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Abstract

Machine learning in streaming data is often inhibited by arbitrary changes of the

data distribution. Particularly, classification boundary change, also known as concept

drift, is the major cause of machine learning performance deterioration.

Accurately and efficiently detecting concept drift remains challenging because of

inherent limitations of stream data - non-stationarity, velocity and availability of true

label data. The non-stationarity of the stream data causes performance degradation

of pretrained models and the high velocity of the data generation requires highly

efficient prediction algorithms for real time applications. The theoretical foundations

of existing drift detection methods - two-sample distribution tests and monitoring

classification error rate, both suffer from inherent limitations such as the inability

to distinguish virtual drift (changes not affecting the classification boundary, will

introduce unnecessary model maintenance), limited statistical power, or high compu-

tational cost. Furthermore, no existing detection method can provide information

about the trend of the drift, which could be invaluable for model maintenance.

To better address concept drift problems, this thesis first proposes a novel concept

drift detection method based on Neighbor Search Discrepancy (NSD), a new statistic

that measures the classification boundary difference between two samples. The

proposed method uses true label data to detect concept drift with high accuracy while
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ignoring virtual drift. It can also indicate the direction of the classification boundary

change by identifying invasion or retreat of a certain class, which is also an indicator

of separability change between classes.

To improve concept drift adaptation efficiency, based on NSD, this thesis proposes

two novel instance selection methods for both concept drift detection - Decision

Region Support Set (DRS) and classification - Decision Region Border Set (DRB).

The unified framework yields reduction instances for both objectives simultaneously

without computational overhead. The drift detection method efficiently detects

concept drift without relying on resampling technique. The reduction rule based

on Neighbor Search better estimates decision boundaries, resulting in improved

classification accuracy.

For scenarios where true label data is unavailable, this thesis first proposes a

novel distribution change detection method - Equal Density Estimation (EDE) based

on the estimation of equal density regions. The aim is to overcome the issues of

instability and inefficiency that underlie methods of predefined space partitioning

schemes. This method is general, nonparametric and requires no prior knowledge of

the data distribution.

Finally, in order to detect concept drift without true label data, this thesis intro-

duces a novel categorization of drift types - maintainable and unmaintainable drift,

to describe the necessity of model maintenance in different scenarios. Then we de-

velop a unique drift detection algorithm based on Probability Percentile Discrepancy

(PPD), which detects only maintainable drift without relying on true label data.

In summary, this thesis targets a critical issue in modern machine learning

research. The approaches taken in the thesis of building effective and efficient

concept drift detection algorithms are novel and practical. There has been no
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previous study on the theories of neighbor search discrepancy and maintainable

concept drift. The findings of this thesis contribute to both scientific research and

practical applications.
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