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ABSTRACT

Human action is not merely a matter of presenting patterns of motion of different
parts of the body, in addition, it is also a description of intention, emotion and
thoughts of the person. Hence, it has become a crucial component in human

behavior analysis and understanding. Human action recognition has a wide variety of
applications such as surveillance, robotics, health care, video searching and human-
computer interaction. Analysing human actions manually is tedious and easily prone to
errors. Therefore, computer scientists have been trying to bring the abilities of cognitive
video understanding to human action recognition systems by using computer vision tech-
niques. However, human action recognition is a complex task in computer vision because
of the camera motion, occlusion, background cluttering, viewpoint variation, execution
rate and similar gestures. These challenges significantly degrade the performance of the
human action recognition system. The purpose of this research is to propose solutions
based on traditional machine learning methods as well as the state-of-the-art deep learn-
ing methods to automatically process video-based human action recognition. This thesis
investigates three research areas of video-based human action recognition: traditional
human action recognition, similar gesture action recognition, and data augmentation for
human action recognition.

To start with, the feature-based methods using classic machine learning algorithms
have been studied. Recently, deep convolutional neural networks (CNN) have taken their
place in the computer vision and human action recognition research areas and have
achieved tremendous success in comparison to traditional machine learning techniques.
Current state-of-the-art deep convolutional neural networks were used for the human
action recognition task. Furthermore, recurrent neural networks (RNN) and its variation
of long-short term memory (LSTM) are used to process the time series features which
are handcrafted features or extracted from the CNN. However, these methods suffer
from similar gestures, which appear in the human action videos. Thus, a hierarchical
classification framework is proposed for similar gesture action recognition, and the
performance is improved by the multi-stage classification approach. Additionally, the
framework has been modified into an end-to-end system, therefore, the similar gestures
can be processed by the system automatically.

In this study, a novel data augmentation framework for action recognition has been
proposed, the objective is to generate well learnt video frames from action videos which
can enlarge the dataset size as well as the feature bias. It is very important for a human
action recognition system to recognize the actions with similar gestures as accurately

i



as possible. For such a system, a generative adversarial net (GAN) is applied to learn
the original video datasets and generate video frames by playing an adversarial game.
Furthermore, a framework is developed for classifying the original dataset in the first
place to obtain the confusion matrix using a CNN. The similar gesture actions will
be paired based on the confusion matrix results. The final classification result will be
applied on the fusion dataset which contains both original and generated video frames.
This study will provide realtime and practical solutions for autonomous human action
recognition system. The analysis of similar gesture actions will improve the performance
of the existing CNN-based approaches.

In addition, the GAN-based approaches from computer vision have been applied to the
graph embedding area, because graph embedding is similar to image embedding but used
for different purposes. Unlike the purpose of the GAN in computer vision for generating
the images, the GAN in graph embedding can be used to regularize the embedding.
So the proposed methods are able to reconstruct both structural characteristics and
node features, which naturally possess the interaction between these two sources of
information while learning the embedding.
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1
INTRODUCTION

Human actions are something that people do or cause to happen. The human

actions can be extended to events which is something that happens at the given

place and time. Analysing a human action is not merely a matter of presenting

patterns of motion of different parts of the body, rather, it is also a description of a person’s

intention, emotion and thoughts. Hence, it has become a crucial component in human

behavior analysis and understanding, which are essential in various domains including

surveillance, robotics, health care, video searching, human-computer interaction, etc.

Take surveillance for example, human operators are required to continuously monitor the

sheer number of CCTV cameras installed, to detect any unusual and abnormal actions by

suspicious person in public places. It is very difficult for a human operator to continuously

focus and watch multiple monitors at the same time and analyze a huge amount of video

stream from different cameras. Therefore, a large staff is required to monitor a large

crowd, which results in very high costs and the real risk may be ignored due to the

limitation of the human eyes. In addition, works such as robotics, health care, video

searching and human-computer interaction, automatic video processing is required, thus

the human actions cannot be recognized manually. Many researchers are turning toward

computer vision for human action recognition system, which will automate the whole

process of action recognition, thus improving the efficiency and accuracy of the system

very significantly. An important application of video-based human action recognition

is monitoring human actions in public places. The multiple cameras will be used to

capture the human actions from different view-points. And the feature-based action

1



CHAPTER 1. INTRODUCTION

recognition methods will be applied to detect and analyze the captured human actions to

prevent suspicious damage. Over the past decades, deep learning methods take the place

in computer vision and human action recognition research area, which have achieved

tremendous success. Convolution neural networks (CNN) have been widely used to

process the images and recognize the human action by extracting and learning the

features from the video frames automatically. The CNN use local connectivity of a region

in the input image to the output, unlike the traditional feed forward neural network that

every input layer is fully connected with the output layer. However, CNN-based methods

are not sensitive to the different actions with similar gestures, thus, the performance

of the classifier will be decreased. In addition, the state-of-the-arts work requires large

amount of training data, which are hardly to implement into real-world applications due

to the lack of the training data for specific datasets.

The main contribution of the thesis will be to automate the process of human ac-

tion recognition, improve the performance of similar gesture action recognition as well

as the data augmentation for action recognition. The thesis will study the human ac-

tion recognition methods using traditional machine learning and deep learning based

approaches.

1.1 Background and motivation

Human acts with purposes and does not matter how trivial it is. For example, in order

to play golf, a player must bend and swing the pole which is a combination of gestures.

However, some of the purpose are simple such as move from one place to another places,

so people act "walking", "jogging", and "running" to achieve this target. An action can be

observed by either human eyes or captured by the visual sensors. Furthermore, human

brain can process the observed actions based on the basic understanding of the action

purpose. People can understand the reason why a person is kicking a ball when they

playing soccer, and people could recognize that if the action is follow the instruction or

not with a certain confidence. However, it is results in very high costs to involve so many

human labours to recognize human actions in different real-world scenarios. Therefore,

a smart visual surveillance and automate process system is needed to recognize human

actions.

Recognizing human actions from a video stream is a challenging task and has received

significant attention from the computer vision research community recently and it has a

wide range of applications such as smart video surveillance [1] [163], video indexing [122]
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[160], human-machine interaction [92] [97] and identity recognition [93]. The ultimate

goals of the artificial intelligence human action recognition research is to develop a

system which can efficiently and accurately understand human actions as well as their

intentions. Some of the actions are shown in Fig 1.1, where actions can be classified from

simple gestures to complex activities such as "Waving" and "Bend" can be determined

as simple stand gestures, "Running" and "Walking" are running actions, some of the

actions are interacting with objects like "Pickup phone call" and "Hugging", and lastly

human group activities also can be considered as human actions which contains complex

sequences of gestures. Therefore, understanding the dynamics of different gestures is

very important in human action recognition system.

Most of the human action recognition approaches are based on specific data, such

as RGB data, depth data, or skeleton data. The focus of the thesis will be about the

visual analysis of the human actions as well as the similar gesture recognition in RGB

videos. The aim is to make a novel human action recognition system which can capture

and analysis human actions efficiently and accurately, so that actions can be correctly

identified. Therefore, human action recognition has been the area of interest of most

of the computer scientist and researchers. Although, the main purpose of the human

action recognition is to design an intelligent system which can provide a chance to help

people fully leverage the ability of the computers. It provide the valuable information

to identify abnormal actions to warn the authorities before bad things happen. It also

provide valuable information about different action videos to help people obtain the

useful videos quick. Lastly, it provide the chance that machine can understand what are

the people doing using their "eyes" (cameras) instead of passing the signals with specific

devices.

With the most intelligent visual device, human eye can capture the low-level informa-

tion and pass it to the brain for further processing. Brain takes the signals and extracts

high-level semantic and contextual information about the scene. Computer vision re-

searchers are trying to bring the same intelligence and perceptual capabilities as the

human vision system. Till now, researchers in the computer vision community have

succeed in the human actions by hand-craft features in a variety of scenes. But the action

is much more complex than the features what extracted. And therefore hand-crafted

features are problem dependent which cannot apply to real-time and complex scenes.

Because in the case of human action recognition, researchers face difficult challenges

to deal with camera motion, occlusion, background cluttering, view point variation,

execution rate and similar gestures.
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(a) Gestures: Waving and Bend [9]

(b) Actions: Running and Walking [9]

(c) Interactions: Pickup phone call and Hugging [67]

(d) Group activities: Volleyball [79] and Basketball
[125]

Figure 1.1: Different types of human actions reported in [146]

4



1.2. SIGNIFICANCE OF VIDEO-BASED HUMAN ACTION RECOGNITION

The general implementation pipeline for the human action recognition include fol-

lowing steps. The first important step in human action analysis is to extract the video

into frames, where the features can be easily extracted from frames such as optical

flow or interest points. Generally, the feature-based methods will be extracted from the

frames, and followed by send the features to train a classifier and do the classification.

Another mostly used methods are deep learning-based, unlike feature-based methods,

the extracted frames will be the input of the neural network directly. The neural net-

work will process the localized features by different neurons just like human brain.

Deep learning-based methods seem to be more accurate and used widely as compared

to feature-based methods. Moreover, the hand-craft features can be the input of the

neural network as well. These two-stream methods provide both spatial and temporal

information about the human actions. In the second step, to obtain the final result, the

results from two streams will be assembled by one fully connected layer of the neural

network.

Many human action recognition works have been done by researchers. However, the

early works have the drawbacks such as they did not consider the temporal and motion

information in the video frames. To adequately address this problem, new approaches

have been proposed to process both spatial and temporal information. Indeed, the

temporal information approaches improved the performance of the action recognition.

However, human actions in videos are not as simple as static objects. With the different

actions, the body parts will follow different sequence of gestures listed Fig 1.2. The

gestures will be very similar in the most of videos frames when the people perform certain

actions. For instance, playing golf is very similar as picking up something, because in

the most frames people are supposed to bend their back which is very similar as in the

Fig 1.2(a). Similar situations will happen in the case of "Swing and Throw"(Fig 1.2(b)),

"Chew and Laugh" (Fig 1.2(c)) and "Turn and Walk" (Fig 1.2(d)). Hence, the drawback of

CNN in videos are obvious, as CNN will generate almost the similar features on some of

the actions with the similar gestures.

1.2 Significance of video-based human action
recognition

Human action recognition has many real-world critical applications. The applications

are given below.
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(a) Rope Climbing and Rock Climbing Indoor

(b) Blow Dry Hair and Hair Cut

(c) Mopping Floor and Baby Crawling

(d) Running and Jogging

(e) Golf and Pick

(f) Turn and Walk

Figure 1.2: Similar gesture human actions
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1. In public place surveillance, this study of human action recognition help the

security sectors to evaluate the abnormal actions and reduce reaction time when

bad thing happens.

2. Baby room monitoring provides a save place while monitoring the baby actions,

which send real-time warning to parents by monitoring actions of the baby.

3. Human machine interaction gives the robots the ability to recognize human actions

by cameras rather than other sensors.

4. Video indexing can help people to find different videos based on different topics

which can be categorized by different actions.

1.3 Challenges

In early stages, researchers made assumptions on certain scale or fixed viewpoint when

the video was captured. However, those assumptions doesn’t reflect the real-world

environment. Besides, early research also followed the two-steps approach to design the

system. First, the hand-craft features are extracted from the video frames, followed by

the design of classifiers based on the extracted features. Thus, most of the early research

works calculate the motion and texture descriptors using spatio-temporal interest points

which are built manually. In the real-world scenario, the performance of these hand-

crafted features is low as they are highly problem-depended and lacks generalization.

Especially, for human action recognition, different actions may correspond to totally

different patterns due to the environment changes and motion patterns. However, they

overlook one truth, unlike still objects, human actions in videos are the combination

of the sequence of gestures, for some different actions contain the same gestures in

most of the video frames. Hence the problem is apparent, feature-based methods tend to

learn the features which extracted from the video frames; however, the neural network

will generate almost the same features on the similar gesture actions. Some important

challenges need to be addressed for the understanding of actions. I have discussed some

of the challenges given below.

1. Camera motion will create different temporal features for human actions compare

to the invariant camera.

2. Background cluttering is another challenge of human action recognition which will

hard to detect human gestures from the complex background.
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3. Actions are hard to detect during the occlusion happens.

4. Observing actions from different view-points can represent totally different ges-

tures and features, which makes recognition process much harder than the single

view-point.

5. Similar gestures makes the classifier confuse due to the captured features are very

similar.

6. Deep learning approaches requires large amount of training data, however under

certain circumstances the training data is not enough.

These similar gesture action challenges can be seen in the Fig 1.2.

1.4 Aims and objectives

The objectives of this research are to develop robust algorithms for human action recog-

nition. In this study, Core technologies such as machine learning and computer vision

will be applied to make intelligent solutions for video-based human action recognition.

Substantial efforts have been made in human action recognition for different types of

datasets. Furthermore, the similar gesture features and dataset shortage problem will

be discussed. The aims of the stakeholder for video-based human action recognition are

listed below.

1. The system should be able to classify similar gesture actions accurately.

2. The system should be an end-to-end system which requires no data pre-processing.

3. The system should be able to generate more data for augmentation to increase the

bias and differences of the similar gesture actions.

To achieve the aims of the stakeholder, the following objectives have been proposed.

1. Developing a human action recognition framework for human action recognition

using computer vision and deep learning approaches

2. To evaluate the proposed methods for similar gesture action recognition.

3. Design an end-to-end framework which can provide a one-stop procedure.

4. To study the data augmentation using generative adversarial nets.
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1.5 Research questions

The above motivation and objectives lead to the following research questions.

1. How to identify the similar gestures and classify the actions from the videos?

2. Is it possible to process the similar gesture actions automatically in an end-to-end

fashion?

3. How to increase the size of the datasets and bias between similar gesture classes?

1.6 Evaluation of action recognition methodology

There are several publicly available benchmark datasets for the evaluation of video-based

human action recognition algorithms. The brief description of these datasets is given

below.

1. KTH Dataset [107]

KTH is one of the old dataset but still very challenging. It includes six actions. Each

actions were performed by 25 different actors with four different backgrounds.

2. UCF101 Dataset [115]

UCF101 contains 101 different actions which collected from Youtube which has

13320 realistic action videos in total with a large diversity regarding to different

actions and their presence of variations in pose, object scale, object appearance,

object scale, illumination conditions, cluttered background and camera motion etc.

3. HMDB51 Dataset [61]

HMDB51 is another popular dataset which generated by Serre Lab from Brown

University. HMDB51 is one of the large and generic available public dataset for real-

world actions. The total 7000 video clips are collected from some of the commercial

movies and Youtube.

1.7 Contributions

The proposed work has led to the following contributions in this thesis:

• A study of various human action recognition methods and their performance have

been evaluated for different types of datasets.
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• A new approach for similar gesture action recognition presented. The proposed

generic hierarchical classification model can be applied to any datasets/real-world

application involving gesture recognition.

• An end-to-end system has been proposed which can process the similar gestures

automatically.

• An action data augmentation framework using GAN has been proposed, which can

generate more training data and enlarge the differences between similar class.

• An graph embedding framework using the idea of GAN has been proposed, which

apply the computer vision approaches to graph research area and achieved high

performance in graph embedding.

1.8 Stakeholders

The thesis will assist the different applications which require to apply the human action

recognition efficiently and accurately.

1.9 Outline of the thesis

Based on the proposed research questions, the proposed methodologies are divided across

several chapters. The thesis is divided into seven chapters and is briefly described as

follow:

• Chapter 1 provides an introduction to the research area, aims, and motivation of

the research, its significance, major challenges, brief description of the datasets

and evaluation criteria, and outline the contributions to the research.

• Chapter 2 discuss the background and related works in the human action recogni-

tion using computer vision and machine learning approaches. The limitations and

open research questions is discussed as well.

• Chapter 3 presents the hierarchical classification framework designed for similar

gesture action recognition as well as extend the framework into the end-to-end

system which can process the similar gesture classification automatically.
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• Chapter 4 presents the developed action data augmentation framework with a

GAN features generator and evaluate the performance for classification on different

datasets.

• Chapter 5 presents the feature-dependent graph convolutional autoencoders with

adversarial training methods, which can embed and reconstruct the both node

features and structural characteristics.

• Chapter 6 Summarizes the thesis and outline the future research work in the

human action recognition.
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BACKGROUND AND RELATED WORKS

This chapter provides a brief review of current state-of-the-art approaches and their

limitations. The discussion about limitation and shortcomings will indicates research

direction and will lay the foundation for the work discussed in subsequent chapters.

2.1 Introduction

Video-based human action recognition has become one of the most popular research

areas in the field of computer vision and pattern recognition in recent years. There

are many challenges involved in human action recognition in videos, such as cluttered

backgrounds, occlusions, viewpoint variation, execution rate, and camera motion. A large

number of techniques have been proposed to address the challenges over the decades.

From a computer vision perspective, the aim of analysis is to find the solutions based on

different types of datasets and methods.

The problems presented by human action recognition are more complicated than

a typical computer vision system problem. Here we will discuss some of the common

circumstances faced by typical computer systems as well as by the system used for

video-based human action recognition.

1. Single-view points: The single viewpoint datasets normally use a single camera

recording human actions from a certain invariant angle without camera movement

as illustrated in Fig 2.1.
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Clapping Boxing Waving Jogging Running Walking

Figure 2.1: Samples of single-view point dataset[146]
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Figure 2.2: Samples of multi-view point dataset[146]

2. Multi-view points: In a real-world scenario, multiple cameras are used for moni-

toring large public spaces, such as shopping malls, airports, trains and bus stations.

Some multi-view datasets have been created specifically for studying the problem

of processing multiple views of the same human as illustrated in Fig 2.2.

This literature review aims to do a critical analysis of current state-of-the-art tech-

niques. In particular, our survey will be closely related to gesture estimation, feature
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Figure 2.3: A typical video-based human action recognition system.

extraction, gesture recognition, and action recognition. And we broadly classify the

methods into two categories: feature-based and deep learning-based.

