x10, 10x15) as shown in figure 4.1. In order to evaluate performance

of proposed ORPCA on corrupted datasets, we have randomly selected 60% and 70% and
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Figure 4.2: Classification performance at different value of λ for real (left) and contami-
nated (right) datasets

80% samples for each subject form each dataset as training set.

4.3.2 Parameter Selection

The objective function in equation 4.1 has only one parameter λ required to be be optimal.

λ controls the regression coefficient. The greater value of λ could results in heavy penalty

on regression coefficient that could affect the structural information, similarly smaller

value of λ leads to 2DPCA. In order to find optimal λ, we have performed several

experiments with different λ value with 0 ≤ λ ≤ 4 and narrow down its range after

few experiments based on its convergence and better accuracy. Firstly, we evaluated
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Table 4.2: Average classification accuracy (accuracy ±corresponding standard deviation)
on real dataset at optimal result of ORPCA

Dataset PCA RPCA 2DPCA PCA2D`1 OMF-
2DPCA

F-
2DPCA

ORPCA

AR 0.6832 ±
0.005

0.6459 ±
0.008

0.7589 ±
0.0071

0.8477 ±
0.0023

0.8577 ±
0.0011

0.8782 ±
0.021

0.8932 ±
0.003

ORL 0.7891 ±
0.0028

0.8009 ±
0.0091

0.8843 ±
0.0411

0.8637 ±
0.0071

0.8623±
0.019

0.8754 ±
0.023

0.9254 ±
0.0091

Yale B 0.6886 ±
0.0031

0.5976 ±
0.0061

0.7911 ±
0.0091

0.7305 ±
0.0071

0.6743 ±
0.021

0.6643 ±
0.019

0.6934 ±
0.0131

CMU
PIE

0.7445 ±
0.0091

0.7666 ±
0.0027

0.8987 ±
0.0026

0.8607 ±
0.0015

0.8608 ±
0.018

0.8522 ±
0.025

0.8947 ±
0.0041

Table 4.3: Comparative evaluation based on average classification accuracy ((accuracy
±corresponding standard deviation)) on contaminated datasets at optimal result of
ORPCA

Dataset PCA RPCA 2DPCA PCA2D`1 OMF-
2DPCA

F-
2DPCA

ORPCA

AR 0.5741 ±
0.0023

0.5387 ±
0.0022

0.6576 ±
0.0049

0.6277 ±
0.0053

0.781 ±
0.019

0.773 ±
0.021

0.8121 ±
0.014

ORL 0.6385 ±
0.0012

0.7411 ±
0.00321

0.8161 ±
0.0094

0.838 ±
0.0021

0.832 ±
0.016

0.856 ±
0.019

0.8892 ±
0.013

Yale B 0.5153 ±
0.0034

0.4865 ±
0.0083

0.5983 ±
0.0043

0.621 ±
0.0091

0.8109±
0.0031

0.80 ±
0.0017

0.82892
± 0.0071

CMU
PIE

0.577 ±
0.0032

0.5981 ±
0.0007

0.7181 ±
0.0091

0.6886 ±
0.0083

0.836±
0.021

0.8221±
0.012

0.8513 ±
0.008

on difference of 0.5 to find optimal interval where it provided better result followed by

several experiments in selected interval. We have noticed that λ provided good accuracy

between 0.15 to 0.25 for original datasets whereas it provided good accuracy between 0.1

to 0.3 for corrupted datasets. ORPCA achieved better performance over reasonable range

of λ. The value of λ marginally varies for different datasets, however, it provided best

accuracy on interval [0.1,0.3], ideally when λ is close to 0.2. We have also noticed that

accuracy was reduced when λ=0 or λ→ 0. Furthermore, as claimed in earlier section,

ORPCA is a special case of 2DPCA, accuracy of ORPCA is same as 2DPCA when λ= 0
which validates the claim "ORPCA is a special case of 2DPCA, it degenerates to 2DPCA

when λ= 0". Moreover, it indicates that λ is very important to achieve better robustness.

Table 4.2 and Table 4.3 show that ORPCA achieved better accuracy over reasonable

range of λ and robust to different setting of λ as long as it is in the range mentioned

above. After selection of range of optimal λ generically, we performed experiment for
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each dataset to find optimal λ explicitly for that datasets.

4.3.3 Evaluation on Original Dataset

In order to compare the performance of proposed objective function both persuasively and

objectively, the classification is performed based on nearest neighbour. We have performed

10 fold validation on each dataset. We performed several experiments with variable

sample size per individual i.e 60% and 70% and 80% samples for each individual subject

and rest of samples are used for validation. The classification performance with different

subspace dimensionality at optimal value of λ= 0.18 is shown in table 4.2. Notice that,

due to the dataset complexity (variations, pose, illumination and occlusions), getting

high accuracy is quite challenging. Table 4.2 shows that proposed ORPCA achieved

better classification in comparison to state of the art methods as shown in table 4.2,

4.3. Furthermore, we have notice that ORPCA selected important features that plays

important role in classification.

4.3.4 Evaluation on Corrupted Dataset

In order to validate the robustness of proposed ORPCA against outliers and joint selec-

tion of features, we corrupted the dataset with outliers. In this experiment, we have

randomly selected 70% of images for corrupted datasets as a training set and consider

rest of the images as a validation datasets. We have performed several experiments

with different subspace dimensionality. Experimental results showed that the proposed

ORPCA achieved much better performance as compared to state of the art methods in the

presence of outliers that validate the robustness of proposed approach against outliers.

Notice that ORPCA performed well for corrupted data however, it partially suffer from

random corruption due to its joint feature selection ability.

4.3.5 Computational Complexity

Computation complexity of ORPCA has 3 steps in each iteration, First step is to compute

Q using equation Q =
[∑N

j=1

(
λIn + AT

j A j

)]−1 [∑N
j=1 AT

j A j

]
P. Computational complexity

of Q is O(n3) as AT
j A j is the core step in computation of Q. The second step is to compute

the SVD of
∑N

j=1 AT
j A jQ, whose computational complexity is also O(n3) . Third step

is to computation P = U In×dV T . Computation complexity of P is also O(n3). Thus,

computational complexity of one iteration is O(n3). If the algorithm need t iteration to

converge, it computation complexity will be O(tn3).
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Figure 4.3: Comparative evaluation on real datasete (AR, Yale, ORL, and CMUIPIE)

4.3.6 Convergence Verification

To verify the convergence of algorithm 4.1, we tested different variations of parameters

on all four datasets. The convergence of proposed ORPCA is shown in figure 4.5. It shows

the convergence of objective function 4.1 along with each iteration. It can be found that

objective function is non decreasing functions of iterations. As theorem 4.3 proves that

ORPCA converges to local optima so does the case in figure 4.5 that shows that algorithm

converges to local optima.

4.4 Discussion

We notice that methods based on matrix perform better as compared to vector based

methods. Results shows that proposed ORPCA finds the representative features from

high-dimensional space that are used for classification. Unlike 2DPCA based on `1-norm,

ORPCA has rotational invariance property and has the freedom to jointly select the
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Figure 4.4: Comparative evaluation on corrupted datasete (AR, Yale, ORL, and CMUIPIE

Figure 4.5: Convergence curve of ORPCA on four datasets
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important and contributive features such as nose, eyes, lips in case of face image, while

contours of different objects in non-facial datasets. Traditional methods are not able to

interpret new features whereas it is quite important to interpret new features especially

when they have spatial meaning. Results showed that ORPCA outperforms other PCA-

based methods especially in the presence of outliers. This shows that proposed approach

suppress the role of outliers. The proposed approach reveals the geometric structure due

to the fact that it select the features by maintaining the spatial structural information

of the image. It is due to the fact, that the solution of ORPCA relates to the weighted

image covariance matrix which characterizes the spatial structure. We notice that the

performance drop significantly with the increase in projection vectors.

4.4.1 Reconstruction Error

PCA can also be used for minimizing the reconstruction error with a few principal compo-

nents. Reconstruction error is used as a parameter to measure the expressive capacity of

the principal component. Let X∗
i ...X∗

k are the k contaminated images (1/4th of dataset)

and Ā is the mean of all images. On noisy dataset, reconstruction error is calculated for

2D-JSPCA as mentioned in equation 4.15 and for 2DPCA, 2DPCAL1, 2DPCAL1-S etc as

mentioned in equation 4.16. Table 4.4 shows the comparative analysis of reconstruction

error on four detest. Notice that, ORPCA has marginally poor reconstruction error as

compared to others. This is due to the joint feature selection and ignoring the features

that existing in other principal components.

(4.15) E = 1
k

k∑
i=1

||X∗
i − ((X∗

i − X̄)PQT + X̄)||2F

(4.16) E = 1
k

k∑
i=1

||X∗
i − ((X∗

i − X̄)VV T + X̄)||2F

4.4.2 Observations

Comparing with aforementioned experimental evaluation, we have the following inter-

esting observations.

(I) The Objective function of the ORPCA degenerates into 2DPCA in case of P is equal

to Q and λ = 0. Thus, optimal Q in this case is the transformation matrix to

accommodate the robustness against outliers in 2DPCA.
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(II) Penalty term introduced in the objective function excludes redundant features

and provides robustness against outliers, i.e., the regularization parameter ‖Q‖2
F

reduces the constraints and enables our method to jointly select features. In other-

words, penalty term penalizes all regression coefficients corresponding to single

feature as a whole to make PCA possible to select discriminant features jointly.

(III) Theoretical analysis shown in theorem 4.13 indicates that ORPCA is convergent to

local optima as shown in figure 4.5.

(IV) We have noticed that discrimianant features selected by ORPCA are those impor-

tant and contributive features such as nose, eyes, lips in case of face image, while

contours of different objects in non-facial datasets.

Table 4.4: Average Reconstruction Error (×10−3) and corresponding standard deviation
of each approach on the Extended Yale B,AR, and CMU PIE databases

Methods/
Dataset

2DPCA N-
2DPCA

2DPCA-
L1

2DPCAL1-
S

OMF-
2DPCA

F-Norm
2DPCA

ORPCA

AR 118.03 ±
2.98

119.21 ±
2.43

118.37 ±
3.47

118.02 ±
2.99

116.88 ±
2.16

117.97 ±
3.0

118.15 ±
2.11

Yale B 177.53 ±
1.6

176.59 ±
2.31

178.03 ±
2.5

177.11 ±
1.7

177.25 ±
1.78

176.93 ±
1.89

177.43 ±
1.66

CMU
PIE

107.41 ±
2.1

106.41 ±
1.09

107.19 ±
1.46

107.37 ±
1.91

107.21 ±
1.33

106.87 ±
2.21

108.32 ±
1.45

CMU
PIE

74.12 ±
0.80

80.47 ±
0.52

74.12 ±
0.80

80.15 ±
0.59

73.78 ±
1.21

73.80 ±
0.85

75.41 ±
1.43

4.5 Summary

In this chapter, we presented a robust dimensionality reduction method that by

relaxing the orthogonal constraints of the transformation matrix and imposing a

penalty function on regularization term. In contrast to previous work on robustness

in PCA, we jointly select the important features. Introduction of penalty function

results in the robustness against outliers by reducing their impact in projection

matrix. Compared with state of the art methods, our evaluation results show the
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improvement in effectiveness of ORPCA for image reconstruction and classification.

In conclusion, the numerical results suggest that our method is superior to previous

approaches. However, we observe that the objective function does not guarantee

sparse solution.
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5
JOINT DIMENSIONALITY REDUCTION AND SPARSE

FEATURE SELECTION

Data! Data! Data! I can’t make bricks without clay!
A. C. Doyle

Data redundancy makes it a good candidate for sparse representation. Most of

the existing dimensionality reduction methods try to preserve a certain kind of

linear representation after projection. However, these methods either fail to select

useful features or are not that efficient in the presence of outliers. In chapter

4, we present joint feature selection approach, whose factors themselves are not

necessarily guaranteed to be sparse. To overcame the aforementioned issues of

data redundancy in chapter 4, in this chapter, we introduce a novel approach

called two dimensional joint sparse principal component analysis by effectively

combining the robustness of 2DPCA and the sparsity-inducing regularization.

The proposed approach relaxes the orthogonal constraints resulting in the joint

features selection, besides avoiding the selection of same features in different

principal components. In addition to provide sparse solution, the regularization

term in the proposed objective function, improves the robustness against outliers.

We demonstrate the significance and advantage of our methods on six publicly

available benchmark data sets. Results showed that 2D-JSPCA provided better

performance as compared to non-sparse methods (2DPCA and 2DPCA-L1) and
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sparse methods (SPCA, JSPCA).

5.0.1 Motivation

As discussed in earlier sections, 2DPCA attempts to retain the spatial structural

information. However, it could not deal with nonlinear data efficiently, and still

dense in feature representation. As a result, it makes difficult to explain the result-

ing features i.e. projection procedure involves all the original features and it may

have redundant or irrelevant features that considerably affect the performance of

classification algorithm. For image classification, not only dimensional reduction,

it is also important to find salient features that belong to specific part of image as

projection procedure involves all the original features and it may have redundant

or irrelevant features. To select such salient patterns, projection matrix should

consist of sparse element with respect to such features. Thus, modeling sparsity

into 2DPCA could help to encode semantic information, as well. Based on the

above hypothesis, we have modeled sparsity into 2DPCA by imposing joint sparse

constraint on the objective and added a penalty term. The objective function is

shown in equation 5.1. The elastic net penalty is a convex combination of the ridge

and lasso penalties as a result 2D-JSPCA not only jointly select useful features

efficiently but also learn the transformation with sparsity.

The equation 5.1 integrates the ability of feature selection into subspace learning

and provides sparse basis which accounts for joint feature selection as well as

subspace learning. Imposing the additional penalty terms results in reduced spar-

sity and robustness against outliers. To provide some immediate motivation and

application of matrix norms, we begin with an example that clearly brings out the

issue sparse loadings. We have generated 350 data points including 20% outliers

around straight line. We applied PCA, SPCA, JSPCA and 2D robust JSPCA and

figures 5.1 shows the importance of proposed objective function against outliers

which validate our claim.

5.1 2D Robust Joint Sparse PCA

Redundancy in the high dimensional data makes it a good candidate sparse repre-

sentation. Most of the dimensionality reduction methods try to preserve a certain
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Figure 5.1: Illustration of SPCA (left) and 2D-JSPCA (right) using 10 x 11 matrix: white
block represents zero loadings and color block represents different features

kind of linear representation after projection however, either these methods fail

to select useful features or inefficient in the presence of outliers. Without sparsity,

most of the loadings in high dimensional data are typically non-zero and redun-

dant, however, we can reduce the number of non-zero components as well as data

redundancy to manageable numbers without compromising the data reconstruc-

tion. In this section, we propose the two-dimensional robust joint sparse principal

component analysis in detail. First, we present the motivation behind the proposed

objective function, followed by the objective function and its derivation. Finally, we

present an iterative optimal solution to solve the proposed objective function.

5.1.1 Objective Function

As described earlier, projection procedure involves all the original features and

it may have redundant or irrelevant features. Considering the outliers appear-

ance and consistent selection of optimal features, in this section, we propose

two-dimensional joint sparse principal component analysis (2D-JSPCA) for recon-

structing the data matrix that has more freedom to jointly select the useful features

from low-dimensional representation. The objective of the proposed function is to

effectively combine the robustness of 2DPCA and the sparsity-inducing regular-

ization by imposing jointly sparse constraints on its objective function as well as

introducing the additional penalty term. The addition of penalty term makes the

61



CHAPTER 5. JOINT DIMENSIONALITY REDUCTION AND SPARSE FEATURE
SELECTION

objective function robust against outliers as it penalizes all regression coefficient

correspond to single feature as a whole.

Considering the data matrix A with outliers, where

A = [X1, ..., XN]

where X j ∈Rm×n.

We propose the following objective function

(5.1) min
Q,P

J(Q,P)=min
Q,P

N∑
j=1

∥∥∥X j − X jQPT
∥∥∥2

F
+λa‖Q‖2

F +λb‖Q‖2,1

where the matrix Q ∈ Rn×d transforms each sub-image into lower-dimensional

subspace and the matrix P ∈Rn×d recovers the data matrix. Furthermore, while

we require P to be orthogonal (PTP = Id), we do not require the orthogonality

of the matrix Q. This enables the 2D-JSPCA has more freedom to learn low

dimensional space that approximate to high dimensional data in flexible manner.

In addition, the regularization parameter ‖Q‖2,1 reduces the constraints and

enables our method to jointly select features whereas the regularization parameter

‖Q‖2
F penalizes all regression coefficient correspond to single feature as a whole to

makes PCA possible to select features jointly. Moreover, both the regularization

terms ‖Q‖2,1 and ‖Q‖2
F are convex and can easily be optimized iteratively. The

parameter {λa,λb}≥ 0 balances the loss and regularization terms.

There are two core aims of this chapter: sparsity and outliers. Note that feature

loadings across all the subspace dimensionality can not be ignored. The regular-

ization term ‖Q‖2,1 learn the transformation with sparsity and extract only the

important features. The other core issue is outliers. It is commonly known that

squared F-norm is not robust in the sense that outlying measurements can arbitrar-

ily skew the solution from the desired solution. We have proposed an efficient way

to compute F-Norm to overcome its sensitivity challenge. Although the objective

function is shown in equation 5.1 is based on square F-norm however, computation

of P and Q are not squared. Compared with squared F-norm, the proposed deriva-

tion can weaken the effect of large distance but also has rotational invariance.

Moreover, the penalty terms ‖Q‖2,1 and ‖Q‖2
F further enhances the robustness of
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Figure 5.2: Illustration of 2D-JSPCA, JSPCA, PCA on 350 data points including 70
outliers: Results shows robustness of 2D-JSPCA against outliers

objective function against outliers through joint feature selection and discarding

the features that already exist in other PCs to avoid redundancy. Although, the

above objective function ensure sparseness and joint feature selection, simultane-

ous minimization of both P and Q make the problem non-convex and non-smooth,

even though, all the sub terms in the objective function in Eq. 5.1 are convex. As a

result, it cannot be approximated directly, however, the objective function is convex

over the other term, if one of both terms is known. Iterative minimization of P and

Q could result in locally convex solution. In order to optimize the objective function

5.1, we have divided the problem into two sub-problems and solved it iteratively.

Firstly, we optimize the solution for Q with respect to P (at first, P is randomly

initialize). Once, we the solution of Q obtained, the next step is to minimize the

objective function with respect to Q. The following derivation play a key role in

determining the minimizers of the optimization problem 5.1. First, utilizing defi-

nition of the Frobenius norm, `2,1-norm, the cyclic and linearity properties of the

trace function, and the orthogonality of P, we rewrite the objective function J in a

more computationally tractable way.
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J(P,Q) =
N∑

j=1

∥∥∥X j − X jQPT
∥∥∥2

F
+λa‖Q‖2

F +λb‖Q‖2,1(5.2)

=
N∑

j=1
tr

[(
XT

j −PQT XT
j

)(
X j − X jQPT

)]
+λatr

(
QTQ

)
+2λbtr

(
QTDQ

)
=

N∑
j=1

tr
(
XT

j X j − XT
j X jQPT −PQT XT

j X j

+PQT XT
j X jQPT

)
+λtr

(
QTQ

)
+(5.3)

2λbtr
(
QTDQ

)
=

N∑
j=1

tr
(
XT

j X j −2XT
j X jQPT + XT

j X jQQT
)

+λtr
(
QTQ

)
+2λbtr

(
QTDQ

)
(5.4)

Where D is m×m is diagonal matrix and can be computed as

(5.5) D =
 1

2||Q||2,1
1

2||Q||2,1


Larger the value of D tends to force the objective function to small value. After

several iteration, the objective function may tends to 0, which results in sparseness.

Now, differentiation Equation (5.4),

∂J
∂Q

=
N∑

j=1

(
−2XT

j X jP +2XT
j X jQ

)
+2λaQ+2λbDQ.

∂J
∂Q

= 2
N∑

j=1

(
−XT

j X jP + XT
j X jQ+λaQ+λbDQ

)
Therefore,

∂J
∂Q

= 0⇒ 2
N∑

j=1

(
−XT

j X jP + XT
j X jQ+λaQ+λbDQ

)

(5.6)
N∑

j=1
(XT

j X jP)=
N∑

j=1
(XT

j X jQ)+λaQ+2λbDQ
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(5.7)

(
N∑

j=1
XT

j X j

)
P =

(
N∑

j=1
(λaIn + XT

j X j)+λbD

)
Q

The above equation 5.7 is written as

(5.8) Q =
(

N∑
j=1

XT
j X j

)
P

(
N∑

j=1
(λaIn + XT

j X j)+λbD

)−1

(5.9)

(
N∑

j=1
XT

j X j

)
P =

(
N∑

j=1
(λaIn + XT

j X j)+λbD

)
Q

Hence, the result follows.

Once, the solution of Q is known, the next step is to optimize the objective function

with respect to P. For known Q, the regularization penalty become irrelevant for

the optimization with respect to P. Theorem 5.1 describe the minimization of P.

Theorem 5.1. If UDV T is the SVD (singular value decomposition) of
∑N

j=1 XT
j X jQ,

then

(5.10) P =U In×dV T

is orthogonal and minimizes Equation (5.4) for a given Q.

Proof. Recall that U and V are orthogonal matrices of sizes n× n and d × d,

respectively. As such,

PTP =V IT
n×dUTU In×dV T = Id

�

Note that, orthogonal constraints In and λbD imposed the sparseness and deals

with feature redundancy whereas Q projects the weighted data matrix and P is

used to recover it.
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Theorem 5.2. The objective function consist of three terms ||.||F , λa||.||F and
λb||.||2,1. Observe that, if λa = 0 and λb = 0, then P = Q, as a result, the objec-
tive function degenerates to 2DPCA. In such case Q is not sparse.

(
N∑

j=1
XT

j X j

)
P =

(
N∑

j=1
XT

j X j

)
Q

Q =
[

N∑
j=1

XT
j X j

]−1 [
N∑

j=1
XT

j X j

]
P = P.

Furthermore, the objective function simplifies to

J(Q,P)=
N∑

j=1

∥∥∥X j − X jPPT
∥∥∥2

F

Hence, the proposed 2D-JSPCA degenerates to 2DPCA. As such, in some sense
2D-JSPCA generalizes the 2DPCA. In this case, optimal solution in equation 5.1
aim to find optimal non-sparse matrix.

Theorem 5.3. Considering λb = 0, we are left with two terms ||.||F and λa||.||F . In
such case P ≈Q, The objective function in equation 5.1 degenerate robust 2DPCA.

(
N∑

j=1
XT

j X j

)
P =

(
N∑

j=1
(λaIn + XT

j X j)

)
Q

Q =
[

N∑
j=1

(λaIn + XT
j X j)

]−1 [
N∑

j=1
XT

j X j

]
P ≈ P.

