CONCEPT DRIFT DETECTION FOR MACHINE LEARNING WITH STREAM DATA

Feng Gu

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the Degree of

Doctor of Philosophy

December 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Feng Gu declare that this thesis, is submitted in fulfilment of the requirements for the award of doctorate, in the Faculty of Engineering and Information Technology at the University of Technology Sydney. This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Feng Gu December 2019

Acknowledgements

This has been a memorial and exciting journey. I would like to extend my warm gratitude to the people who inspired and helped me in many ways.

I would like to express my earnest gratitude to my supervisors, Professor Guangquan Zhang and Distinguished Professor Jie Lu, for their knowledgeable suggestions and critical comments. During my doctoral research, their comprehensive guidance always illuminated the way. My discussions with them greatly improved the scientific aspect and quality of my research. Their strict academic attitude and respectful personality benefited my PhD study and will be a great memory throughout my life.

I am honored to have met all the talented researchers of the Decision Systems & e-Service Intelligence Lab (DeSI) at Centre for Artificial Intelligence. I have greatly enjoyed the pleasurable and plentiful research opportunities I shared with them. I would like to give my special thanks to Dr Ning Lu, Dr Anjin Liu and Dr Fan Dong who inspired me to concept drift research, as well as Feng Liu, Yiliao Song and Zhen Fang with whom I engaged in daily discussions that were rewarding and fun.

I kindly thank Ms Jemima Moore and Ms Michele Mooney for polishing the language used in my thesis and publications. I have learnt much about academic writing from them. I am grateful to the School of Software in the Faculty of Engineering and Information Technology at the University of Technology Sydney. This study was supported by the Australian Research Council (ARC) discovery project DP150101645.

Finally, I would like to express my heartfelt appreciation and gratitude to my family for their love and support.

Abstract

Machine learning in streaming data is often inhibited by arbitrary changes of the data distribution. Particularly, classification boundary change, also known as concept drift, is the major cause of machine learning performance deterioration.

Accurately and efficiently detecting concept drift remains challenging because of inherent limitations of stream data - non-stationarity, velocity and availability of true label data. The non-stationarity of the stream data causes performance degradation of pretrained models and the high velocity of the data generation requires highly efficient prediction algorithms for real time applications. The theoretical foundations of existing drift detection methods - two-sample distribution tests and monitoring classification error rate, both suffer from inherent limitations such as the inability to distinguish virtual drift (changes not affecting the classification boundary, will introduce unnecessary model maintenance), limited statistical power, or high computational cost. Furthermore, no existing detection method can provide information about the trend of the drift, which could be invaluable for model maintenance.

To better address concept drift problems, this thesis first proposes a novel concept drift detection method based on Neighbor Search Discrepancy (NSD), a new statistic that measures the classification boundary difference between two samples. The proposed method uses true label data to detect concept drift with high accuracy while ignoring virtual drift. It can also indicate the direction of the classification boundary change by identifying invasion or retreat of a certain class, which is also an indicator of separability change between classes.

To improve concept drift adaptation efficiency, based on NSD, this thesis proposes two novel instance selection methods for both concept drift detection - **D**ecision **R**egion **S**upport Set (DRS) and classification - **D**ecision **R**egion **B**order Set (DRB). The unified framework yields reduction instances for both objectives simultaneously without computational overhead. The drift detection method efficiently detects concept drift without relying on resampling technique. The reduction rule based on Neighbor Search better estimates decision boundaries, resulting in improved classification accuracy.

For scenarios where true label data is unavailable, this thesis first proposes a novel distribution change detection method - Equal Density Estimation (EDE) based on the estimation of equal density regions. The aim is to overcome the issues of instability and inefficiency that underlie methods of predefined space partitioning schemes. This method is general, nonparametric and requires no prior knowledge of the data distribution.

Finally, in order to detect concept drift without true label data, this thesis introduces a novel categorization of drift types - maintainable and unmaintainable drift, to describe the necessity of model maintenance in different scenarios. Then we develop a unique drift detection algorithm based on **P**robability **P**ercentile **D**iscrepancy (PPD), which detects only maintainable drift without relying on true label data.

In summary, this thesis targets a critical issue in modern machine learning research. The approaches taken in the thesis of building effective and efficient concept drift detection algorithms are novel and practical. There has been no previous study on the theories of neighbor search discrepancy and maintainable concept drift. The findings of this thesis contribute to both scientific research and practical applications.