In recent years, much work has been done in different areas in the computer vision

research area, such as video classification [77], resolution [52] and segmentation [60]

etc. However, the research on video-based human activity recognition has not been

explored much, due to the challenges in processing temporal information from the video

stream. Action recognition from a video stream can be defined as recognizing human

actions automatically using a pattern recognition system with minimal human-computer

interaction. Typically, Fig 2.3 shows an action recognition system which analyzes certain

video sequences or frames to learn the patterns of a particular human action in the

training process and use the learnt knowledge to classify similar actions during the

testing phase [10, 18, 26, 35, 37, 43, 49, 51, 54, 65, 71, 80, 86, 100, 151, 154]. Among

the early approaches [17, 28, 36, 67, 70] for human action recognition, all of these

investigations use motion and texture descriptors calculated based on the spatio-temporal

interest points, which are built manually. Subsequently, they compute features from raw

video frames and classifiers are trained based on the features obtained. Thus, even the

features can be fully extracted automatically, and these hand-crafted features are used

for specific problems. Therefore, the main drawback of these approaches is that they are

problem-dependent, which is challenging to apply in the real-world, even though they

may achieve high performance in action recognition.

Over the past decades, deep learning methods take the place in computer vision

and human action recognition research area, which have achieved tremendous success.

Convolution neural networks (CNN) and Recurrent neural networks (RNN) have been
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widely used to process the images and recognize the human action by extracting and

learning the features from the video frames automatically. A two-step framework learn

the features from the video frames by using CNN and RNN are proposed by [6], however,

the proposed method ignore the feature correlation between frames when the frame

sequential information has been learnt by the RNN. [53] introduced 3DCNN to address

this problem, which can preserve the features on the same pixel spots between adjacency

frames, by convolving the features on sequential frames. However, the 3D convolution

only can preserve partial temporal information by convolving the changing features on

the same pixels to the next level. Recurrent neural networks (RNN) and long short term

memory (LSTM) models have shown great achievements in many time series methods

such as natural language processing (NLP) tasks, these time series models perform the

same task on each of the sequential elements. LRCNs and HM-AN are the recent RNN

works which process the temporal features inside the videos are proposed by [29] and

[152]. In these methods, the new temporal features which extracted from the frames will

be used to update the hidden states and the previous hidden states will be forgotten.

However, the temporal features are handcraft features or extracted from the CNN. Hence,

the similarity of the extracted features would reduce the performance of the RNN. To

recognize human actions accurately, many blend methods have been proposed. [112]

proposed a two-stream convolutional networks for video-based human action recognition

which blend the results from spatial and temporal channels in the last layer of the

network. The two channels simultaneously process the information, and many other

works followed this idea by modifying the networks [74] or choose the different features

[33]. Nonetheless, two-stream methods still cannot solve the similar feature problem,

because they are feature dependent methods.

2.2 Datasets

With the development of human action recognition technology, many different types

of datasets have been prepared and released recently. These datasets are widely used

for experimental purposes to evaluate the performance and accuracy of existing/new

approaches and to ensure appropriate comparison with other approaches. Generally, deep

learning can be applied to different types of datasets with raw input data. In addition,

the complexity of the networks may be determined by the different types of the datasets.

For example, single viewpoint data may require less steps than multiple viewpoint data,

which needs to generate multiple networks to obtain the final output. Therefore, we
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classify the datasets as single viewpoint, multiple viewpoints videos. These datasets offer

dedicated features for different research purposes, such as gestures, 3D body modeling

and joints etc. In this section, we review the popular public datasets on which deep

learning techniques have been successfully applied. Table 2.1 lists the various datasets

which are popularly used for research.

Table 2.1: Comparison of the human action recognition datasets

Datasets Type Views Subjects Year
KTH [107] single-view 1 6 2004
Weizmann [9] single-view 1 10 2005
UCF sports [114] single-view 1 150 2008
Hollywood [67] single-view 1 8 2008
Hollywood2 [76] single-view 1 12 2009
Olympic Sports [82] single-view 1 16 2010
HMDB51 [61] single-view 1 51 2011
UCF50 [103] single-view 1 50 2012
UCF101 [115] single-view 1 101 2012
Kinetics [56] single-view 1 400/600 2017
IXMAS [141] multi-view 5 14 2006
CASIA Action [138] multi-view 3 8 2007
i3DPost [39] multi-view 8 12 2009
MuHAVi [113] multi-view 8 17 2010
Videoweb [25] multi-view 4-8 51 2011

2.2.1 Single-view point datasets

The single viewpoint datasets normally use a single camera recording human actions

from a certain invariant angle without camera movement. These datasets were used

for the analysis of human actions in the early stage of research, as shown in Fig 2.1.

The earliest single viewpoint dataset was released in 2001 by Weizmann Institute [9].

This dataset recorded ten actions and each action was performed by ten persons. The

foreground silhouettes are included in the dataset and the backgrounds are static as the

viewpoints are static. In 2004, another dataset named KTH [107] was published. The

KTH dataset contains six actions with four different scenarios, performed by twenty five

actors. Similar to the Weizmann dataset, the backgrounds are static as well, except in

the zooming scenarios. These early datasets have some drawbacks, such as videos are

recorded in constrained environments and the actors perform simple identical actions in

the video clips which are not the representative of human actions in the real world. To
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consider real scenarios, several other datasets were introduced, including UCF sports

[114] and Hollywood datasets [67] which are extracted from YouTube or from movies. The

UCF sports dataset contains 150 sports motions considering human appearance, camera

movement, viewpoint change, illumination and background. The Hollywood dataset

proposes eight actions to address the challenges of occlusions, camera movements and

dynamic backgrounds. These datasets have a fixed viewpoint to monitor the actions in

the video stream. UCF101 is one of the state-of-the-art dataset which proposed by the by

Center for Research in Computer Vision in the University of Central Florida. UCF101

contains 101 different actions which collected from Youtube which has 13320 realistic

action videos in total with a large diversity regarding to different actions and their

presence of variations in pose, object scale, object appearance, object scale, illumination

conditions, cluttered background and camera motion etc. All the 101 action classes are

categorized by 25 groups, each group has four to seven videos for one of the action. The

videos from same group share the common features, for example, similar viewpoint or

similar background. Thus, classifying the video contains similar gesture actions could be

a challenge. HMDB51 [61] is another popular dataset which generated by Serre Lab from

Brown University. HMDB51 is one of the large and generic available public dataset for

real-world actions which firstly published on ICCV 2011. The total 7000 video clips are

collected from some of the commercial movies and Youtube, and the video clips contain

51 human actions such as some facial actions, body movements and body and objects

interactions and each class contain around 100 videos. It is a very challenging dataset

because the many actions have similar gestures performed by different person. Each

action would be captured through different viewpoints and recorded in four to six video

clips. Kinetics [56] is a state-of-the-art dataset which published in 2017. Kinetics consists

of approximately 500,000 video clips, and covers 600 human action classes with at least

600 video clips for each action class. Each clip lasts around 10 seconds and is labeled

with a single class.

2.2.2 Multi-view point datasets

In a real-world scenario, multiple cameras are used for monitoring large public spaces,

such as shopping malls, airports, trains and bus stations. Some multi-view datasets have

been created specifically for studying the problem of processing multiple views of the

same human. The advantages of these datasets is that they model a 3D human body

shape from different angles and occlusion problems are avoided in contrast with single

viewpoint streams.
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Weinland et al. [141] released the IXMAS dataset which contains 14 actions per-

formed by 11 persons. For each action, there are five cameras capturing the action from

five angles with a static background and illumination settings. Sample images taken

from the IXMAS dataset are shown in Fig 2.2, where multiple views of the same human

actions are captured by different cameras placed at different viewpoints. Another indoor

dataset, the i3DPost Multi-view dataset [39] was published in 2009. Eight high definition

cameras were used to capture twelve actions performed by eight persons. Kingston

University released their dataset in 2010 which was called MuHAVi [113]. They used

eight non-synchronized cameras to capture 17 actions performed by 14 actors and it

was designed to test different action recognition algorithms. Unlike the indoor datasets

with static backgrounds, several datasets captured actions under real conditions, such as

Videoweb [25] and the CASIA Action datasets [138]. In the Videoweb dataset, four groups

of actors perform actions, which were captured by four to eight cameras tailored for group

activity recognition. The CASIA Action dataset mainly focuses on interactions between

persons and it contains eight types of single person actions performed by 24 people and

seven types of interactions captured by three static cameras from different angles. These

multi-view datasets can provide multiple streams as inputs for researchers.

2.3 Human action recognition approaches

In order to recognize high-level activities hierarchically, the multi-layered Hidden Markov

Model (HMM) was introduced in the early stages of human action recognition research.

Most HMM-based work has been performed on single viewpoint datasets. A fundamental

form of the multi-layer approach was presented by Oliver et al. [85]. At the lower level,

HMMs were used to recognize various sub-events, such as stretching and withdrawing.

The upper level treats the result from the lower level as input and recognizes the

punching activity when stretching and withdrawing occurred in a certain sequence.

However, by nature, HMMs require strict sequences in each layer. Therefore, HMM

approaches may not be able to meet the expectations of processing speed and system

performance. This section focuses on the use of deep learning techniques with raw input

data used by researchers for human action recognition on three types of video datasets.

Since the approaches proposed were on different datasets and testing strategies, it is

difficult to make a quantitative performance comparison. Even deep learning is still

relatively new in this research area, however, it is crucial that these approaches have

the ability to undertake high-level action recognition with high performance.
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2.3.1 Hand-crafted feature methods

In the early stages of action recognition research, the techniques were based on optical

flow [32, 113], tracking [2, 101, 102, 109] and a spatio-temporal shape template [9, 57,

155]. The computation of optical flow helps to construct action templates for flow and

tracking-based approaches. However, at the boundary of the segmented human body,

the features are more sensitive to noise, which are extracted from the flow templates.

The action recognition problem is treated as 3D object recognition by spatio-temporal

shape template approaches. These approaches require the extraction of highly detailed

silhouettes, which may not be possible when there is real-world noisy video input. Further,

a recognition rate with 100% accuracy has been demonstrated on the WEIZMAN dataset,

however, these approaches do not work properly on a dataset which contains noise such

as the KTH dataset. The KTH dataset contains noises such as low resolution, zooming,

and camera movement, which makes it impossible to extract a clean silhouette. The

spatio-temporal interest point-based approaches have become increasingly popular to

address this problem. Further, the 2D SIFT descriptors [72] are extended to 3D with

the addition of dimension to the histogram orientation by Scovanner et al. [108]. Due

to the encoded temporal information, the extended 3D descriptors perform better than

the 2D descriptors in action recognition. Furthermore, Willems et al. [142] proposed

the spatio-temporal domain which is an extension of the SURF descriptor. Schuldt et

al. [66] and Dollar et al. [28] described sparse spatio-temporal features to deal with

the complexity of human action recognition [31, 113]. Schuldt et al.[66] proposed the

representation of action using 3D spatio-temporal interest points captured from video

frames. Schuldt also produced a histogram of informative words for each action adopting

the codebook and bag-of-words (BOW) approach.

A dictionary of prototypes or video-words can be formed based on the clustering of the

detected points of interest. Similarly, Dollar et al. [28] introduced a multi-dimensional

linear filter detector which is able to detect denser points of interest. The BOW approach

was applied but it took sparser sampling of the points of interest. Niebles and Fei-Fei

[83] introduced a hierarchical model which can be characterized as a constellation of

bags-of-features to improve the performance. The approaches [28, 83] represent BOW

features, which are adopted successfully for 2D object categorization and recognition.

The BOW features are robust against noises, camera movements and low resolution

datasets compared with object tracking and shape-based approaches. Moreover, these

approaches mainly focus on individual local space time descriptors rather than global

space time descriptors.
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Trajectory features are widely used at the beginning of the action recognition research.

The trajectory features such as dense trajectory which represents the spatio-temporal

can be through detectors or descriptors [131] [128] [130]. Besides, the fisher vector (FV)

coding model is another way to extract spatio-temporal local features. Approaches such

as discriminative dictionary learning (MIDDL) [69] and Gaussian Mixture Model (GMM)

[50] have been proposed to process the FV. Furthermore, some methods learn the human

actions by generating histogram features such as the bag of visual words model (BoVW)

[95], dictionary learning [150] and universal movement model (UMM) [104]. However,

those hand-crafted feature methods are designed for certain problems specifically, which

are not universally applicable.

However, the early work did not consider noise. In recent years, researchers have

applied different new methods to tackle the challenges from noise in the human action

recognition area, such as camera in-variation, camera motion and occlusion. Most of

the early work assumes that the action is captured from a static viewpoint without

any camera movement. However, the patterns of human actions appear to be different

from different angles. A person‚Äôs gestures and their location vary according to each

camera angle. Some of the approaches train a single classifier for all viewpoints or a

set of classifiers where each classifier deals with one viewpoint [35, 51]. However, these

approaches only extend the system from a single viewpoint to a multi-view dataset.

Therefore, the performance only depends on the extracted features and the trained

classifiers. Lu et al. [73] introduced motion history and motion energy images to observe

the additional action features in the images. This approach may disrupt the background

of the image especially if there is more than one person in the image. In order to

obtain accurate multi-view action representations, researchers proposed some models

to generate 3D or 2D body gestures through the multi-view datasets. The human body

can be distinguished into several parts, and action recognition depends on the features

extracted from the different body parts. Kumar and Madhavi [63] used an envelope

shape to represent the human body and model the action recognition classifier.

2.3.2 CNN and RNN methods

Due to the recent success of the deep learning on human action recognition, CNN and

RNN methods draw the attention of the researchers, many methods based on CNN

and RNN have been designed. However, CNN was specifically designed for still images,

researchers firstly learn the temporal information by integrating hand-craft features with

CNN. For instance, Zhang et al. [159] leverage the CNN work with the linear dynamical
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Table 2.2: Performance comparison of the human action recognition approaches

Methods Datasets Performance (%) Year
[6] KTH 94.39 2011

[53] KTH 90.02 2013
[42] KTH 90.7 2013

[112]
UCF101 88.0

2014
HMDB51 59.4

[111]
Weizmann 98.63

2014
KTH 92.3

[3] KTH 94.3 2014

[117]
UCF101 88.1

2015
HMDB51 59.1

[124] KTH 93.96 2015

[110]
KTH 95.60

2015
UCF50 95.24

[132]
UCF101 95.1

2015
HMDB51 65.9

[7] UCF101 80.7 2015

[133]
UCF101 88.3

2016
HMDB51 61.7

[33]
UCF101 92.5

2016
HMDB51 65.4

[94]
UCF101 78.86

2016
Olympic Sports 94.8

[129]

UCF101 86.0

2016
HMDB51 60.1
UCF50 91.7

Olympic Sports 90.4
Hollywood2 66.8

[14]
UCF101 97.9

2017
HMDB51 80.2

[161]
UCF101 95.8

2017
HMDB51 74.8

[64]
UCF101 95.3

2017
HMDB51 75.0

[27]
UCF101 93.2

2017
HMDB51 63.5

[81]
Olympic Sports 94.0

2018
Hollywood2 68.1

[44]
Kinetics 78.4

2018UCF101 94.5
HMDB51 70.2

[46]
Kinetics 78.99

2018
UCF101 95.7
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system (LDS) to learn spatio-temporal features in videos. In addition, Banerjee and

Murino [8] use an efficient pooling strategy to incorporate image based deep features.

Factorized spatio-temporal CNNs [117] were designed to handle the spatial and temporal

kernels in different layers which could reduce the number of learning parameters of the

network. With the transformation and permutation operator, a training and inference

strategy along with a sparsity concentration index scheme produced the final result,

which outperformed existing CNN-based methods. Another work [6] shared a similar

idea, the only difference being that they extracted the spatial and temporal information

as a single frame and a multi-frame optical flow. This spatial and temporal information

was fed into a spatial and temporal stream CNN, respectively. Ballas et al. [7] used

a convolutional GRU-RNN (GRU-RCN) to process the visualization of convolutional

maps on successive frames in a video. The results show that the Bi-Directional GRU-

RCN Encoder outperforms the VGG-16 Encoder by 3.4% and 10% for action recognition

compared to both RGB and Flow inputs, respectively.

Long Short Term Memory (LSTM), a variation of RNN, also received increasing

attention in sequence processing. LSTMs use memory blocks to replace the regular

network units. The gate neurons of the LSTM determine when it should remember,

forget or output the value. It was previously used to recognize speech and handwriting.

A robust LSTM [42] with recurrent cell connections was tested for action recognition

to show that classification accuracy may be affected by training set size, length of the

video sequence and quality of the video. Veeriah et al. [124] delivered a different gating

scheme to address the problem of conventional LSTMs which emphasizes the change in

information gain caused by the salient motions between successive frames. Then, the

LSTM model was termed as differential RNN.

To involve the temporal features in the CNN, Baccouche et al. [6] introduced a two-

step neural network-based deep learning model. The first step uses CNNs to learn the

spatio-temporal features automatically and the following step uses a Recurrent Neural

Network (RNN) to classify the sequence. In addition, Ji et al. [53] proposed a 3DCNN

architecture, they preprocess the video data into multi-channels such as grey, gradient

and optical flow by the hardwired layer as the input, and the features will be extracted

between adjacent frames. Tran et al. [121] took the 3DCNN one step further by replacing

all the kernels with 3DCNN kernels and built a new VGG-style 3DCNN network, namely

C3D. Varol et al. [123] proposed a long-term temporal convolution (LTC) networks. It

requires 60 to 100 frames, which can generate high-quality optical flow as the input.

To learn the temporal features between frames, Donahue et al. [29] fuse the CNN and
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long short term memory (LSTM) which is a variation of RNN. Yan et al. [152] proposed

hierarchical multi-scale attention network (HM-AN) by using attention mechanism with

RNN. Besides, the hierarchical recurrent neural encoder (HRNE) [88] can exploit video

temporal structure and model the temporal transitions between frames as well as the

transitions between segments. However, the approaches are not sensitive to similar

features.

Unlike other neural networks, Spiking Neural Networks (SNNs) work similarly to

their biological counterparts. A special model based on SNNs was designed by Shu et al.

[111], which is a hierarchical architecture of the feed-forward spiking neural networks

modeling two visual cortical areas: primary visual cortex (VI) and middle temporal

area (MT), neurobiologically dedicated to motion processing. It simulates the working

mechanism from the VI and MT. After detecting the motion energy, the information is

processed by the VI layer and MT layer. The motion energy is first transformed by the

spiking neuron model in the VI layer, then the MT cell pools the information received

from the VI cell according to the mapping connection between the two layers. Features

are extracted from the spike trains which are generated by MT spiking neurons. The

final output is recognized by an SVM classifier. Ali and Wang [3] built a Deep Brief

Network (DBN) which is another variant of deep neural networks. It is composed of

multiple hidden unit layers with connections between the layers to the learning feature

for action recognition.