Furthermore, the objective function simplifies to

J(Q,P)=
N∑

j=1

∥∥∥X j − X jPPT
∥∥∥2

F
+λa‖Q‖2

F

In this case, optimal solution in equation 5.1 aim to find optimal non-sparse matrix.

Theorem 5.4. Observe that, if λb > 0 and λa = 0, then Q is sparse. The amount of
sparseness is controllable by the coefficient of the Q , given by the parameter λb.
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(5.11) min
Q,P

N∑
j=1

∥∥∥X j − X jQPT
∥∥∥2

F
+λ‖Q‖2,1 =

N∑
j=1

(−2XT
j X jP+

2XT
j X jQ)+2λbD)

The objective function in equation 5.1 is to find sparse matrix Q and orthogonal
matrix P

(
N∑

j=1
XT

j X j

)
P =

N∑
j=1

(
λbD+ XT

j X j

)
Q

Here, λb is sparsity controlling parameter. Higher the value of λb leads to sparser
components and vice versa.

Hence, the proposed 2D-JSPCA is sparse when λ> 0.

There are two regularization term in the objective function. ||Q||F and ||Q||2,1

impose robustness and sparseness respectively. We further prove that the proposed

objective function is sparse, robust and provide stable solution. Theorem 5.2, The-

orem 5.4 validates our claim that both P and Q in objective function shown in

equation 5.1 imposes sparseness and robustness. We further elaborate with lemma

5.1 that proves that sparsity and robustness of objective function by relating it

with `2,1 norm.

Lemma 5.1. If A is an m×n matrix, then ‖A‖F ≤ ‖A‖2,1.

Proof. Recall that

‖X‖F =
√

tr
(
XT X

) =
√√√√ m∑

i=1

n∑
j=1

x2
i j

‖X‖2,1 =
n∑

j=1
‖x j‖2 =

n∑
j=1

√
m∑

i=1
x2

i, j
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where a j is the jth column of A. With that in mind,

‖X‖2
2,1 =

n∑
j=1

‖x j‖2
2+2

n∑
r=1

n∑
s=1,s 6=r

‖xr‖2 ‖xs‖2︸ ︷︷ ︸
no-negative term

≥
n∑

j=1

m∑
i=1

x2
i, j = ‖X‖2

F

�

5.1.2 Convergence Analysis

Before showing the convergence of 2D-JSPCA, we need to give the following lemma

(Lemma 5.2) that plays important role in determining the proof of convergence

of proposed objective function. The convergence of proposed objective function is

explained in theorem 5.5.

Lemma 5.2. For any nonzero vector P,Q ∈ Rc, the following results hold:

‖P‖F − ‖P‖2
F

2‖Q‖F
≤ ‖Q‖F − ‖Q‖2

F
2‖Q‖F

Theorem 5.5. Given all the variables in objective function equation 5.1, iterative
scheme of 2D-JSPCA described in table 1 shows that objective function value is
monotonically decreasing thus converge to local optima.

Proof. Given the initial value of P, say P0, we calculate Q0 by minimizing

J(P0,Q).
Hence,

J(P0,Q0)≤ J(P0,Q)

We calculate P1 by minimizing J(P,Q0). Therefore,

J(P1,Q0)≤ J(P0,Q0)

Since Q1 minimizes J(P1,Q), we have

J(P1,Q1)≤ J(P1,Q0)≤ J(P0,Q0).
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That is

N∑
j=1

∥∥∥X j − X jQ1PT
1

∥∥∥2

F
+λa‖Q1‖2

F +λb‖Q1‖2,1

≤
N∑

j=1

∥∥∥X j − X jQ0PT
1

∥∥∥2

F
+λa‖Q0‖2

F +λb‖Q0‖2,1

≤
N∑

j=1

∥∥∥X j − X jQ0PT
0

∥∥∥2

F
+λa‖Q0‖2

F +λb‖Q0‖2,1

Iteratively, we obtain

J(Pt+1,Qt+1)≤ J(Pt,Qt) f or t= 0,1,2, .......

Since the SVD as shown in step-III of table 5.1 gives the optimal P t that further

reduces the objective value. Once we obtained optimal value of P and Q, the

next iteration further converge P to local optima. Hence, the sequence J(Pt,Qt) is

monotonically decreasing. Thus, by the Monotonic Convergence Theorem, J(Pt,Qt)
converges to a local optimal value.

N∑
j=1

tr
[(

XT
j −P∞QT

∞XT
j

)(
X j − X jQ∞PT

∞
)]

+λtr
(
QT

∞Q∞
)

�

5.1.3 Numerical Algorithm

To optimize the objective function, we first minimize the objective function with

respect to Q by computing the matrix Q using Equation (5.8), followed by SVD

of
∑N

j=1 XT
j X jQ and finally, minimizing the objective function with respect to

P by updating the matrix. We have three terms in the objective function are∥∥X j − X jQPT∥∥2
F , λa‖Q‖2

F and λb‖Q‖2,1. Note that the regularization parameters

λa an λb are used to balance the regularization terms and control the sparseness.

The derivations in Theorem 5.2 shows the objective function is a generalization

of 2DPCA. Below in table 5.1 we describe an iterative algorithm of 2D-JSPCA for

training samples X1, ..., Xn of size m×n, and regularization parameter λ. The

minimization process alternating between P and Q until convergence.
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Table 5.1: Algorithmic procedure of 2D Joint PCA

Input: X j ∈ Rm×n for j = 1, ..., N where A is centralized, and pa-
rameter λ.
Output: Matrices P and Q
Step-I: Initialize the matrix P

While not converge do
Step-II: Minimize the objective function with respect to Q by

computing the matrix

Q using Equation Q =
(∑N

j=1 XT
j X j

)
P

[∑N
j=1

(
λbD+ XT

j X j

)]−1

Step-III: Compute the SVD, [U ,S,V]= SVD(
∑N

j=1 XT
j X jQ)

Step-IV: Minimize the objective function with respect to P by
updating the matrix

P using Equation P =U In×dV T

end while

5.2 Results and Analysis

To evaluate the performance of proposed joint sparse 2DPCA, in this section,

we have discussed and compared the performance of proposed 2D-JSPCA on six

popular image dataset including AR, ORL FERET, Yale, COIL20 and CMU PIE. The

main contribution is introducing two-dimensional joint sparse PCA by effectively

combining the robustness of 2DPCA and the sparsity-inducing regularization.

Perhaps most significantly, robustness is a strong property that can itself be used

as an avenue to investigate different properties of the solution. We show that

robustness of the solution can explain why the solution is sparse. Furthermore,

we have introduced penalty term introduced in the objective function to exclude

redundant features and provide robustness against outliers. We have performed

evaluation of 2D-JSPCA at different λa value (0 <λ< 1) and λb value (0.2, 0.4,

0.65) to find their optimal. In addition, since 2D-JSPCA is unsupervised method, we

only compare its performance with unsupervised methods including PCA, PCAL1,

JSPCA, 2DPCA, R2DPCA, PCA2DL1 and PCA2DL1-S on corrupted and non-

corrupted benchmark datasets.

In order to compare the performance of dimensionality reduction both objectively
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and persuasively, we evaluated using nearest neighbour classifier. Experiment is

divided into two groups: Experiment-I is on non-contaminated (original) dataset

and experiment-II is on contaminated datasets in order to validate the robustness

against outliers. We have corrupted small portion of all dataset by adding random

noise (salt and pepper or block of different sizes) as shown in figure 5.3. It shows

some original images in first two rows and third row is corrupted by random blocks

whereas forth row is contaminated by 10% and 15% salt and pepper noise.

Figure 5.3: Sample images of CMU PIE, COIL20, Yale [98] and AR [50] First two rows
real dataset, row 3 contaminated with block and Row 4 is contaminated with salt and
pepper noise 15%

5.2.1 Datasets

FERET dataset consists of 7 images each of 200 individuals with total images 1400

[64]. Image size is 80 by 80 with variable expression as shown in figure 5.3. AR face

dataset consist of 120 individual, 26 images per individual taken in two session,

with total images 3120 [49]. The dataset was captured in two different session at

different lightning condition and variable expressions. Face portion is cropped from

their main images and then normalized to 32x32. Moreover, AR dataset consists of

few images that are occluded with sunglasses, scarf or towels as shown in figure

5.3. In this experiment, we have considered face images with occlusion considered

as noise images. Yale dataset consists of 64 images(except few 11-17,59-63), per

subject with in total 2414 images under different lightning conditions from 38

individuals whereas half the dataset is corrupted by reflection or shadow. Figure

5.3 shows some reference of Yale B dataset [139]. The database contains 5850 single

light source images of 10 subjects (9 poses x 64 illumination conditions). For every
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Figure 5.4: Comparative evaluation at different value of λa (left column) and λb (right
column) for real (top row) and contaminated (bottom row) datasete

subject in a particular pose, an image with ambient (background) illumination

was also captured. ORL is face datset of 40 individuals with 10 images of each

individual [94]. It consists of frontal views of faces with different expression and

lightning conditions. CMU PIE dataset consists of 2856 frontal face images of 68

individual, 42 image per individual ( with variation in lighting condition. We have

selected 26 images randomly for training that consist of 7 noisy images [99]. In

this chapter, we have also considered non-facial dataset COIL100 and converted it

into grey scale [54]. It consists of 7200 images of 100 individual captured at pose

interval of 5◦.

All six datasets images are re-sized to 32 x 32 pixel. For training and evaluation

purpose on non-contaminated datasets, we have divided 70%/30% and 80%/20%

into training/testing. In order to validate the robustness of proposed method against

outliers, we have randomly selected 20% images to add noise in the datasets. We
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corrupted the dataset, i.e., random noise well as block occlusions. Random noise is

salt and pepper noise spread randomly at 10%, 15% on random selection of images

from dataset as shown in figure 5.3. Similarly, block occlusion is added block of

different sizes at random locations with variable size 5x5, 10x10, 10x15 as shown

in figure 5.3. For evaluation on contaminated datasets, we have selected 60% and

70% and 80% samples per individual for each dataset as training dataset (3,5 and

7 ; 8, 13 and 18 ; 22, 27 and 32 ; for ORL, AR and Yale datasets respectively).

We have conducted various number of experiments on each dataset and average

classification accuracy is computed as shown in figure 5.5 and 5.6 , table 5.2 and

5.3.

Table 5.2: Comparative evaluation based on average classification accuracy on real
dataset at optimal result of 2DJSPCA

Dataset PCA RPCA SPCA JSPCA 2DPCA PCA2DL1 2DJSPCA

AR 0.6832 ±
0.005

0.6459 ±
0.008

0.7345 ±
0.0221

0.7896 ±
0.006

0.7589 ±
0.0071

0.8477 ±
0.0023

0.8541 ±
0.003

ORL 0.7891 ±
0.0028

0.8009 ±
0.0091

0.8322 ±
0.0011

0.8981 ±
0.0032

0.8843 ±
0.0411

0.8637 ±
0.0071

0.9254 ±
0.0091

Yale 0.6886 ±
0.0031

0.5976 ±
0.0061

0.5723 ±
0.0009

0.7563 ±
0.0021

0.7911 ±
0.0091

0.7305 ±
0.0071

0.8634 ±
0.0531

FERET 0.8400 ±
0.0039

0.8322 ±
0.0039

0.8409 ±
0.0014

0.9222 ±
0.0022

0.9112 ±
0.0042

0.8900 ±
0.0022

0.9461 ±
0.0009

CMU
PIE

0.7445 ±
0.0091

0.7666 ±
0.0027

0.8334 ±
0.0091

0.9011
±1
0.0011

0.8987 ±
0.0026

0.8607 ±
0.0015

0.9347 ±
0.0041

COIL20 0.7923 ±
0.0023

0.7523 ±
0.0044

0.7744 ±
0.0012

0.8587 ±
0.0042

0.8639 ±
0.0036

0.8688 ±
0.0032

0.9245 ±
0.0007

5.2.2 Parameter Selection

The objective function in equation 5.1 has only two parameter λa and λb required

to be be optimal to make the solution robust and sparse. In order to find optimal

λa and λb, we have performed several experiments with different λa value with

0 ≤ λa ≤ 4 and narrow down its range after few experiments based on its con-

vergence and better accuracy. Similarly, we performed several experiment to find

optimal λb for each value of λa to find best values of both parameters. Firstly, we

evaluated on difference of 0.5 in λa value to find optimal interval where it provided

better result followed by several experiments in selected interval. For each value of

λa, we performed six different experiment on λb ∈ {0.05,0.1,0.15,0.25,0.3and0.4}
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Figure 5.5: Comparative evaluation on real datasete (AR, Yale, ORL, FERET, COIL20
and CMUIPIE
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Figure 5.6: Comparative evaluation on corrupted datasete (AR, Yale, ORL, FERET,
COIL20 and CMUIPIE
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Table 5.3: Comparative evaluation based on average classification accuracy on contami-
nated dataset at optimal result of 2DJSPCA

Dataset PCA RPCA SPCA JSPCA 2DPCA PCA2DL1 2DJSPCA

AR 0.5741 ±
0.0023

0.5387 ±
0.0022

0.6178 ±
0.0091

0.6481 ±
0.0091

0.6576 ±
0.0049

0.6277 ±
0.0053

0.6621 ±
0.0203

ORL 0.6385 ±
0.0012

0.7411 ±
0.00321

0.8201 ±
0.0081

0.7181 ±
0.0087

0.8161 ±
0.0094

0.838 ±
0.0021

0.8492 ±
0.00221

Yale 0.5153 ±
0.0034

0.4865 ±
0.0083

0.5177 ±
0.0073

0.5978 ±
0.0065

0.5983 ±
0.0043

0.621 ±
0.0091

0.72892
± 0.0091

FERET 0.6831 ±
0.0029

0.6948 ±
0.0042

0.59851
± 0.0065

0.7186 ±
0.0043

0.6771 ±
0.0054

0.6184 ±
0.0087

0.7391 ±
0.0065

CMU
PIE

0.577 ±
0.0032

0.5981 ±
0.0007

0.6771 ±
0.0054

0.6987 ±
0.0054

0.7181 ±
0.0091

0.6886 ±
0.0083

0.7513 ±
0.0088

COIL20 0.5743 ±
0.0024

0.6081 ±
0.0032

0.7179 ±
0.0049

0.7474 ±
0.0076

0.7144 ±
0.0077

0.7786 ±
0.0053

0.7844 ±
0.0141

to find approximate value of λa. Once, we have approximated λb, we performed

different experiment around that value to find its optimal value. Figure 5.4 shows

the influence of different λa values. In general, we have noticed that λa and λb

provided good accuracy between [0.15-0.25] and [0.045-0.15] for original datasets

whereas it provided good accuracy between [0.1-0.3] and [0.05-0.1] for corrupted

datasets respectively. As shown in figure 5.4, 2D-JSPCA achieved better perfor-

mance over reasonable range of λa and λb. The value of λa and λb marginally

varies for different datasets, however, it provided best accuracy on interval [0.1,0.3]

and [0.04, 0.08] for λa and λb respectively. Ideally, it provided the best results

when λa is close to 0.2±0.1 and λb is close to 0.05±0.03 as shown in figure 5.4.a

and figure 5.4.b.

We have also noticed that accuracy was reduced when λb=0 as shown in figure 5.4

or λa = 0 or {λa,λb} = 0. Furthermore, as claimed in earlier section, 2D-JSPCA

is a special case of 2DPCA, Figure 5.4 shows that accuracy of 2D-JSPCA is same

as 2DPCA when λ= 0 which validates the claim "2D-JSPCA is a special case of

2DPCA, it degenerates to 2DPCA when λb = 0". Moreover, it indicates that λb

is very important to achieve better sparseness. Figure 5.5 and 5.6 show that 2D-

JSPCA achieved better accuracy over reasonable range of λb and λb. Similarly, it is

robust against outliers at different setting of λa and λb as long as it is in the range

mentioned above. After selection of range of optimal λa generically, we performed
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experiment for each dataset to find optimal λb explicitly for that datasets.

Figure 5.7: Comparison:Reconstruction Error versus features numbers (a) AR (b) ORL
(c) Yale (d) COIL20

5.2.3 Evaluation on Original Datasets

In order to compare the performance of proposed objective function both objectively

and persuasively, we have used nearest neighbor to obtain classification accuracy.

We have repeated experiment on each dataset ten times and average evaluation

results show that as classifier, 2D-JSPCA achieved better accuracy as compared to
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JSPCA [127], SPCA [16], R2DPCA [115] and 2DPCAL1-S [112] as shown in table

5.2, 5.3 and figure 5.5 and 5.6.

In first experiment, we have selected datasets with original but re-sized to 32x32.

Table 2 shows the variation of classification accuracy with different subspace

dimensionality at optimal λa = 0.18 and λb = 0.05. For evaluation purpose, we

have selected 60% and 70% and 80% samples per individual for each dataset as

training dataset and rest of the datasets for validation.

Due to the complexity of datasets such as illumination, variations and occlusions

etc, it is quite challenging to obtain high classification accuracy, however, the

experimental results show that 2D-JSPCA obtained better classification accuracy

as compare to the PCA, 2DPCA, SPCA, and JSPCA. It is due to sparsity in two

dimension, selection of robust features as well as discarding the redundant patterns.

Furthermore, it enables the 2D-JSPCA has more freedom to learn low dimensional

space that approximate to high dimensional data in a flexible manner. In addition,

regularization term ‖Q‖2
F is convex and can easily be optimized as it can gradually

trending to smaller value iteratively. Moreover, it reduces the constraints and

enables our method to jointly select features.

5.2.4 Robustness against Outliers

To investigate the performance of 2D joint sparse PCA, 25% of the dataset are

contaminated with random noise and block occlusions. Rectangular noise located

at the different position of different size (10x10 and 20 x 20) is added as shown in

figure 5.3 whereas random noise is salt and pepper noise spread randomly at 10%,

15% on random selection of images from datasets. After dataset corruption, we

have selected 70% of corrupted images for training and rest of the images are part

of validation datasets. Results show that 2D-JSPCA performed well for corrupted

data as compared to other PCA-based methods as shown in figure 5.5 and table

5.3, however, it suffers from random corruption due to its feature selection ability.

In conclusion, we can say that 2D-JSPCA is robust to slight variations rather than

random variations in the datasets.

5.2.5 Reconstruction Error

Form the figure 5.7, we can notice that 2D-JSPCA provided poor in term of re-

construction as compared to non-sparse methods due to the loss of extensive
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information, however, in comparison to sparse methods, 2D-JSPCA reconstruction

is better and able to select those features for that are effective for reconstruction

as shown in figure 5.7.

In conclusion, we can say that 2D-JSPCA finds the representative features from

high-dimensional space that are good for classification. Results showed that

2DJSPCA outperforms other PCA-based methods especially SPCA and Joint SPCA

in term of classification as it selected features jointly by maintaining the images

spatial structural information.

5.2.6 Computational Complexity

Computation complexity of 2D-JSPCA has 3 steps in each iteration, First step is to

compute Q, Q =Q =
[∑N

j=1(λaIn + XT
j X j)

]−1 [∑N
j=1 XT

j X j

]
P ≈ P. Computational

complexity of Q is O(n3) as XT
j x j is the core step in computation of Q. The second

step is to compute the SVD of
∑N

j=1 XT
j X jQ, whose computational complexity is

also O(n3) . Third step is to computation P =U In×dV T . Computation complexity

of P is also O(n3).

Thus, computational complexity of one iteration is O(n3). If the algorithm need t
iteration to converge, it computation complexity will be O(tn3).

5.2.7 Observations

In this chapter, we introduced penalty terms to accommodate sparseness and

robustness in the 2D principal component analysis. By mean of case study on

benchmark dataset and simulating the outliers, the experiment showed excellent

performance against outliers, with better construction as compared to state of the

art sparse methods. Comparing with aforementioned experimental evaluation, we

have the following interesting observations.

(A) According to the Theorem 5.4, the Objective function of the 2D-JSPCA degen-

erates into 2DPCA in case of P is equal to Q and {λa,λb}= 0. Thus, optimal

Q in this case is the transformation matrix to accommodate the sparsity in

2DPCA.

(B) Penalty terms introduced in the objective function excludes redundant features

and provides robustness against outliers, i.e., the regularization parameter
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‖Q‖2
F and ‖Q‖2,1 reduces the constraints and enables our method to jointly

select features. In other-words, penalty terms penalizes all regression coef-

ficients corresponding to single feature as a whole to make PCA possible to

select discriminant features jointly.

(C) Eventually, 2D-JSPCA has poor reconstruction error because it suffers from

loss of information. However, it provides better reconstruction error with

respect to SPCA and JSPCA. It might be due to the selection of important

features that helps to reproduce the image.

(D) Theoretical analysis shown in theorem 5.5 indicates that 2D-JSPCA is con-

vergent to local optima. Furthermore, we noted that higher sparsity leads to

slower convergence.

(D) We have noticed that discrimianant features selected by 2D-JSPCA are those

important and contributive features such as nose, eyes, lips in case of face

image, while contours of different objects in non-facial datasets.

There is significant scope of the extension of this work. First, one can look on to

multiple value of P and Q i.e. having more than one P and one Q, offers more

flexibility in accommodating the discriminant features locally and could achieve

better sparseness.

5.3 Summary

In this chapter, we present a new subspace learning method, robust joint sparse

solution for two dimensional principal component analysis by relaxing the orthog-

onal constraints of the transformation matrix and imposing a penalty function

on regularization term. Results validate the claims that proposed approach is

robust against outliers and able to select important features. 2D-robust JSPCA

has the freedom to jointly select the important features, thus, only few features

could represent the whole data efficiently. This property makes it suitable for com-

pressed sensing. We have noticed that discriminant features selected by 2D-JSPCA

are those important and contributive features such as nose, eyes, lips in case of

face image, while contours of different objects in non-facial datasets. Evaluation

results on benchmark datasets contaminated with outliers show the improvement

in effectiveness of 2D-robust JSPCA for image reconstruction and classification.
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We expect that proposed method can be used in various applications especially in

field of compressed sensing.
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6
SUPPORT MATRIX MACHINE

Classification of mathematical problems as linear and non-linear is like classifica-
tion of the universe as bananas and non-bananas

In many real-world classification problems of supervised tensor learning, high-

dimensional data is represented as a matrix, also referred to as second order

tensors. Traditional support vector machines (SVMs) require data to reshape

each matrix into vectors, thus, resulting in loss of structural information of the

originally featured matrix. In this chapter, we propose Robust Sparse Support

Matrix Machine (RSSM) which is defined as hinge loss and regularization term as

spectral elastic net penalty. The regularization term which promotes the structural

sparsity and shares similar sparsity patterns across multiple predictors that is

able to select useful features jointly, is a combination of `2,1 and nuclear norm. It

is a spectral extension of the conventional elastic net that combines the property

of low-rank and joint sparsity together, to deal with complex high dimensional

noisy data. Furthermore, it also leverages the structural information as well as the

intrinsic structure of data and avoids the inevitable upper bound. A comprehensive

experimental study on the publicly available data set is carried out to validate the

proposed approach. The experiment results, supported by the theoretical analysis

and statistical test, show the effectiveness of the RSSM for solving classification

problems while keeping a reasonable number of support vectors.
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6.1 Motivation

In this chapter, our concern is the classification problems on a set of data matrix as

structural information of the original features is very important for certain data

analytic tasks. Input data is high in dimensions and noisy, hence, we focus our

attention on regularizers that have the ability to promotes sparsity and robustness

against outliers, so that they can be used for selecting certain features. Moreover,

our target is to endow the feature space that does not penalize the features individ-

ually as in the case of the `1 norm. To leverage the structural information as well

as dimensionality challenge, we employed the regularizers term into SVM which

promote structural sparsity and model the intrinsic structure. As a result, the

regularization term `2,1 norm along with the nuclear norm and loss not only helps

to avoid the inevitable upper bound for the number of selected features but also

combines the property of low-rank and sparsity together. Furthermore, the loss

function based on `2,1 and the nuclear norm could help to overcome the outliers as

methods based on `2 [46] and `1 [141] are sensitive to outliers. From figure 6.1,

we can notice that sparse and the low-rank can leverage the topological structural

information of a matrix, similarly, `1 norm does not consider the intrinsic group

structure whereas Figure 1(d) shows that RSSM helps to jointly select useful

features for low-dimensional representation.