Table of Contents

Cl	ERTI	FICATE OF ORIGINAL AUTHORSHIP	iii
Ac	cknow	ledgements	v
Al	ostrac	:t	vii
Li	st of l	ligures	XV
Li	st of [fables	xxi
Li	st of A	Abbreviations x	xiv
1	Intr	oduction	1
	1.1	Background	1
	1.2	Research Questions and Objectives	4
	1.3	Research Contributes	8
	1.4	Research Significance	9
	1.5	Thesis Structure and Thesis Notations	10
	1.6	Publications Related to this Thesis	12
2	Lite	rature Review	15

	2.1	Proble	m Description	15
		2.1.1	Concept drift definition and the sources	15
		2.1.2	The types of concept drift	17
	2.2	Conce	pt Drift detection	19
		2.2.1	A general framework for drift detection	19
		2.2.2	Concept drift detection algorithms	21
			2.2.2.1 Error rate-based drift detection	21
			2.2.2.2 Data Distribution-based Drift Detection	25
			2.2.2.3 Multiple Hypothesis Test Drift Detection	27
	2.3	Conce	pt Drift adaptation	30
		2.3.1	Retraining models	31
		2.3.2	Adaptive models	33
		2.3.3	Adaptive ensembles	35
3	Real	Conce	pt Drift Detection Based on Neighbor Search Discrepancy	39
	3.1	Introdu	uction	39
	3.2	A New	V Measure: Neighbor Search Discrepancy	42
		3.2.1	Preliminaries	43
		3.2.2	Neighbor Search	44
		3.2.3	Neighbor Search Volume Ratio	49
	3.3	Neighl	bor Search Discrepancy Drift Detection	55
		3.3.1	Classification Gap	56
		3.3.2	Detect Classification Gap Changes	57
	3.4	Experi	mental evaluation	60
		3/1	Evaluating NSD of a single starting point	62

		3.4.2	Evaluating NSD of multiple starting points	66
		3.4.3	Evaluating drift detection method	69
	3.5	Summ	ary	76
4	Con	cept Dr	ift-Tolerant Instance Selection	79
	4.1	Introdu	uction	79
	4.2	Decisi	on region estimation using neighbor search	81
		4.2.1	Decision regions	82
		4.2.2	Neighbor search	84
		4.2.3	Automatically choosing k	86
		4.2.4	Noise removal	90
	4.3	Conce	pt drift-tolerant instance selection	91
		4.3.1	Instance selection for drift detection	92
		4.3.2	Instance selection for classification	98
	4.4	Experi	mental evaluation	102
		4.4.1	Space and time efficiency	103
		4.4.2	Classification with stationary data	113
		4.4.3	Classification with concept drift data	118
	4.5	Summ	ary	121
5	Con	cept Dr	ift Detection by Equal Density Estimation	124
	5.1	Introdu	uction	124
	5.2	Equal	density estimation	126
	5.3	Chang	e detection method	128
		5.3.1	Statistical guarantee	130
		5.3.2	Window models	130

	5.4	Empirical Evaluation	31		
		5.4.1 Evaluating ω	31		
		5.4.2 Evaluating the change detection method	33		
	5.5	Summary	41		
6	Mai	ntainable Concept Drift Detection without True Labels 14	12		
	6.1	Introduction	42		
	6.2	Maintainable Concept Drift	43		
	6.3	Prediction-based Drift Detection	48		
	6.4	Experimental evaluation	51		
		6.4.1 Various drift types	53		
		6.4.2 High dimensional data	57		
		6.4.3 Real world data set	59		
	6.5	Summary	50		
7	Con	clusion and Future Research 10	53		
	7.1	Conclusions	53		
	7.2	Future Study	56		
Bi	bliogr	raphy 10	Bibliography 168		

List of Figures

1.1	Concept drift in mobile phone usage (data used in figure are for	
	demonstration only). [73]	2
1.2	Framework for handling concept drift in machine learning. [73]	3
1.3	Thesis structure	11
2.1	Three sources of concept drift. [73]	17
2.2	An example of concept drift types. [73]	18
2.3	An overall framework for concept drift detection	20
2.4	Landmark time window for drift detection. The starting point of the	
	window is fixed, while the end point of the window will be extended	
	after a new data instance has been received	22
2.5	Two time windows for concept drift detection. The New Data win-	
	dow has to be defined by the user.	24
2.6	Two sliding time windows, of fixed size. The Historical Data window	
	will be fixed while the New Data window will keep moving	26
2.7	Parallel multiple hypothesis test drift detection.	27
2.8	Hierarchical multiple hypothesis test drift detection	29