Some of the methods prefer to extract different descriptors as input before using deep

learning techniques. In [110], researchers firstly extract dense trajectories from raw data

with multiple consecutive frames and then project the trajectories onto a canvas. In this

way, they can transfer the raw 3D space into a 2D space and import them, hence, the

complexity of the data is reduced. Subsequently, they input the data into a Deep Neural

Network (DNN) which is utilized to learn a more macroscopical representation of dense

trajectories. Some additional features are extracted and used as inputs to the classifier.

Wang et al. [132] claimed that their trajectory-pooled deep-convolutional descriptor

(TDD) outperformed the hand- crafted features with higher discriminative capacity. A

posed-based CNN [19] descriptor was used for action recognition which was generated

based on human poses. The input data was divided into five part patches. For each patch,

two kinds of frames were extracted from the video, namely RGB and flow frames. The

P-CNN features are generated by both frames and processed in the CNN, respectively

after aggregation and normalization stages. Table 2.2 presents a comparative study of

different single/multiple view approaches.
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2.3.3 Two-stream convolutional methods

Simonyan and Zisserman [112] proposed the first two-stream convolutional architecture.

The advantage of the two-stream methods is the architecture can process the spatial

and temporal information simultaneously, which can achieve comparable performance

despite the limited training data. Hence two-stream convolutional became the most

popular and effective approach for action recognition. Ng et al. [156] fed both spatial

and temporal features extracted from optical flow into the LSTM. The two-stream

convolutional architecture also can feed hand-craft features, Wang et al. [135] combine

the appearance and motion information via a feature concatenation layer. Feichtenhofer

et al. [33] fuse spatio-temporal features via 3DCNN kernels and 3D pooling. Other works

are replacing the stream from classic CNN to other networks such as temporal segment

network (TSN) [134], two-stream semantic region based CNNs (SR-CNNs) [139], key

volume mining deep framework [162] and two-stream Siamese network [137]. However,

the performance of the two-stream convolutional architectures still depends on the input

features, which are not specifically designed for similar gesture actions.

2.3.4 Deep neural networks

By the development of the human action recognition approaches, the layer of the neural

networks has became deeper and deeper compare with early shallow networks. One of

the success deep neural network is residual neural network (ResNet) which proposed by

[47]. Unlike standard CNN, ResNet is utilizing skip connections, or short-cuts to jump

over some layers. Typical ResNet models are implemented with single-layer skips. He et

al. [46] leverage the both local and global spatial-temporal modeling in videos and a novel

temporal Xception block has been added into the ResNet. In addition, Hara et al. [44]

apply the spatio-temporal three-dimensional kernels on ResNet with different number of

layers which from ResNet-18 to ResNet-101. The results shows that the deeper of the

neural network will achieve higher performance. Furthermore, the Resnet approaches

can transfer the classification from large dataset like Kinetics to small datasets such as

UCF101 and HMDB51.

2.4 Limitations and open research problems

Based on the review of related work available in the literature, the following limitations

and open research problems are listed below.
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• The camera motion is challenging because the temporal features will be different

compare to the invariant camera. Not much work has been reported in the litera-

ture. Considering surveillance scenario, robust techniques which work irrespective

of variant camera are desired.

• Occlusion is another challenging problem, however, existing works assume that

there is no occlusion in the existing public datasets. Where robust action prediction

techniques is required when occlusion happens.

• Deep learning approaches requires large amount of training data, however under

certain circumstances the training data is not enough. However, many works only

focus on the classification performance rather than considering the cost.

• The reported methods achieved high performance on the global classification,

however the gap still exists. Not much work discover the reason why the mis-

classification happens.

The purpose of this thesis is to discover the reason of mis-classification and how to

further improve the performance by solving the problems.

2.5 Preliminary study

An issue was discovered after analyzing the results of the literature, which is even meth-

ods such as [21] can achieve high global accuracy, mis-classification happens between

some specific classes, which could be the reason of the limited global accuracy.

Chou et al. [21] captures sequence motions and occlusions at a low computational

cost due the detection of the points of interest and apply the nearest neighbor classifier

(NNC), Gaussian mixture model classifier (GMMC) and the nearest mean classifier

(NMC) to do the classification. The results achieve 89.31%, 90.22% and 90.58% on KTH

dataset using NNC, GMMC and NMC respectively. Confusion matrix reported in their

paper are shown in Fig 2.4(a), Fig 2.4(b) and Fig 2.4(c).

According to the confusion matrix, some of the classes achieved high accuracy like

"Boxing", "Hand clapping" and "Hand waving". However, the confusion rates are high

between the class "Jogging", "Running" and "Walking". In NNC method, 12% "Jogging"

are mis-classified as "Running" and 7% "Jogging" are mis-classified as "Walking". Similar

as NNC, in GMMC 15% "Running" are mis-classified as "Jogging" and in NMC 10% are

"Jogging" mis-classified as "Jogging".
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(a) (b)

(c)

Figure 2.4: Confusion matrix proposed by Chou et al. [21] on KTH for (a) NNC, (b) GMMC
and (c) NMC

Same issue happens in Weizmann [9] dataset which reported in Chou et al. [21]. The

confusion matrix reported in their paper are shown in Fig 2.5.

In the results of Weizmann dataset, the results achieve 87.78%, 91.11% and 95.56%

using NNC, GMMC and NMC respectively. However, in all the three algorithms, classes

such as "Run", "Side" and "Skip" have the high confusion rates. For example, in NNC,

the accuracy of "Skip" is only 22% because 44% and 11% of "Skip" are mis-classified into

"Run" and "Side".

For further investigate this issue, the mis-classification happens between specific

classes has been analyzed. Fig 2.6 shows the three confused classes "Jogging", "Running"

and "Walking" in KTH dataset.

From the extracted frames of KTH dataset, "Jogging", "Running" and "Walking"

actions have the similar gestures which will supply very similar features for the classifier

even human eye cannot distinguish the difference if we do not label the classes. These

similar features will confuse the classifier during the training stage to reduce the

performance on single classes as well as the global classification performance.
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(a) (b)

(c)

Figure 2.5: Confusion matrix proposed by Chou et al. [21] on Weizmann for (a) NNC, (b)
GMMC and (c) NMC

Table 2.3: Confusion rates of classes from multiple actions

Classes Confusion Rates
Jogging 0.56
Running 0.31
Drink 0.19
Eat 0.16
Sit 0.25
Stand 0.26
FloorG ymnastics 0.17
Raf ting 0.08
Sword 0.09
Swordexercise 0.07
Turn 0.15
Walk 0.12
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Figure 2.6: "Jogging", "Running" and "Walking" in KTH dataset which have similar
gestures

Some work argue that deep learning methods can improve the classification perfor-

mance. Because comparing to 2DCNN, 3DCNN not only gathering the pixel features but

also preserving the correlations between frames. To resolve this question, the experi-

ments have been conducted on KTH and HMDB51 datasets for 3DCNN methods, the

results shows that the 3DCNN is not sensitive to the similar gestures as well as shown

in Table 2.3

This thesis will tackle the similar gesture action recognition problems and propose

the solutions for similar gesture action recognition to improve the performance of the

global classification.

2.6 Summary

In this chapter, a comprehensive literature review of the different aspects of human

action recognition was presented. This literature review shows that most of the work has

been done in the area of human action recognition using feature-based and deep learning-

based methods. This chapter also presented techniques mainly focusing on developments

in deep learning over the past ten years. Many investigations have been conducted to deal
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with different types of datasets. For single/multiple viewpoint approaches, the inputs are

normally frames, so researchers have performed 3D convolution operations to add the

temporal information in order to recognize videos. Additionally some of the approaches

could also be used to generate features for different classifiers. Table 2.2 shows some

of the performance comparison between different approaches. As it is evident from

literature, most early traditional machine learning works are problem dependent, which

apply the texture descriptors on the extracted handcraft motion features. In addition,

all the reviewed methods overlook one factor, unlike still objects, human actions in

videos are the combination of the sequence of gestures. Because of some different actions

contain the same gestures in most of the video frames, the mis-classification happens.

This chapter tackled the similar gesture action problem and then proposed hierarchical

classification approach and data augmentation framework for similar gesture action

recognition in this thesis.
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SIMILAR GESTURE ACTION RECOGNITION

This chapter is divided into two parts. The focus of part 1 is to explore similar gesture

problems in existing human action recognition and propose a hierarchical classification

approach to improve the classification performance for both similar gesture class pairs

and global classification results.

Part 2 of this chapter proposes an end-to-end system which can process similar

gesture videos automatically. In addition, experiments were conducted on multiple

datasets to evaluate the performance.

The major parts of this chapter have been published in the paper titled "Similar

Gesture Recognition using Hierarchical Classification Approach in RGB Videos" by Wu

et al. [148] and in the paper titled "An End-to-End Hierarchical Classification Approach

for Similar Gesture Recognition" by Wu et al. [147].

3.1 Introduction

Human action recognition is one of the most popular research areas in computer vision.

Diverse applications have been designed based on human action recognition technology

such as, surveillance, video indexing, human-computer interaction, customer behaviour

monitoring and analysis, etc. across multiple domains. However, recognizing human

actions accurately from a video stream is a challenging task due to occlusion, low

resolution, cluttered backgrounds and viewpoint variations, etc. [77] [55] [60]. Unlike

action recognition from still images, videos include temporal information and genetic data
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augmentation which is essential to classify actions/gestures more accurately. In the early

stages, researchers made assumptions on certain scales or fixed viewpoints when a video

was captured. However, these assumptions do not reflect the real-world environment.

Furthermore, early research also followed the two-steps approach to design the system.

First, the hand-craft features are extracted from the video frames, followed by the

design of the classifiers based on the extracted features. Thus, most of the early research

works calculate the motion and texture descriptors using spatio-temporal interest points

which are built manually. In a real-world scenario, the performance of these hand-

crafted features is low as they are highly problem-dependent and lack generalization.

In particular, for human action recognition, different actions may correspond to totally

different patterns due to environmental changes and motion patterns.

Deep learning models [48] [143] [68] have become a priority choice to deal with

computer vision problems due their impressive performance in various computer vision-

related tasks. These models have the advantage of learning features from hierarchical

neural network layers and automatically build the high-level representation from the

raw video inputs. Hence, unlike traditional hand-crafted feature extraction methods,

the CNN-based feature extraction and classification process is embedded in an end-to-

end pipeline. In short, a deep learning model applies multiple techniques such as local

perception, weight sharing, a multi-convolution kernel, down-pooling, etc. to study the

features from the image or frames. The classifiers can be trained using either supervised

or unsupervised methods, and the final result can be generated by ensembling the

results of multiple network layers. Deep learning techniques are widely used in visual

object detection and tracking [106], handwriting and signature recognition [84], natural

language processing [22], human action recognition [33], and image segmentation [16],

etc. Convolutional neural networks (CNNs) are one of the popular deep learning models

in the computer vision research area. Convolutional neural networks are a type of deep

model which include an input layer and an output layer. Between the two layers, there

are multiple convolutional layers, pooling or sub-sampling layers, fully connected layers

and normalization layers, which can be termed as hidden layers. Many research works

have shown that, with a well-trained CNN model [78], the classifier can achieve high

performance on object detection and recognition.

CNNs have been widely used for processing still images because of their ability in

relation to feature construction through different deep layer models. In this chapter, the

use of CNN models have been investigated on video-based human action recognition.

A simple way to apply CNNs on videos is as follows. First, extract the frames from a
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video. Then, treat each frame as an individual image and apply CNN models to recognize

human actions at the image level. This strategy was used in early research to analyze

human actions in videos [107]. However, the early work has serveral drawbacks, such as

not taking into consideration the temporal and motion information in the video frames.

To adequately address this problem, a 3DCNN architecture [53] was proposed by Ji

et al. In the proposed method, the video is analyzed by multiple convolutional layers

with 3D convolution and both the spatial and the temporal features are captured from

three adjacent frames. Therefore, motion and temporal information can be analyzed

simultaneously.

The 3DCNN approaches improved the performance of action recognition tasks. How-

ever, identifying human actions in videos is not as simple as static objects. With different

actions, the body parts follow a different sequence of gestures listed in Figure 1. The

gestures will be very similar in most of the video frames when people perform certain

actions. For instance, playing golf is similar to picking up something, because in most

frames, the subjects are bending over. This similarity is shown in Fig 3.1(a). Similar

situations are "Swing and Throw"(Fig 3.1(b)), "Chew and Laugh" (Fig 3.1(c)) and "Turn

and Walk" (Fig 3.1(d)). Hence, the drawback of CNNs in relation to videos is obvious, as

CNNs will generate almost similar features for some of the actions with similar gestures.

Thus, the performance of the classifier is decreased by the misclassified classes. To

analyze similar actions effectively and accurately, a hierarchical classification model has

been proposed in which the first stage classifies multiple classes, whereas the second

stage focuses on classifying similar gestures. Specifically, in the first stage, two of the

confusing/similar gesture classes with highest confusion rates are merged to form a

single class. Hence, the problem space for the first stage of classification is reduced to a

lower number of classes and higher accuracy can be achieved. In the second stage of the

classification, the merged pair of classes are handled explicitly and the problem space is

reduced to binary classification. A binary classifier is applied to the respective merged

pair of classes in order to resolve the similar gesture problem. The overall performance

is measured by combining the first and second stages results.

Experiments using the proposed method have been conducted on the state-of-the-art

human action datasets. The actions containing similar gestures (i.e., turn and walk,

etc.) have been combined into single actions/classes as the input. The proposed system

achieves high performance compared with the baseline CNN models. The experiment

results also show that the developed hierarchical model outperforms other baseline

models on similar actions.
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(a) Similar gesture: Golf and Pick

(b) Similar gesture: Swing and Throw

(c) Similar gesture: Chew and Laugh

(d) Similar gesture: Turn and Walk

Figure 3.1: Human actions with similar gestures [148]
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The major contributions of this work can be summarised as follows:

• The proposed method concentrates on the misclassification of similar gestures,

instead of focusing on the whole dataset to solve the similar gesture problems in

human action recognition.

• The results from the hierarchical 3DCNN architecture (H3DCNN) are combined

to boost the performance of the final classification results by combining the global

classification results and binary classification results.

• The evaluation of the proposed hierarchical model are conducted on the on the state-

of-the-art datasets in comparison with the baseline CNN methods. The experiment

results show that the proposed method outperforms other baseline methods on

similar gesture actions, and also in relation to overall accuracy.

3.2 Methodology Part 1

3.2.1 Data preparation

Experiments were conducted on the HMDB51 dataset, which is a state-of-the-art dataset

to evaluate the proposed architecture as shown in Fig 3.2. HMDB51 is a large and

generic publicly available dataset for real-world actions collected by SERRE LAB from

Brown University and was firstly released on ICCV 2011 [62]. The videos in this dataset

were collected from YouTube and several movies which include a variety of actions with

different human gestures including human body movements, body and object interactions

and some facial actions. It contains 7000 video clips distributed across 51 action classes,

in which each class has around 100 video clips. It is a challenging dataset because in the

video clips of each class, a different person is performing the same gesture. Each subject

performing the same action using different gestures and viewpoints has been recorded

into 4 to 6 video clips. The proposed architecture is capable of handling the misclassified

actions which involve similar gestures.

The most important process is how the similar gesture classes are merged to form a

single class. To determine which classes to merge, two rules have been defined:

• Rule 1: Choose the classes with the highest misclassification rate, and

• Rule 2: Choose two classes which have similar gestures with highest confusion

rate.
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Figure 3.2: The proposed hierarchical 3DCNN architecture [148]

In order to identify the similar and confusing gesture classes, the overall performance

of the state-of-the-art method [105] reported recently was considered. Table 3.1 provides

details about the performance of the similar and most confusing gestures, and also

provides information about the gesture pairs merged together to form a single class.

Similar gesture actions such as, "Jump & Catch", "Pick Up Object & Golf", "Laugh &

Chew" and "Sit & Stand" etc. are chosen and merged into one class as shown in Fig 3.3.

After merging the classes, the number of classes in the complete dataset (HMDB51)

will reduce from 51 classes to 42 classes. Moreover, the size/number of samples in the

complete dataset remains the same. This process decreases the misclassification rate and

improves the overall accuracy of the dataset, as the dataset now has unique gestures.

3.2.2 Architecture Description

Fig 3.2 presents the proposed hierarchical action recognition architecture which has two

stages. The proposed architecture can be applied to different real-world scenarios for
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Table 3.1: Merging the similar gesture classes

Classes Accuracy reported in[105] Merged Classes
Jump 0.38(low)

New Class 1
Catch 1.00
K ick Ball 0.31(low)

New Class 2
Punch 0.51
Laugh 0.41

New Class 3
Chew 0.47
Pick 0.27(low)

New Class 4
Gol f 1.00
Sit 0.39(low)

New Class 5
Stand 0.27(low)
Throw 0.16(low)

New Class 6
Swing Baseball 0.16(low)
Turn 0.222(low)

New Class 7
Walk 0.38(low)
Wave 0.14(low)

New Class 8
Shake Hands 0.82
Sword 0.13(low)

New Class 9
Sword Exercise 0.42

......
HMDB51 dataset with 51 classes

Golf Pick Turn Walk Chew Laugh

......
Merged HMDB51 dataset with 42 classes

New Class 1 New Class 2 New Class 3

Figure 3.3: Merging class process [148]
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gesture recognition. In this work, the HMDB51 dataset is used for the experiments and

validating the proposed hierarchical architecture. The input data from the HMDB51

dataset has 51 classes initially. After merging the similar gesture class pairs based on

the rules defined in the previous section, 42 classes are formed.

The first stage of the proposed hierarchical classification model focuses on classifying

the generic classes (complete dataset), whereas the second stage resolves similar/confus-

ing gesture problems. Once an input video is classified as one of the similar/confusing

gesture classes in the first stage, the sample will be passed to the second stage for further

classification. The second stage comprises different binary classifiers, each of the target

binary classifier is responsible for one of the confusing gesture pairs, which is selected

automatically based on the first stage classification results. Additionally, in the first

stage, if a sample video is not classified as one of the similar gesture classes, the sample

video will not be passed to the second stage and the predicted result from the first stage

will be considered as the final result.