6.2 The proposed RSSM

In this section, we introduce the proposed RSSM, which, as a matter of fact, is a

novel classifier, that not only removes the redundant information but also selects

the discriminant patterns as well as considers the strong correlation of rows and

columns in the matrix. Although the objective function in equation 3.3 is the

combination of sparse and low-rank properties but the `1 norm regularizer term

provides structural sparsity and ignores the intrinsic structure as it tends to select

the features without considering all the classes, which can be obtained using the

`2,1 norm.

6.2.1 Objective Function

It is well known that hinge loss enjoys a large margin as it provides a tight and

convex upper bound on the indicator function which penalizes misclassifications. It
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Figure 6.1: Four matrices with special structures: (a) sparse; (b) low-rank; (c) sparse and
low-rank using `1. (d) sparse and low-rank using `2,1 (proposed). Various colors denote
different numerical values and white color represents zero.

embodies sparseness and robustness as it acts like a regularizer which induces joint

sparsity (in term of support vectors, SVM is sparse as compared to least-squares

SVM). In this regard, we adopt the loss function and proposed a robust approach

that efficiently impose sparseness as well as preserves the structural information.

The proposed objective function is the combination of hinge loss for model fitting

plus the elastic net penalty as the regularization on the regression matrix that is

a linear combination of the `2,1 norm and nuclear norm. The spectral elastic net

follows the property of group effect to select robust structural features i.e. strong

correlation of rows and columns.

To this end, we have the objective function
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(6.1) argminγ||W ||2,1+τ||W ||∗+C
∑

ξ

wT
j xi +b ≥ 1−ξ

j
i , i f yi = j wT

j xi +b ≤−1+ξ
j
i , i f yi 6= j

ξ
j
i ≥ 0

where ξ
j
i = 1− yi[tr(WT X i)+b]+ is the hinge loss, W ∈Rpq is the vector of regres-

sion coefficients, b ∈Rpq is an offset term and C is a regularization parameter.

The above Eq. 6.1 is a combination of the hinge loss function, `2,1 and nuclear

norm thus it inherits the low-rank and sparsity together into the objective function

which helps to deal with outliers as well. The regularizers term in Eq. 6.1 is able to

encode the prior knowledge and guides the selection of features by modeling the

structure of the feature space.

Rewriting the above problem as

(6.2) argminγ||W ||2,1+τ||W ||∗+C
∑

1− yi[tr(WT X i)+b]+

The objective function is shown in Eq. 6.2 is convex but not smooth. The loss

function and the regularization terms are convex and admit a globally optimal

solution. In this chapter, we presented an efficient efficient iterative algorithm that

quickly converge and obtain global optimum.

The `1 norm regularizer term provides structural sparsity however, we are also

looking to model the group intrinsic structure since the `1-norm does not consider it

and tends to pick features without considering all the classes which can be obtained

using the `2,1 norm. It includes group features detection, joint sparsity, hierarchical

group features, etc. Common features of an approach based on Frobenius norm

[46] and `1 norm [141] that they treat both indices (row and column) in the same

way, however, they have different meaning i.e. i and j runs through data points

and spatial dimension respectively. This subtle distinction is easy to get the loss

for matrix, whereas the `2,1 norm captures this subtle distinction. In conclusion,

`2,1-norm regularization is performed to select robust features across all data

points with joint sparsity, i.e. each feature (gene expression or EEG signal from
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different channels) either have small scores for all data points or has large scores

over all data points.

We will show in the next section that the problem can be solved using a simple yet

efficient algorithm.

Table 6.1: Algorithmic procedure of sparse support matrix machine

Input: : Labeled Training dataset: [X i, yi] where X j ∈ Rm×n for j =
1, ..., N, low-rank co-efficient τ, sparsity coefficient γ, smoothing parame-
ter α, weights w1 and w2
Output: Matrices W and bias b

Step-I: Initialize the matrix W , Z2,1, Z∗ = 0

While not converge do
Step-II: Compute ∇W hα using Eq 6.11.

∂W hα =
n∑

i=1


−yi X i, if zi ≤ 0,

yi X i(zα
i −1), if0< zi < 0,

0 if zi ≥ 1,

Step-III: Evaluate the resolvent Z2,1 for regularizer f`2,1 using Eq. 6.14

Z2,1 = Z2,1 +λt(prox θ
w1

γ||.||2,1
(2W −Z2,1 −θ∇W hα)−W)

Step-IV: Evaluate the Z∗ for regularizer f`∗ using Eq. 6.15

Z∗ = Z∗+λt(prox θ
w1

γ||.||∗(2W −Z∗−θ∇W hα)−W)

Step-V: Update W using Eq. 6.16

W =ω2,1Z2,1 +ω∗Z∗

Step-VI: Update b using Eq. 6.17

bt+1 = bt −θ∇bhα

end while
Step-VII: Return W and b
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6.2.2 Theoretical Justification

In this section, we theoretically analyze and show how RSSM possesses some

elegant features as compared to conventional SVM, conventional elastic net SMM

[46] and SSMM [141]. Although, several other regularizations could be possible,

why have we selected `2,1? The following brief discussion provides a comprehensive

discussion on the reason for the selection of the `2,1-norm along with nuclear norm

and hinge loss.

With the development of sparsity regularization, dimensionality reduction has been

extensively explored and even has been applied for the selection of discriminant

patterns i.e. `1 is used for feature selection [141] for support matrix machines. The

`1 norm regularizer term has some limitations due to the fact that the selected

features are upper bounded by the data sample size. Hence, it provides structural

sparsity and does not discover the intrinsic group structure, resulting in the

selection of features without considering all the classes. However, we are looking

for structural sparsity as well as we modeling the group intrinsic structure that

can be obtained using the `2,1 norm. The regularization term helps to select the

features across all data points with joint sparsity i.e. each feature either has

small scores or large scores over all data points. The objective function includes

group features detection, jointly vector sparsity, hierarchical group features, etc. In

results, the proposed objective function selects the intrinsic structural patterns for

all the classes. A common features of an approach based on the Frobenius norm

[46] and the `1 norm [141] that both treat both indices (row and column) in the

same way, however, they have different meaning i.e. i and j run through the data

points and spatial dimension respectively. This subtle distinction is easy to get

the loss for the matrix, whereas the `2,1 norm captures this subtle distinction.

Furthermore, the objective function based on `2,1 and nuclear achieve better

classification performance especially in the presence of outliers and it also helps to

avoid the inevitable upper bound for the selected features by the data sample size,

hence there is more flexibility for feature selection.

6.2.3 Empirical Risk Minimization

We further analyze the theoretical excess risk bounds of RSSM. In the learning

framework of RSSM, the input lies in a separable Hilbert space H and each entity

obeys the standard Gaussian distribution [66]. A classical and intuitive learning

90



6.2. THE PROPOSED RSSM

strategy is empirical risk minimization. The objective function in equation 6.1 can

be rewritten as

(6.3) argmin
W ,b

n∑
i=1

h(W ,b, X i, yi)

s.t. ||W ||2,1 ≤ c0 and ||W ||∗ ≤ c1

where c0 and c1 are the constants.

The loss function can be written as

(6.4) h(W , X ′
i, yi) =

{
1 − yi

[
tr(WT X ′

i) + 1
n

n∑
j=1

yj

]}
+

The loss function in equation is L-lipschitz continuous with X ′
i = X i − 1

n
∑n

j=1 X j.

For observed output yi, the incurred loss is

`(〈W , X ′
i〉, yi)

where ` is the loss function on objective function in equation 6.3 and assumed to

have value [0, 1].

Our target is to choose W so as to minimize the total average risk R(W). The

expected loss of of weight vector W without bias term for loss function can be

written as

R(W)= E(X ,y) µh′(W , X
′
i, yi),

where µ is the probability distribution that data points are sampled. For optimal

solution W, the expected risk is minimized as

(6.5) W0 = argw minR(W)

s.t.||W ||2,1 ≤ c0 and ||W ||∗ ≤ c1

The average empirical risk can be minimized as
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(6.6) W
′ = argw minR

′
(W)

s.t.||W ||2,1 ≤ c0 and ||W ||∗ ≤ c1

6.2.4 Numerical Algorithm

The optimization problem for the RSSM is convex, non-smooth and non-differentiable,

however, the combination of hinge loss, `2,1-norm and nuclear norm makes the

problem nontrivial to be solved directly. To tackle this issue, we split the problem

into sub-problems with the Generalized Forward-Backward (GFB) splitting ap-

proach [69], and develop a novel and effective algorithm to solve the optimization

problem efficiently.

The objective function in Eq. 6.1 consists of three terms, all of which are convex.

The `2,1-norm and Nuclear norm are convex as both satisfy the triangle and

homogeneity properties whereas the other term is linear functions thus it is also

convex. Although the objective function in Eq. 6.1 is convex but non-differentiable

and non-smooth due to the `2,1-norm and the nuclear norm, thus, stochastic

gradient descent and the Nesterov methods cannot be applied (i.e. In convex

optimization setting, subgradient of the nuclear norm function cannot be used in

standard descent approaches and as a result solving it directly is difficult). Thus,

an alternative approach is required to update W.

(6.7) argmin
2∑

k=1
fk(W)+C

∑
ξ

wT
j xi +b ≥ 1−ξ

j
i , i f yi = j wT

j xi +b ≤−1+ξ
j
i , i f yi 6= j

ξ
j
i ≥ 0

where f1 = τ||W ||∗ and f2 = ||W ||2,1, C
∑

ξ is the hinge loss, W ∈ Rpq is the

vector of regression coefficients, b ∈Rpq is an offset term and C is a regularization

parameter.

We rewrite the above problem in Eq. 6.7 as

(6.8) argmin
W ,b

F = argmin
W ,b

h(W ,b)+
2∑

k=1
fk(W)
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where h=∑n
i=1{1− yi[tr(WT X i)+b]}+,

The Eq. 6.8 is the sum of three lower semi-continuous, convex function and is

non-smooth with respect to matrix W and b in real Hilbert space. Thus, we can

say that there exist an optimal solution of F and its minimizer verifies

0 ∈ ∂h+
2∑

k=1
∂fk

Where ∂ is the sub-differential operator and ∂fk determine the regression matrix

W through the linear combination of both `2,1 and the nuclear norm.

As we know, the objective function in Eq. 6.8 is non-differential, as a result, it

cannot be approximated directly. For example, ADMM can be used for at most

two non-differential terms optimization, whereas a direct extension of ADMM

does not necessarily converge for such problems. The Nesterov methods can be

applied for one non-negative term whereas, GFB splitting can handle an arbitrary

non-differentiable with a proximal operator. However, it requires the gradient of

the loss function to be Lipschitz-continious, thus, we smooth the loss function h by

approximating it with generalized smooth hinge loss ha with

n∑
i=1

hα(zi)=


α

α+1 − zi, if zi ≤ 0,

1
α+1(zi)α+1+ α

α+1 − zi, if0< zi < 0,

0 if zi ≥ 1,

(6.9)

where zi = yi[tr(WT X i)+b].
To compute the gradient of hα, we applied the chain rule with respect to W

∂W hα = ∂hα

∂z
∂z
∂W

(6.10)

∂W hα =
n∑

i=1


−yi X i, if zi ≤ 0,

yi X i(zα
i −1), if0< zi < 0,

0 if zi ≥ 1,

(6.11)
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Now, GFB learning can be applied iteratively. ∂fk at various points of Hilbert

space c̋ould be evaluated individually in each iteration. We introduce two auxiliary

variables Z2,1 and Z∗ for `2,1 and nuclear norm respectively.

Z2,1 is updated as,

(6.12) Z t+1
2,1 = Z t

2,1+λt( j θ
ω2,1

∂f2,1
(2Wt −Z21,t −θ∇W hα)−Wt)

where θ > 0 is the step size, λ is the relaxation parameter, t ∈ N, ωk ∈ [0,1] is the

weight of Z2,1 and j θ
ωk

∂f2,1
is the resolvent of θ

ωk
∂f2,1.

Similarly, Z∗ is updated as

(6.13) Z t+1
∗ = Z t

∗+λt( j θ
ω∗ ∂f∗(2Wt −Z∗,t −θ∇W hα)−Wt)

The resolvent maximal monotone operators ∂f2,1 and ∂f∗ of `2,1 and nuclear norm

are equal to proximal operator [7] proxf2,1 and proxf∗ respectively. Proximal al-

gorithms are are computationally efficient for non-smooth and convex optimization

problems (detail of Proximal algorithm implementation of ||X ||∗ and ||X ||2,1 is

explained in Chapter 2).

Z2,1 and Z∗ is can be computed using proximal algorithms as

(6.14) Z t+1
2,1 = Z t

2,1+λt(prox θ
w1

γ||.||2,1
(2Wt −Z21,t −θ∇W hα)−Wt)

and

(6.15) Z t+1
∗ = Z t

∗+λt(prox θ
w1

γ||.||∗ − (2Wt −Z∗,t −θ∇W hα)−Wt)

Finally, regression matrix W can be computed by linear combination of Z2,1 and Z∗

(6.16) Wt+1 =ω2,1Z21,t+1+ω∗Z∗,t+1

Where Zk ∈ [Z2,1 and Z∗].

Similarly, we can compute the bias b using the gradient descent algorithm as

(6.17) bt+1 = bt −θ∇bhα

In Table 6.1, we describe an iterative algorithm of RSSM for training samples

X1, ..., Xn of size m×n, where yi is the label of X i, w1 and w2 are weights, τ, λ

and α low-rank co-efficient, regularization parameter, and smoothing parameter

respectively.
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Figure 6.2: Convergence curve of RSSM

6.2.5 Convergence Analysis

The convergence of proposed objective function is explained in theorem 6.1. It

shows that the algorithm converges to local optima and enjoy a faster convergence

rate. Further detail of GBF splitting convergence proof can be found in [69] section

4.

Theorem 6.1. Suppose E1,t and E2,t are the error rates for ∇whα and j θ
ωk

∂f2,1
at

ith iteration. if following condition are satisfied then Wt+1 =ω2,1Z21,t+1+ω∗Z∗,t+1

converges weekly towards the solution of objective function as well as its robustness
to errors.

• ∇hα+∑2
k=1∂fk

•
{∑∞

t=0 ||E1,t||,∑∞
t=0 ||E2,t||}〈∞

• λt ∈ [0,2] and
∑

tλt(2−λt)=∞ where t ∈ N

Figure 6.2 shows the convergence curve of proposed objective function.

6.2.6 Computational Complexity

In this section, we provided the asymptotic computational complexity analysis

of algorithm 6.1. In step II, the gradient of the hinge loss with respect to W is
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computed. For a given n number of samples with dimension x× y, its complexity is

O(nxy) as it compute n dot product. Step III is the resolvent Z2,1 for regularizer

f`2,1 . Step IV evaluates the Z∗ for regularizer f`∗. Its complexity is O(xy). Step

V is the computation of matrix W and it has complexity O(xy). Final step is the

computation of b, that is the computation of hinge loss with respect to b and its

complexity is O(nxy).

Thus,the time required for single iteration is O(nxy). For, N number of iteration,

the computational complexity of algorithm 6.1 is N ×O(nxy). The computational

cost for SVM is O(n3) and computational cost of SMM is O(n2xy), that are compu-

tationally expensive than RSSM. Our method has same computational complexity

as of SSMM.

6.3 Experimental Evaluation

In this section, we describe the experimental setup and evaluate the proposed

approach on two important empirical applications such as image classification

and EEG classification. As our objective is matrix data classification, thus, for

evaluation purposes, we have used datasets where the data is naturally in the

form of a matrix and structural information is very important such i.e. voltage

fluctuations of EEG signal have a very strong correlation with respect to certain

frequency band and channels. We used two different types of publicly available

benchmark real-world datasets for image classifciation namely Caltech face dataset

and INRIA person dataset. For EEG classification, we have used two-three EEG

classification datasets BCI-III IVa, BCI-VI 2a and BCI-VI 2b. The summary of

datasets is described as table 6.3. Notice that, the dimension of data is much higher

than the number of images within the training set for vector classification due to

reshaping the matrix data into vectors. This makes the data classification task not

only complex but also affect the classification accuracy.

To validate the effectiveness of the proposed classifier, we extensively evaluate

the proposed approach and compare it with both vector based classifiers (i.e. SVM

[11, 29], Sparse SVM (SSVM) [144] , LSVM [48], BSVM [34]) as well as with state

of the art matrix based classifiers (i.e. SSMM [141],Robust SMM [140], SMM [46])

and regularized matrix regression (RGLM) [143].
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Table 6.2: Summary of dataset.

Dataset subject Dimension Train Test

Caltch Face 435 320×280 218 217
BCI-III IVa 5 120×300 140 140
BCI-VI 2a 54 240×150 72 72
BCI-VI 2b 9 150×24 200 160

6.3.1 Image Classification

We evaluated proposed approach on one of the most fundamental application of

image classification. We have applied RSSM on two important datasets (Caltech

face dataset and INRIA dataset). The detail of datasets is shown in table 6.3.

6.3.1.1 Caltech Face Dataset

It is a gender recognition dataset of 435 individuals that consist of various facial

expressions of size 592×896 captured under different illumination conditions and

backgrounds. We have divided the dataset into a training dataset (147 male and

71 female) and test dataset (131 male and 86 female). Images are converted to

greyscale, cropped the face using Viola-Jones face detector. We have re-sized the

face to size 320×280 and used the pixel values as an input matrix without any

advanced feature extraction techniques. Figure 6.3 shows sample images of Caltech

face dataset. Notice that, the images share similar features in terms of face outlines

and structure, however, gender can be differentiated from small detail such as

persons’ eyes and hair, etc. The dataset is challenging due to huge variations in

facial expression, face appearance, lighting conditions, and backgrounds as shown

in figure 6.3.

From the result, as shown in figure 6.4, we observed that classifiers based on

the matrix data provided better results as compared to those methods based on

data as a vector, which shows that vector-based methods ignore the structural

information thus, they are very sensitive to the curse of dimensionality. However,

matrix-based approaches leverage the structural information of the data which

is greatly beneficial to the improvement of the classification performance. The

other main reason is low rank property as discriminant features exist in sparse

structure and images are low rank. In comparison to matrix-based methods, RSSM

outperforms both sparse (i.e. SSVM) and low rank methods ( i.e. BSVM, SMM and

SSMM) which validate the claim that RSSM promotes the structural sparsity and
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Figure 6.3: Sample images from Caltech Face dataset. Face images shows that the dataset
is challenging due to different face appearance, expressions and lighting conditions etc

Figure 6.4: Comparative evaluation (accuracy) based on average classification accuracy
on Caltech Face dataset

shares similar sparsity patterns across multiple predictors. To further validate the

robustness against outliers, we have contaminated the dataset set with random

noise i.e. we have randomly selected 20% images to add noise in the datasets. We

corrupted the dataset, i.e., random noise well as block occlusions. Random noise is

salt and pepper noise spread randomly at 10%, 15% on random selection of images

from dataset. Similarly, block occlusion is added block of different sizes at random

locations with variable size 5x5, 10x10, 10x15. For evaluation on contaminated

datasets, we have selected 60% and 70% and 80% samples per individual for each

dataset as the training dataset. Results showed in figure 6.4 that RSSM is showed

better performance against outliers or challenging conditions.

98



6.3. EXPERIMENTAL EVALUATION

Figure 6.5: Comparative evaluation (accuracy) based on average classification accuracy
on contaminated Caltech Face dataset

6.3.1.2 INRIA person dataset

It is collected to detect the existence of person in an image or video. INRIA person

dataset is divided in two formats original images with corresponding annotation

files and positive images in normalized 64×128 pixel format. It consist of 2416
images with people and 1218 people-free ones for training, and 1126 images with

people and 453 people-free samples for testing. Person detection is challenging task

due to similar background and arbitrary appearance of human in the image. Figure

6.6 shows sample image of dataset. In this experiment, we have converted each

image into gray-scale with dimensions (160×96). For person detection, we have

used gray-scale image as it is without feature extraction to show the structural

correlation of pixels, thus, we have converted the input image into gray level of

size 160×96.

Figure 6.6: Sample images from INRIA person dataset. The human detection is challeng-
ing due to similar appearance of persons and human statues

Figure 6.6 describes the evaluation results on INRIA person dataset. Results
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showed that matrix based methods (SMM, SSMM and RSMM etc) outperform the

vector based methods that shows that leveraging the correlation of matrix data

is meaningful empirically that can not be achieved through vectors due to loss of

information. Among matrix based methods, RSSM and achieve competitive results

due to its feature selection performance and maintaining the structural information.

Results showed that combining low rank property with feature selection.

Figure 6.7: Comparative evaluation (accuracy) based on average classification accuracy
on INRIA person dataset

To evaluate the robustness of RSSM against outliers, we further contaminated the

datasets with random noise by randomly selected 20% images to add random noise

( 10%, 15% salt and pepper noise on random selection of images) well as block

occlusions. Similarly, block occlusion is added block of different sizes at random

locations with variable size 5×5, 10×10, 10×15. Figure 6.5 and figure 6.8 shows

that RSSM is showed better performance against outliers or challenging conditions.