2.9	A new model is trained with latest data to replace the old model	
	when a concept drift is detected.	31
2.10	A decision tree node is replaced with a new one as its performance	
	deteriorates when a concept drift occurs in a subregion	33
2.11	A new base classifier is added to the ensemble when a concept drift	
	occurs	35
3.1	Examples of finding 3 nearest neighbors and their corresponding	
	search steps following neighbor searches of different shapes	46
3.2	The PDF of $\mathscr{V}(k,n,\lambda)$ converges to that of $\operatorname{Gamma}(k,\lambda)$ as <i>n</i> be-	
	comes greater than k	50
3.3	Neighbor search discrepancy equals area under curve of Beta PDF	
	between [0,0.5]	54
3.4	Neighbor search discrepancy $NSD(10,4)$ describes the probability	
	of no more than 3 points from sample X_2 falling in $S_{(k_1=10)}$, which	
	is determined by the 10th neighbor points from sample X_1	55
3.5	Different types of real concept drift and virtual drift reflecting on	
	classification gap change.	56
3.6	Joint neighbor search is constructed by combining simple spherical	
	searches on sample X1, and then invasion and retreat of classification	
	gap change is tested on sample X2	60
3.7	Comparison of the calculated NSD (solid horizontal lines) with	
	Monte Carlo simulation (colored lines). The simulation result con-	
	verges to NSD as sample size increases.	63

4.1	Different shapes of decision region when the distributions of samples
	of two classes have different relative positions - (a) separate, (b) joint
	and (c) overlapping
4.2	Joint neighbor search is constructed by combining spherical searches
	with different increasing rate and is used to estimate the decision
	region
4.3	Neighbor searches for estimating different types of decision regions. 87
4.4	Decision region support set reduction process. (a) Points from the
	origin set (dots) are grouped by their neighboring points in the refer-
	ence set (circles); (b) in each group, the points except the furthest
	one are removed, meanwhile marginally reducing the volume of the
	search step; (c) the search step increases to find the next neighbor so
	that the lost volume is corrected
4.5	Decision region border for different distributions of two sample classes.100
4.6	DRS reduction result for binary classification sample sets of different
	distribution. (a) 2D normal distribution; (b) linear decision boundary;
	(c) circular non-linear decision boundary
4.7	Instance selection results on sample set of 2D normal distribution.
	The algorithms for comparison include: Decision Region Boundary
	(DRB, proposed), Class Conditional Instance Selection (CCIS, [79]),
	Decremental Reduction Optimization Procedure 3 (DROP3, [109]),
	Fast Condensed Nearest Neighbor (FCNN, [10]), Instance-Based
	Learning 3 (IB3, [1]), Iterative Case Filtering Algorithm (ICF, [23])
	and Template Reduction for KNN (TRKNN, [36])

4.8	Instance selection results on sample set of 2D linearly separable dis-
	tribution. The algorithms for comparison include: Decision Region
	Boundary (DRB, proposed), Class Conditional Instance Selection
	(CCIS, [79]), Decremental Reduction Optimization Procedure 3
	(DROP3, [109]), Fast Condensed Nearest Neighbor (FCNN, [10]),
	Instance-Based Learning 3 (IB3, [1]), Iterative Case Filtering Al-
	gorithm (ICF, [23]) and Template Reduction for KNN (TRKNN,
	[36])
4.9	Instance selection results on sample set of 2D non-linearly (circu-
	larly) separable distribution. The algorithms for comparison include:
	Decision Region Boundary (DRB, proposed), Class Conditional In-
	stance Selection (CCIS, [79]), Decremental Reduction Optimization
	Procedure 3 (DROP3, [109]), Fast Condensed Nearest Neighbor
	(FCNN, [10]), Instance-Based Learning 3 (IB3, [1]), Iterative Case
	Filtering Algorithm (ICF, [23]) and Template Reduction for KNN
	(TRKNN, [36])
4.10	Instance selection space efficiency with different sample sizes. (a-
	c) Number of selected instances with respect to sample size. (d)
	Average retention rate for all datasets
4.11	Instance selection space efficiency with different dimensions. (a-c)
	Number of selected instances with respect to dimension. (d) Average
	retention rates for all datasets
4.12	Instance selection time efficiency with different sample sizes. (a-c)
	Computation time (s) of instance selection methods with respect to
	sample size. (d) Average computation time (ms) per instance 112