The final results are calculated by combining the global classification results from

Stage 1 and similar gesture classification results from Stage 2. To obtain the final result

of the dataset, the results of the similar gesture classes from the first stage will be

replaced by the results from the binary classification in the second stage.

3.2.3 Experimental setup

Tensorflow [38] and Keras [20] frameworks were used to construct and train the neural

networks. These frameworks are used to help researchers to design the neural network

architectures and algorithms with GPUs. In the experimental setup, NVIDIA P6000 and

CUDA 8 platform were used to complete the experiments. A 3DCNN was designed in

Tensorflow and Keras for both global classification and binary similar gesture classifi-

cation as shown in Figure 3.4, the kernel size of each 3DCNN layer is 3×3×3 and the

pooling size is 2×2. During the experiment, 60% and 30% of the whole dataset videos

will be used as the training and testing sets, respectively, and the remaining 10% videos

will be used as the validation set. The original RGB video frames were used as the input

and the original classification results from the 3DCNN will be used as the benchmark to

compare the performance between the original 3DCNN and the proposed hierarchical

architecture.
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Figure 3.4: The architecture of the proposed 3DCNN [148]

Table 3.2: Global accuracy on the HMDB51 dataset [148]

Method Accuracy
3DCNN on original dataset 0.46
H3DCNN on merged dataset 0.52
H3DCNN with binary classification 0.632

3.3 Evaluation Part 1

In this section, the proposed methodology is evaluated on the HMDB51 dataset. Accuracy

(ACC) is used as an evaluation metric. The original 3DCNN architecture achieves

accuracy of 0.46 as reported in Table 3.2. The low accuracy similar gesture classes are

grouped into the pair of new classes based on the proposed rules. The total number of

classes after grouping is reduced from 51 to 42, and the accuracy is increased to 0.52

globally after merging process. However, the increased classification result does not

represent the performance of the original dataset. Therefore, to assess the performance

orginal dataset, the binary classification is applied to the paired classes which can be

extended to the classification result for all the classes. The binary classification in the

hierarchical architecture further boosts the accuracy to 0.632.

The accuracy for the newly paired classes is reported in Table 3.3. The results show

that the average accuracy of each pair of the proposed method is greatly improved

compared to the result reported [105]. There is a s significant increase in accuracy from

0.69 to 0.82 in the classes Jump & Catch. There is also a huge improvement of 0.16 to

0.82 for the classes Throw Baseball & Swing Baseball.

The binary classification result for a new pair of classes is reported in Table 3.4. In

comparison with [105], accuracy for the sit action improved from 0.39 to 0.49, and the
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Table 3.3: Comparison of global accuracy on paired classes [148]

Similar Gesture Pair Accuracy reported in[105] Proposed Method
Jump & Catch 0.69 0.82
K ick Ball & Punch 0.41 0.95
Laugh & Chew 0.44 0.86
Pick & Gol f 0.64 0.95
Sit & Stand 0.33 0.76
Throw & Swing Baseball 0.16 0.82
Turn & Walk 0.3 0.72
Wave & Shake Hands 0.48 0.8
Sword & Sword Exercise 0.28 0.84

Table 3.4: Comparison of accuracy for each class in pairs after binary classification [148]

Classes Accuracy reported in[105] Proposed Method
Jump 0.38 0.95
Catch 1.00 0.77
K ick Ball 0.31 0.83
Punch 0.51 1.00
Laugh 0.41 0.93
Chew 0.47 0.44
Pick 0.27 0.94
Gol f 1.00 0.94
Sit 0.39 0.49
Stand 0.27 0.66
Throw 0.16 0.7
Swing Baseball 0.16 0.93
Turn 0.222 0.57
Walk 0.38 0.81
Wave 0.14 0.55
Shake Hands 0.82 0.88
Sword 0.13 0.83
Sword Exercise 0.42 0.83

pick up object action improved from 0.27 to 0.94. A similar improvement in accuracy is

noted for the classes Wave, Throw, and Jump. The losses in Fig 3.5 show that for the

most confusing pairs (Throw Baseball & Swing Baseball) and (Turn & Walk), the loss

dramatically declines after 100 epochs. Although there is a slight decrease in accuracy

for some of the actions, with our proposed hierarchical approach, global performance

increases.

Table 3.5 compares the proposed method and some of the state-of-the-art methods. In

40



3.3. EVALUATION PART 1

Throw Swing Baseball

(a) Similar gesture: Throw and Swing Baseball

Turn Walk

(b) Similar gesture: Turn and Walk

Figure 3.5: The training and validation loss of the binary classification with the similar
gestures [148]
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Table 3.5: Comparison of recognition accuracy on the HMDB51 dataset with state-of-the-
art methods

Method Accuracy
LSTM mode[116] 0.44
Two-stream CNN[112] 0.594
Learning to rank[34] 0.618
Coherence learning to rank with MKL [105] 0.62
Proposed Method 0.632

the HMDB51 dataset, the accuracy achieved 0.632. Thus, the proposed hierarchical archi-

tecture can effectively classify datasets with similar gesture actions, and it outperforms

the other state-of-the-art methods [105].

3.4 Methodology Part 2

This section describes the proposed end-to-end architecture which used to perform action

recognition with similar gesture classes automatically. This section details the dataset

preparation method and presents the proposed hierarchical classification architecture.

3.4.1 Dataset for the proposed framework

Experiments are conducted on the KTH and UCF101 datasets, which are the most

common datasets in the computer vision area to evaluate the proposed architecture as

shown in Fig 3.6. KTH is an old dataset collected by KTH Royal Institute of Technology.

It contains six types of actions performed by 25 actors in four different environments,

namely outdoors, outdoors with scale variation, outdoors with different clothes and

indoors. The dataset contains 2391 video clips. All the video clips were captured against

homogeneous backgrounds using a static camera with 25 fps rate. The resolution of the

KTH dataset is 160×120 pixels and each clip is around four seconds in length. The

UCF101 dataset is a state-of-art dataset built by the Center for Research in Computer

Vision in the University of Central Florida. This dataset contains realistic action videos

collected from YouTube. It includes 13320 videos from a total of 101 action classes

and it also has the largest diversity in terms of actions and with large variations in

camera motion, object appearance and pose, object scale, viewpoint, cluttered background,

illumination conditions, etc. The videos in 101 action classes are placed into 25 groups,

each group containing four to seven videos of an action. The videos from the same group

may share some common features, such as similar background and similar viewpoint,
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which is why this dataset has been challenging till now. Two datasets have been used to

evaluate whether the proposed architecture is capable of handling misclassified actions

which have similar gestures with both low resolution videos and high-quality videos.

Input
Stage 1

Merged Class

Dataset
3DCNN

Merged Global Classification Result 

NO

Stage 3

Similar Gesture Classification Result

Final

Result
Is it a merged class?

YES

Similar Gesture 

Classifier 1

Similar Gesture 

Classifier 2

Similar Gesture 

Classifier 3

Similar Gesture 

Classifier N
......

3DCNN

Stage 2

Global

Classification

Result

Auto

Merging

KTH

UCF101

Figure 3.6: The proposed End-to-End 3DCNN architecture [147]

3.4.2 Architecture Description

Fig 3.6 presents the proposed action recognition architecture. The hierarchical structure

includes three stages which is not data dependable and it can be applied to differen

real-world scenarios. In this work, the KTH and UCF101 datasets were used for the

experiments and validating the proposed hierarchical architecture. The input data from

the KTH dataset has 6 classes and the UCF101 dataset has 101 classes initially.

Specifically, for the UCF101 dataset, the threshold follows the rules: if the accuracy

of one of the classes is lower than 75% and has the highest confusion rate with another

class, the system will merge all the samples from these two classes and form one new

class. For the KTH dataset, because it only contain six classes, the most similar classes

jogging and running will be formed automatically.

The first stage of the proposed hierarchical method focuses on classifying the generic

classes (complete dataset) and identifying the high confusion classes, whereas the second

stage perform the classification on the merged datasets. The last stage classifies the

classes with similar/confusing gestures. The raw RGB video is taken in stage 1 to get

the global classification result for whole dataset and each class. After the results have
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Table 3.6: Global accuracy on the KTH dataset [147]

Method Accuracy
3DCNN on original dataset 0.52
H3DCNN on merged dataset 0.64
H3DCNN with binary classification 0.65

Table 3.7: Global accuracy on the UCF101 dataset [147]

Method Accuracy
3DCNN on original dataset 0.82
H3DCNN on merged dataset 0.83
H3DCNN with binary classification 0.88

been obtained, the system merges the samples from classes based on the rules and sends

the samples as input to the second stage. The second stage classified the auto-processed

dataset and check the result is from the merged class or not. If the result is from the

merged class and the merged accuracy are higher than 75%, the sample will be passed to

the third stage for further classification, otherwise, the merging process of this pair will

be terminated. The third stage comprises different binary classifiers, which are used to

classify the merged classes from the second stage. If the sample video is not classified as

one of the merged classes in stage two, the sample video will not be passed to the third

stage and the result from the second stage is obtained as the final classification result.

The final results are calculated by combining the global classification result from the

second stage and the similar gesture binary classification result from the third stage.

To obtain the final result for the original dataset, the results have been replaced to

the merged similar gesture classes in the second stage by the results from the binary

classification in the last stage.

3.5 Evaluation Part 2

In this part, the proposed methodology is evaluated on the KTH and UCF101 datasets.

Accuracy (ACC) is used as an evaluation metric. The proposed 3DCNN architecture

achieves global accuracy of 0.52 and 0.82 as reported for the KTH dataset and UCF101

dataset in Table 3.6 and Table 3.7 respectively. The low accuracy classes are merged

into new classes based on confusion rates automatically. The total number of classes of

UCF101 reduces from 101 to 79 after merging process, where the global classification

accuracy increases to 0.64 for KTH and 0.83 for UCF101 respectively. However, the
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Table 3.8: Accuracy of the similar classes after stage 1 (Table 1) [147]

Classes Accuracy in stage 1 Merged Classes
Jogging 0.26

KTH New Class
Running 0.61
BabyCrawling 0.76

UCF101 New Class 1
MoppingFloor 0.69
BalanceBeam 0.6

UCF101 New Class 2
ParallelBars 0.48
BandMarching 0.7

UCF101 New Class 3
MilitaryParade 0.73
BlowingCandles 0.71

UCF101 New Class 4
Mixing 0.88
Cli f f Diving 0.63

UCF101 New Class 5
Kayaking 0.63
FloorG ymnastics 0.67

UCF101 New Class 6
Raf ting 0.58
Haircut 0.75

UCF101 New Class 7
BlowDryHair 0.77
Hammering 0.73

UCF101 New Class 8
Bod yWeightSquats 0.94
HandstandWalking 0.35

UCF101 New Class 9
Lunges 0.74
HeadMassage 0.68

UCF101 New Class 10
TrampolineJumping 0.74

reported improvements does not represent the performance of the original dataset.

Therefore, to assess the performance on the original dataset, a futher binary classification

is applied to the merged classes and the results are used to replace the results of the

merged classes in the second stage. The inclusion of binary classifiers in the hierarchical

architecture further boosts the accuracy to 0.65 for KTH and 0.88 for UCF101 datasets.

Table 3.8 and Table 3.9 provides details the accuracy of the similar gesture classes

in the first stage, and also provides information about the merged classes. The first

line in the pairs indicates the low performance classes and the second line in the pairs

indicates the similar gesture classes. Similar gesture actions are identified by the system

such as, "Jogging & Running", "Baby Crawling & Mopping Floor", "Hair Cut & Blow

Dry Hair" and "Indoor Rock Climbing & Rope Climbing" etc. which are merged into one

class automatically as shown in Fig 3.6. After merging process, the number of classes

in the complete dataset (UCF101) is reduced from 101 classes to 79 classes and the

number of classes in the KTH dataset is reduced from 6 classes to 5 classes. Moreover,

the size/number of samples in the complete dataset remains the same. This process
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Table 3.9: Accuracy of the similar classes after stage 1 (Table 2) [147]

Classes Accuracy in stage 1 Merged Classes
HorseRiding 0.67

UCF101 New Class 12
HorseRace 0.87
HulaHoop 0.68

UCF101 New Class 13
JumpRope 0.95
PizzaTossing 0.66

UCF101 New Class 14
TableTennisShot 0.9
PullU ps 0.72

UCF101 New Class 15
BrushingTeeth 0.78
RopeClimbing 0.38

UCF101 New Class 16
RockClimbingIndoor 0.83
Rowing 0.7

UCF101 New Class 17
Ski jet 0.81
Skiing 0.72

UCF101 New Class 18
SkyDiving 0.85
StillRings 0.65

UCF101 New Class 19
UnevenBars 0.78
ThrowDiscus 0.61

UCF101 New Class 20
HammerThrow 0.85
WalkingWithDog 0.56

UCF101 New Class 21
SkateBoarding 0.87
Y oY o 0.72

UCF101 New Class 22
JugglingBalls 0.91

decreases the misclassification rate and improves the global accuracy of the dataset, as

the dataset now has no similar gesture actions.

The accuracy for the newly paired classes between stage 1 and stage 2 is reported in

Table 3.10. The 44 low accuracy classes in stage 1 are merged into 22 classes in stage 2.

The results show that the average accuracy of each pair in stage 2 is overwhelming the

result in stage 1. There is a significant increase in accuracy from 0.545 to 0.86 for the

classes (HandstandWalking & Lunges) and there is also a huge improvement from 0.745

to 0.97 for the classes HighJump & JavelinThrow.

The binary classification results of the merged classes is reported in Table 3.11

and Table 3.12. In comparison with stage 1, the accuracy of the action "PizzaTossing"

is improved from 0.66 to 1.00, and the accuracy of the action "HandstandWalking" is

improved from 0.35 to 0.85. A similar improvement in accuracy is noted for the classes,

Jogging, Rafting, and HeadMassage. Although the performance of some of the actions

may have a slight decrease in accuracy. After all, the global classification performance is

increased with the proposed hierarchical approach.
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Table 3.10: Comparison of accuracy between stage 1 and stage 2 on paired classes [147]

Similar Gesture Pair Accuracy in stage 1 Accuracy in stage 2
Jogging & Running 0.565 0.66
BabyCrawling & MoppingFloor 0.73 0.85
BalanceBeam & ParallelBars 0.54 0.76
BandMarching & MilitaryParade 0.715 0.9
BlowingCandles & Mixing 0.795 0.92
Cli f f Diving & Kayaking 0.63 0.88
FloorG ymnastics & Raf ting 0.625 0.9
Haircut & BlowDryHair 0.76 0.91
Hammering & Bod yWeightSquats 0.835 0.95
HandstandWalking & Lunges 0.545 0.86
HeadMassage & TrampolineJumping 0.71 0.95
HighJump & JavelinThrow 0.745 0.97
HorseRiding & HorseRace 0.77 0.92
HulaHoop & JumpRope 0.815 0.98
PizzaTossing & TableTennisShot 0.78 0.97
PullU ps & BrushingTeeth 0.75 0.74
RopeClimbing & RockClimbingIndoor 0.605 1.00
Rowing & Ski jet 0.755 0.74
Skiing & SkyDiving 0.785 0.81
StillRings & UnevenBars 0.715 0.78
ThrowDiscus & HammerThrow 0.73 0.87
WalkingWithDog & SkateBoarding 0.715 0.79
Y oY o & JugglingBalls 0.815 0.93

3.6 Discussion

The results show that the H3DCNN architecture improves the performance of the

classifiers. Although some of the unconfusing classes can achieve a high classification

accuracy of around 90%, on average, both globe accuracy and accuracy on similar gesture

actions have been improved by combining the results from stage 2 and stage 3. This

combination obtains better global results and boosts the results on similar classes

compared with state-of-art works. Using 3DCNN combined with other methods such

as LSTM does not achieve as the same performance as our architecture, which can be

explained with the advantage of binary classification.

Dynamic analysis and evaluation are also critical. In this work, the proposed 3DCNN

were used as both the global classifier and binary classifier. There could be other clas-

sifiers which can achieve a better result, which would be explored in the future work.

By joining other classifiers or methods, different parameters can be tested which may
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Table 3.11: Comparison of accuracy for each class in pairs after binary classification
(Table 1)[147]

Classes Accuracy in stage 1 Accuracy in stage 3
Jogging 0.26 0.52
Running 0.61 0.68
BabyCrawling 0.76 0.89
MoppingFloor 0.69 0.81
BalanceBeam 0.6 0.85
ParallelBars 0.48 0.68
BandMarching 0.7 0.91
MilitaryParade 0.73 0.9
BlowingCandles 0.71 0.97
Mixing 0.88 0.88
Cli f f Diving 0.63 0.92
Kayaking 0.63 0.85
FloorG ymnastics 0.67 0.89
Raf ting 0.58 0.91
Haircut 0.75 0.95
BlowDryHair 0.77 0.88
Hammering 0.73 0.97
Bod yWeightSquats 0.94 0.92
HandstandWalking 0.35 0.85
Lunges 0.74 0.87
HeadMassage 0.68 0.98
TrampolineJumping 0.74 0.92
HighJump 0.71 0.95
JavelinThrow 0.78 1.00
HorseRiding 0.67 1.00
HorseRace 0.87 0.87
HulaHoop 0.68 0.97
JumpRope 0.95 0.98
PizzaTossing 0.66 1.00
TableTennisShot 0.9 0.95
PullU ps 0.72 1.00
BrushingTeeth 0.78 1.00
RopeClimbing 0.38 0.66
RockClimbingIndoor 0.83 0.76
Rowing 0.7 0.53
Ski jet 0.81 1.00
Skiing 0.72 0.95
SkyDiving 0.85 0.67
StillRings 0.65 0.83
UnevenBars 0.78 0.72
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Table 3.12: Comparison of accuracy for each class in pairs after binary classification
(Table 2)[147]

Classes Accuracy in stage 1 Accuracy in stage 3
ThrowDiscus 0.61 0.97
HammerThrow 0.85 0.79
WalkingWithDog 0.56 0.89
SkateBoarding 0.87 0.71
Y oY o 0.72 0.92
JugglingBalls 0.91 0.95

improve the results as well. Also, only three datasets were used to obtain the results,

which achieves high performance. However, there are still many datasets containing

actions with similar gestures. The future work will test different methods or algorithms

on multiple datasets which involves considerable work to select and build a dataset with

similar gestures.