Figure 6.8: Comparative evaluation (accuracy) based on average classification accuracy
on contaminated INRIA person dataset

100



6.3. EXPERIMENTAL EVALUATION

6.3.2 EEG Classification

We further evaluate the proposed approach, we applied RSSM on to the application

of electroencephalogram (EEG) data classification. An EEG tracks and records

brain wave patterns. EEG brain computer interface is a modern way to communi-

cate with machine as a potential communication system without any requirement

of peripheral muscular activity. EEG test can be used to find problems related to

electrical activity of the brain. EEG signals data consist of two-dimensional matri-

ces that have high correlation among the rows and columns within each sample,

which could be effectively captured by the matrix classification methods [141]. In

this experiment, three EEG data of BCI competition-IV namely BCI III-IVa1, BCI

IV-IIa2 and BCI IV-IIb3 are used to evaluate the performance of proposed approach.

Table 6.3 describes the detail of datasets. Both datasets consist of small number

of samples with redundant data, that makes EEG classification challenging. To

evaluate the RSSM performance, we have compared the state of the art matrix

classification methods such as SSM, SSMM and RSSM etc.

6.3.2.1 BCI-IV EEG dataset

We first evaluted the performance on BCI-IV-2a EEG dataset of BCI competition-IV.

BCI-IV 2a dataset consists of EEG data from 9 healthy subjects recorded in two

different sessions performing four classes of motor imagery (left-hand, right-hand,

foot and tongue labeled as class 1, 2, 3 and 4 respectively). There are 72 trials per

motor imagery task and 288 trials in total per session for each individuals.

Motor imagery-based BCI, which translates the mental imagination of movement

to commands, is the huge inter-subject variability with respect to the characteris-

tics of the brain signals [4]. Furthermore, poor characteristics of EEG data such as

measurement artifacts, outliers and non-standard noises make it challenging task.

In order to reduce the variations, spatial filtering has prevent itself as an effective

method for extraction of features has been used as a preprocessing technique to

explore the discriminative spatial patterns and eliminate uncorrelated informa-

tions. In this chapter, we have used Filter Bank Common Spatial Pattern (FBCSP)

algorithm [4] to filter out the artifacts and unrelated sensorimotor rhythms by

performing autonomous selection of discriminative subject-specific frequency range
1http://www.bbci.de/competition/III/download
2http://www.bbci.de/competition/iv/dataset2a
3http://www.bbci.de/competition/iv/dataset2b
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for band-pass filtering of the EEG measurements. To select dominant channels

for each motor imagery task, we have applied CSP [39] followed by Time domain

parameters for feature selection [63] due to its robust performance [110, 141, 142].

As RSSM is a binary class classifier, thus , to evaluate, we transformed the multi-

class classification problem into binary class problem and generated C2
4 = 6 binary

subjects namely, L-vs-R, L-vs-F, L-vsT, R-vs-F, R-vs-T and F-vs-T. We have fed the

time domain parameters to RSSM for classifications and averaged the classification

accuracy of nine subjects for each subset. Table 6.4 shows the comparative evalua-

tion on BCI EEG dataset. Results showed its strong efficiency in the task of EEG

signal classification by outperforming state of the art matrix based classification

methods. This is due to the fact that EEG signals are strong correlated and sparse.

RSSM leverages the structural information as well as dimensionality challenge

and promote structural sparsity and model the intrinsic structure. As a result, the

regularization term `2,1 norm along with the nuclear norm and loss not only helps

to avoid the inevitable upper bound for the number of selected features but also

combines the property of low-rank and sparsity together. Furthermore, the loss

function based on `2,1 and the nuclear norm could help to overcome the outliers as

methods based on `2 [46] and `1 [141] are sensitive to outliers.

We further evaluated the performance of RSSM on BCI-IV 2b EEG dataset used for

the detection of motor imagery with left and right hand from nine healthy subjects.

For each subject, five sessions are recorded, first two sessions ( feedback are not

considered) are used for training and last three session (recorded with feedback)

are used for classification. The evaluation results of all algorithms on the testing

set are reported in table 6.3 and table 6.4. Results showed that RSSM provided

better classification accuracy as compared to state of the art matrix classification

methods that shows that RSSM is powerful in selection of robust features.

6.3.2.2 BCI III

We further evaluated the performance of RSSM on BCI III-IVa dataset. The BCI

III-IVa dataset consist of 118-channel EEG signals recorded from five subjects (aa,

al, av, aw and ay) sampled at 100Hz. The signals are sampled with 250 Hz and

band-pass filtered between 0.5 Hz and 100 Hz. For preoprocessing and feature

extraction, we performed same techniques that are applied on BCI-IV 2a EEG

dataset in section 6.3.2.1. The evaluation results of all algorithms on the testing set

are reported in figure 6.9 and table 6.5. Results showed that matrix based classifier
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such as SSM, SSMM consistently outperform vector based classifiers on all subjects.

In comparison to matrix based methods, RSSM achieves best performance.

The high scores for all these measures indicate that proposed approach has high

prediction quality. Therefore, it again validates the benefits of leveraging the

structural information and multiclass hinge loss for the EEG classification problem.

6.3.3 Parameter Selection

There are several parameter γ, τ, α, λ, w1 and w2 required to set to compute the

objective function. γ and τ control the trade-off between hinge loss and regulariza-

tion terms i.e. γ captures the feature selection behaviour whereas τ captures the

correlation of data matrix. We observe that the the RSSM degenerates to `2,1-SVM

[9], when τ= 0. Similarly, fixing γ= 0, degenerate the model to BSVM [34]. Thus,

we conclude that the proposed model is a generalization of SVM and possess sparse

and low-rank properties. As a result, it consider correlation among matrices as

well as perform feature selection simultaneously. α manages the trade-off between

computational complexity and smoothness. The objective function requires these

parameter to be be optimal to make the solution robust and sparse. In order to

find optimal λa and λb, we have performed several experiments with different

value of γ and fixed τ. Afterwards, we fix the γ and find optimal value of τ. In this

experiment, we have set γ, τ, α= 4, λ= 1, w1 = 0.5 and w2 = 0.5.

6.4 Discussion

In this chapter, we have compared the performance of proposed RSSM with both

vector based classifiers (SVM, SSVM, RGLM,LSVM, BSVM) and matrix based

classifiers ( SSM, RSSM, SSMM, RSMM). We have performed evaluation on two

different matrix classification task image classification and EEG classification.

For image classification, we have used Caltech Face dataset and INRIA person

identification task. For EEG classification, we have evaluation performance on

BCI competition III (IVa) and BCI competition IV (2a and 2b). The EEG signals

are two-dimensional matrices, with high correlation among the rows and columns

within each sample, which could be effectively captured by the matrix classification

methods.
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Table 6.3: Classification performance (accuracy) of different algorithms on dataset BCI 2b.

Subject BCI IV Winner SVM SSVM RGLM LSVM BSVM SSM RSMM SSMM RSSM

S1 0.60 0.68 0.73 0.69 0.69 0.68 0.68 0.73 0.74 0.78
S2 0.40 0.50 0.53 0.51 0.51 0.51 0.52 0.56 0.55 0.61
S3 0.21 0.52 0.54 0.53 0.51 0.53 0.53 0.56 0.56 0.59
S4 0.95 0.91 0.91 0.92 0.87 0.93 0.93 0.97 0.94 0.97
S5 0.86 0.8 0.83 0.82 0.80 0.84 0.83 0.88 0.87 0.89
S6 0.61 0.73 0.82 0.76 0.79 0.74 0.75 0.79 0.82 0.85
S7 0.56 0.69 0.76 0.75 0.72 0.71 0.72 0.78 0.77 0.81
S8 0.85 0.82 0.91 0.87 0.85 0.86 0.83 0.92 0.92 0.94
S9 0.74 0.74 0.84 0.77 0.78 0.76 0.76 0.83 0.86 0.87
Avg. 0.67 0.71 0.76 0.74 0.72 0.73 0.73 0.78 0.78 0.82

10
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Table 6.4: Comparative evaluation based on average classification accuracy on BCI 2a

Motor Imagery SVM SSVM RGLM LSVM BSVM SSM RSMM SSMM RSSM

LvsR 0.80 0.82 0.82 0.81 0.81 0.81 0.83 0.83 0.85

LvsF 0.87 0.89 .89 0.88 0.89 0.88 0.90 0.90 0.91

LvsT 0.86 0.88 .88 0.88 0.88 0.88 0.91 0.90 0.92

RvsF 0.88 0.87 .87 0.88 0.89 0.89 0.89 0.90 0.90

RvsT 0.87 0.87 0.86 0.89 0.89 0.88 0.90 0.90 0.91

FvsT 0.80 0.80 0.81 0.80 0.81 0.81 0.84 0.84 0.86

Table 6.5: Comparative evaluation based on average classification accuracy on BCI
III-IVa

Subject SVM SSVM RGLM LSVM BSVM SSM RSMM SSMM RSSM

aa 0.73 0.74 0.71 0.72 0.75 0.74 0.76 0.77 0.79
a1 0.98 1 0.98 0.99 1 1 1 1 1
av 0.68 0.67 0.66 0.68 0.68 0.67 0.7 0.7 0.71
aw 0.7 0.75 0.71 0.71 0.72 0.74 0.83 0.81 0.83
ay 0.7 0.71 0.7 0.69 0.7 0.69 0.76 0.76 0.78
avg 0.76 0.77 0.75 0.76 0.77 0.76 0.81 0.81 0.82

Results on two different datasets (Cletch face dataset and INRIA person dataset)

for image classification task showed that RSSM outperform state of the art matrix

based methods. Figure 6.4, 6.5, figure 6.7 and figure 6.8 show the comparative

analysis with state of the art methods. Results showed that RSSM provide better

performance compared to both vector and matrix based methods. It is due to the

fact that illumination and background have low rank property and discriminant

features exist sparse structures, thus, the intrinsic structural horizontal pattern of

`2,1-norm along with low rank property of nuclear norm is able to capture the joint

sparse structure to select features across all the classes.

We have further evaluated on contaminated data by synthetically adding the noise.

Results showed that proposed approach is not able to select useful features but also

robust against outliers. Similarly, results of all three EEG datasets are shown in

figure 6.9. It shows that RSSM outperform state of the art matrix based methods.

This is due to the fact that EEG signals are usually highly correlated, and the

useful features are rather sparse. RSSM consider the both low-rank and sparse

properties and can extract robust features. Taking the advantage of robust feature
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Figure 6.9: Comparative evaluation (accuracy) based on average classification accuracy
on BCI dataset

selection, RSSM is a powerful approach even in the presence of outliers.

Classification of such task with small number of data samples, requires low rank

plus sparse as well as selection of robust features that can capture the intrinsic and

structural properties. Thus, in this case, sparse models (SSVM), low rank (BSVM,

SMM) or low rank plus sparse (SSMM) are not sufficient to capture the underlying

structural and intrinsic property of the data entirely. `1 regularizer term has some

limitations due to the fact that the selected features are upper bounded by the

data sample size. Hence, it provides structural sparsity and does not discover the

intrinsic group structure, resulting in selection of features without considering

all the classes. Furthermore, there could be outliers in the data that could affect

the classification performance. RSSM modeled the group intrinsic structure. The

regularization term helps to select the features across all data points with joint

sparsity i.e. each feature either has small scores or large scores over all data points.

The results on contaminated data shows that RSSM provided better results as

compared to state of the art methods, which validate our claim that RSSM is robust

against outliers and able to model the intrinsic property of the data entirely.

6.5 Summary

In this chapter, we presented a novel classifier RSSM which is a combination of

hinge loss and regularization term as the spectral elastic net penalty. The regu-

larization term promotes structural sparsity and share similar sparsity pattern
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across multiple predictor, is a combination of `2,1 and nuclear norm is a spec-

tral extension of conventional elastic net that combines the property of low-rank

and joint sparsity to select features across all the classes. Furthermore, it also

leverages the structural information and avoid the inevitable upper bound that

simultaneously promotes a good fit to the data as well as combines the property of

low-rank and sparsity together. A comprehensive experimental study on publicly

available datasets is carried out to validate the proposed approach. The experiment

results supported by theoretical analysis and statistical test, show the effectiveness

of RSSM approach for solving classification problems while keeping reasonable

number of support vectors. In conclusion, the numerical results suggest that our

method is superior to previous approaches and demonstrates the promise of RSSM

for real-world applications. However, this calls for further analysis and variations

in parameters values to control the low-ranks and sparseness properties.
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7
SUPPORT MATRIX MACHINE WITH MATRIX

RECOVERY FRAMEWORK

Traditional support vector machines are extremely fragile to the presence of out-

liers: even a single corrupted data point can arbitrarily alter the quality of the

approximation if a fraction of columns are corrupted then the quality may be poor.

This chapter considers the problem of high dimensional data classification when a

number of the columns are arbitrarily corrupt. We proposed an efficient Support

Matrix Machine by simultaneously performing matrix Recovery (SSMRe), feature

selection and classification through joint minimization of `2,1 and nuclear norm.

We assume that the data consists of a low-rank clean matrix plus a sparse noise

matrix. SSMRe works under the incoherence and ambiguity conditions and able

to recover the intrinsic matrix of higher rank and recover data with much denser

corruption. The objective function is a spectral extension of the conventional elastic

net that combines the property of matrix recovery along with low-rank and joint

sparsity together, to deal with complex high dimensional noisy data. Furthermore,

it also leverages the structural information as well as the intrinsic structure of data

and avoids the inevitable upper bound. The experiment results, supported by the

theoretical analysis and statistical test, show the effectiveness of our approach for

solving classification problems especially in the presence of outliers while keeping

a reasonable number of support vectors.
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7.1 Motivation

In this chapter, our concern is the classification problem on a set of the corrupted

data matrix. Input data is high in dimension and noisy, hence, we focus our

attention on regularizers that have the ability to recover the corrupted data and

promote structural sparsity to find robust solutions against outliers. Moreover, our

target is to endow the feature space that does not penalize the features individually

as in the case of the `1 norm. Recently, low-rank matrix recovery has shown

tremendous performance for the recovery of unobserved noisy data. Inspired by

this performance, we intend to combine the matrix recovery into support matrix

machines through simultaneous optimization. As a result, SMMRe is not only able

to recover the unobserved entities, but also combines the property of low-rank and

sparsity together.

Figure 7.1: Motivation for joint low rank plus matrix recovery based classification for
missing plus corrupted data

7.2 Problem Formulation

Suppose, we are given data X with dimension p×q to classify. A fraction of these

columns spans r-dimensional subspace while the rest of the columns are arbitrarily

corrupted. We are given only a partial set of observations and our goal is to classify

such type of data based on the partial set of observations. The data matrix can

be decomposed as X = L+S. S is the column-sparse matrix that corresponds to

corrupted columns, thus at most αn columns are nonzeros. L corresponds to none

corrupted matrix, thus rank(L)= r and (1−α)n columns of matrixLare nonzeros,
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corresponding to the outliers. Better performance can not be guaranteed in all

cases because there could be completely unobserved rows or columns resulting in

no hope of selecting features belonging to the missing data, in such case missing

value can not be recovered. Notice that we have a fraction of observed. Suppose

Ω ⊂ [p]× [q] are observed entities, and P(Ω) is the orthogonal projection onto

the linear subspace of matrices supported on Ω i.e. PΩ(M) = Mi, j if i, j ∈Ω and

PΩ(M)= 0 if i, j ∉Ω. We intend to classify the corrupted data efficiently through

a matrix recovery framework. Thus, we propose to optimize matrix recovery and

classification with an additional objective of low-rank feature representation. We

assume that the matrix L satisfies the incoherence conditions (max|U e i|2 ≤µ r
p

and max|V e j|2 ≤µ r
(1−α)n ), where e is the unit matrix.

7.3 SMM with Matrix Recovery Framework

In this section, we introduce the proposed SMMRe, which, as a matter of fact, is

a novel classifier. SMMRe simultaneously recovers the corrupted matrix whilst

removing the redundant information. The classifier also selects the discriminant

patterns and considers the strong correlation of rows and columns in the matrix.

It is well known that hinge loss enjoys a large margin as it provides a tight and

convex upper bound on the indicator function which penalizes misclassifications. It

embodies sparseness and robustness as it acts like a regularizer which induces joint

sparsity (in term of support vectors, SVM is sparse as compared to least-squares

SVM). In this regard, we adopt the loss function and propose a robust approach that

efficiently performs matrix recovery, clean feature extraction from the recovered

matrix, imposes sparseness as well as preserves the structural information. The

proposed objective function is joint optimization of low-rank matrix recovery, hinge

loss for model fitting plus the regularization on the regression matrix. To this we

end, we have the objective function

(7.1) min
W ,b,{L i ,Si}n

i=1

n∑
i=1

(α1||L i||∗+α2||Si||2,1)+τ||W ||∗

+
n∑

i=1
1− yi[tr(WTL i)+b]+

such that ∀i, X i = L i +Si
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where L i ∈ Rp×q, Si ∈ Rp×q and W ∈ R×q are the low rank matrix corresponding

to non-corrupted columns, sparse matrix corresponding to corrupted columns and

regression matrix respectively. α1, α2 and τ are positive scalars that penalize the

sparse matrix, the nuclear norm of low rank and nuclear norm of regression matrix

respectively.

The above Eq. 7.1 is a combination of four terms, hinge loss function, matrix re-

covery (`2,1, nuclear norm of L) and nuclear norm of W . In results, the objective

function not only inherits the properties of matrix recovery and identifies the cor-

rupted column with high probability but also holds the properties of low-rank and

sparsity together which helps to deal with outliers and corrupted data. Moreover,

the regularizer terms in Eq. 7.1 are able to encode the prior knowledge and guide

the selection of features by modeling the structure of the feature space.

The objective function in Eq. 7.2 consists of four terms, all of which are convex.

The `2,1-norm and Nuclear norm are convex as both satisfy the triangle and

homogeneity properties whereas the other term is a linear function thus it is

also convex. The optimization problem for the SMMRe is convex, non-smooth and

non-differentiable, however, the combination of hinge loss, `2,1-norm and nuclear

norm makes the problem nontrivial to be solved directly. To decouple the hinge loss

and nuclear norm with respect to W in SMMRe, we have introduced an auxiliary

variable and applied Lagrange multiplier. The above equation can be written as

(7.2) min
W ,b,{L i ,Si}n

i=1

n∑
i=1

(α1||L i||∗+α2||Si||2,1)+τ||W ||∗

+C
n∑

i=1
h(W ,b,L1)

s.t. ∀i, X i = L i +Si and W = Z where Z is auxiliary variable

Now the constrained problem in Eq. 7.2 can be efficiently solved using Augmented

Lagrangian Multiplier algorithm (ALM). The key of ALM method is to search for a

saddle point of the augmented Lagrangian function instead of solving the original

constrained optimization problem. The augmented Lagrangian function of Eq. 7.3

is given as
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(7.3) L (W , Z,b,L i,Si,V , M)=
n∑

i=1
h(W ,b,L i)+τ1||Z||∗+

tr[V T(Z−W)]+ µ1

2
||Z−W ||2F +

n∑
i=1

{α1||L i||∗+

α2||Si||2,1+ tr[MT
i (X i −L i −Si)+

µ2

2
||X i −L i −Si||2F}

where h(W ,b,L i)= 1− yi[tr(WTL i)+b]+, M,V ∈Rpq are the Lagrange multiplier.

µ1 and µ2 are the positive penalty parameters. α1, α2 and τ control the trade-

off between hinge loss and regularization terms i.e. α1,α2 controls the recovery

process and clean feature selection whereas τ captures the correlation of data

matrix. Updating Lagrange multipliers as

(7.4) (Wk, Zk,bk)= min
W ,Z,b

L (W , Z,b,Lk−1
i ,V k−1)

(7.5) (Lk,Sk)=min
L i ,Si

L (Wk,bk,L i,Si, Mk−1
i )

(7.6) V k =V k−1+µ1(Zk −Wk)

(7.7) Mk
i = Mk−1

i +µ2(X i −Lk
i −Sk

i )

Notice that, the Eq. 7.4 estimates the model parameter for matrix classification, Eq.

7.5 performs the matrix recovery and clean feature selection simultaneously. Thus,

it validates our core objective of clean feature extraction through matrix recovery.

As Eq. 7.4 is difficult to solve directly, thus, we solved (described in Theorem 7.1)

by minimizing L against W , Z and b.

To compute Z, minimizing Eq. 7.3 (L (W , Z,b,L i,Si,V , M)) with respect to Z, we

get

(7.8) f (Z)= τ1||Z||∗+ tr(V T Z)+ µ

2
||Z−F||2F

Z can be updated base on the following theorem.
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Theorem 7.1. For any positive scalars α and µ1, consider f (Z) denotes τ1||Z||∗+
tr(V T Z)+ µ

2 ||Z−F||2F
We have ∂f (Z)= 0
Minimizing f (Z) with respect to Z, we reach the following optimal solution.

(7.9) Z = 1
µ1

Dξ(µ1W −V)

Dξ can be computed as

Dξ =USτ(Σ)V T

Where Sτ is the entry-wise soft thresholding operator.

Proof. The equation 7.8 consist of quadratic terms, thus f (Z) is convex. There

exist an optimal minimizer Z′ such that Z = 1
µ1

Dξ(µ1W −V). Z′ minimizes f (Z)
only if subgradient of f (Z′) is 0. We can write

(7.10) 0 ∈ ∂||Z′||∗+V +µ1(Z′−W)

Where ∂||Z||∗ is the set of subgradients of nuclear norm.

Consider Z is an arbitrary matrix, we can write

(7.11) ∂||Z||∗ =UV T +M s.t. M ∈Rp×q,UT M = 0, MV = 0, ||M||F ≤ 1

To prove Z = 1
µ1

Dξ(µ1W −V) satisfies equation 7.10, we decompose µ1W −V into

following components

µ1W −V =U0Σ0V T
0 +U1Σ1V T

1

From the above equation, we can write

(7.12) µ1(W −Z′)−V =µ1W −V −µ1Z′

= τ(U0V T
0 + 1

τ
U1Σ1V T

1

Comparing Eq. 7.11, we can define M = 1
τ
U1Σ1V T

1 . Thus, it can be verified that

U0M0 = 0 and MV0 = 0 and ||M||F ≤ 0. Thus, we have µ1(W −Z′)−V ∈ τ∂||Z′||∗,

Hence proved.