4.13	Instance selection time efficiency with different dimensions. (a-c)
	Computation time (s) of instance selection methods with respect to
	dimension. (d) Average computation time (ms) per instance 113
5.1	Partitioning by fixed regions vs. equal density regions
5.2	DensityScale increases when two data sets have different distribution.129
5.3	ω varies as the mean μ of normally distributed data changes 132
5.4	ω varies as the standard deviation σ of normally distributed data
	changes
5.5	ω varies as the correlation $ ho$ of normally distributed data changes 134
5.6	Pairwise reduction on two normally distributed data sets of the same
	mean
5.7	Pairwise reduction on two normally distributed data sets of different
	mean
6.1	Different types of $P(y X)$ changes with respect to decision boundary
	change
6.2	$E(y^{-})$ changes when IR drift occurs (class+ invading, class- re-
	treating)
6.3	Type (I) drift (maintainable) detection accuracy
6.4	Type (R) drift (maintainable) detection accuracy
6.5	Type (IR) (maintainable) drift detection accuracy
6.6	Type (II) drift (unmaintainable) false detection rate (lower is better). 156
6.7	Type (RR) drift (unmaintainable) false detection rate (lower is better).157

6.8	Classification accuracy on real world concept drift data set with
	different drift detection algorithms. The drift locations are marked
	as dashes

List of Tables

1.1	Notations	13
3.1	Comparison of concept drift detection accuracy (detection rate/false	
	alarm rate) between proposed method (NSD) and competence model-	
	based method (CM).	72
3.2	Comparison of running times (in seconds, unless indicated other-	
	wise) of different dimensions and window sizes for proposed method	
	(NSD) and the competence model-based method (CM)	73
3.3	Parameters of concept drift handling methods for real world datasets.	75
3.4	Classification accuracy of concept drift detection methods on real-	
	world datasets with different base learners. The rank of the accuracy	
	on each dataset is shown in brackets. The average rank indicates the	
	overall performance of each algorithm (lower is better)	77

4.1	Classification accuracy of instance selection methods with fixed
	sample size. The rank of the accuracy on each dataset is shown
	in brackets. The reduction result size is displayed in italics. The
	average rank indicates the overall performance of each algorithm
	(lower is better))
4.2	Classification accuracy of instance selection methods with same re-
	duction result size. The rank of the accuracy on each dataset is shown
	in brackets. The average rank indicates the overall performance of
	each algorithm (lower is better)
4.3	Parameters of concept drift handling methods for real-world datasets. 120
4.4	Classification accuracy of concept drift detection methods on real-
	world datasets with different base learners. The rank of the accuracy
	on each dataset is shown in brackets. The average rank indicates the
	overall performance of each algorithm (lower is better)
5.1	Additional parameters of comparison methods used in the experiments.135
5.2	Drift detection result on 2D normal distribution data with window
	size 10,000
5.3	Drift detection result on 2D normal distribution data with window
	size 5,000
5.4	Drift detection result on high-dimensional normal distribution data
	with window size 10,000
5.5	Drift detection result on 2D Poisson distribution with window size
	10000
5.6	Running time with different dimensions and window sizes 140

5.7	Temporal complexities of model construction and incremental up-				
	dating				
6.1	The applicable drift scenarios of different drift detection methods 148				
6.2	Error set changes for different types of drift				
6.3	Additional parameters of comparison methods used in the experiments.153				
6.4	Drift detection result on high-dimensional data				
6.5	Running time of drift detection with different dimensions and win-				
	dow sizes				

List of Abbreviations

DRB	Decision	Region	Border	Set pp.	viii,	8
-----	----------	--------	--------	---------	-------	---

- DRS Decision Region Support Set pp. viii, 8
- EDE Equal Density Estimation pp. viii, 8
- NSD Neighbor Search Discrepancy pp. vii, 8
- PPD Probability Percentile Discrepancy pp. viii, 9