3.7 Summary

In the first half of the chapter, a new approach to handle the actions with similar gestures

to improve the overall accuracy of a gesture recognition system is proposed. The analysis

shows that a major reason for low performance is due to the confusion arising from

similar gestures. Hence, this work focuses on resolving the confusion among the classes

with similar gestures in the current work. A generic hierarchical classification model

is proposed in this work which can be applied to any dataset/real-world application

involving gesture recognition. The first stage classifies the individual class as well as the

new class formed by merging similar gestures. In the second stage, binary classification

is used to resolve the confusion among the similar gesture classes. The experiment

results indicate that the proposed approach outperforms not only the proposed 3DCNN

but also the other state-of-the-art works. Overall, the proposed method achieves better

performance on the HMDB51 dataset compared to the state-of-the-art action recognition

approaches.

The second half of the chapter describes the framework being assembled into a smart

end-to-end system. Using a smart processing procedure, the system can automatically

merge similar gesture actions in Stage 1 and send the result from Stage 1 to Stage 3 for

binary classification. The system has been evaluated on the two popular datasets, KTH

and UCF101, where the results indicate that our framework improves the both global
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and binary classification performance.
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DATA AUGMENTATION FOR SIMILAR GESTURE ACTION

RECOGNITION

In this chapter, an end-to-end adversarial video data augmentation framework (ADAF)

is proposed to enlarge the bias between the actions which contain similar gestures

frames. By using the GAN generated frames, the proposed framework can boost the

classification performance on similar gesture action pairs as well as the complete datasets.

Experiments were conducted on three typical human action recognition datasets: KTH,

UCF101 and HMDB51 show that the data augmentation can boost the classification

performance on either similar gesture pairs or complete datasets.

Some of parts of this chapter have been accepted in the paper titled "Adversarial

Action Data Augmentation for Similar Gesture Action Recognition", Wu et al. [144],

and the major parts of this chapter is under review by journal of Expert Systems with

Application as an extended version of the conference version.

4.1 Introduction

Video-based human action recognition is more challenging than image-based human

action recognition, because a sequence of video frames includes both spatial and tempo-

ral information. Unlike action recognition in still images, temporal information plays

an important role in recognizing human actions in continuous frames which include

additional features such as time series information and gesture sequence information.
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Video-based human action recognition therefore seeks to analyze the spatial features

using the additional information in each frame. Human action recognition methods have

achieved a huge success by using deep neural networks, however, actions with similar

gestures could reduce the performance of the classification.

Human actions are ubiquitous in our lives and can consist of simple gestures or

combinations of multiple simple gestures according to the action. For example, a person

swinging their arm might be simply recognized as the simple action “waving”, or action

“walking” can be recognized from the raising and lowering of the feet, but the same

action conducted at speed would be “running”. Some actions are combinations of different

gestures; for instance, the action “pick up” might include the simple gestures of bending

at the waist and grabbing, but this could be easily be confused with the action “bend over”.

Distinguishing between similar gesture actions is one of the problems affecting classi-

fication results. To address this problem, many human action recognition approaches

have proposed algorithms such as recurrent neural networks (RNN) to process the time

series information, in an effort to improve the performance on similar gestures. However,

many similar gestures also include similar time series information, such as “running”

and “jogging”. The similar gesture problem thus persists.

Human actions in video streams are considered to be sequential gestures, so a video-

based human action recognition method learns the features on each video frame and

the time series information between frames. Most early traditional machine learning

(ML) works [67] [28] [70] are problem-dependent and apply texture descriptors on the

extracted hand-crafted motion features.

Over the past 10 years, deep learning (DL) methods have achieved tremendous suc-

cess in the computer vision and human action recognition research area. Convolutional

neural networks (CNN) have been widely used to process images and recognize human

actions by extracting and learning the features in the video frames automatically. A

two-step framework that uses CNN and RNN to learn the features from video frames was

proposed by [6] however; the proposed method ignores the feature correlation between

frames when the sequential information in the frame has been learnt by the RNN. Ji et

al. [53] introduced 3DCNN to address this problem; the method preserves the features of

the same pixel spots between adjacent frames, by convolving the features on sequential

frames. However, 3D convolution can only partially preserve the temporal information

by convolving the changing features of the same pixels.

Recurrent neural network (RNN) and long short term memory (LSTM) models have

achieved good performance in many time series methods such as natural language
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processing (NLP). These time series models perform the same task on all sequential

elements. LRCNs [29] and HM-AN [152] are recent RNN works which process temporal

features. In these methods, the new temporal features extracted from the frames are

used to update the hidden states and the previous hidden states are forgotten. However,

the temporal features are hand-crafted features or extracted from the CNN, hence the

similarity of the extracted features will reduce the performance of RNN.

To recognize human actions accurately, many combined methods have been proposed.

Simonyan et al. [112] proposed a two-stream convolutional network for video-based hu-

man action recognition which blends the results from the spatial and temporal channels

in the last layer of the network. The two channels simultaneously process the informa-

tion, and many other works have followed this idea by modifying the networks [74] or

choosing the different features [33]. Nonetheless, two-stream methods still cannot solve

the similar feature problem because they are feature dependent methods.

Deep neural networks have demonstrated promising performance in the action

recognition area. Hara et al. [44] and He et al. [46] achieved high performance when

deep ResNets were conducted on Kinetics400 and Kinetics600 datasets with 34 layers

and 101 layers, respectively. Deep layer methods require huge datasets to supply more

features and the cost is extremely high. However, deep neural networks will not able to

achieve the same performance on small datasets such as UCF101 and HMDB51.

All the human action recognition approaches discussed above that rely on ML and

DL methods are feature-dependent. They overlook the fact that, unlike still image action

recognition, video-based human actions consist of sequential gestures, and most valid

frames may have similar gestures. Figure. 1.2 shows some of the similar gesture pairs

from UCF101, KTH and HMDB51 datasets. Figure. 1.2(d) illustrates the action pair

“running” and “jogging” which share similar gestures. Even a human cannot recognize

the differences between these two actions in a still image. In addition, the time series

information of “running” and “jogging” are similar, which will confuse the classifiers.

The same thing happens in Figure. 1.2(a), Figure. 1.2(b) and Figure. 1.2(c) which show

similar gesture pairs such as “Rope Climbing and Rock Climbing Indoor”, “Blow Dry

Hair and Hair Cut” and “Mopping Floor and Baby Crawling”. The problem is obvious:

feature-based methods lack the ability to process the extracted similar features, and the

deep learning methods will also obtain similar features from similar gestures.

One solution to address the problems of similar features and data shortage is video

augmentation. Traditional video augmentation methods modify the forms of frames

based on the original video frames such as “Super pixel”, “Gaussian Blur”, “Invert Color”,
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“Random Rotate” and “Vertical Flip” etc. These augmentation methods can only change

some of the value on certain pixels, and the duplicate features will not make significant

changes because the augmented frames are almost as same as the original frames with

added noise. Generative adversarial nets (GAN) [40] have achieved high performance

in generating still images. Bowles et al. [11] introduced GAN to generate still Fluid-

Attenuated Inversion Recovery (FLAIR) and Magnetic Resonance (MR) images for the

segmentation task and compared the performance with the other augmentation methods.

Inspired by GAN, an end-to-end adversarial video data augmentation framework

(ADAF) is proposed to tackle the similar gesture recognition problem. The experiments of

the proposed framework have been conducted on three typical human action recognition

datasets, KTH [107], UCF101 [115] and HMDB51 [61], which were proposed by the

KTH Royal Institute of Technology, the Center for Research in Computer Vision at the

University of Central Florida, and the Serre Lab at the Brown University, respectively.

For data augmentation purposes, GAN is used to generate frames which can create

more features and increase the bias of the original data features. The experiments

show that the proposed ADAF boosts the overall performance of the dataset as well

as improving the accuracy of similar pairs recognition compared to the baseline CNN

model.The framework could also be adapted for use in other CNN-based methods. The

major contributions in this chapter are as follows:

• The GAN-based data augmentation method is proposed to address the problem of

similar gesture recognition.

• The proposed end-to-end action data augmentation framework (ADAF) not only

improves classification performance on similar gesture action pairs but also the

performance on the complete dataset.

• To combine similar gestures, the framework automatically identifies similar ges-

tures based on the highest confusion rate from the baseline CNN classifier.

• The proposed ADAF has been evaluated on the KTH, UCF101 and HMDB51

datasets and compare the results with those of the baseline CNN model. Ex-

perimental results show that the proposed framework outperforms the baseline

methods in both global accuracy and the identification of similar gesture pairs.
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4.2 Problem definition

For a certain CNN input frame f from a video, the output of the CNN layer h(i, j) is

shown in Eq. 4.1:

(4.1) h(i, j)=
∑
k,l

f (i, j)∗ g(i−k, j− l)

where f denotes the frame, and the pixel position is represented as i, j; thus, f (i, j)
is the feature value of the pixel position i, j of the frame f . In addition, g indicates the

kernel and k represents the row and l represents the column.

Figure 4.1: Learning distribution with original data [144]

Because CNNs are pixel-based approaches, frames that include similar actions

gestures with similar backgrounds will generate a similar data distribution D. The

circles(D1) and triangles(D2) represent the learnt distribution of two similar gestures

from the video stream in Figure. 4.1(a). Figure. 4.1(b) shows that the test point (star)

belonging to class D1 is misclassified into D2 due to the similarity of distribution.

4.3 Methodology

In this section, the problems encountered in solving the task of similar gesture recogni-

tion will be discussed and the structure of ADAF will be described.
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Figure 4.2: The framework of the proposed ADAF [144]

4.3.1 Datasets for evaluation

The experiments were conducted on three popular human action recognition datasets,

KTH [107], UCF101 [115] and HMDB51 [61]. KTH is an old dataset but is still very

challenging. It consists of six actions. Each action is performed by 25 different actors

with four different backgrounds. The whole dataset has 2391 video streams in total, and

each video was captured by a static camera at a rate of 25 fps.

UCF101 contains 101 different actions collected from YouTube which has 13320

realistic action videos. The 101 action classes are categorized into 25 groups, and each

group has four to seven videos for a single action. Videos from the same group share

common features, for example, similar viewpoint or similar background, thus classifying

videos containing similar gestures could present a challenge.

HMDB51 comprises a total of 7000 video clips collected from commercial movies

and YouTube. The video clips contain 51 human actions such as facial gestures, body

movements and interactions between bodies and objects, and each class contains approx-

imately 100 videos. It is a very challenging dataset because the multiple actions consist

of similar gestures performed by different persons. Each action has been captured from

several viewpoints and recorded in four to six video clips.

All datasets present the problem of gesture recognition because they contain multiple

actions made up of similar gestures. In addition, the volume of each dataset is smaller

than that of the new proposed dataset. This will result in low performance on the new

proposed methods, because these datasets cannot supply enough training data for deep

neural networks.
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4.3.2 Framework

In this subsection, an end-to-end framework that uses GAN-based data augmentation

for similar gesture recognition is proposed. The objective of the proposed framework

is to train a robust system which can accurately classify similar gestures. There are

three stages in the proposed framework: data preparation, data augmentation and

classification. First, the original videos are set as the input of the GAN, then new frames

for each action video were generated. Based on the data augmentation progress, the

original frames and the generated frames will be combined. In the final stage, the

augmented data will be used as the CNN input and the final result will be obtained.

4.3.2.1 Data preparation

The original videos are fed into the CNN to obtain the confusion matrix. The system

automatically pairs the classes based on two rules:

• Rule 1: List all the classes with accuracy lower than 0.75,

• Rule 2: Pair the classes which have the highest confusion matrix and train the

pairs as the binary classification.

The framework then combines the original video frames with the GAN-generated

frames for the purpose of training on the same CNN network. Lastly, the trained CNN

classifies the original frames. The classification results for the original images following

the application of Rule 1 and Rule 2 for KTH, UCF101 and HMDB51 are shown in

Table 4.1, Table 4.2 and Table 4.3, respectively.

Table 4.1: Similar gesture action recognition result on original KTH dataset [144]

Classes Rule 1 Result Rule 2 Result
Jogging 0.24

0.55
Running 0.63

The results from the data preparation stage show that most of the similar gestures

demonstrate low performance on both global classification and binary classification tasks

such as “jogging” and “running” from the KTH dataset, “baby crawling” and “mopping

floor” from the UCF101 dataset and “sit” and “stand” from the HMBD51 dataset. Some

classes in other pairs achieve high classification performance, such as “jump rope” in

“hula hoop” and “jump rope” from UCF101, which achieves 0.95 accuracy, “golf” in

“pick” and “golf” from HMBD51, which has 1.00 accuracy. However, the class “hula rope”
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Table 4.2: Similar gesture action recognition result on original UCF101 dataset [144]

Classes Rule 1 Result Rule 2 Result
BabyCrawling 0.52

0.48
MoppingFloor 0.40
BalanceBeam 0.62

0.55
ParallelBars 0.46
BlowingCandles 0.43

0.42
Mixing 0.35
Cli f f Diving 0.63

0.71
Kayaking 0.58
Haircut 0.52

0.57
BlowDryHair 0.61
Hammering 0.64

0.55
Bod yWeightSquats 0.58
HeadMassage 0.42

0.47
TrampolineJumping 0.53
HighJump 0.52

0.54
JavelinThrow 0.55
HorseRiding 0.22

0.49
HorseRace 0.87
HulaHoop 0.68

0.82
JumpRope 0.95
PizzaTossing 0.56

0.61
TableTennisShot 0.71
PullU ps 0.72

0.71
BrushingTeeth 0.78
RopeClimbing 0.38

0.73
RockClimbingIndoor 0.83
Rowing 0.61

0.66
Ski jet 0.74
Skiing 0.72

0.59
SkyDiving 0.52
WalkingWithDog 0.56

0.63
SkateBoarding 0.87
Y oY o 0.42

0.43
JugglingBalls 0.51
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Table 4.3: Similar gesture action recognition result on original HMDB51 dataset [144]

Classes Rule 1 Result Rule 2 Result
Jump 0.38

0.65
Catch 1.00
K ickBall 0.31

0.44
Punch 0.51
Laugh 0.41

0.48
Chew 0.47
Pick 0.27

0.52
Gol f 1.00
Sit 0.39

0.49
Stand 0.27
Throw 0.16

0.41
SwingBaseball 0.16
Turn 0.22

0.75
Walk 0.38
Wave 0.14

0.59
ShakeHands 0.82
Sword 0.13

0.55
SwordExercise 0.42

and “pick” demonstrates extremely low performance with 0.68 and 0.27 respectively,

as well as a high confusion rate with the high performance classes, thus the pair will

be established based on Rule 2. The binary classification result also proves that even

when the performance of the pairs is imbalanced, a high confusion rate for one of the

classes will reduce the performance of the binary classification. The precision, recall and

F1-score in Table 4.4 and Table 4.5 show how the similar gestures affect the results.

According to the result, the classifier classify all the frames into one class.

These results demonstrate that it is crucial to find a way to reduce the high confusion

rate in order to improve classification performance. Data augmentation is one possible

solution.

4.3.2.2 Data augmentation

Many data augmentation methods have been proposed, such as Rotation, Super Pixel,

and Gaussian Blur. These methods only change the features on certain pixels following

certain rules and do not enlarge the differences between classes. We randomly pick 2000

frames from original videos and combine them with 2000 rotated frames to test whether

traditional data augmentation works on similar gestures. The reason for choosing rota-
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Table 4.4: Precision, recall and F1-score on the original UCF101 pairs [144]

Classes Precision Recall F1-score
BabyCrawling

0.5 0.24 0.32
MoppingFloor
BalanceBeam

0.5 0.22 0.31
ParallelBars
BlowingCandles

0.5 0.21 0.29
Mixing
Cli f f Diving

0.5 0.34 0.41
Kayaking
Haircut

0.5 0.28 0.37
BlowDryHair
HeadMassage

0.5 0.24 0.32
TrampolineJumping
Hammering

0.5 0.28 0.36
Bod yWeightSquats
HighJump

0.5 0.27 0.35
JavelinThrow
HorseRiding

0.5 0.25 0.33
HorseRace
HulaHoop

0.5 0.41 0.45
JumpRope
PizzaTossing

0.5 0.32 0.39
TableTennisShot
PullU ps

0.5 0.35 0.41
BrushingTeeth
RopeClimbing

0.5 0.37 0.43
RockClimbingIndoor
Rowing

0.5 0.33 0.39
Ski jet
Skiing

0.5 0.21 0.29
SkyDiving
WalkingWithDog

0.5 0.31 0.38
SkateBoarding
Y oY o

0.5 0.21 0.31
JugglingBalls
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Table 4.5: Precision, recall and F1-score on the original HMDB51 pairs [144]

Classes Precision Recall F1-score
Jump

0.5 0.32 0.39
Catch
K ickBall

0.5 0.22 0.31
Punch
Pick

0.5 0.24 0.32
Gol f
Sit

0.5 0.24 0.33
Stand
Throw

0.5 0.79 0.37
SwingBaseball
Turn

0.5 0.38 0.43
Walk
Wave

0.5 0.29 0.37
ShakeHands
Sword

0.5 0.28 0.36
SwordExercise

Table 4.6: Accuracy, precision, recall and F1-score after rotation on typical similar gesture
actions [144]

Classes Accuracy Precision Recall F1-score
BabyCrawling

0.51 0.5 0.25 0.34
MoppingFloor
BalanceBeam

0.49 0.5 0.25 0.33
ParallelBars
Turn

0.49 0.5 0.24 0.33
Walk
Wave

0.49 0.5 0.25 0.33
ShakeHands

tions is that other pixel-based augmentation methods only simultaneously change the

value on certain pixels, whichdoes not have sufficiently high impact on the classifier,

and the rotation will change the location of the original pixels, thus the augmented

frames can be treated as different frames. Table 4.6 shows the results after applying one

traditional data augmentation method, namely rotation, on typical similar gesture pairs.

The results in Table 4.6 show that traditional augmentation methods cannot tackle

the similar gesture problem because the correlation between pixels remains the same

after the change. Thus, to enlarge the feature differences between classes, a method is

needed which can generate the frames to represent different features from the original
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frames.