�
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Similarly to compute W and b, we can rewrite the Eq 7.3 as

(7.13) min
W ,b

n∑
i=1

h(W ,b,L i) − tr(V TW) + µ2

2
||Z − W ||2F

W is computed as

W = 1
µ

(µZ+V +
n∑

i=1
ai yiL i)

a=max
α

−1
2
αY Kα+qTα

K = 1
α1

yi yjtr(LT
i ,L j)

and

q = 1− 1
α1

yitr(α1Z+V)TL i)

b = 1
n

n∑
i=1

(yi − tr(WTL i))

Finally, to compute Lagrange multipliers, differentiating Eq 7.3, we get

(7.14) min
L i

h(W ,b,L i)+α1||L i||∗− tr(MT
i L i)+

||X i −L i −Si||2F

(7.15) L i =Dξ(yiW +α1(X i −Si)+Mi)

minS =α2||Si||2,1− tr(MTSi)+
α1

2
||X i −Si)+Mi)

The above equation can be computed using column wise soft thresolding

Now updating the Lagrange multipliers and coefficient

(7.16) MK = Mk−1+α2(X i −L i −Si)
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(7.17) V K =V k−1+α1(Z−W)

α1 = pα1

α2 = pα2

Table 7.1: Algorithmic procedure of proposed sparse support matrix machine under
matrix recovery framework (SMMRe)

Input: : Labeled Training dataset: [X i, yi] where X j ∈ Rm×n for j = 1, ..., N,
low-rank co-efficient τ, sparsity coefficient α1 α2 α3,; smoothing parameter α,
weights w1 and w2

Output: Matrices W , L, S and bias b

Step-I: Initialize the matrix W ,= 0, L i = X i, Si = X i −L i, M = 0, V = 0

While not converge do
Step-II:Compute Z = 1

µ1
Dξ(µ1W −V)

Step-III: Compute W = 1
µ

(µZ+V +∑n
i=1 ai yiL i)

Step-IV: Compute minS =α3||Si||2,1− tr(MTSi)+ α2
2 ||X i −Si)+Mi)

Step-V: Update S=α3||Si||2,1− tr(MTSi)+ α2
2 ||X i −Si)+Mi)

Step-VI: Update b = 1
n

∑n
i=1(yi − tr(WTL i))

Step-VII: Update M = Mk−1+α2(X i −L i −Si)

Step-VIII: Update V=Vk−1+α1(Z−W)

end while

Step-VII: Return W , L, S and b

The above convex optimization cannot recover the matrix correctly. To overcome

this challenge, We use an oracle problem that is defined by the structure we are

interested in recovering. Thus, Oracle-based convex optimization-based SSMRe

algorithm is able to recover the corrupted columns correctly as well as can identify

the outliers.

For the algorithm to succeed it is sufficient for the recovered pair (L′,S′) to have

the right column space and correct column of non-corrupted matrix L, Similarly, it
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requires right column support for sparse matrix S. To identify such a solution, we

consider the Oracle Problem. α denotes the space of matrices supported on the set of

all entries in the non-corrupted columns plus the observed entries in the corrupted

columns. We are required to minimize min ||L||∗+ ||S||2,1 subject to Pα(L+C) =
PαX , P(L)= L and PI(S)= S. Consider (L,S) is the solution for the Oracle Prob-

lem as we know it is feasible due to the feasibility of true pair (L′,S′). Now, we

must satisfy the conditions such as (L′,S′) is an optimal solution to Algorithm 7.1

and it must have correct column space and column support. Q is a dual certificate

as long as it satisfies the following conditions (I) Q′ ∈Ω; (II) Pα(Q′)−UV T = 0; (III)

Pα(Q′)< 1; (IV) |PI(Q′)|∞,2 and (V) PI(Q′) ∈λH s.t H ∈Rpq|PI(H)= 0). The next

step is to consider any feasible perturbation, (L′+∆L,S′+∆S). For a given Q′, if it

satisfies the above conditions shows that (L′+∆L,S′+∆S) is sub-optimal solution.

(7.18)
n∑

i=1
ξ+

n∑
i=1

(α1||L i||∗+α2||Si||2,1)+τ||W ||∗ ≤
n∑

i=1
ξ+

n∑
i=1

(α1||L i +∆L||∗+α2||Si +∆S||2,1)+τ||W ||∗

The next step is construction of dual certificate that satisfy the following conditions

(I) Q′ ∈Ω; (II) Pα(Q′)−UV T = PαR
−1(B) s.t. B =

√
m

2pnλ ; (III) Pα(Q′) ≤ 0.5; (IV)

|PI(Q′)|∞,2 and (V) PI(Q′) ∈ λ
H s.t H ∈Rpq|PI(H)= 0). Ignoring the requirement

of Q′ ∈Ω , is a more manageable problem that allows to consider the fully observed

problem of separating the low-rank matrix from a column-sparse matrix. The final

step is the sampling i.e. compute Q from Q′ that is performed by modified batched

sampling-with replacement scheme [86].

7.4 Dataset

We evaluated the proposed approach on the most fundamental applications of

classification. We have applied SMMRe on important datasets (Caltech face dataset

and INRIA dataset) and BCI competition (III-IVa and BCI IV-IIa).

7.4.1 Caltech Face Dataset

It is a gender recognition dataset of 435 individuals that consists of images contain-

ing various facial expressions of size 592×896 captured under different illumination

conditions and backgrounds shown in figure 6.6. We have divided the dataset into
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Table 7.2: Summary of dataset.

Dataset subject Dimension Train Test
Caltch Face 435 320×280 218 217
BCI-III IVa 5 120×300 140 140
BCI-VI 2a 54 240×150 72 72
BCI-VI 2b 9 150×24 200 160

a training dataset (147 male and 71 female) and test dataset (131 male and 86

female). Images are converted to greyscale and the face in the image has been

cropped using Viola-Jones face detector. We have re-sized the face to 320×280 and

used the pixel values as an input matrix without any advanced feature extraction

techniques. Figure 6.6 shows sample images of Caltech face dataset. Notice that,

the images share similar features in terms of face outlines and structure, however

gender can be differentiated from small detail such as persons eyes and hair etc.

7.4.2 INRIA person dataset

It is collected to detect the existence of a person in an image or video. INRIA person

dataset is divided into two formats, original images with corresponding annotation

files and positive images in normalized 64x128 pixel format. It consists of 2416

images with people and 1218 people-free images for training, and 1126 images with

people and 453 people-free samples for testing. Person detection is a challenging

task due to the similar background and arbitrary appearance of humans in the

image. Figure 6.6 shows sample image of dataset. In this experiment, we have

converted each image into a gray-scale with dimensions (160×96). For person

detection, we have used the gray-scale image as it is without feature extraction to

show the structural correlation of pixels, thus, we have converted the input image

into the gray level of size 160 × 96.

7.4.3 BCI Competition

We further evaluate the SMMRe on the application of electroencephalogram (EEG)

data classification. EEG signals consist of two-dimensional matrices that have a

high correlation among the rows and columns within each sample, which could

be effectively captured by matrix classification methods [141]. In this experiment,

118



7.4. DATASET

Figure 7.2: Effect of different parameters (τ, α1 and α2) values

Table 7.3: Classification performance (accuracy) of different algorithms on dataset BCI
2b.

Sub. BCI-Win SVM SSVM RGLM LSVM BSVM SSM RSMM SSMM SMMRe
S1 0.60 0.68 0.73 0.69 0.69 0.68 0.68 0.73 0.74 0.797
S2 0.40 0.50 0.53 0.51 0.51 0.51 0.52 0.56 0.55 0.64
S3 0.21 0.52 0.54 0.53 0.51 0.53 0.53 0.56 0.56 0.622
S4 0.95 0.91 0.91 0.92 0.87 0.93 0.93 0.97 0.94 0.975
S5 0.86 0.8 0.83 0.82 0.80 0.84 0.83 0.88 0.87 0.906
S6 0.61 0.73 0.82 0.76 0.79 0.74 0.75 0.79 0.82 0.871
S7 0.56 0.69 0.76 0.75 0.72 0.71 0.72 0.78 0.77 0.828
S8 0.85 0.82 0.91 0.87 0.85 0.86 0.83 0.92 0.92 0.952
S9 0.74 0.74 0.84 0.77 0.78 0.76 0.76 0.83 0.86 0.886
Avg. 0.67 0.71 0.76 0.74 0.72 0.73 0.73 0.78 0.78 0.878

Table 7.4: Comparative evaluation based on average classification accuracy on BCI 2a

Motor Imagery SVM SSVM RGLM LSVM BSVM SSM RSSM SSMM SMMRe
LvsR 0.80 0.82 0.82 0.81 0.81 0.81 0.83 0.83 0.858
LvsF 0.87 0.89 .89 0.88 0.89 0.88 0.90 0.90 0.924
LvsT 0.86 0.88 .88 0.88 0.88 0.88 0.91 0.90 0.933
RvsF 0.88 0.87 .87 0.88 0.89 0.89 0.89 0.90 0.915
RvsT 0.87 0.87 0.86 0.89 0.89 0.88 0.90 0.90 0.922
FvsT 0.80 0.80 0.81 0.80 0.81 0.81 0.84 0.84 0.882

three EEG data observations from BCI competition-IV, namely BCI III-IVa1, BCI

1http://www.bbci.de/competition/III/download
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IV-IIa2 and BCI IV-IIb3, are used to evaluate the performance of the proposed

approach. Table 7.2 describes the detail of the datasets. Both datasets contain

a small number of samples with redundant data a property that makes EEG

classification challenging.

Figure 7.3: Comparative evaluation of SVM, SMM, MSMM and SMMRe on IVa:top left to
bottom right (left-hand vs right hand, left-hand vs feet, left-hand vs tongue, right-hand
vs feet, right-hand vs tongue, feet vs tongue)

2http://www.bbci.de/competition/iv/dataset2a
3http://www.bbci.de/competition/iv/dataset2b
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7.5 Result and Discussion

To evaluate the SMMRe performance, we have compared the state of the art vector

based methods methods such as SVM [11], Sparse SVM (SSVM) [144] , LSVM [48],

BSVM [34]) as well as with state of the art matrix based classifiers (i.e. SSMM

[141],RSMM [140], SMM [46]) and regularized matrix regression (RGLM) [143] on

benchmark face recognition, person identification and EEG datasets.

Surprisingly, we can simultaneously perform matrix recovery, low-rank feature

extraction, identification of non-corrupted columns and their position and classi-

fication based on a set of a fraction of observed entries. Figure 7.4.2 shows the

effect of different parameter values on the classification. Table 7.3, table 7.4 and

figure 7.5 show the classification results on EEG datasets (BCI 2a, BCI 2b and

IVa). From figure 7.5, we can notice that SMMRe considerably performed better

against challenging conditions (A2 and A5 in left-hand vs right-hand, A2, A5 and

A6 in left-hand vs tongue, A5, A6 in left-hand vs feet and right-hand vs feet ) in

comparison to others.

Results showed that support matrix machines based on matrix recovery outperform

state of the art methods. Similar results can be noticed in figure 7.5 and figure 7.5

for face recognition and person identification on Caltech Face and INRIA datasets

respectively. Furthermore, we can observe that classifiers based on the matrix

data provided better results as compared to those methods based on data as a

vector, which shows that vector-based methods ignore the structural information

thus, they are very sensitive to the curse of dimensionality. However, matrix-

based approaches leverage the structural information of the data which is greatly

beneficial to the improvement of the classification performance. The other main

reason is low-rank property as discriminant features exist in sparse structure and

images are low rank.

In comparison to matrix based methods, SMMRe outperforms both sparse (i.e.

SSVM) and low rank methods ( i.e. BSVM, SMM and SSMM) which validate the

claim that SMMRe promotes the structural sparsity and shares similar sparsity

patterns across multiple predictors. To further validate the robustness against

outliers, we have contaminated both Caltech face dataset and INRIA dataset with

random noise, specifically we have randomly selected 20% images to add noise in

each dataset. We corrupted both datasets via the addition of random noise well as

block occlusions. Random noise is salt and pepper noise spread randomly at 30%,
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Figure 7.4: Comparative evaluation (accuracy) based on average classification accuracy
on real (top) contaminated (bottom) Caltech Face dataset

50% on random selection of images from dataset. Similarly, block occlusion is added

by placing blocks of different sizes at random locations with variable size 5x5, 10x10,

10x15. For evaluation on contaminated datasets, we have selected 60% and 70%

and 80% samples per individual for each dataset as training dataset and add blocks

of variable sizes. Figure 7.5 (b) and figure 7.5 (b) shows the comparative evaluation

on caltech face dataset and INRIA dataset. Notice that SMMRe considerably

performed better against outliers or challenging conditions in comparison to others.

This is due to the simultaneously matrix recovery through identification of non-

corrupted columns, low rank robust feature extraction, and classification. It shows

that SMMRe is robust even from partially observed matrix which validate our

claim that SMMRe is able to classify data with denser corruptions through exact

recovery of intrinsic matrix of higher rank based on the incoherence conditions.

We also consider the influence of parameters (τ,α1 and α2) on the performance

of SMMRe. τ is the penalty on nuclear norm of regression matrix that controls

the sparseness. α1 is the penalty term on nuclear norm that controls the recovery

process. α2 is the penalty on `2,1 norm to overcome the affect of outliers in feature

matrix, as a result, it helps to extract robust features from cleaned matrix. The

objective function degenerates to traditional support matrix machine for τ,α1,α2 =
0, that shows that SSMRe is the special case of support matrix machines. Similarly,
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Figure 7.5: Comparative evaluation (accuracy) based on average classification accuracy
on real (top) Corrupted (bottom) INRIA person dataset

fixing α1 = 0, degenerate the model to SMM. To study the influence of parameter,

we fix α1 and α2 and find the best optimum value of τ to control the sparseness.

Once we have sparseness control, we repeated the process for other two terms.

Figure 7.4.2 shows the effect of different parameter setting of τ, α1 and α2.

7.6 Conclusion

In this chapter, we have integrated the matix recovery and support matrix ma-

chines for the classification of dense corrupted data. SMMRe is simultaneously able

to performs matrix recovery, low rank feature representation and classification,

thus able to classify data with denser corruptions through exact recovery of intrin-

sic matrix of higher rank based on the incoherence conditions. The regularization

term promotes the low rank matrix recovery and structural sparsity as well as

shares similar sparsity pattern across multiple predictor. Furthermore, it also

leverages the structural information and avoids the inevitable upper bound that

simultaneously promotes a good fit to the data. A comprehensive experimental

study on four publicly available datasets of image classification and EEG classifi-
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Figure 7.6: Convergence curve of SSMRe (objective function value (y-axis) vs iteration
(x-axis)

cation was carried out to validate the proposed approach. The experiment results

showed the effectiveness of SMMRe approach for solving classification problems

even fraction of columns are corrupted while keeping reasonable number of support

vectors.
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8
MULTICLASS SUPPORT MATRIX MACHINES

The alchemists in their search for gold discovered many other things of greater value.
A. Schopenhauer

One of the most important challenges, associated with the classification of EEG

signals is how to design an efficient classifier consisting of strong generalization

capability. Aiming to improve the classification performance, in this chapter, we

propose a novel multiclass Support Matrix Machine (M-SMM) from the perspective

of maximizing the inter-class margins. The objective function is a combination

of binary hinge loss that works on C matrices and spectral elastic net penalty

as a regularization term. This regularization term is a combination of Frobenius

and nuclear norm, which promotes structural sparsity and shares similar sparsity

patterns across multiple predictors. It also maximizes the inter-class margins that

help deal with complex high dimensional noisy data. The extensive experiment

results supported by theoretical analysis and statistical tests show the effectiveness

of the M-SMM for solving the problem of classifying EEG signals associated with

motor imagery in Brain-computer Interface (BCI) applications.
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8.1 Motivation

Initially, support vector machines (SVM) were designed for binary classification.

How to effectively use it for the multiclass problem, it is still ongoing research.

In short, several extensions of SVM has been proposed to deal with multiclass

classification problem and can be classified into two types splitting the multiclass

classification into many binary classification problems or solving the multiclass

problem in a single optimization. Existing SVM classifiers are either single op-

timization model (i.e. regression-like formulation [58]) or multiple optimization

(i.e. OvsR or OvsO). In OvsR, the multiclass classification problem is split into

n binary class classification problem whereas OvsO split the problem into c(c−1)
2

binary classification problems.

Figure 8.1: Illustration of multiclass support matrix machine: For four classes, we need
three parameters W1,W2, W3, and W4 to maximize the inter-class margins

8.2 Maximizing Inter-Class Margins for SMM

In this section, we introduce the proposed approach for maximizing the inter-

class margin for the support matrix machine. Figure 8.2 illustrates the proposed

multiclass support matrix machines for the classification of EEG signals. It is in

principal novel classifier being able to, maximize the inter-class margins, select

the discriminant patterns by removing the redundant information, and to consider

the strong correlation of rows and columns in the matrix. Figure 8.1 shows the
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motivation of M-SMM. The objective function in Eq. 8.1 is a combination of sparse

and low-rank properties aiming at efficient capture of the correlations with each

input matrix and further maximization of the inter-class hyperplane margin for

better multiclass classification.

8.2.1 Objective Function

Given a c-class (c ≥ 2) matrix form training data {X i, yi}n
i=1 ∈ {X ,Y }, where X i ∈

Rpq is the ith feature matrix and yi ∈ {1,2,3....c} is the corresponding class label.

The support matrix classifier (argmin 1
2 ||W ||2F +C

∑n
i=1ξ) focuses on binary clas-

sification and hence incapable of dealing with multiclass problems. We devised a

novel objective function that maximizes the margin between inter-class.

Figure 8.2: Illustration of proposed framework equipped with M-SSM for EEG signal
classification

To maximize the inter class margin,

(8.1) arg min
wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F +τ
c∑

j=1
||Wj −Wk||∗

C
c∑

j=1

c∑
k= j+1

∑
yi∈ j,k

ξ
jk
i

such that

y jk
i f jk(X i)≥ 1−ξ

jk
i , ∀yi ∈ j,k

ξ
jk
i ≥ 0

Where W ∈ Rpq denotes the regression parameter in the form of tensor and ||X ||F
is the Frobenius norm of W . The objective function in Eq. 8.1 resulted in multiple
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optimal solutions. In order to reach the objective function which provides single

global optima, we further added constraints in the objective function as follow

(8.2) arg min
Wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F +τ
c∑

j=1
||Wj −Wk||∗

+ 1
2

c∑
j=1

b2
j +C

c∑
j=1

c∑
k= j+1

∑
yi∈ j,k

ξ
jk
i

such that

y jk
i f jk(xi)≥ 1−ξ

jk
i , ∀yi ∈ j,k

ξ
jk
i ≥ 0

Whereas as f jkxi = (Wj −Wk)T xi +b j −bk and y jk
i = {

1,−1
}
.

For classification of unseen data object, we follow the same voting strategy as in

one-vs-one multiclass classification and simulated using C matrices. Thus, M-SMM

does not require to compute c(c−1)
2 decision function, it only needs to compute the

decision function c times and decided based on the largest value. Surprisingly, the

problem could be solved using a simple yet efficient algorithm as shown in table

8.2.2.

8.2.2 Learning Algorithm

The objective function in Eq.8.2 consists of four terms and all of them are convex

i.e. the Nuclear and Frobenius norm, which satisfies the triangle and homogeneity

properties. The other two terms are linear functions, hence, they are also convex.

In conclusion, the objective function in Eq.8.2 is convex but non-differentiable and

non-smooth. In a convex optimization setting, the sub-gradient of the nuclear norm

function cannot be used in standard descent approaches, as a result solving it

directly is difficult. Thus the alternative approach is required to update W . As

we know, the dependency of matrix W can be revealed by its rank(W), so we

can impose rank on W . To conclude, rank matrix minimization is non-convex and

NP-hard and can be solved as
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(8.3) arg min
Wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F +τ
c∑

j=1
||Wj −Wk||∗

+ 1
2

c∑
j=1

b2
j +C

c∑
j=1

c∑
k= j+1

∑
yi∈ j,k

[1− ȳ jk
i f jk(xi)]+

whereas as W ∈Rd×c , b ∈Rc and decision function f jk(xi)= (Wj −Wk)T xi + (b j −
bk).y jk

n is the resultant class that is classified for unlabeled data.

We select the training sample randomly in each iteration. The objective function in

Eq. 8.3 can be rewritten as

(8.4) arg min
Wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F +τ
c∑

j=1
||Wj −Wk||∗

+ 1
2

c∑
j=1

b2
j +C

( c∑
j= ȳi+1

[1− ȳ jk
i f ȳi j(xi)]++

ȳi−1∑
j=1

[1+ ȳ jk
i f j ȳi(xi)]+

)
As all the terms in objective function in Eq. 8.4 are non-smooth and non-differential,

thus, stochastic gradient descent and Nesterov methods can not be applied. Since

the objective function is convex in all four terms, we have employed a widely used

framework ADMM for the convex optimization problem, by breaking the objective

function into sub-problems that are easier to optimize.

The problem in Eq.8.4 can be equivalently written as,

argmin
W ,b

P(W)+Q(S)

s.t S−W = 0
Where S ∈RP×Q×k is an additional decision variable to split the primal problem

into two sub problems.

(8.5) P(W ,b)= 1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F + 1
2

c∑
j=1

b2
j

+C
( c∑

j= ȳi+1
[1− ȳ jk

i f ȳi j(xi)]++
ȳi−1∑
j=1

[1+ ȳ jk
i f j ȳi(xi)]+

)
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and

(8.6) Q(S)= ||Wj −Wk||∗

where P(W) is the hinge loss function obtained from negative likelihood, Q(S) is an

additional penalty function defined on singular value of matrix. For simplicity, we

used term W instead of Wj−Wk and Wi. To solve the Eq. 8.4, we applied augmented

Lagrangian method and obtained

(8.7) L(W ,b,S, ) = P(W) + G(S) + p
2
||S − W ||2F + 〈L , (S − W)〉

where p > 0 is the hyperparameter and L is the Lagrange multiplier.

We have divided the optimization problem in Eq. 8.4 into two sub-problems W and

S. Solving it iteratively, we first needed to minimize S and W followed by updating

the Lagrangian multiplier accordingly as,

(8.8) St+1 = argmin
S

L(S,W t,L t)

(8.9) W t+1 = argmin
S

L(St+1,W ,L t)

(8.10) L =L t + p(St+1−W t+1)

Where t and t+1 are the tth and (t+1)th iterations respectively.

Minimizing the objective function in Eq. 8.8 with respect to S by fixing W , is to

minimize the sum of all terms S term. Assuming W is fixed, we get

(8.11) min
S

LS =G(S)+〈L ,S〉+ p
2
||W −S||2F

To update S, Eq. 8.11 can be solved by minimizing Ls. As Ls is non-differential but

convex, the sub-gradient of Ls is computed as (see the proof in theorem 1)

(8.12) St+1 1
p
Dτ(pW − L ) = 1

p
U0(Σ0 − τI)V T

0
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Where D is the singular value threshold operator.

Theorem 1. For τ≥ 0, one optimal solution for the following problem

min
S

LS =G(S)+〈L ,S〉+ p
2
||W −S||2F

is

St+1
c = i

1+ p
Dτ(pWc −Vc)

Where Dτ is the singular value thresholding operator (defined in chapter 2).

Similarly, fixing S and minimizing the objective function with respect to W

(8.13) min
S

LW = H(W)++〈−L ,W〉+ p
2
||S−W ||2F

The Eq. 8.13 is the non-negative convex sum of term H(W) (combination of hinge

loss, Frobenius norm and penalty term) and linear and square functions.