Generative adversarial networks, Ian Goodfellow proposed generative adversar-

ial networks (GAN) [40] which created a new method of data augmentation in 2014. The

GAN consists of two parts, a generator G and a discriminator D; G generates image

and D discriminates whether the generated image is from original dataset or from G .

By playing this adversarial game, the generator can be trained to generate high quality

images. Considering the video frame sequences F = { f1, f2, ..., fn}, deep convolutional

GAN (DCGAN) was used [5] to generate the fake frame f̂ for data augmentation, which

is shown in Eq. 4.2,

(4.2) min
G

max
D

E
f∼p( f )

[logD( f )]+ E
f̂∼p( f̂ )

[log(1−D(G ( f̂ ))]

where, p f represents the original frame distribution and p f̂ is the generated image

distribution. Both D and G contain convolutional layers; G does not have any pooling or

fully connected layers, whereas D uses a single dimension sigmoid function as the output

layer. D determines whether the sample has been generated by the generator G ( f̂ ) (fake)

or whether it is from the original video frames p f (real). The generator will generate the

improved frame F̂ by minimizing the cost for both D and G during the training stage.

Unlike generating still images, human action in videos can be represented as se-

quences of gestures. The gestures on the adjacent frames fn−1, fn and fn+1 are different.

However, D is only a binary classifier capable of discriminating whether an image is real

or fake. It learns the features from the sequence frames, and the generated frame f̂ from

G will be updated by the significant features learnt by D. Figure. 4.3 to 4.6 inclusive

show the generated frames of some of the paired classes from 10000 iterations to 150000

iterations. For instance, the generated frames for “Baby crawling” and “Mopping floor”

are very similar after training 10000 iterations, but after 50000 iterations, the actions

become clear. The frames show multiple afterimages which follow the the original video

gesture sequences. This is because the performance of discriminator D is not high enough

in the middle of the training stage, so the generator G tries to generate a single image

which can represent as many as features as possible to represent the sequences of the

action to fool the discriminator D. After 150000 iterations,the actions can be seen clearly,

which means that both G and D achieved high performance. However, some classes

such as “Turn” and “Walk” can only be determined by the frame sequences, as there is

no difference between turning and walking on a single frame. The afterimages on the

generated frames will therefore form the bias between these two classes, such as the
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“Turn” and “Walk” in Figure. 4.6(c) and Figure. 4.6(g) generated after 100000 iterations.

The afterimages in Figure. 4.6(g) for the action “Walk” are greater than for the action

“Turn” in Figure. 4.6(c).

(a) Original (b) 10000 (c) 50000 (d) 100000 (e) 150000

(f) Original (g) 10000 (h) 50000 (i) 100000 (j) 150000

Figure 4.3: Generated frames for actions of Baby crawling (line 1) and Mopping floor
(line 2) from 10000 iterations to 150000 iterations [144]

(a) Original (b) 10000 (c) 50000 (d) 100000 (e) 150000

(f) Original (g) 10000 (h) 50000 (i) 100000 (j) 150000

Figure 4.4: Generated frames for actions of Balance beam (line 1) and Parallel bars (line
2) from 10000 iterations to 150000 iterations [144]

Data augmentation, given the video frame set F̂ generated by the generator G

based on the original video dataset F , the augmented dataset S will be the combination

of the original dataset F and the generated dataset F̂ , where S =F +F̂ . According to

[45] and [4], the augmented dataset will generate more samples in which the original

data distribution will be changed, and the temporal information on the generated frames,
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(a) Original (b) 10000 (c) 50000 (d) 100000 (e) 150000

(f) Original (g) 10000 (h) 50000 (i) 100000 (j) 150000

Figure 4.5: Generated frames for actions of Wave (line 1) and Shake hands (line 2) from
10000 iterations to 150000 iterations [144]

(a) Original (b) 10000 (c) 50000 (d) 100000 (e) 150000

(f) Original (g) 10000 (h) 50000 (i) 100000 (j) 150000

Figure 4.6: Generated frames for actions of Turn (line 1) and Walk (line 2) from 10000
iterations to 150000 iterations [144]
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such as afterimages, will increase the bias between classes, as shown in Figure. 4.7. The

additional samples move the decision boundary, where the solid line D1 has been shifted

to the dot line, thus the test point (star) will be located on the new decision boundary,

and the D2 moves down, because the added samples enlarge the data bias.

Figure 4.7: Learning distribution after data augmentation [144]

Convolutional neural networks, to evaluate the performance of the proposed

ADAF, the spatial stream convolutional network reported in [112] is used as the CNN

baseline. This convolutional network contains four convolutional layers and one fully

connected layer with a softmax function as the output. The frames will be reshaped to

32×32 pixels and the kernel size of each 2DCNN layer is 3×3 with 2×2 pooling size

after each convolutional layer. The structure of the convolutional network is shown in

Figure. 4.8.

Figure 4.8: Structure of the convolutional network [144]
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4.3.3 Algorithm

The algorithm of the proposed ADAF are shown in ALG. 1.

Algorithm 1 ADAF Algorithm
Require:

F = { f 1, f 2, ..., f n}: the original dat;
T: the number of iterations;
m: the batch size;
η: learning rate of the generator and discriminator;
θg: the parameters of generator G ;
θd: the parameters of discriminator D;
z: noise samples z1, z2, ..., zi from the prior Pprior(z); ACC: the accuracy from the convolutional
network classifier;

1: initialize the generator G and discriminator D;
2: for iterator = 1,2,3, · · · · · · , T do
3: for G-steps do do
4: G generates the augmentation frames based on each class;
5: Update the parameters of G ;

V =− 1
m

m∑
i=1

D(G (zi))

θg = θg −η
h

V (θg)

6: end for
7: for D-steps do do
8: D classifies the original frames f and generated frames f̂ ;
9: Update the parameters of D;

V = 1
m

m∑
i=1

D( f i)− 1
m

D(G (zi))

θd ← θd −η
h

V (θd)

10: end for
11: end for
12: train the convolutional network with the original frames and augmented frames;
13: classifies the original frames with the convolutional network;
14: return ACC; =0

4.4 Experimental results

In this section, the results of the experiments on the KTH, UCF101 and HMDB51

datasets are reported. The evaluation metrics of the experiment will be introduced first,

followed by the experiment settings, and then report the results of the classification
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experiments conducted on the KTH, UCF101 and HMDB51 datasets with the baseline

convolutional network. Lastly, the parameter evaluation is discussed.

4.4.1 Evaluation metrics

The metrics used in this chapter are accuracy (ACC), Precision, Recall and F1-score,

which are common metrics in video-based human action recognition.

Positives and Negatives. Given a frame f belonging to the action class C and

f̂ belonging to another class, the output of the classifier is to determine whether f
belongs to C class, the True Positives, False Positives, True Negatives, and False
Negatives are common metrics for measuring the performance of the classifier and can

be defined as follows:

• True Positives (TP): f classified as belonging to C.

• False Positives (FP): f̂ classified as belonging to C.

• True Negatives (TN): f̂ classified as not belonging to C.

• False Negatives (FN): f classified as not belonging to C.

according to the metrics, accuracy (ACC), precsion, recall and F1-score can be repre-

sented as Eq. 4.3, Eq. 4.4, Eq. 4.5 and Eq. 4.6, respectively.

(4.3) ACC = TP +TN
TP +TN +FP +FN

(4.4) Precision = TP
TP +FP

(4.5) Recall = TP
TP +FN

(4.6) F1− score = 2∗ (Recall∗Precision)
Recall+Precision
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4.4.2 Experiment setup

Tensorflow and Keras were used to construct and train the convolutional networks.

Tensorflow and Keras have complete libraries to support our experiment. Two NVIDIA

P6000 GPUs with 24G graphics memory each, and CUDA 9 were used to conduct

the experiments. The RGB frames extracted from the videos were set as the input

of the DCGAN, and the GAN-generated frames fused with the original videos as the

augmented dataset. Furthermore, the augmented dataset was used as the training set

for the convolutional networks, and the original videos were used for testing. The purpose

was to test whether our proposed ADAF was capable of boosting performance with both

baseline models. Therefore, the original video was set as the input of the convolutional

networks to obtain the results as the benchmark. For training purposes, we randomly

spilled 80% videos from the dataset as the training set, and remaining videos was split

into 15% as the testing set and 5% as the validation set. Only original videos were

used for testing. For KTH and UCF101, 4000 frames generated from 80000 iterations

combined with 4000 frames from original video of each class were used to train the

convolutional neural networks. For the HMDB51 dataset, 2000 frames generated from

150000 iterations combined with 2000 frames from original video of each class were used

to train the convolutional neural networks.

4.4.3 Results

In this section, the performance of the proposed ADAF on global classification and binary

classification will be discussed. Both the global and binary classification results show

that the proposed data augmentation framework boosts performance on the baseline

CNN. Table. 4.7 compares the results of the original dataset and the augmented dataset

for global classification on the three datasets. Before augmentation, the result on original

KTH, UCF101 and HMDB51 was 0.52, 0.61 and 0.54, respectively. After data augmen-

tation, the performance boost on KTH, UCF101 and HMDB51 was 67%, 52% and 68%

respectively for the global classification.

The comparison of the binary classification results on the KTH dataset is shown in

Table 4.8. The accuracy on the similar gesture pair “Jogging” and “Running” has been

increased by about 13%.

After data augmentation, all the binary classification results in the UCF101 dataset

were increased, as listed in Table 4.9. “Blowing Candles” and “Mixing” shows the highest

improvement at about 129%. Others like “High Jump” and “Javelin Throw” only achieve
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Table 4.7: Comparison global classification between original data and augmented data
[144]

Dataset Global classification result
Original KTH 0.52
Augmented KTH 0.87
Original UCF101 0.61
Augmented UCF101 0.93
Original HMDB51 0.54
Augmented HMDB51 0.91

Table 4.8: Comparison of binary classification accuracy on KTH dataset between original
data and augmented data [144]

Class pairs Original Augmented
Jogging & Running 0.68 0.77

a slight improvement of about 2%. The reason for this is that some of the classes may be

confused with multiple other classes, and we picked classes with a high misclassification

rate for pairing, thus this kind of augmented pair can only improve the performance

slightly. However, the performance of some pairs such as “Horse Riding” and “Horse

Race"” is not improved. Even the human eye cannot distinguish the differences between

these two classes, therefore, the generated images are not helpful.

Table 4.10 shows the accuracy, precision, recall and F1-score after augmentation on

the UCF101 dataset. Compare to Table 4.4, most precision, recall and F1-scores have

increased. In Table 4.4, we find that the precision of each pair is 0.5 but the accuracy

is higher or lower than 0.5. This is because the original data size for different classes

is imbalanced, which means that one class may have more frames than the other once

all the frames belonging to one class have been classified. In Table 4.10, we apply the

balanced training data of 8000 frames for each class, thus when misclassification occurs,

the accuracy will be 0.5.

Similar results are shown in Table 4.11, in which the performance of all misclassified

pairs has been improved. The highest improvement is 118% for “Kick ball” and “Punc”.

The lowest improvement is about 30% for “Turn” and “Walk”.

Comparing precision, recall and F1-scores between Table 4.12 and Table 4.5, all the

precision, recall and F1-scores have also increased after augmentation. The reason for

the difference in accuracy from original dataset is because of the imbalanced data.

The experiment results show that the proposed ADAF boosts both global and bi-

nary classification performance on the baseline convolutional network. The results also
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Table 4.9: Comparison of binary classification accuracy on UCF101 dataset between
original data and augmented data [144]

Class pairs Original Augmented
BabyCrawling & MoppingFloor 0.48 0.96
BalanceBeam & ParallelBars 0.55 0.95
BlowingCandles & Mixing 0.42 0.96
Cli f f Diving & Kayaking 0.49 0.74
Haircut & BlowDryHair 0.57 0.96
Hammering & Bod yWeightSquats 0.55 0.95
HeadMassage & TrampolineJumping 0.47 0.94
HighJump & JavelinThrow 0.54 0.51
HorseRiding & HorseRace 0.49 0.51
HulaHoop & JumpRope 0.82 0.93
PizzaTossing & TableTennisShot 0.61 0.97
PullU ps & BrushingTeeth 0.70 0.95
RopeClimbing & RockClimbingIndoor 0.73 0.51
Rowing & Ski jet 0.66 0.92
Skiing & SkyDiving 0.59 0.95
WalkingWithDog & SkateBoarding 0.63 0.95
Y oY o & JugglingBalls 0.43 0.94

show that ADAF achieves a significant improvement by frame generation and data

augmentation, which can improve the classifier’s ability to learn similar gestures.

4.4.4 Parameter evaluation

To evaluate the parameters, the training loss of the CNN has been evaluated by the

changes in epoch. The performance of the classifier has been evaluated by changing GAN

epochs and different data fusion rates.

Training loss of the CNN, during the training stage, the changes in the loss from 0

to 200 epochs has been evaluated. Figure. 4.9 shows that the augmented data start with

a lower loss rate, which is because the fused data increase the data bias. In addition,

the loss of the augmented data to decrease more sharpely than the original data. The

original loss represented by the dotted line remains stable and is much higher than

the augmented data in relation to the low performance of the classifier. However, the

augmented data loss line is rather high, as seen in Figure. 4.9(b) and Figure. 4.9(h).

After 10 epochs, the lines show a sharp decrease before stabilizing and achieving high

classification performance.

Performance on different GAN epochs, by increasing the number of GAN itera-
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Table 4.10: Precision, recall and F1-score after augmentation on UCF101 dataset [144]

Classes Precision Recall F1-score
BabyCrawling

0.96 0.96 0.96
MoppingFloor
BalanceBeam

0.95 0.95 0.95
ParallelBars
BlowingCandles

0.96 0.96 0.96
Mixing
Cli f f Diving

0.74 0.74 0.73
Kayaking
Haircut

0.96 0.96 0.96
BlowDryHair
HeadMassage

0.94 0.94 0.94
TrampolineJumping
Hammering

0.95 0.95 0.95
Bod yWeightSquats
HighJump

0.5 0.27 0.35
JavelinThrow
HorseRiding

0.5 0.25 0.33
HorseRace
HulaHoop

0.93 0.93 0.93
JumpRope
PizzaTossing

0.97 0.97 0.97
TableTennisShot
PullU ps

0.95 0.95 0.95
BrushingTeeth
RopeClimbing

0.5 0.25 0.33
RockClimbingIndoor
Rowing

0.92 0.92 0.92
Ski jet
Skiing

0.95 0.95 0.95
SkyDiving
WalkingWithDog

0.95 0.95 0.95
SkateBoarding
Y oY o

0.94 0.94 0.94
JugglingBalls
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Table 4.11: Comparison of binary classification accuracy on HMDB51 dataset between
original data and augmented data [144]

Class pairs Original Augmented
Jump & Catch 0.64 0.95
K ickBall & Punch 0.44 0.96
Pick & Gol f 0.47 0.98
Sit & Stand 0.48 0.95
Throw & SwingBaseball 0.59 0.95
Turn & Walk 0.75 0.98
Wave & ShakeHands 0.59 0.97
Sword & SwordExercise 0.55 0.95

Table 4.12: Precision, recall and F1-score after augmentation on HMDB51 dataset [144]

Classes Precision Recall F1-score
Jump

0.95 0.95 0.95
Catch
K ickBall

0.96 0.96 0.96
Punch
Pick

0.98 0.98 0.98
Gol f
Sit

0.95 0.95 0.95
Stand
Throw

0.95 0.95 0.95
SwingBaseball
Turn

0.98 0.98 0.98
Walk
Wave

0.97 0.97 0.97
ShakeHands
Sword

0.95 0.95 0.95
SwordExercise
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(a) Pick and Golf (b) Kick Ball and Punch

(c) Jump and Catch (d) Wave and Shake Hands

(e) Skiing and SkyDiving (f) Rowing and Skyjet

(g) Walking With Dog and Skate Boarding (h) Yoyo and JugglingBalls

Figure 4.9: Training loss of the baseline CNN between original and augmented data
[144]
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(a) Baby crawling and Mopping (b) Banlance beam and Parallel bars

(c) Turn and Walk (d) Wave and Shake Hands

Figure 4.10: Accuracy changes based on the data obtained different GAN iterations [144]

tions, the image quality will be increased, which will affect the classification results.

It can be seen from Fig. 4.10 that the images created at 10000 iterations are almost

same for every class, which cannot improve the classification. The image quality fluc-

tuates between 20000 and 100000 iterations, and stabilizes after 100000 iterations for

“Baby crawlin” and “Mopping”. The highest performance for “Turn” and “Walk” is reached

at 110000 iterations, after which it decreases slightly, which may be due to the loss of

afterimage information from high quality images.

Performance on different fusion rates, different fusion rates will also affect the

classification results. In this evaluation, 2000 frames were used from the original dataset,

then gradually fuse the generated frames from 200 frames to 2000 frames. To ensure

frame quality, the generated frames were applied from 100000 iterations.

Figure. 4.11 shows that performance will be increased after 400 frames have been

added to the dataset and will stabilize after 600 frames have been added for “Balance

Beam” and “Parallel Bars”. In contrast, “Turn” and “Walk” reaches the highest perfor-

mance after 800 frames have been added, then decreases at 1000 frames and stabilizes

after the addition of 1000 frames.
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(a) Balance beam and Parallel bars (b) Turn and Walk

Figure 4.11: Accuracy changes based on different fusion rates [144]

4.5 Discussion

The proposed data augmentation framework from similar gesture action recognition can

improve the 2DCNN classfication performance due to the training data and bias have

been enlarged. However, video-based action recognition now shift to 3DCNN methods

which may extract more temporal features than the 2DCNN.

For the 3DCNN classification, the performance improved not as higher as 2DCNN.

This is because the 3DCNN is designed for processing the features on continues frames

and learn the correlation between frames. The future work could be using GAN to

generate predicted videos which may improve the 3DCNN performance after the data

augmentation.

4.6 Summary

In this chapter, an action data augmentation framework (ADAF) with a GAN features

generator is proposed, which can enlarge the differences between similar class. The

results on the baseline CNN are evaluated, which proves that the framework boost the

performance of the classifier. Most existing human action recognition methods failed to

fully leverage the differences and the internal connections of the similar gesture actions

and the proposed ADAF overcome the challenges. The experimental results on three

datasets demonstrated that our frameworks ADAF outperform the baseline CNN and

can adapt to other methods using other CNNs. The future work will focus on how to use

data augmentation to improve the performance of new 3DCNN-based methods such as

video augmentation.
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5
GAN-BASED APPROACHES IN OTHER DOMAINS

In this chapter, the idea from the computer vision area is shifted to other domains to

evaluate if the approaches can benefit other research areas. Autoencoder for image

embedding is used to apply deep learning models to calculate feature vectors for images

and return an enhanced data table with image descriptors. Similar to image embedding,

graph embedding transfers the graphs to a vector or a set of vectors, which can be

used to be retrieved in later tasks such as link prediction and clustering. The feature-

dependent graph convolutional autoencoder is proposed to process the graph embedding.

By applying the adversarial training method using GAN, the proposed frameworks not

only exploit structural characteristics and node features, but also reconstructs both

structural characteristics and node features, which naturally possess the interaction

between these two sources of information while learning the embedding.

Major parts of this chapter have been accepted in the paper titled "Feature-Dependent

Graph Convolutional Autoencoders with Adversarial Training Methods", Wu et al. [145].

5.1 Introduction

Graph techniques are widely applied to a variety of real-world scenarios, such as trans-

portation, academic citation networks and social networks. Various data analysis tasks

rely on analyzing graph data, for example, node or graph classification [59] [91], node clus-

tering [126], and link prediction [140]. However, traditional machine learning techniques

for graph data suffer from several challenges including high computational complexity,
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low parallelizability, and inapplicability[23]. Recently graph embedding has become a

vital solution to tackle these challenges.

The key idea of graph embedding is to learn the data distribution with a continuous

and compact feature matrix which includes the original vertex content, network structure

and side-information. Therefore, the traditional methods like linear classifier can be

used to demonstrate the tasks such as link prediction, clustering and classification for

various graph analytic purposes. [158][12].

Based on the underlying implementation, graph embedding algorithms can be cat-

egorized into three categories: matrix factorization algorithms, probabilistic model al-

gorithms and deep learning algorithms. Matrix factorization-based algorithms used to

compress the graph structure information as an adjacency matrix and extract the em-

bedded graph information by decomposing the matrix, such as HOPE [87] and M-NMF

[136]. Qiu et al. [98] proved that many probabilistic algorithms can be interpreted as

matrix factorization-based methods.

Figure 5.1: The proposed framework for graph embedding [145]

Probabilistic model-based algorithms aim to extract different patterns such as local

neighborhood connectivities, global structural equivalence, and other various order

proximities for learning graph embedding. These algorithms [96][118][41] are more

effective and flexible for the large-scale graph data, compared to classical algorithms like

spectral clustering [119].

Furthermore, the graph proximities and model positive point-wise mutual informa-

tion (PPMI) can be preserved by the deep learning-based approaches. Methods such

as SDNE [127] and DNGR [13] apply autoencoder-based frameworks for graph em-

bedding, and Wang et al. proposed MGAE [126] for the clustering task, which learn

the representation by leveraging a marginalized single-layer autoencoder to learn the

representation.
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Probabilistic methods mainly concentrate on preserving the structure relationship;

by contrast, matrix factorization and deep learning methods aim to minimize the recon-

struction error. However, they are all unregularized approaches, which mostly ignore the

data distribution of the latent codes. Specifically, unregularized methods only learn the

compressed identity mapping and ignore the structure of the graph [75], which could

lead to unsatisfactory embedding when the graph data is sparse and noisy. To address

this issue, Makhzani et al. [75] attempt to regularize the latent codes by enforcing them

to follow certain prior distributions. Moreover, generative adversarial-based approaches

have also been employed to learn robust latent representations under the adversarial

training scheme [30] [99]. Pan et al. [89] proposed a novel adversarial framework with

two variants, ARGA and ARVGA, which enforce the embedding to follow the prior dis-

tribution, while minimizing the reconstruction errors of the graph structure. However,

their work does not reveal the inner-interdependency between structural characteristics

and node features when processing the original graph into the framework. Additionally,

the node features are not reconstructed in the decode stage, which cannot leverage the

natural interaction between the node features and the topological structure of the graph

when learning graph embedding.

In this chapter, first, an approach to preserve the natural interdependency between

the structural characteristics and node features of a graph into a feature-dependent

graph matrix (FGM) is proposed; then, given the FGM of a graph, a novel graph encoder-

decoder framework (GED) and its variational version (VGED) are designed for graph

embedding with a specially designed decoder which not only reconstruct the structural

information, but also reconstruct content information in the decode stage. The special

decoding scheme of the GED/VGED fully exploits the natural interaction during the

training procedure while possessing the diffusion of the node features over the graph.

The proposed GED offers high flexibility in relation to the choice of the encoder and

decoder, such as the GCN, the graph attention network (GAT) or even using the inner

production operation. In this work, GCN has been employed as the layers for the encoder

and decoder, expecting to simultaneously expose the inner relationship between the

structural characteristics and node attributes from two different angles: 1) the feature-

dependent graph matrix reveals interdependency between the topological information

and node content by normalizing and centralizing all the content of the graph and

re-building the topological matrix based on both their content-distance between every

two vertexes and their original linkages; and 2) while GCN is a variation of Laplacian

smoothing, which propagates the features of a vertex to its neighbors. An adversarial
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training scheme has been applied to enforce the embedding to follow a prior distribution

which can enhance the robustness of the graph embedding.

The experiment results on three typical benchmark datasets show that the proposed

GED outperforms the state-of-the-art research works. The contributions are summarized

as follows:

• Two novel encoder-decoder frameworks (GED and VGED) are proposed for graph

embedding, which simultaneously encode topological structure and content associ-

ated with nodes while exploiting the natural interdependency between two sources

of information;

• The specially designed decoder of the proposed framework reconstructs both the

topology and its relevant content information, which fully leverage the interac-

tion between the different sources of information of a graph when learning the

embedding;

• Experiments conducted on three benchmark graph datasets validate that the

proposed GED approaches outperform its state-of-the-art peers on clustering and

link prediction tasks.

5.2 Related Work

From the perspective of information analysis, there are two types of graph embedding

methods namely topological-embedding-based methods and content-exploration-based

embedding methods.

Topological-embedding approaches assume that only structural characteristics are

accessible, and aim to preserve the structural characteristics maximumly. The DeepWalk

model [96], proposed by Perozzi et al. in 2014 which using a group of random walks to

learn the node embedding. Other probabilistic models such as LINE [118] and node2vec

[41] have been developed to address similar problems. Moreover, a number of matrix

factorization-based methods such as M-NMF [136] and HOPE [87] have been developed

to learn the latent codes by representing a graph as a topological matrix mathematically.

Furthermore, deep learning models have been introduced into the graph research area.

Some of the models focus on preserving the first and second order of proximities [127],

and the others apply variants of autoencoders to reconstruct the positive pointwise

mutual information (PPMI) [13].
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Furthermore, content-enhanced embedding approaches assume node features are

accessible and apply both structural characteristics and the node features simulta-

neously. TADW [153] was designed to decompose the adjacency matrix to obtain the

node embeddings. TriDNR [90] use a tri-party neural network to capture the structural

characteristics, node features, and label information. In social networks, an approxi-

mated kernel mapping scheme, namely UPP-SNE [157], which enhance user embedding

learning by using the user profiles.

Figure 5.2: The framework of feature-dependent graph matrix [145]

Makhzani et al. [75] merged the adversarial mechanism into the autoencoder to learn

the latent representation, namely the adversarial autoencoder (AAE) for general data.

Dai et al. [24] proposed a framework with an adversarial training scheme for graph data.

However, their approach only works on the structural characteristics. In contrast, a GCN

has been applied to encode both the structural characteristics and node features into

the low-dimensional graph embedding, and reconstruct the encoded information in the

decoder stage. Such GED naturally collect and process the diffusion of the node features

over the graph, which could improve the quality of the graph embedding.

Pan et al.[89] proposed an adversarially regularized graph autoencoder (ARGA) and

the variational version (ARVGA) to address the issue of largely ignoring the latent code

of the embedding. The key to their work is to apply the generative adversarial network

(GAN) [40] to regularize the learned embedding, where the generator generates the

graph embedding, and the discriminator determines whether the samples are from the

prior distribution or the generator. Numerous adversarial algorithms such as those in

[99] and [30] have been proposed, because of their effectiveness in unsupervised works

such as the image or video classification and recognition.

The aforementioned approaches simultaneously encode both the structural charac-

teristics and node features without considering the natural interdependency between

these two perspectives of information. Additionally, these algorithms are incapable of
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reconstructing the node features in the decode stage, hence they fail to comprehensively

reconstruct the graph during the encoding-decoding procedure. In this paper, both the

structural characteristics and the node features have been encoded into FGM to preserve

the natural interdependency between these topological and content information, hence

they the unique decoding scheme reconstructs both the structural characteristics and

node features, which could greatly enhance the quality of the learned embedding.

5.3 Problem Definition

A graph can be defined as G = {V,E,X}, where vi=1,··· ,n are vertices ∈ V, and the edges

can be represented as e i, j = (vi,v j) ∈ E. An adjacency matrix is used to represent the

topological information of a graph. Ai, j = 1 if the vertices have the edge e i, j ∈ E, otherwise

Ai, j = 0. xi ∈ X denotes the content features of the node vi.

Given a graph G, the nodes vi ∈ V are mapped into low-dimensional vectors zi

∈ Rm which can be formatted as: f : (A,X) → Z, where z>i represents the i-th row if

the matrix Z ∈ Rn×m where m and n indicates the dimension of the latent code and

the number of hidden neurons respectively. The embedding matrix Z preserves the

topological information from the structure A and the node features from X.

5.4 Framework

The graph convolution encoder-decoders framework. The upper tier is a graph convolu-

tional autoencoder taking a feature-dependent graph matrix A∗ as input and attempts

to reconstruct both structural characteristics A and node features X from the learned

embedding Z. A feature matrix X is additionally applied into the Encoder to further

enhance the content associated with the graph into the embedding. The lower tier is

an adversarial network, and the discriminator is trained to determine if a sample is

generated by the embedding or from a prior distribution are shown in Fig 5.1

For given a graph G= {V,E,X}, the objective of the proposed GCN encoder and decoder

framework is to learn a robust embedding with both topological information and node

features. To achieve this, a feature-dependent graph matrix is constructed to reveal the

natural interdependency between topological structure A and node features X, while a

specially designed GCN decoder reconstructs both A and X to fully utilize the interaction

between these two sources of information when learning the graph embedding.
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• Feature-dependent graph matrix. Fig 5.2 shows the framework of the feature-

dependent graph matrix. The feature center indicates the mean of each column in

the node feature matrix X. Furthermore, the distance between the feature center

and each node’s features in X can be retrieved through the Euclidean distance,

which can be persevered in a feature score vector. The final feature-dependent

graph matrix is constructed based on the node_feature scores in the feature score

vector.

• Graph Convolutional Autoencoder. The autoencoder learn the latent codes Z
via the input of the feature-dependent graph matrix A∗ and the node features X,

by further reconstructing both the structural characteristics and node contents

from the embedding.

• Adversarial Network. The embedding will follow the prior distribution through

a well-trained adversarial module. The discriminator determines the embedding zi

∈ Z is from the prior distribution or the encoder.

5.5 Algorithm

The GED is developed to embed a graph G, and map the nodes vi ∈ V in a low-dimensional

space. The proposed framework consists of three components: (1) feature-dependent

graph matrix(A∗), (2) autoencoder, and (3) adversarial regulation.

5.5.1 Feature-dependent graph matrix (A∗)

For given node features X ∈ Rn×m, feature centre (C ∈ R1×m) of the X represents the

centred value of each feature in X. Each element in C can be calculated by Eq 5.1.

(5.1) Mean_m=
∑node_n

node_1 (Fea_m)n
1

n

The feature score vector can be calculated via Eucli(•) =
√∑n

i=1 (vi −C)2 which is the

Euclidean Distance between each node_feature vector vi in X and C. Eq 5.2 shows the

calculation of each fea_score.

(5.2) f ea_score = Eucli(vi,C)
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The final feature-dependent graph matrix A∗ is constructed by fea_score of S be-

tween every two vertexes and their original linkages preserved in adjacency matrix A.

Specifically, if ni and n j indicate two nodes with an edge in A and si and s j ∈ S represent

the feature scores associated with node ni and n j, then the value of feature-dependent

graph matrix A∗
i, j can be calculated as Eq 5.3.

(5.3) A∗
i, j =

Ai, j

|si − s j|+η

where η is a very small number to ensure the denominator is not zero. After this, every

value a∗
i j ∈A∗ was normalized to be between 0 and 1 through Eq 5.4.

(5.4) normalized(a∗
i j)=

a∗
i j −min(A∗)

max(A∗)−min(A∗)

Graph Convolutional Encoder Model G (X,A∗). A variant GCN has been devel-

oped [58] for both the encoder and decoder to represent the structural characteristics

and node features in the framework. The idea of GCN extends from the spectral domain

to the graph embedding rom the operational perspective, and the information can be

learned by a convolution function f (Z(l),A∗|W (l)) from the transformation perspective.:

(5.5) Z(l+1) = f (Z(l),A∗|W(l))

given Zl is the input for the GCN, and the output is Z(l+1). The embedding of the graph

is represented as Z0 =X ∈Rn×m in this paper, the number of features and the number of

hidden neurons can be represented as m and n, respectively. The GCN attempts to learn

the filter parameters of the W(l) matrix. If f (Z(l),A∗|W(l)) can be well defined, the deep

convolutional neural networks can be constructed effectively.

The proposed GCN layers can be represented by f (Z(l),A∗|W(l)) as below:

(5.6) f (Z(l),A∗|W(l))=φ(D̃− 1
2 Ã∗D̃− 1

2 Z(l)W(l))

where φ indicates the activation function such as sigmoid() or Relu() function. Ã∗ =A∗+I;

D̃ii =∑
j Ã∗ i, j and I is the identity matrix of A∗. To sum up, the graph encoder G (X,A∗)

has a two-layer GCN structure.

The graph encoder can be mathematically expressed as follows:
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(5.7) Z(1) = fRelu(X,A∗|W(0));

(5.8) Z(2) = f l inear(Z(1),A∗|W(1));

The first layer employs a Relu(•) as the activation function, while a linear function is

used for the second layer. The encoder of the proposed GCN G (Z,A∗)= q(Z|X,A∗) process

the FGM (A∗) which naturally contains the interdependency between the topological and

content information , and the feature matrix X is additionally applied to further enhance

the content associated with the graph into the embedding q(Z|X,A∗).

An inference model is used to define a variational encoder as follows:

(5.9) q(Z|X,A∗)=
n∏

i=1
q(zi|X,A∗),

The average vectors zi can constitute a matrix µ= Z(2).

Decoder Model. The objective of our decoder model in the autoencoder is to de-

compress the latent codes and reconstruct both the structural characteristics and node

features. Given a graph, the training data, consists of both topological and content

information, therefore, the GCN decoder is naturally supposed to reconstruct both infor-

mation, otherwise the information flow could be incomplete during the encoding-decoding

process. The features amount of each vertex in the graph determine the dimensions of

the second GCN layer, thus the second layer output will be in the range of O ∈ Rn× f NiX.

According to the conditions above, the final loss consists of two losses from the topology

decoder and the feature decoder, respectively.

Topological Structure Decoder dt(Z). In the topological structure decoder, the

original adjacency matrix A can be indirectly reconstructed from the embedding Z
through the decompression operation of the decoder layers. Given an edge e i, j = (vi,v j) ∈
E, the model of the edge probability can be represented as A′ =φ(O,O>), where φ is an

activation function like the sigmoid function as Eq 5.13 and O is the output from the

GCN decoder layers.

ZD = flinear(Z,A|W(1)
D ).(5.10)

O= flinear(ZD ,A|W(2)
D ).(5.11)

85



CHAPTER 5. GAN-BASED APPROACHES IN OTHER DOMAINS

Algorithm 2 GED and VGED Algorithm
Require:

G= {V,E,X};
T: iterations for updating;
K : steps for iterating discriminator;
m: the dimension of the latent variable
A∗: feature-dependent graph matrix

Ensure: Z ∈ Rn×m

1: for iterator = 1,2,3, · · · · · · , T do
2: Generate latent variables codes Z via Eq.(5.8);
3: for k = 1,2, · · · · · · , K do
4: Sample m entities {z(1), . . . , z(m)} from latent codes Z
5: Sample m entities {a(1), . . . , a(m)} from the prior distribution pz
6: Update the discriminator with its stochastic gradient:

h 1
m

m∑
i=1

[log D(ai)+ log (1−D(z(i)))]

7: end for
8: Update the graph autoencoder with its stochastic gradient by Eq. (5.16) for GED or Eq.

(5.17) for VGED;
9: end for

10: return Z ∈ Rn×m =0

where the output of the encoder can be represented as Z, and the first and second layer

of the decoder output can be denoted as ZD and O. The number of hidden neurons is

equal to the horizontal dimensions of O.

p(A′|O) is the topological decoder where the links between nodes are available.

Precisely, the inner production operation is used to train a link prediction layer to

reconstruct the topology in the FGM:

p(A′|O)=
n∏

i=1

n∏
j=1

p(A′
i, j|oi,o j);(5.12)

p(A′
i, j = 1|oi,o j)= sigmoid(o>

i ,o j),(5.13)

here the prediction A′ should be close to the original top logical structure in FGM of the

graph.

The reconstruction error can be calculated as follows:

(5.14) LA∗ = Eq(O|(X,A∗))[log p(A∗|O)]

Feature Decoder d f (Z). Then the node features reconstruction error can be com-

puted as following equation:

(5.15) LX = Eq(Z|(X,A∗))[log p(X|Z)].
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The final reconstruction error consists of topological decoder error and feature decoder

error:

(5.16) L0 =LA∗ +LX .

Optimization. For the autoencoder optimization, the overall reconstruction error

will be minimized by the equation which described in Eq 5.16 using gradient descent.

The variational lower bound was optimized as follows for the variational encoder:

(5.17) L1 = Eq(Z|(X,A∗))[log p(A∗,X|Z)]−KL[q(Z|X,A∗) ∥ p(Z)]

where the Kullback-Leibler divergence (also known as relative entropy) can be repre-

sented as KL[q(•)||p(•)] which is widely used to measure how much the distribution

q(•) is different from p(•). In this chapter, p(•) is the prior distribution such as uniform

distribution and Gaussian distribution. p(Z)=∏
i p(zi)=∏

i N (zi|0,I) was used in this

work.