Here, we have two different cases i.e. j = yi and j 6= yi. Considering j = yi first, we

have

(8.14) W t+1 = 1
p+1

(
L + pS+

{ −Cxi i f 1− f jk(xi)> 0

0 i f 1− f jk(xi)≤ 0

Similarly, when j = yi, W is updated as

(8.15) W t+1 = 1
p+1

(
L + pS+

{ Cxi i f 1− f jk(xi)> 0

0 i f 1− f jk(xi)≤ 0

Finally the Lagrangian multiplier can be updated as

(8.16) L =L t + p(St+1−W t+1)

(8.17) pt+1 =βpt
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Theorem 2. Optimal solution of St+1 such that

min
S

LS =G(S)+〈L ,S〉+ p
2
||W −S||2F

satisfies 0= ∂Ls(St+1
c ), now we are required to find one Sc subject to

0 ∈ Sc +τ∂||Sc||∗+L + p(Sc −Wc)

Let UcΣcV T
C denotes the singular decomposition of an arbitrary matrix Sc.

Sub gradient of nuclear norm (defined in chapter 2) ∂||Sc||∗ is

∂||SC||∗ =UCV T
c +Z : Z ∈Rl1×l2 ,UT

c

The above equation can be rewritten as

∂||SC||∗ = 0,Vc

Which can be simplified as

∂||SC||∗ = 0, ||Z||F < 1

Let Y denotes PWc−Lc and decompose it as Y =U1Σ1V T
1 +U2Σ2V T

2 where U and

V are the singular vectors associated with singular values greater than τ (smaller

than or equal).

If Sc = U1(Σ1−τI)V T
1

1+p ; according to 0 ∈ Sc +τ∂||Sc||∗+L + p(Sc −Wc), we have the

following relation

∂||Sc||∗ = 1
τ

[Y − (1+ p)Sc]

The above Eq. can be simplified as

∂||Sc||∗ =U1V T
1 + 1

τ
U2Σ2V2

Consider Z =U2Σ2V2, Uc =U1 and Vc =V1, we have 0 ∈ ∂Ls when S∗
c = Sc
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8.2.3 Theoretical Justification

In this section, we theoretically analyze and illustrate how M-SMM possesses some

elegant features as compared to conventional SVM, conventional elastic net SMM

[46] and MSMM [142]. As discussed earlier, data is unbiased in real-world, thus

one versus the rest class problems will not work and will affect the performance.

Similarly, one versus one strategy has high space and time complexity, especially in

the case of matrix data, since it requires training of c(c−1)
2 SVM classifiers. M-SMM

works the same as one vs one fashion and does not use voting strategy and compute

decision function for each class. We build a classifier for every two classes, however,

different from one versus one strategy, it uses C matrices to simulate all these

binary classifiers, thus it does not need to use vote strategy c(c−1)
2 times. It just

needs to compute decision function c times. This results in reduction of space

complexity to same level as one-vs-rest strategy and finds the largest value.

We now show that S-SMM is the generalization of multiclass SMM. Considering

the hinge loss of proposed objective function as shown in Eq.8.2.

C
c−1∑
j=1

c∑
k= j+1

∑
yi∈ j,k

ξ
jk
i

The above equation can be written as

C
c−1∑
j=1

c∑
k= j+1

∑
yi∈ j,k

[1− ȳ jk
i f jk(X i)]+

=C
c−1∑
j=1

c∑
k= j+1

( ∑
yi∈ j

[1− f jk(xi)]++
∑

yi∈k
[1− fk j(X i)]+]

)

=C
c−1∑
j=1

∑
yi∈ j

c∑
k= j+1

[1− ((Wj −Wk)T X i + (b j −bk)))]+

=C
n∑

i=1

∑
k 6=yi

[1− ((Wyi −Wk)T X i + (byi −bk)))]+

The objective function in Eq. 8.4 can be written as below, which is MSMM [142].

(8.18) arg min
Wd×c,bc

1
2

c−1∑
j=1

c∑
k= j+1

||Wj −Wk||2F +
c∑

j=1
||Wj −Wk||∗

+ 1
2

c∑
j=1

b2
j +C

c∑
j=1

n∑
i=1

[1− ȳ jk
i f jk(X i)]+
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The proposed objective function degenerate to SMM.

8.3 Experimental Evaluation

In this section, we described the experimental setup and evaluation of the proposed

approach. To validate the effectiveness of proposed classifier, we extensively evalu-

ated the proposed M-SMM and compared it with MSMM [142], SMM [46], BSMM

[37], MSVM [34], KNN [6] and SCSSP[2] as well as winners of BCI competitions

on benchmark EEG datasets (IIIa and IIa) using four different evaluation metrics

(recall, prevision, F-measure and kappa coefficient).

8.3.1 Dataset

In this experiment, we have used two publicly available benchmark data-sets

namely IIIa (BCI competition III)1 and IIa2 (BCI competition IV). IIIa consisted

of 60 channel single-trial EEG signals obtained from three subjects(k3b, k6b, and

l1b) while performing four classes of motor imagery (left-hand, right-hand, foot and

tongue labeled as class 1, 2, 3 and 4 respectively). IIIa consisted of 45, 30, 30 trials

per class for subject k3b, k6b and l1b respectively. Similarly, IIa data-set collected

in two sessions from nine subjects performing four classes of motor imagery (left-

hand, right-hand, foot and tongue ). IIIa consisted of 288 in total (72 trails per

motor imagery). It consisted of 22 EEG channels and 3 monopolar EOG channels.

IIIa and IIa are sampled with 250 Hz and band-pass filtered between 0.5 Hz and

100 Hz. In this experiment, we have considered two subjects (k6b and l1b) for IIIa

data-set and EEG channel for IIa data-set.

We have conducted k-fold (k = 5) cross-validation to analyze the generalization of

the results to an independent dataset. The reason behind k-fold cross-validation is

that it guarantees that each sample eventually becomes part of training as well as

testing sets. For this purpose, we have divided the trials of each subject into 5 sets.

We have repeated the experiments five times and each time a different test set is

selected while the other four sets are considered as the training dataset.

1http://www.bbci.de/competition/iii/download
2http://www.bbci.de/competition/iv/dataset2a
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8.3.2 Evaluation Metrics

In order to evaluate the performance of the proposed classifier, we employed

different evaluation metrics such as kappa coefficient, precision, recall, and F-

measure. Furthermore, we have also compared the training time with state of the

art approaches. Kappa measure provides evaluation comparison as it considers

the accuracy occurring by chance better. Higher the value of k means the gain

in classification performance and k > 0 shows the gain is better than a random

guess. It is defined as k = accuracy−po
1−po

. Here, po is the random guess i.e. for a

k-class dataset with balanced sample sizes among different classes, we have po = 1
k .

The other evaluation measures we have used are precision, recall and F measure.

Precision also referred to as positive predictive value (PPV) is the true positive

relevant measure and is calculated as P = tp
tp+f p . Recall is referred to as the true

positive rate or sensitivity, is the ratio of correctly predicted positive observations to

all observations in the actual class. Recall is calculated as R = tp
tp+fn

. F1 score takes

both false positives and false negatives into account is the weighted average of

precision and recall. It is needed when we are seeking a balance between precision

and recall. It is calculated as F1 = 2R×P
R+P .

8.3.3 EEG Preprocessing and Feature Extraction

Motor imagery-based BCI, which translates the mental imagination of movement

to commands, is the huge inter-subject variability with respect to the characteris-

tics of the brain signals [4]. Furthermore, poor characteristics of EEG data such as

measurement artifacts, outliers, and non-standard noises make it a challenging

tasks. In order to reduce the variations, spatial filtering has presented itself as an

effective method for the extraction of features has been used as a preprocessing

technique to explore the discriminative spatial patterns and eliminate uncorre-

lated information. In this chapter, we have used Filter Bank Common Spatial

Pattern (FBCSP) algorithm [4] to filter out the artifacts and unrelated sensorimo-

tor rhythms by performing autonomous selection of discriminative subject-specific

frequency range for band-pass filtering of the EEG measurements. To select domi-

nant channels for each motor imagery task, we have applied CSP [39] followed by

Time domain parameters for feature selection [63] due to its robust performance

[110, 141, 142]. We have fed the time domain parameters to multiclass support

matrix machines for classifications.
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8.3.4 Results

The main goal of this work is to elucidate the best comparable performance as

compared to state of the art approaches followed by computational complexity. In

this experiment, we have used four evaluation measures to compare the perfor-

mance of the proposed approach with seven states of the art approaches on two

publicly EEG data-sets. As our contribution is on the classification of matrix data,

thus, to compare the proposed classifier for a fair comparison, we employed the

same preprocessing and feature extraction approach for other approaches. The

evaluation results on data-set IIIa shown in table 8.2 and 8.4 obtained the highest

score in the validation procedure. We have transformed the matrix into vectors

followed by PCA for dimensionality reduction for vector-based methods such as

BCI competition winner, MSVM, KNN, and SCSSP. To compare the performance

on the multiclass problem, we have extended the approaches using OvR strategy

except for MSMM.

We have also computed the error rate in Kappa measure for better comparison.

The evaluation results on data-set IIa are shown in table 8.3, and 8.5. From the

results of both data-sets, we observed that classifiers based on maximizing the inter-

class hyperplane margin for matrix data provided better results as compared to

those methods based on vectors. It further validated that leveraging the structural

information of data is greatly beneficial to the improvement of the classification

performance.

Notice that, the objective function consist of τ
∑c

j=1 ||Wj −Wk||∗. Here τ manages

the penalty by controlling the number of low rank of the regression parameter. It

determines the structural information. Large value of τ imposes a heavy penalty

that sets most of the singular values in the regression parameter to zero which

results in losing most structural information embedded in data. Figure 8.3 shows

the convergence process of M-SMM on subjects k3b and l1b of IIIa dataset. We have

used ADMM for the convex optimization problem, by breaking the objective function

into sub-problems that are easier to optimize. Notice that M-SMM converges to the

global optimum in only a few iterations. Similar trends also occur IIa dataset.

8.3.5 Parameter Setting

The objective function is a combination of Frobenius norm, nuclear norm, and hinge

loss function, thus there are several parameters τ, p, learning rate η, t and C, are
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Figure 8.3: Convergence process of M-SMM on subject k3b and l1b of IIIa dataset

required to be adjusted, in order to compute the objective function. τ is a penalty

added on the nuclear norm that captures the correlation of the data matrix. Thus,

it determines how much structural information is involved in the classification. We

notice that the magnitude of τ manages the penalty on nuclear norm by controlling

the number of singular values (rank) of the regression parameter. The large value

of τ results powerful penalty on the structure information as a result most of the

singular values in the regression parameter are set to zero which results in losing

most structural information embedded in data. We observe that the proposed model

degenerates to the problem [123] for vector data when τ= 0. Figure 8.4 validate

the aforementioned claim. Notice that results are the same as of MSMM when

τ= 0, similarly, the results start to degrade when τ is larger. Thus, we concluded

that the proposed model is a generalization of SVM and possess sparse and low-

rank properties. As a result, it considers correlation among matrices and performs

feature selection simultaneously. In this experiment, we have set the learning rate

η= 0.21, τ= 2.6 and p = 3 for IIIa dataset and learning rate η= 0.23, τ= 3 and

p = 3 for IIa dataset.

8.3.6 Computational Complexity

One of the major objectives of the proposed approach was computational efficiency.

As discussed in earlier sections, the existing methods required c(c−1)
2 support ma-

trix machines, that is computational complex In this work, we have used the same
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Figure 8.4: Behaviour of τ on on the classification performance for IIa and IIIa datasets

strategy as of OvsO, however rather than computation of c(c−1)
2 support matrix ma-

chine, we simulated the OvsO strategy using c support vectors. To investigate the

computational efficiency studies of the classification model. We have compared the

run time of the algorithms based on matrix data. The experiments were conducted

on Intel Xeon E5-1620,3.7GHz, 16GB RAM, Window 7. We compared the average

training and testing time on both data-sets between different methods. We have

only selected classifiers (i.e. SMM, BSMM, and MSMM ) based on matrix data. The

average training and testing time on both data-sets are shown in table 8.6. It can

be depicted that M-SMM training time is comparable with other approaches how-

ever, in comparison to the testing time, it is much faster. The reason behind more

training time and better testing time is that we have more number of parameters

in training whereas we require C vector for testing respectively.

8.3.7 Discussion

In this section, we provide a comprehensive analysis of the proposed approach.

Notice that, the M-SMM achieved better performance as compared to the state

of the art methods. Results show that the proposed approach is able to find the

representative features from high-dimensional space that are used for classification.

The nuclear norm promotes structural sparsity and shares similar sparsity patterns

across multiple predictors. τ determines the level of structural information involved

in the classification by controlling the number of singular value (rank) of the
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regression parameter. This means greater the value of τ could account more

structural information encoded in the matrix results in improving the classification

accuracy. M-SMM reveals the geometric structure embedded in the data due to the

fact that it select the features by maintaining the spatial structural information of

the matrix.

Comparing with aforementioned experimental evaluation, we have the following

interesting observations

(I) M-SMM degenerates to the problem [123] for vector data, when τ= 0. Thus, it

is a generalization of SVM and possess sparse and low-rank properties.

(II) Larger value of τ results powerful penalty on the structure information.

However, too large value of τ results in decreasing the performance due

to the fact that high value of τ results in setting the singular values in

the regression parameter to zero which discard the structural information

embedded in matrix.

In this work, we have presented a multiclass support matrix machines with the

perspective of maximizing the intra-class margins. As a case study, we solved one

of the important problem of EEG classification to show the performance of the

proposed approach. Results showing considerable improvement in accuracy as well

as the computational complexity is also attractive. Although in this experiment,

we have applied the EEG dataset for validation, however, the proposed approach is

a general machine learning classifier and could be applied to any high dimensional

data involving multiclass problem.

8.4 Summary

In this work, we presented a novel classifier name Multiclass Support Matrix

Machine (M-SMM) from the perspective of maximizing the intra-class margins

(maximizing the distance between training point and hyper-plane) for multiclass

classification of high dimensional data such as EEG classification. We combined

the hinge loss, nuclear and Frobenius norm and followed the idea of maximizing

the margin between two-class problems and use c support matrices to simulate

all binary classifiers rather than computing support vector between every two

classes. The objective function not only maximized the inter-class margins but was
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a spectral extension of the conventional elastic net that combines the property

of low rank and joint sparsity together to deal with complex high dimensional

noisy data. Hence resulted in an improved classification performance supported by

the experimental evaluation. The M-SMM has achieved 0.916 k value for IIIa in

comparison to 0.88 and 0.782 for MSMM and SSM respectively. Similarly, 0.671 k
value for IIa in comparison to 0.648 and 0.519 for MSMM and SSM respectively. In

conclusion, the numerical results suggest that our method is superior to previous

approaches and demonstrates the promise of M-SMM for real-world applications.
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Table 8.1: Algorithmic procedure of sparse support matrix machine

Input: : Labeled Training dataset: [X i, yi] where X j ∈ Rm×n for j =
1, ..., N, Lagrangian multiplierL , learning rate η ∈ {0,1}, p > 0,t= 1, C, τ
Output: Matrix W

Step-I: Initialize the W ,S,L = 0

While not converge do
Step-II Minimize S with respect to W

min
S

LS =G(S)+〈L ,S〉+ p
2
||W −S||2F

Step-III Minimize W with respect to S

min
S

LW = H(W)++〈−L ,W〉+ p
2
||S−W ||2F

for i = 1 to c do
Step-IV: if 1− f jk(xi)≤ 0

∇W = 1
p+1

(
Λ+ pS−Cxi)

Step-V: if 1− f jk(xi)≤ 0

∇W = 1
p+1

(
Λ+ pS+Cxi)

end for
for i = 1 to n do

Pick it ∈ 1,2, ...n randomly and update parameter
for i = 1 to c do

W =W −η∇W

S = 1
p
Dτ(pW −Λ)

L =L t + p(St+1 −W t+1)

pt+1 =βpt

end while
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Table 8.2: kappa/error rate %: classification performance of different algorithms on
data-set IIIa

Subject BCI Com. KNN MSVM SCSSP SMM BSMM MSMM M-SMM

k3b 0.83/18.6 0.81/14 0.89/8.3 0.71/22.3 0.852/11.1 0.94/4.4 0.948/3.9 0.961/3.6
l1b 0.74/22.1 0.49/38 0.68/24.2 0.69/36.2 0.71/21.7 0.8/15 0.811/14.2 0.85/13.2
Avg 0.78/19.8 0.65/26 0.78/16.3 0.64/23.6 0.78/16.4 0.87/9.7 0.88/9.0 0.89/9.2

Table 8.3: kappa/error rate%: classification performance of different algorithms on dataset
IIa

Sub BCI Comp. KNN MSVM SCSSP BSMM SMM MSMM M-SMM

S1 0.68/24 0.71/22 0.72/21 0.62/26 0.73/21 0.69/0.23 0.73/20 0.76/18
S2 0.42/44 0.4/45 0.37/47 0.28/54 0.4/45 0.23/0.58 0.43/43 0.44/39
S3 0.75/19 0.77/17 0.76/17 0.6/26 0.75/19 0.69/0.24 0.84/11 0 0.84/8.4
S4 0.48/39 0.45/41 0.36/48 0.33/51 0.51/37 0.54/0.35 0.59/31 0.64/28
S5 0.4/45 0.38/47 0.42/43 0.15/64 0.39/46 0.32/0.51 0.5/38 0.55/41
S6 0.27/55 0.24/57 0.19/61 0.25/56 0.32/51 0.15/0.63 0.41/44 0.45/39
S7 0.77/17 0.69/23 0.66/25 0.41/44 0.81/14 0.72/0.21 0.85/12 0.88/11
S8 0.76/18 0.62/29 0.45/41 0.6/31 0.71/22 0.71/0.22 0.77/17 0.81/13.7
S9 0.61//26 0.48//39 0.56/33 0.66/25 0.62/29 0.63/0.27 0.72/21 0.77/14
avg 0.57/32 0.53/36 0.5/37 0.44/42 0.58/31 0.52/0.36 0.65/26 0.74/16

Table 8.4: Comparative evaluation of classification performance of different algorithms
on IIIa data-set

Method Kappa Precision Recall F1 Score

KNN 0.732 0.768 0.799 0.804
MSVM 0.784 0.85 0.838 0.844
BSMM 0.871 0.91 0.903 0.906
SMM 0.782 0.847 0.836 0.841
MSMM 0.880 0.916 0.91 0.913
M-SMM 0.916 0.927 0.918 0.922

Table 8.5: Comparative evaluation of classification performance of different algorithms
on IIa data-set

Method Kappa Precision Recall F 1 Score

KNN 0.527 0.684 0.645 0.663
MSVM 0.499 0.689 0.624 0.653
BSMM 0.581 0.715 0.686 0.7
SMM 0.519 0.674 0.64 0.656
MSMM 0.648 0.751 0.736 0.744
M-SMM 0.671 0.793 0.766 0.761
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Table 8.6: Comparison of average training and testing time (in seconds) on IIIa and IIa
data-sets

Classifier IIIa IIa
Training Testing Training Testing

SMM 18.995 0.0594 47.198 0.243
BSMM 20.381 0.0636 47.198 0.243
MSMM 22.257 0.0541 65.528 0.230
M-SMM 24.366 0.0414 67.261 0.161
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ONE CLASS SUPPORT TENSOR MACHINES

Errors using inadequate data are much less than those using no data at all.
C. Babbage

While a one-class support tensor machine has been proven an effective approach

for anomaly detection, their ability to model large corrupted datasets is limited.

In this section, we present a novel anomaly detection approach by using the

randomized nonlinear features and replacing the hinge loss with a bounded loss

function. This results in improving the performance against outliers and also

reduces the training time significantly. As traditional loss function is unbounded

which results in larger loss caused by outliers. Furthermore, finding support

vectors is computationally expensive and does not work well for large datasets.

Thus, instead of utilizing traditional hinge loss function and performing a search

in high dimensional space, we first present a novel anomaly detection approach for

large scale tensor data. We first present novel one-class support tensor machines

with bounded loss function rather than finding optimized support vectors with an

unbounded loss function. We further extend it by leveraging the randomness to

design a scalable approach that can also be used for large scale anomaly detection.

To solve the corresponding optimization problem, we have presented half quadratic

optimization followed by solving it like a typical OCSTM optimization problem at

each iteration. We demonstrate our algorithms through experiments on fourteen

real-world benchmark datasets on which we compare against the state-of-the-
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art. Experimental results show the robustness of the proposed approach against

outliers while computational complexity remains very attractive for large datasets.

(9.1) min
W ,p,ζ

1
2
||W ||2F + 1

Nv

N∑
i=1

ζi − p

s.t.
(〈W ,φ(Xi〉+b

)≥ p−ζi,

ζi ≥ 0,∀i = 1, ..., N

where W tensor is a weight of the separating hyper-plane, v ∈ (0,1] is the regu-

larizer that controls the fraction of anomalies and fraction of support vectors. Let

φ is the mapping function that maps the dataset into Hilbert space H and can

be formulated as φ : X −→φ(X ) ∈RH1×H2×....×HM′ . ζi are the slack variables that

allow some of the data points on the other side of the hyperplane.

9.1 Motivation

Traditional loss function in Eq.9.1 is unbounded which results in larger loss caused

by outliers, thus is not able to efficiently identify anomalies. Furthermore, methods

based on it work well for small datasets however, they are not scalable and compu-

tationally complex for larger datasets. Thus, it limits the applicability of one class

support tensor machines for anomaly detection for large datasets especially when

the datasets are heavily corrupted. Bounding the hinge function could in turn help

to reduce the loss caused by outliers. Similarly, the computational complexity can

be avoided by exploiting nonlinear random feature as random projection avoids the

computational complexity of optimization methods required for nonlinear kernels.

Thus, the aim of this work is to design a robust one-class support tensor machine

for anomaly detection for large scale datasets.

9.2 Randomized Kernel Bounded One-Class STM

While a one-class support tensor machine has been proven an effective approach for

anomaly detection, their ability to model large corrupted datasets is limited. In this

section, we present a novel anomaly detection approach by using the randomized

nonlinear features and replacing the hinge loss with a bounded loss function. This
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results in improving the performance against outliers and also reduces the training

time significantly. As traditional loss function is unbounded which results in larger

loss caused by outliers. Furthermore, finding support vectors is computationally

expensive and does not work well for large datasets. Thus, instead of utilizing

traditional hinge loss function and performing a search in high dimensional space,

we propose bounded loss function and randomized set of features which results

in an improvement in anomaly detection and training time respectively. In the

following discussion, we first presented support tensor machines with bounded

loss function followed by the generation of nonlinear random features and their

application for anomaly detection for tensor data.

9.2.1 Bounding Loss Function

One-class support tensor machines for anomaly detection tries to find an optimal

hyperplane in high dimensional data that best separates the data from anomalies

with maximum margin. However, the hinge loss of traditional one-class support

vector machines is unbounded, which results in larger loss caused by outliers

effecting its performance for anomaly detection. Bounding hinge loss function

results in reducing the influence of outliers.

To this end, we can rewrite the optimization problem of OCSTM (given in equation

9.1) as

(9.2) max
W ,p

J(W , p)= 1
2
||W ||2F − 1

vN

N∑
i=1

ℵi − p

subject to 〈W .œÜ(Xi)〉 ≥ p−ℵi

ℵi ≥ 0 ∀i = 1, ..., N

where ℵi = max{0, p−Z i} is the hinge loss function with Z i =W φ(Xi).

Notice that the hinge loss in Eq. 9.2 is unbounded which results in larger loss

occurred due to the outliers which in turn effect the performance of anomaly

detection. To overcome the aforementioned challenge, we present the following

objective function (Eq.9.3) with bounded loss function (Eq.9.4).
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(9.3) max
W ,p

J(W , p)= 1
2
||W ||2F − p+ 1

vN

N∑
i=1

℘i

subject to 〈W .φ(Xi)〉 ≥ p−ℵi

ℵi ≥ 0 ∀i = 1, ..., N

(9.4) ℘i =β[1− e−ηℵi]

where β= 1
1−e−η is the normalization constant and η≥ 0 is the scale constant. The

normalization constant β ensures that ℘i = 1. Here, the scale constant η controls

the upper bound. For η= 0 the bounded loss function (℘) degenerates to traditional

hinge loss (ℵ), thus the traditional hinge loss function (Eq.9.2 is a special case of

bounded loss function 9.3).

Eq. 9.2 shows that similar to the traditional one-class support tensor machines,

the bounded loss function is also monotonic, bounded however non-convex. By

simplifying the Eq. 9.2 and Eq. 9.3, We can rewrite the objective function as

(9.5) max
W ,p

J(W , p)= β

vN

N∑
i=1

e−ηζi + p− 1
2
||W ||22

9.2.2 Optimization

As discussed earlier, the objection function in Eq. 9.5 is non-convex due to non-

convexity of hinge loss function, thus traditional optimization can not be applied

directly. We can solve the above equation through half quadratic optimization by

defining a convex function as

(9.6) R(u)=−ulog(−u)+u,u < 0

By applying the conjugate function theory, we get

(9.7) e−ηℵ = sup
u<0

ηℵu− g(u)
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We can obtain the supermum of e−ηℵ at u =−e−ηℵ < 0.

Now, we can rewrite the Eq. 9.5 as

(9.8) max
W ,p

J(W , p)= β

vN

N∑
i=1

sup
ui<0

{ηℵiui − g(ui)}+ p− 1
2
||W ||2F

(9.9) max
W ,p

J(W , p)= β

vN
sup
u<0

{ N∑
i=1

ηℵiui − g(ui)
}
+ p− 1

2
||W ||2F

(9.10) max
W ,p

J(W , p)= sup
u<0

{ β

vN

N∑
i=1

ηℵiui − g(ui)+ p− 1
2
||W ||2F

}
We can simplify the Eq. 9.9 as

(9.11) max
W ,u,p

J(W ,u, p)= β

vN

N∑
i=1

ηℵiui − g(ui)
}
+ p− 1

2
||W ||2F

Iteratively solving the above equation (9.10) using alternating methods to compute

W , u and p.

Finally, we can write the Eq. 9.9 as

(9.12) max
W ,p

J(W , p)= β

vN

N∑
i=1

ηℵiui + p− 1
2
||W ||2F

We can rewrite the above Eq. 9.12 as

(9.13) min
W ,p

Jo(W , p)= 1
2
||W ||2F + β

vN

N∑
i=1

ηℵiui − p

The above problem in Eq. 9.13 can be solved by applying Lagrange multiplier. By

applying Lagrange multiplier on th above optimization problem, we get

(9.14) min
α

1
2

N∑
i=1

N∑
j=1

αiα jK (Xi,X j)
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s.t.
∑N

i=1αi = 1 and 0≥αi ≤ 1
vN si for i = 1, ..., N

where α = [α1, ....,αN]T is the vector of Lagrange multipliers, k is the kernel

matrix.

After solving the dual optimization problem 9.14, the weight tensor W can be

calculated as

(9.15) W =
N∑

i=1
αiφ(Xi)

Finally, the decision function is defined as

(9.16) f (x)= sgn
(
wφ(x)− p

)

(9.17) f (x)= sgn
( N∑

i=1
αi(xi, x)− p

)
The solution to the above quadratic problem in Eq. 9.17 is characterized by param-

eter v that sets an upper and lower bound on the fraction of anomalies and the

number of training samples used as support vectors respectively, thus limiting the

loss due to outliers.

To apply the kernel methods for tensor data, it has been converted into vectors

or matrices [96, 97, 138] which in results in high dimensionality and destroy the

structural information embedded in the tensor data. Thus, kernel learning is an

important aspect for tensor data to keep the structural information embedded in

the tensor data by sets of key structural features and design kernel on such sets.

CANDECOMP/PARAFAC (CP) factorization has been employed to tensor to foster

the use of kernel methods by extracting a structure-preserving kernel in tensor

product feature space [27]. It provides a good approximation to the original tensor

data. More specifically, in this way, each tensor can be represented as a sum of

rank-one tensors in its original space following by mapping them to tensor product

features space for kernel learning.

Let X = ∑R
r=1

∏M
n=1⊗X m

r be the CP factorization of tensor X such that X ∈
RI1×···×IM . The kernel of two same size tensor can be written as K (X ,Y ) =
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∏M
m=1 K (xm, ym). Tensor data can be factorized in the feature space, similar to the

original space. Feature space mapping on rank R = 1 feature mapping of a tensor

can be defined as

(9.18) φ : X m −→φ(X m) ∈RH1×....×HM

(9.19) φ :
M∏

m=1
⊗x(n) −→

M∏
m=1

⊗φ(x(m))

The CP factorization of tensor in the feature space similar to the original sapce.

The CP factorization of tensor X and Y ∈RI1×···×Im is given as

(9.20) X =
N∏

m=1
⊗x(m) and Y =

M∏
n=1

⊗y(m)

The kernel function of two same size tensors X and Y can be written as

(9.21) K (X ,Y )=
M∏

m=1
K (x(m), y(m))

The feature mapping of tensor X and Y can be derived as

(9.22) φ :
R∑

r=1

M∏
m=1

⊗x(m) −→
R∑

r=1

M∏
m=1

⊗φ
(
x(m))

This transformation correspond to mapping the tensor data to high dimensional

tonsorial feature space and performing the factorization in the high dimensional

space. Then the kernel in the high dimensional space is the standard inner product

of the tensor data in that feature space [27]. We can directly drive the naive tensor

products kernels as

(9.23) K
( R∑

r=1

M∏
m=1

⊗φ(xm),
R∑

r=1

M∏
m=1

⊗φ(ym)
)

R∑
i=1

R∑
j=1

M∏
m=1

K
(
xm

i , ym
j

)
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Although the objective function limits the affect of outliers, however, it is compu-

tationally complexity increases quadratically with the increase in a number of

training samples. This issue can be solved using the linear kernel, however, it

introduces biasness to the origin. Another alternative is RBF kernel however it

results in high computational complexity for high dimensional kernels that makes

it inefficient for the larger dataset. The use of randomization such as linear random

projection showed itself a substitute to overcome the computational burden of

kernel matrix construction [26]. Thus, to deal with the aforementioned challenge

of computational and space complexity, we propose to use randomized nonlinear

projections that serve as a good approximation of nonlinear kernel and eliminates

the need to deal with large kernel matrices for larger datasets, consequently reduc-

tion in time complexity. Section 9.2.3 introduce the use of randomized non-linear

projections into support tensor machines.

Table 9.1: Algorithmic procedure of OCSTM-BH

Input: : Training dataset: Xi
N
i=1 where X j ∈ Rm×n for j = 1, ..., N,

kernel function K (Xi,X j trade-off parameter τ, scale constant η,
Tmax

Output: Lagrange multiplier α and margin parameter p,

Step-I: Parameter Initialization: Auxiliary variable u ∈RM such
that ui < 0, Number of iteration T=0,
While T ≤ Tmax do
Step-II: Compute αT+1 and margin parameter p by solving Eq.

9.14,
Step-III: Compute uT+1 =−e−ηℵ.
Step-IV: Increment T by 1 and repeat the step II-III until con-

verges.
end while
Step-VI: Return α and p

9.2.3 Randomized Feature Embedding

As discussed in earlier sections 9.1 and 9.2.2, the complexity of one-class sup-

port tensor machine (objective function in Eq.9.1) grows quadratically with the
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increase of training samples, thus, is not efficient for larger datasets. To solve the

aforementioned issues, in this section, we described the embedding of non-linear

randomized features into robust one-class support tensor machines described in

section 9.2.1. Random projections are extremely popular techniques in order to

deal with the curse-of-dimensionality. We can randomly sample the parameters

from a data-independent distribution and construct a d-dimensional randomized

feature map. Thus, we applied one-class support vector machines with bounded

loss function on the randomized nonlinear projection which results in reducing

the computational complexity by eliminating the need of large kernel matrices for

larger datasets consequently reducing the space and computational complexity

considerably while outperforming anomaly detection performance in comparison to

conventional nonlinear machines.

Our target is to find the optimal fitting function f (x) in order to minimize the

empirical risk.

(9.24) f (X )=min
1
N

N∑
i=1

c(f (Xi), yi) such that yi = 1

where c(f (Xi), yi) is the bounded loss function that penalizes the deviation be-

tween label yi and prediction.

Thus, the fitting function f (X ) can be estimated by minimizing the regularized

risk as

(9.25) RReg[f (X )]= REmp[f (X )]+ 1
2
||f (X )||2F

where RReg[f (x)], REmp[f (x)] and 1
2 ||f (x)||22 is the regularizer risk (average loss),

empirical risk and regularizer respectively. The empirical risk can be calculated as

(9.26) REmp[f (X )]= 1
N

N∑
i−1

LB(f (Xi), yi)

where LB(f (Xi), yi) is the bounded loss function (described in section 9.2.2) that

penalizes the deviation between labels and predicted values.

The fitting function can be solved using random sampling si ∈Rd from independent

distribution of data and generating d dimensional features.

Z(X )= [(Z1,Z2, . . .Zd)n]
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where Z i = [cos(sT
i , x1+bi), ..., cos(sT

i , xN+bi)] and e j = [cos(sT
j , y1+b j), ..., cos(sT

j , yN+
b j) are Fourier based random features.

Now, replacing the nonlinear kernels with randomized features kernel by unitizing

the randomize rank one tensor and CP factorization. We can rewrite the kernel in

Eq. 9.23 as

(9.27) K
( R∑

r=1

M∏
m=1

⊗φ(xm),
R∑

r=1

M∏
m=1

⊗φ(ym)
)
=

R∑
i=1

R∑
j=1

M∏
m=1

(
Z (m)

i

)2
e(m)

j

Figure 9.1: Randomized projection of matrix data

The above Eq. 9.27 randomized kernels,

(9.28) min
α∈Rd

1
N

∑
i

(αT zi, yi) s.t. ||α||∞ ≤β

where β is a regularization constant.

Thus, utilizing nonlinear randomized features, the above formalization remarkably

simplifies the computation. Theorem 9.1 justifies this claim.
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Theorem 9.1. Let D is the distribution on Ω and φ(x;s) ≤ 1. Let F = {f (x) =∫
δα(s)φ(x;s)ds : α(s)≤βD(s)}. Let l be the L-Lipschitz loss function and λ> 0.

Draw s1, ..si iid from distribution D. We can write {f ∗(x)=∑i
j=1α jφ(x;s j) mini-

mizes the empirical risk

(9.29) ED[l(f ∗(x), y)]−min
f ∈F

ED[l(f (x), y)]

≤O
((

LBp
N

+ LBp
d

)√
log

1
δ

)
with a probability of at least 1−2δ.

9.2.4 Convergence

The convergence rate of proposed anomaly detection can be related to original one

class support vector machines with its original kernel and can be expressed by the

following theorem.

Theorem 9.2. For the given data X ∈RN×M , kernel matrix K i, j =K (xi, x j) and
its approximation K̂ using d random features, the following condition holds

(9.30) E||K̂ −K || ≤
√

3N2logN
d

+ 2NlogN
d

Proof: K̂ : 1
d
∑d

i=1
Z iZ

T
i = 1

d
∑d

i=1
K i is a N×N kernel matrix such that E[K̂ ]=K

where K̂ = 1
d
∑d

i=1
K i. Since the matrix X is defined to be constant and random

features (d) are sampled based on independent and identical distribution. We can

considering the individual error matrices as

E = K̂ −K

(9.31) E =
d∑

i=1
E i s.t. E[E i]= 0 ∀E i; i = 1, ...d

where as

E i =
K̂ (i)−K

d
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Since, in our case, we have bounded features, thus it follows that there exist a

constant B such that ||Z||2 ≤B. Thus, we can write

||E i|| =
Z iZ

T
i −E[Z Z ]

d
≤ ||Z i||2−E[||Z ||2

d
≤ 2B

d

because of the triangle inequality on the norm and Jensen’s inequality on the

expected value. In order to bound the variance of E, we first bound the variance of

each of its sumands E i

E[E2
i ]= E[(Z iZ

T
i −K )2]
d2

where as K = E[Z iZ
T
i ]

E[E2
i ]= E[||Z 2

i ||Z iZ
T
i −Z iZ

T
i K −K Z iZ

T
i +K ]2

d2

º 1
d2 [BK −2K 2+K 2]

º BK

d2

Now, taking all summands together, we get

(9.32) ||E[E2]|| ≤ ||
d∑

i=1
EE2

i || ≤
B||K ||

d

Thus, we can conclude,

(9.33) E||K̂ −K || ≤
√

3B||K||logN
d

+ 2BlogN
d

Notice that both random feature (as ||Z ||2 ≤ B, where B is bounded) and kernel

evaluation are upper bounded by 1, thus, we can conclude that both B and ||K ||
are bounded by N, resulting Eq. 9.30.

9.3 Experiments

In this section, we evaluate and compare the performance of one class support

tensor machines and the effect of randomized feature selection for the task of

anomaly detection. To validate the gain in performance, we have performed k-fold

(k=10) validation on both vector and tensor datasets downloaded from the UCI

machine learning repository and compared the performance with state of the art
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vector and tensor-based methods. As our core objective is the classification of the

anomalies in large scale data, thus, in order to validate the effectiveness of R1STM-

BH against the large datasets, in this section, we performed several experiments

with various numbers of dimensions and records. To further validate the effect of

bounding the hinge loss function against outliers, we have corrupted the datasets

with anomalies.

9.3.1 Dataset

In order to validate the performance of the proposed approach against outliers and

gain in computational complexity, we have conducted several experiments on both

vectored and tensored dataset. In our first experiment, we have used vector data

and transformed it into tensor form. For this purpose, we have download publicly

available twelve datasets mostly from UCI machine learning repository that are

Breast Cancer [103], Iris, Import, Ionospher, Lung, Sona, Delftpump AR, USPS,

Daily and Sport Activity (DSA), Gas Sensor Array (GSA) and PAMAP2 Physical

activity monitoring dataset (PAMAP). Most of these datasets are originally vector-

based thus, we have transformed these datasets to tensorial representation. For the

first eight dataset, we have generated tensor data by transforming the vector data

[8] and select the tensor size based on [14]. The datasets (viii-xii) are time series,

thus, we transform these datasets into 3rd order tensor as features x samples x

times. In our second experiment, we have used tensor data. For this purpose, we

have considered four CASIA gait recognition dataset (A dataset [113]). The size of

Dataset A is about 2.2GB and the database includes 19139 images. Furthermore,

we have also used the face recognition dataset (The ORL Database of Faces) and

handwritten digits database (MNIST [38]).

We have normalized all the records in each dataset between [0,1]. For training

and validation purposes, the datasets are divided into training and testing set by

randomly selecting 80% and 20% records respectively. To validate the robustness

of proposed approach, we have corrupted the datasets by 5% anomalies drawn

from U(0,1]. As, our approach is unsupervised anomaly detection, thus, during the

training phase, we omitted the class labels, however, we have used label during

testing.
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Table 9.2: Average accuracy (%) and ACU (%) on Breast Cancer dataset with differnt
training samples

Sample Size Target Class Accuracy AUC
2 Class 1 82.86 ± 14.85 99.80 ± 0.15

Class 2 84.06 ± 6.77 90.11 ± 16.78
4 Class 1 84.87 ± 14.34 99.82 ± 14.27

Class 2 86.43 ± 10.11 97.86 ± 10.45
6 Class 1 89.91 ± 7.22 97.86 ± 6.75

Class 2 91.65 ± 9.81 99.42 ± 4.65
8 Class 1 91.05 ± 11.24 94.45 ± 7.54

Class 2 92.11 ± 4.95 98.76 ± 3.45
10 Class 1 92.11 ± 8.87 99.89 ± 2.65

Class 2 94.67 ± 4.75 98.95 ± 4.50

Table 9.3: Average accuracy (%) and ACU (%) on corrupted Breast Cancer dataset with
different training samples

Sample Size Target Class Accuracy AUC
2 Class 1 80.13 ± 10.21 99.10 ± 0.17

Class 2 80.46 ± 7.79 88.76 ± 10.95
4 Class 1 79.23 ± 9.56 98.51 ± 12.65

Class 2 82.96 ± 10.56 96.45 ± 9.86
6 Class 1 86.46 ± 8.54 97.86 ± 6.75

Class 2 88.43 ± 10.23 99.12 ± 2.54
8 Class 1 89.65 ± 8.56 93.22 ± 7.54

Class 2 90.54 ± 7.55 98.12 ± 4.45
10 Class 1 91.51 ± 10.19 98.65 ± 4.62

Class 2 90.24 ± 8.88 98.34 ± 6.56

9.3.2 Results and Discussion

The main goals of this work are to improve the robustness of anomaly detection and

overcome the complexity issue of support tensor machines for the larger dataset.

We have conducted several experiments on both vectored and tensored dataset and

performed k-fold cross-validation. As described in section 9.3.1, we transformed

the vector data into tensoral representation. Initially, we performed k-fold cross-

validation for both vector (Breast cancer) and tensor (MNIST) dataset to find the

optimal range of parameters followed by experiments on the rest of the datasets

within that optimal range. To validate the robustness against outliers, we have

contaminated the datasets with anomalies.
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Figure 9.2: Performance comparison of proposed R1STM-BH with state of the art methods
on Iris dataset

Figure 9.3: Performance comparison of proposed R1STM-BH with state of the art methods
on Lungs dataset

In order to estimate the effects of random feature projection and bounded loss

function in the construction of the projection matrices, we repeated our cross-

validation experiments ten times for all datasets. We have randomly selected 30%

of training data to form a validation dataset which we have used to tune parameters.

The size of the training dataset is very important for efficient anomaly detection.

Some of the methods in the literature showed good performance for large dataset

however, are poor for small datasets. Similarly, some of the methods worked better

performance for a small dataset, however, showed poor performance for the larger
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Figure 9.4: Performance comparison of proposed R1STM-BH with state of the art methods
on the task of face recognition (ORL dataset)

Figure 9.5: Performance comparison of proposed R1STM-BH with state of the art methods
on contaminated ORL dataset)

dataset. The other major challenge is computational complexity which grows with

the size of data i.e. complexity of kernel based methods can group quadartically.

Although our major concern is anomaly detection for larger datasets, however,

for generalization purposes and to observe its performance for small dataset, we

have conducted several experiments on different sizes of datasets with a varying

numbers of dimensions and records to validate the effectiveness of the proposed

methodology. In the following the discussion, we provide the experimental results

on both vectored (syntactically transformed to 2nd and 3rd order tensor) and
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Figure 9.6: Performance comparison of proposed R1STM-BH with state of the art methods
with different level of corruption on ORL dataset

tensored datasets. Table 9.2 and table 9.3 shows the results on real and corrupted

breast cancer datasets with different subjects.

To elucidate the best comparable anomaly detection performance as compared

to state of the art approaches such as OCSTM [14], R1STM [20], LOCSTM [14]),

vector methods (OCSVM [11], LOCSVM [13], R1SVM [19]) and deep one-class

classification methods (One-Class Deep SVDD [89], Soft Bounded Deep SVDD (SB

Deep SVDD) [89]) on fourteen publicly available benchmark datasets. 9.7 shows

the comparison of results on different numbers of training samples. We can notice

that R1STM-BH not only showed better performance for a small number of training

samples (2) but also better performance for a larger number of samples (8) per

individual whereas the computational complexity remains very attractive. Table

9.4 shows the comparison of results on all datasets. We can notice that R1STM-

BH showed significantly better performance in comparison to OCSVM, LOCSVM,

LOCSTM, R1SVM, OCSTM, and LOCSTM however results are comparable to

deep SVDD and SB deep SVDD. Figure 9.2, figure 9.3 and figure 9.4 show the

results on Iris, Lungs and ORL datasets respectively. We can clearly notice that

R1STM significantly outperforms all for small sample size (2), however, results

are comparable to deep SVD and SB deep SVDD for large sample size. This shows

that R1STM-BH is scale-able and works for both small samples and larger sample

datasets. Notice that accuracy of anomaly detection is almost comparable when

data is free from outliers, however, computationally, the proposed approach showed
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better performance.

To validate the robustness against outliers, we have performed evaluation on

corrupted data. Results on corrupted dataset are shown in table 9.3 and figure 9.5

on breast cancer and ORL face dataset respectively. We can notice that R1STM-

BH showed significantly better performance as compared to the state of the art

methods for corrupted data. This shows that bounding the hinge loss overcome

the larger loss occurred due to the outliers which in turn effect the performance

of anomaly detection. Notice that with the increase in a number of outliers, the

proposed anomaly detection showed superiority over the state of the art methods.

Table 9.7 compare the training time, test time and the number of iterations to

converge. In this comparison, we only compared the performance with methods

based on support vector machines such as OCSVM and OCSTM. Results show that

R1STM-BH is much faster both in terms of training and testing as compared to

other methods. Furthermore, R1STM-BH converges with a low number of iterations

as compared to OCSVM and OCSTM.

We have the following key observations

• For η = 0, the proposed objective function degenerates into to traditional

hinge loss (ℵ), thus the traditional hinge loss function (Eq.9.1) is a special

case of bounded loss function (9.3).

• The objective function is monotonic, bounded and non-convex. Thus, we have

used half quadratic optimization to transform the problem into a traditional

support tensor machine.

• We observe that randomized projection eliminates the need to deal with large

kernel matrices for large datasets result in a not only reduction in time and

space complexity but also improving the anomaly detection performance.