5.5.2 Adversarial Mode D(Z)

By applying the generative adversarial network (GAN) model, a graph embedding has

been forced to match a prior distribution, where the latent distribution of the embedding

can be regularized. Both generator G and discriminator D are standard multi-layer

perceptron (MLP) and a single dimension sigmoid function is the output layer. The

discriminator distinguishes whether the embedding is from the prior distribution pz

(real) or generator G (X , A∗) (fake). The embedding will be regularized by minimizing

the cross-entropy cost during the training process. The cost equation can be represented

as follows:

(5.18) − 1
2

Ez∼pz logD(Z)− 1
2

EXlog(1−D(G (X,A))),

In this chapter, pz denotes a simple Gaussian distribution.

Adversarial Graph Autoencoder Model. The training procedure of adversarial

training scheme applied on encoder and Discriminator D(Z) are listed in the following

equation:

(5.19) min
G

max
D

Ez∼pz [logD(Z)]+Ex∼p(x)[log(1−D(G (X,A*)))]

where G (X,A*) denotes the generator and D(Z) is the discriminator explained above.
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5.5.3 Algorithm Explanation

Algorithm 2 demonstrates the workflow of the proposed GED and VGED. Given a graph

G with vertex set V , edges E and node feature matrix X , latent codes Z is generated

by the GCN encoder in step 2. Then the generated Z will be sampled in step 4 as well

as the prior distribution pz in step 5. Step 6 update the discriminator according to the

cross-entropy loss. After K iterations, the GCN encoder generate embedding and the

discriminator will discriminate the embedding is ture or fake. The stochastic gradient

will be used to update encoder.The GED can be trained by the updated Eq. (5.16), or the

VGED can be trained with Eq. (5.17). Finally, the graph embedding Z ∈ Rn×m will be

returned in step 9.

5.6 Experimental results

The proposed approaches are evaluated with two unsupervised graph analytic tasks:

linkage prediction and node clustering on three scientific publications datasets. Table 5.1

details three benchmark graph datasets used in the experiments. The scientific publica-

tions and citation relationships can be represented as nodes and edges respectively. The

unique words in each scientific article are the features.

Table 5.1: Graph Datasets [145]

Dataset Nodes Linkages Total Words Features

Cora 2,708 5,429 3,880,564 1,433
Citeseer 3,327 4,732 12,274,336 3,703
PubMed 19,717 44,338 9,858,500 500

5.6.1 Experimental results on link prediction

Baseline methods. The state-of-art algorithms are choosen as the baseline methods in

comparing with the performance on the link prediction task with proposed GED and

GED:

• ARGA[89]: ARGA uses the adversarially regularized autoencoder algorithm to

learn the embedding.

• ARVGA[89]: ARVGA is a variational ARGA to represent the graph.
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• GAE[59]: is an unsupervised approach which learns meaningful latent embedding

from both the structural characteristics and node features.

• VGAE[59]: is a variational GAE for network representation with a network struc-

ture and features information.

• DeepWalk[96]: learns the features from the captured structural characteristics

independent of the label distribution.

• Spectral Clustering[119]: is a classification framework to learn the description

of a plausible affiliation of users based on latent social dimensions.

• GED Our proposed algorithm, which naturally merges structural characteris-

tics and node features into a feature-dependent graph matrix, and reconstructs

topological and node features simultaneously.

• VGED Our proposed algorithm, which is a variational version of GED.

Evaluation metrics. The metrics used in this chapter are average precision (AP)

and AUC score (the area under a receiver operating characteristic curve). The final score

is the mean values with the standard errors after running each experiment 20 times.

Each dataset has been set into a training set (85%), testing set (10%) and validation set

(5%), for the purpose of training, verification and optimization respectively.

Parameter Settings. The autoencoder models are trained for 50 iterations and

apply Adam algorithm as optimization algorithm for the clustering task, meanwhile. 200

iterations were set for the link prediction. The learning rate is 0.005 and the learning rate

of discriminator are set at 0.001. In view of the large size of the PubMed, the iterations

are set as 500 for clustering and 2000 for link prediction. All the experiments includ a

32-neuron embedding layer and 32-neuron hidden layer in the encoder. The number of

neurons in the decoder are dynamic. Specifically, the number of the neurons are equal

to the the number of the features associated with each vertex in the graph, thus the

node feature matrix can be reconstructed in the decode stage. Lastly, the discriminator

comprises two hidden layers of 32-neurons and 64-neurons respectively. For comparison,

the parameter settings are provided in the corresponding chapter.

Experimental results. Table 5.2 shows the experiment results on the link prediction

task. All the baselines and proposed models have been run 20 times and report the mean

and standard deviation of their performances. The results show that our GED and VGED

achieve an outstanding performance: both AUC score and AP are as high as 93% on all
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Table 5.2: Results for Link Prediction. GAE∗ and VGAE∗ are variants of GAE and VGAE,
which only explore topological structure, i.e., X= I. [145]

Approaches Cora Citeseer PubMed

AUC AP AUC AP AUC AP
SC 84.6 ± 0.01 88.5 ± 0.00 80.5 ± 0.01 85.0 ± 0.01 84.2 ± 0.02 87.8 ± 0.01
DW 83.1 ± 0.01 85.0 ± 0.00 80.5 ± 0.02 83.6 ± 0.01 84.4 ± 0.00 84.1 ± 0.00

GAE∗ 84.3 ± 0.02 88.1 ± 0.01 78.7 ± 0.02 84.1 ± 0.02 82.2 ± 0.01 87.4 ± 0.00
VGAE∗ 84.0 ± 0.02 87.7 ± 0.01 78.9 ± 0.03 84.1 ± 0.02 82.7 ± 0.01 87.5 ± 0.01

GAE 91.0 ± 0.02 92.0 ± 0.03 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00
VGAE 91.4 ± 0.01 92.6 ± 0.01 90.8 ± 0.02 92.0 ± 0.02 94.4 ± 0.02 94.7 ± 0.02

ARGA 92.4 ± 0.003 93.2 ± 0.003 91.9 ± 0.003 93.0± 0.003 96.8 ± 0.001 97.1 ± 0.001
ARVGA 92.4 ± 0.004 92.6 ± 0.004 92.4 ± 0.003 93.0 ± 0.003 96.5± 0.001 96.8± 0.001

GED 93.1 ± 0.003 93.1 ± 0.003 93.3 ± 0.003 93.4± 0.003 97.1 ± 0.001 97.2 ± 0.001
VGED 94.1 ± 0.003 94.2 ± 0.003 94.6 ± 0.003 93.3± 0.003 96.9 ± 0.001 97.0 ± 0.001

the three benchmark datasets. Compared to the listed baseline models, AP score has

increased around 2.6% compared with VGAE incorporating the node features, and 11.1%

higher than the VGAE without the node features. The proposed GED also lead 15.6%

improvement compared with DeepWalk and 10.7% improvement compared with Spectral

Clustering on the PubMed dataset, respectively. Which means the features may effect

the prediction of the future connections in these datasets. The results of GED and VGED

outperformed TADW. The AUC of our model GED achieves 92.6%, 93.3% and 97.1% and

VGED achieves 94.1%, 94.6% and 96.9% in Cora, Citeseer and PubMed respectively. This

is because TADW fails to fully exploit the inner-interdependency between the structural

characteristics and node features, bacause TADW is a shallow linear model. The GED

and VGED also significantly outperform both ARGA and ARVGA both of which only

reconstruct the structural characteristics. The experiments show that the FGM and

reconstructing both topological and content information are crucial for improving graph

embedding.

Parameter Sensitivity. Learning rate from 0.001 to 0.9 is varied for evaluating the

parameter sensitivity and Fig 5.3 shows the report results.

The report in both Fig 5.3 AUC and AP show similar trends: when the learning rate

is increased from 0.001 to 0.005, the performance reaches its peak, then it stabilises

until the learning rate has been increased to 0.01. The performance dramatically drops

after 0.01 from around 90% to 50%. Similarly, the performance of the learning rate drops

from the discriminator learning rate 0.001 to 0.09. This is because the learning rate

determines the speed of the weight updating, however, the large learning rate will result

90



5.6. EXPERIMENTAL RESULTS

(a) Learning rate

(b) Discriminator learning rate

Figure 5.3: Average performance on (a) learning rate and (b) discriminator learning rate
on the Cora dataset for AUC and AP. [145]

in the results exceeding the optimal value.

It is worth mentioning that when the learning rate is set between 0.005 to 0.01

and the discriminator learning rate is set at 0.001, the framework achieved its best

performance.

5.6.2 Experimental results on node clustering

The K-means clustering algorithm is applied on the learned embedding, for the node

clustering task.

Baseline methods. The embedding approaches and clustering approaches baselines

which designed for clustering are compared:

• DNGR[13]: is able to learn a weighted graph embedding.

• TADW[153]: associates DeepWalk to factorizes a matrix and solve the close form

of the matrix.
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• RMSC[149]: is a Markov chain to transfer the noise between the multi-view

transition probability matrices.

• Graph Encoder[120]: takes the sparse autoencoder as the building block, then

generates the non-linear graph embedding.

• RTM[15]: explicitly ties the documents and the content.

• K-means: is an old classic method which can be the basis of many other clustering

algorithms.

The K-means, Graph Encoder, and DNGR only exploit the topological structures of

the graph, while the rest of the algorithms apply both topological structures and node

features for the graph clustering task.

Evaluation metrics. Five metrics are used to evaluate the clustering results: nor-

malized mutual information (NMI), accuracy (ACC), precision, F-score (F1) and average

and index (ARI), which are defined by Xia et al. [149].

Table 5.3: Clustering Results on Cora [145]

Cora Acc NMI F1 Precision ARI

K-means 0.492 0.321 0.368 0.369 0.230
Spectral 0.367 0.127 0.318 0.193 0.031
GraphEncoder 0.325 0.109 0.298 0.182 0.006
DeepWalk 0.484 0.327 0.392 0.361 0.243
DNGR 0.419 0.318 0.340 0.266 0.142

RTM 0.440 0.230 0.307 0.332 0.169
RMSC 0.407 0.255 0.331 0.227 0.090
TADW 0.560 0.441 0.481 0.396 0.332

GAE 0.596 0.429 0.595 0.596 0.347
VGAE 0.609 0.436 0.609 0.609 0.346

ARGA 0.640 0.449 0.619 0.646 0.352
ARVGA 0.638 0.450 0.627 0.624 0.374

GED 0.679 0.462 0.660 0.654 0.437
VGED 0.695 0.515 0.695 0.696 0.473

Experimental results. Table 5.3, Table 5.4, and Table 5.5 listed results of the

clustering task on the three benchmark datasets Cora, Citeseer and PubMed, respectively.

The results show that the proposed GED and VGED outperform on all the metrics

compared with baseline models. For instance, on Citeseer, the accuracy of VGED has
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Table 5.4: Clustering Results on Citeseer [145]

Citeseer Acc NMI F1 Precision ARI

K-means 0.540 0.305 0.409 0.405 0.279
Spectral 0.239 0.056 0.299 0.179 0.010
GraphEncoder 0.225 0.033 0.301 0.179 0.010
DeepWalk 0.337 0.088 0.270 0.248 0.092
DNGR 0.326 0.180 0.300 0.200 0.044

RTM 0.451 0.239 0.342 0.349 0.203
RMSC 0.295 0.139 0.320 0.204 0.049
TADW 0.455 0.291 0.414 0.312 0.228

GAE 0.408 0.176 0.372 0.418 0.124
VGAE 0.344 0.156 0.308 0.349 0.093

ARGA 0.573 0.350 0.546 0.573 0.341
ARVGA 0.544 0.261 0.529 0.549 0.245

GED 0.555 0.277 0.540 0.565 0.253
VGED 0.581 0.338 0.581 0.537 0.302

Table 5.5: Clustering Results on PubMed [145]

PubMed Acc NMI F1 Precision ARI

K-means 0.393 0.001 0.192 0.574 0.001
Spectral 0.396 0.037 0.273 0.493 0.002
GraphEncoder 0. 0.0 0. 0. 0.
DeepWalk 0.679 0.273 0.672 0.693 0.302
DNGR 0.453 0.151 0.462 0.631 0.051

RTM 0.571 0.192 0.445 0.459 0.143
RMSC 0.0 0.0 0.0 0.0 0.0
TADW 0.353 0.001 0.331 0.333 0.001

GAE 0.675 0.279 0.662 0.687 0.273
VGAE 0.632 0.231 0.636 0.633 0.217

ARGA 0.665 0.302 0.637 0.673 0.302
ARVGA 0.687 0.293 0.672 0.688 0.311

GED 0.678 0.311 0.640 0.692 0.313
VGED 0.692 0.303 0.681 0.701 0.320
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been improved around 158.2% compared with GraphEncoder and 7.6% compared with

K-means ; in addition, the F1 score of VGED increased the 15.2% performance compared

with DeepWalk and 40.3% compared with TADW. The improvement of the results

between GED and ARGA further proves the superiority of our FGM and node feature

reconstruction. Furthermore, the clustering results from DeepWalk only consider graph

information from single perspective, which lead the low performance compared to the

methods which consider both the structural characteristics and the node features. By

applying FGM and reconstructing the node features, our algorithms outperform the state-

of-art algorithms ARGA and ARVGA, compared with ARGE, VGED which increases the

accuracy to 8.5%, 1.3% and 4% in Cora, Citeseer and PubMed, respectively.

5.7 Summary

In this chapter, the GAN and autoencoder from computer vision were shifted to the graph

research area. An adversarial graph encoder-decoder framework is developed with a

specially designed decoder to simultaneously reconstruct the structural characteristics

and content information associated with nodes when learning graph embedding. A

novel method to construct both topological information and node features into a feature-

dependent graph matrix (FGM) is developed while preserving the interdependency

between these two sources of information. It is worth to indicate that most existing

graph embedding approaches fail to fully leverage the natural connection between graph

structure and node features and are not able to reconstruct the node features during

the training procedure, which may result in an unsatisfactory embedding. The proposed

frameworks and graph construction method have smoothly overcome these challenges.

The experiment results on three real-world graph datasets demonstrate that the proposed

frameworks, GED and VGED with FGM as the input outperform their peers in link

prediction and node clustering tasks.
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CONCLUSIONS AND FUTURE WORK

This chapter concludes the thesis and provides some direction for future work. The aim

of the thesis is to explore the similar gesture recognition problems which decrease the

performance of the CNNs. The aim the study is also to come up with an automatic and

robust human action recognition framework. I have adopted/proposed several computer

vision and deep learning approaches to build intelligent solutions for understanding the

human actions.

In the first part of the thesis, I adopted the hierarchical classification approach for

similar gesture action recognition, which can apply multi-stage classification for similar

gesture action recognition. Thus the classifier will not interfered by other classes. Follow-

ing the hierarchical classification approach, an adversarial action data augmentation

framework was used to generate video frames which can improve the classification.

Moreover, the generated frames includes more features than the original frames which

can enlarge the differences and bias for different classes.

In the second part of the thesis, I adopted the GAN approaches to generate the

video frames, which can enlarge the training set and bias between classes. The proposed

end-to-end framework can identify similar gesture classes and generate the frames for

these classes automatically. By augmenting the generated frames with original frames,

the classification performance was improved.

In the third part of the thesis, I adopted the GAN-based approaches to the graph

embedding, which can merge the structural characteristics and node features according

to their interdependency and reconstructs both structural characteristics and node
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features. Experiments where conducted on three real-world graph datasets such as Cora,

Citeseer and PubMed to evaluate the proposed framework and algorithms, and the

results outperform baseline methods on both link prediction and graph clustering tasks.

6.1 Summary of the thesis

• Chapter 2 presents an extensive literature review about state-of-the-art methods

published related to human action recognition using computer vision and deep

learning approaches. The human action datasets covers two aspects of single-view

datasets and multi-view datasets. It was found in the literature that a large body

of work has been published using hand-crafted features to represent the human

actions pros and cons of these approaches discussed in greater detail. In single-

view datasets, there is only one camera capturing the human actions, while the

information is incomplete, while a multi-view dataset has multiple view angles so

that the occlusion has been solved in multi-view datasets. Additionally some of the

approaches could also be used to generate features for different classifiers. Most

early traditional machine learning works are problem dependent, which apply the

texture descriptors on the extracted handcraft motion features.

• Chapter 3 presents a new approach to handle the actions with similar gestures

to improve the overall accuracy of a gesture recognition system. Analysis showed

that a major reason for low performance is due to the confusion among the similar

gestures. Hence, we focus on resolving the confusion among the class with similar

gestures, in the current work. A generic hierarchical classification model is pro-

posed in this work, which can be applied to any datasets/real-world application

involving gesture recognition.

• Chapter 4 presents an action data augmentation framework with a GAN features

generator, which can enlarge the differences between similar class. Firstly, the orig-

inal video frames were set as the input of the GAN, then generate the new frames

for each action videos; followed by the data augmentation process, combining the

original frames and generated frames; the final stage sends the augmented frames

as the CNN input and obtains the result. The results on CNN-based methods have

been evaluated, which proves the framework indeed boost the performance of the

classifier.
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• Chapter 5 presents novel encoder-decoder frameworks (GED and VGED) for graph

embedding, which simultaneously encode topological structures and content as-

sociated with nodes while exploiting the natural interdependency between two

sources of information. The specially designed decoder of the proposed framework

reconstructs both the topology and its relevant content information, which fully

leverage the interaction between the different sources of information of a graph

when learning the embedding.

6.2 Future research

Various approaches for video-based human action recognition were investigated in this

thesis with different aspects of human actions. Several areas are identified for further

research which is summarised as follows.

• The GAN is used to generate still images which can significantly improve 2DCNN-

based performance. However, the performance improvement using 3DCNN ap-

proaches are not siginificant enough, as the GAN generated frames loses the

correlation with the original frames. This will be a require a video generating

method to generate sequence video to improve the 3DCNN performance.

• Multi-human action recognition could be another direction which is a very chal-

lenging task.

• Another extension to the action recognition framework is to modify current state-

of-the-art gesture estimation methods, which can extract more features for classifi-

cation.

• Discovering more features between frames could improve the classification per-

formance. Furthermore, new detection and recognition methods can be developed

with higher performance and lower costs.
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