• We noticed that a large dimension of random features results in high compu-

tational complexity, thus we suggest the smaller size of randomize features.

9.3.3 Parameter Setting

We performed several experiments with different values of parameters to find an

optimal range on breast cancer and MNIST datasets. Once we have an optimal
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Table 9.4: Average %age of test AUC on different datasets with sample size 2

AUC
Dataset OCSVM LOCSVM SB-Deep SVDD OC Deep SVDD OCSTM LOCSTM R1STM 1STM-BH R1STM-BH

Breast Cancer 90.17 87.65 95.32 94.22 94.29 88.74 96.02 96.35 96.55
SONAR 58.43 66.21 72.13 72.23 61.88 67.87 69.43 72.11 74.43
Lung 56.88 61.49 78.68 82.56 67.43 66.70 73.45 78.76 81.80
Iris 92.66 94.65 98.74 98.42 94.43 95.11 96.65 98.16 98.47
Delftpump AR 76.77 79.43 94.76 96.67 85.66 87.22 90.43 92.68 96.60
IONOSPHERE 70.45 73.45 86.70 88.22 75.43 77.43 81.20 84.76 88.44
Import 59.32 64.54 87.19 88.43 67.65 71.43 78.91 86.44 88.32
USPS 99.43 99.61 99.91 99.85 99.75 97.81 99.87 99.91 99.95
UHAD 83.42 89.41 98.67 99.13 95.12 97.11 98.47 99.06 99.23
ORL 96.12 73.87 97.21 97.58 96.43 69.43 96.89 97.58 98.01
DSA 79.43 83.47 98.57 99.12 98.24 98.12 99.17 99.2 99.30
PAMAP2 89.43 91.23 98.47 98.21 94.45 95.11 97.45 98.77 98.85
CASIAA 80.41 83.75 98.45 98.61 96.10 96.54 97.77 98.21 98.88
MNIST 74.67 81.43 94.76 95.43 90.32 90.21 93.47 94.54 95.16
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Table 9.5: Performance comparision of proposed R1STM-BH with state of the art methods on the task of handwritten digit
recognition (MNIST dataset)

Class OCSVM SB Deep SVDD OC Deep SVDD OCSTM LOSTM OCSTM-BH R1STM-BH
0 66.6 ± 4.5 97.8 ± 0.7 98.0 ± 0.7 83.6 ± 1.9 80.3 ± 2.1 93.5 ± 1.7 98.2 ± 0.7
1 67.5 ± 3.4 99.6 ± 0.1 99.7 ± 0.1 87.4 ± 2.2 86.5 ± 2.6 92.4 ± 0.9 98.5 ± 1.3
2 59.5 ± 5.4 89.5 ± 1.2 91.7 ± 0.8 81.3 ± 5.7 82.2 ± 1.9 89.4 ± 0.7 92.4 ± 1.2
3 61.4 ± 3.8 90.3 ± 2.1 91.9 ± 1.5 87.4 ± 4.3 86.5 ± 3.1 90.7 ± 1.2 92.2 ± 0.7
4 64.6 ± 4.7 93.9 ± 1.5 94.9 ± 0.8 84.3 ± 2.4 85.4 ± 2.4 92.5 ± 0.9 93.4 ± 0.6
5 58.6 ± 6.3 85.8 ± 2.2 88.5 ± 0.9 82.7 ± 5.2 84.4 ± 3.5 87.6 ± 0.7 91.4 ± 0.9
6 67.4 ± 4.6 98.1 ± 0.5 98.3 ± 0.5 88.4 ± 3.2 88.4 ± 3.5 94.5 ± 1.7 97.6± 1.7
7 63.5 ± 5.2 92.8 ± 1.4 94.6 ± 0.9 87.6 ± 2.7 86.8± 3.4 93.5 ± 1.6 92.8 ± 0.9
8 65.4 ± 5.2 92.9 ± 1.4 93.9 ± 1.6 87.5 ± 2.2 87.4 ± 2.2 90.5 ± 0.9 94.2 ± 0.8
9 64.7 ± 3.8 95.1± 0.7 96.5 ± 0.3 88.2 ± 1.8 84.8 ± 2.6 92.4 ± 1.8 95.6 ± 1.1
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Table 9.6: Computational and Space complexity analysis of proposed approach with state
of the art methods

Approach Computational Complexity Space Complexity
OCSVM[40] O(dN3) O(d+N2

SVDD [20] O(dN2) O(dN2)
Auto-Encoder [20] O(dmN) O(dq)
ROCSVM [120] O(dN3) O(d+N2

R1SVM [19, 117] O(kn) O(kn)
RSVM-RHHQ [106] O(IN3) O(IN3)
OCSTM-BH (RBF) O(Bkn2) O(Bkn2)
R1STM-BH O(Bkn) O(Bkn)

range of these parameters, There are four parameters (scale constant η, width

parameter σ, trade-off parameter v and the dimension of random features k that

are required to be optimal. Inappropriate selection of these parameters may result

in poor anomaly detection, thus the value of these parameters should be selected

carefully.

We performed k-fold validation (k=10) to find an optimal range of parameters on

breast cancer and MNIST datasets. There are four parameters (scale constant η,

width parameter σ, trade-off parameter v and the dimension of random features

k that are required to be optimal. Inappropriate selection of these parameters

may result in poor anomaly detection, thus the value of these parameters should

be selected carefully. Once we found the optimal range of parameter values, we

performed different experiments on that optimal range to find the optimal parame-

ter for a specific dataset. We have observed that larger value of k results in high

computational complexity, thus we suggest the smaller size of randomize features.

Similarly, the best performance of proposed anomaly detection we have achieved at

σ= {10,14,14,27,20,15,9,21,24,28,43,31,36},

η= {0.3,0.4,0.2, .25,0.25,0.25,0.2,0.5,0.3,0.4,1.45,1.65,1.25}

and

v = {0.2,0.25,0.2,0.3,0.2,0.25,0.3,0.3,0.25,0.2,0.3,0.25,0.35} for Breast Cancer,

Iris, Import, Ionospher, Lung, Sona, Delftpump AR, USPS, Daily and Sport Activity

(DSA), Gas Sensor Array (GSA) and PAMAP2 Physical activity monitoring dataset

(PAMAP), CASIA, ORL and MNIST dataset respectively.
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9.3.4 Computational Complexity

In this section, we discuss the computational complexity of R1STM-BH. Consid-

ering N is the number of training samples and d is the dimension of features.

The computational complexity of solving the dual optimization problem imposed

by one-class SVM is O(dN3) and the computational complexity of OCSVM with

RBF kernel function is O(dN2). Similarly, the computational complexity of one

class support tensor machine with RBF kernel is O(N2d2
1d2) [14] whereas d1

and d2 denotes the second-order tensor such that d = d1 ×d2 ≈ d. The computa-

tional complexity of one class support tensor machine with bounded loss function

is the complexity for dual optimization with RBF kernel O(N2d2
1d2) and one-

class support tensor machines with randomized projection is O(kN), where N is

the size of the training dataset. The computational complexity of the Lagrange

multiplier is α in each iteration. The complexity of the auxiliary variable and

complexity of the margin parameter p is N . Thus, the computational complexity of

OCSTM-BH is O(HBH((N2+N+N)d2
1d2) and O(HBH((kN+N2+N)d2

1d2) with

RBF and randomized kernel respectively. Neglecting the lower order terms, we get

O(HBH((kN2)) and O(HBH((kN)) for RBF and randomized kernel respectively,

where HBH is the complexity of the half quadratic optimization.

To further observe the run time complexity, compare the performance in terms

of training, testing time on breast cancer dataset as shown in table 9.8. We can

observe that computational and space complexity (both train and test) are much

better as compare to the state of the art methods. Furthermore, it requires much

less number of iterations to converge.

9.4 Summary

In this work, we presented a novel approach for anomaly detection for large scale

datasets with the aim to not only improve the robustness of anomaly detection

but also overcome the complexity challenge. We replaced the hinge loss function

with bounded the loss function and utilized randomized features projection rather

than finding the optimal support vectors. We showed empirically that providing

randomized features to a one-class support tensor machine with bounded loss

function produces much better results in comparison to state-of-the-art methods.

Furthermore, the computational an space complexity is very attractive not only
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for large datasets but also for small that validate the scalability of the proposed

approach.
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Table 9.7: Performance evaluation (Accuracy, AUC and number of iteration) of R1STM-BH with different methods on different
training sample size

1STM R1STM 1STM-BH R1STM-BH
Sa

m
pl

e
Si

ze

Ta
rg

et
C

la
ss

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
2 Class 1 63.60 ±

15.32
99.22 ±
0.16

73.43 ±
7.87

99.32 ±
0.12

81.54 ±
12.21

99.33 ±
0.10

82.86 ±
14.85

99.80 ±
0.15

Class 2 70.21 ±
6.21

84.76 ±
20.54

76.64 ±
12.54

88.65 ±
4.65

82.34 ±
8.43

90.21 ±
66.51

84.06 ±
6.77

90.11 ±
16.78

4 Class 1 75.71 ±
11.43

98.76 ±
1.86

81.43 ±
12.98

99.12 ±
4.67

83.43 ±
8.89

99.64 ±
5.66

84.87 ±
14.34

99.82 ±
14.27

Class 2 79.91 ±
6.95

92.43 ±
10.43

84.54 ±
6.75

96.75 ±
4.65

85.58 ±
12.12

97.54 ±
10.76

86.43 ±
10.11

97.86 ±
10.45

6 Class 1 82.47 ±
12.12

98.31 ±
6.66

87.65 ±
7.65

98.87 ±
2.43

89.54 ±
4.55

99.22 ±
6.76

91.65 ±
9.81

99.42 ±
4.65

Class 2 84.54 ±
4.55

93.21 ±
3.65

87.53 ±
5.43

95.32 ±
3.45

88.77 ±
6.66

97.54 ±
7.54

89.91 ±
7.22

97.86 ±
6.75

8 Class 1 84.32 ±
10.37

98.50 ±
6.78

88.45 ±
11.32

93.54 ±
5.78

89.32 ±
5.59

93.67 ±
4.65

91.05 ±
11.24

94.45 ±
7.54

Class 2 83.65 ±
6.87

93.43 ±
8.86

87.54 ±
24.54

97.65 ±
4.76

90.32 ±
5.55

98.65 ±
0.19

92.11 ±
4.95

98.76 ±
3.45

10 Class 1 84.54±
8.76

98.76 ±
4.56

88.33 ±
4.45

99.21 ±
2.43

89.54 ±
5.56

99.43 ±
0.76

92.11 ±
8.87

99.89 ±
2.65

Class 2 88.43 ±
3.45

94.61 ±
8.65

91.32 ±
3.45

96.43
±2.43

92.22 ±
8.86

97.21 ±
1.59

94.67 ±
4.75

98.95 ±
4.5
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Table 9.8: Comparative evaluation of training time (sec), test time (sec) and number of iterations on Breast Cancer dataset

Training Time Test Time Number of Iterations

Sa
m

pl
e

si
ze

OCSVM OCSTM R1STM-
BH

OCSVM OCSTM R1STM-
BH

OCSVM OCSTM R1STM-
BH

2 0.0963
±
0.082

0.0483
±
0.0674

0.0372
±
0.047

0.0632
± 3.32

0.024
± 2.22

0.014±
1.35

16.43
± 5.27

11.54
± 3.96

9.65 ±
4.21

4 0.1759
±0.098

0.0968
±
0.087

0.0502
±
0.065

0.067
± 4.11

0.054
± 1.89

0.019
± 1.43

14.53
± 3.45

10.32
± 4.11

8.71 ±
2.76

6 0.2154
±0.076

0.1043
±
0.089

0.0614
±
0.092

0.081
± 3.76

0.065
± 2.02

0.021
± 1.39

14.59
± 3.46

8.93 ±
3.65

6.43 ±
3.27

8 0.2334
±0.065

0.1232
±
0.0932

0.0698
±
0.099

0.087
± 2.68

0.084
± 2.32

0.026
± 1.33

12.43
± 4.79

7.43 ±
3.76

4.87 ±
3.29

10 0.2782
±
0.104

0.1365
±
0.108

0.0783
±
0.078

0.096
± 3.11

0.089
± 2.43

0.037
± 1.74

12.40
± 3.78

5.87 ±
2.76

4.11 ±
2.56
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CONCLUSIONS AND FUTURE DIRECTION

Once we know something, we find it hard to imagine what it was like not to know it.
(Chip Dan Heath)

It is no surprise that most of the real-world data have such a high sparsity, i.e., only

a small number of features are important. An ad-hoc approach to deal with such

problems is achieving the sparsity artificially by considering only those loadings

that are greater than threshold however, in general, it is an inefficient approach

espicially for small and high dimensional data. Classification of such a small

number of noisy data samples that are high in dimensional is a challenging task

that require selection of robust features to capture the intrinsic and structural

properties. Thus, in this case, sparse models (SSVM), low rank (BSVM, SMM) or

low rank plus sparse methods are not sufficient to capture the underlying structural

and intrinsic property of the data entirely. `1 regularizer term has some limitations

due to the fact that the selected features are upper bounded by the data sample

size. Hence, it provides structural sparsity and does not discover the intrinsic group

structure, resulting in the selection of features without considering all the classes.

Furthermore, there could be outliers in the data that could affect the classification

performance. To deal with aforementioned challenges, we simultaneously explored

dimensionality reduction, matrix recovery, feature extraction, and classification.

In chapter 4 and chapter 5, we preformed joint dimensionality reduction and

173



CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTION

feature extraction. Chapter 4 presents a robust dimensionality reduction method

that by relaxing the orthogonal constraints of the transformation matrix and

imposing a penalty function on the regularization term [74]. We presented outliers

robust two-dimensional principal component analysis by efficiently integrating the

robustness of traditional 2DPCA and the regularization term ‖Q‖2
F that relaxes

the orthogonal constraint. The regularization term ‖Q‖2
F reduces the constraints

and enables the objective function to select features jointly. Furthermore, the

regularization parameter ‖Q‖2
F is convex and can be easily optimized. Penalty

term penalizes all regression coefficients corresponding to the single feature as a

whole to make PCA possible to select features jointly. Hence, ORPCA approximates

high-dimensional representation in a flexible manner. As such, ORPCA has more

freedom to select low-dimensional features efficiently. The one major drawback of

F-norm is its sensitivity against outliers as outlying measurement arbitrarily skew

the solution from desired due to squared objective function. As a result, F-norm is

not able to utilize the underlying geometric structure in a real sense. To cope with

the sensitivity due to squared F-norm, recently, non-square F-norm has been used.

Although, ORPCA and 2D-JSPCA have more freedom to select robust features

jointly for low dimensional representation that helps to minimize the effect of

outliers as well as redundancy. However, it does not guarantee fully sparse solution

but it (joint feature selection and alternative derivation of the objective function)

makes the objective function robust against outliers. To deal with data redundancy

explicitly, in chapter 5, we present an additional penalty term ‖Q‖2,1 reduces the

constraints and enables objective function to select features jointly and discard

the features that already exist in other principal components. Furthermore, both

the regularization terms are convex and can be easily optimized. In contrast to

previous works on robustness in PCA, we jointly select the important features.

The introduction of penalty terms results in the spare and robust solution against

outliers by reducing their impact in projection matrix. Compared with state-of-

the-art methods, our evaluation results show the improvement in effectiveness

proposed approach for the task of data reconstruction and classification. Eventually,

2D-JSPCA has poor reconstruction error because it suffers from loss of information.

However, it provides a better reconstruction error with respect to SPCA and JSPCA.

It might be due to the selection of important features that helps to reproduce the

image. We have noticed that discriminant features selected by 2D-JSPCA are those

important and contributive features such as nose, eyes, lips in case of the face

174



image, while contours of different objects in non-facial datasets. In conclusion,

the numerical results suggest that our methods (ORPCA and 2D-JSPCA) are

superior to previous approaches. In comparison to ORPCA, 2D-JSPCA provided

better performance however, it has a high reconstruction error. However, this calls

for further analysis and variations of the ORPCA and 2D-JSPCA. For example,

having more than one P and one Q, offers more flexibility in accommodating the

discriminant features.

It turns out that the nuclear norm can also be used as a convex relaxation of this

optimization problem, which greatly simplifies the problem and allows further

room for interesting applications such as accelerated algorithms for matrix comple-

tion (compressed sensing). Recently, classifier based on combination of hinge loss,

nuclear norm and Frobenius norm [1, 46, 142], `1 [140, 141] has been presented.

Although these methods showed excellent performance by taking advantage of

the correlation between rows and columns of the regression matrix under the

low-rank assumptions. But, they simply consider entities in the matrix as explana-

tory factors and do not consider the intrinsic group structure of data and are

sensitive to outliers. Furthermore, they also tend to select the features without

considering all classes. We propose a novel classifier RSMM works by effectively

combining the hinge loss function for model fitting and the elastic net penalty

for regularization on the regression matrix. RSMM can achieve the goal stated

above, by employing the regularizer term which promotes structural sparsity. The

regularization term helps to avoid the inevitable upper bound for the number

of selected features occurring in `2,1-norm SVM. The linear combination of the

nuclear norm, `2,1 inherits the property of low-rank and sparsity together which

not only helps to deal with outliers but also selects features across all data points

with joint sparsity. Since the optimization is convex but non-smooth and one of the

major challenges is, how to efficiently solve non-smooth optimization, we devised

an efficient algorithm to solve the proposed objective function based on the Gener-

alized Forward-Backward (GFB) splitting framework. RSMM modeled the group

intrinsic structure. The regularization term helps to select the features across all

data points with joint sparsity i.e. each feature either has small scores or large

scores over all data points. The results on contaminated data show that RSMM

provided better results as compared to state of the art methods, which validate

our claim that RSMM is robust against outliers and able to model the intrinsic

property of the data entirely. RSMM works well for small data corruption, however,
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fragile to the presence of outliers: even a single corrupted data point can arbitrarily

alter the quality of the approximation, what if a fraction of columns are corrupted

then the quality may be poor. To deal with data having extensive corruption, we

simultaneously performing matrix recovery, feature selection, and classification

through joint minimization of `2,1 and nuclear norm. We assume that the data

consists of a low-rank clean matrix plus a sparse noise matrix by effectively com-

bining the hinge loss function for model fitting, low-rank matrix recovery and

an elastic net penalty for regularization on the regression matrix. We performed

a simultaneous matrix recovery and classification, which first performs matrix

recovery followed by clean feature extraction and classification. Since the convex

optimization cannot perform an exact recovery of the corrupted matrix, thus, we

used an Oracle Problem for matrix recovery. As a result, convex optimization-based

SSMRe performs correct matrix recovery as well as the identification of outliers,

which improves the classification performance. We achieve the goal stated above,

by employing the regularizer term (a combination of low rank and `2,1)) which

promotes structural sparsity and matrix recovery as well as selects features across

all data points with joint sparsity. The low-rank matrix recovery helps to recover

the unobserved entities as well as to avoid the inevitable upper bound for the

number of selected features occurring in `2,1-norm SVM. Since the optimization

is convex but non-smooth and one of the major challenges is, how to efficiently

solve non-smooth optimization, we devised an efficient algorithm to solve the pro-

posed objective function. A comprehensive experimental study on publicly available

datasets of image classification and EEG classification was carried out to validate

the proposed approach. The experiment results showed the effectiveness of RSSM

and SMMRe approach for solving classification problems even fraction of columns

are corrupted while keeping a reasonable number of support vectors. Although,

RSSM and SMMRe showed amazing performance, however, are binary classifier

and could be used for multiclass classification by breaking multiclass problem into

series of binary class classification problem such as one-vs-rest (OvR) or one-vs-one

(OvO) strategies (e.g. In OvsR, the multi-class problem is solved by splitting it into

n binary class classification problems, whereas OvsO approach splits the problem

into c(c−1)
2 binary classification problems.) but are computationally expensive and

may result in the unbalanced distribution of input samples. We extend RSSM

to the multiclass Support Matrix Machine (M-SMM) approach by utilizing the

maximization of the inter-class margins (i.e. margins between pairs of classes).
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The proposed model is a combination of binary hinge loss for models fitting, and

elastic net penalty as a regularization on the regression matrix. The binary hinge

loss uses C matrices to simulate a one-vs-one classifier of all classes rather than
c(c−1)

2 models. The regularization term which promotes the structural sparsity and

shares similar sparsity patterns across multiple predictors is a combination of

Frobenius and nuclear norm. Thus, the proposed objective function not only maxi-

mizes the inter-class margins but is a spectral extension of the conventional elastic

net that combines the property of low rank and joint sparsity together, to deal

with complex high dimensional noisy data. MSMM works by effectively combining

the binary hinge loss function (to maximize the inter-class hyperplane margin for

model fitting) and elastic net penalty (to promote low-rank plus sparsity), as a

regularization on regression matrix. Unlike one vs one classification strategy, we

have used C matrices to simulate the binary classification that not only helps to

overcome the complexity issue but also maximizes the inter-class margin. Since

the optimization is convex and one of the major challenges is how to efficiently

solve nonsmooth optimization?, thus, we devised an efficient algorithm for solving

the proposed objective functions. In future, multiclass support matrix machine

based on ||.||2,1 and ||.||∗ as well as privilege information-based support matrix

machine can explored. Furthermore, we will be exploring cooperative evolution

based support matrix machines that will help to minimizing the training time too

by breaking down the original m-Class problem into sub-problems and solving

them in cooperative fashion.

Recently, several non-convex and bounded loss functions have been presented

to substitute the hinge loss function in order to suppress the effect of outliers

and improve the robustness of support vector machines. However, there is no

work done for the improvement of one-class tensor machines [1]. Furthermore,

the computational complexity of traditional support tensor machines is high and

increases with the increase of training samples. Thus, it limits the applicability

of OCSTM for large datasets. To overcome the aforementioned challenges, we

replaced the hinge loss with bounded loss function and used randomized features

[61, 70, 71] rather than finding the optimized support tensors which result in not

only improving the robustness against outliers as well as significantly reduces the

training time. The proposed support tensor machine with bounded hinge loss is

monotonic, bounded and nonconvex, thus robust to outliers by limiting the loss

due to outliers. We further extends the approach using randomized non-linear set
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of features rather than finding the support vectors, thus, eliminating the need to

deal with large kernel matrices for large datasets resulting that results reduction

in both time and space complexity. To solve the non-convex objective function, we

devised an iterative approach using the half quadratic optimization. Extensive

experimental analysis shows that proposed bounded one-class support tensor

machines with randomized kernel considerably improves the robustness against

outliers and significantly reduces the computational complexity as compared to

state of the art anomaly detection methods. We can observe that computational

and space complexity (both train and test) are much better as compare to the

state of the art methods. Furthermore, it requires much less number of iterations

to converge. In future, regularize terms ||.||∗ and ||.||2,1 can be considered with

bounded hinge loss function.
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