Doctor of Philosophy CRICOS Code: 058666A September 2019

Generating Descriptive and Accurate Image Captions with Neural Networks

Lingxiang Wu

School of Electrical and Data Engineering Faculty of Engg. & IT University of Technology Sydney NSW2007, Australia

Generating Descriptive and Accurate Image Captions with Neural Networks

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Lingxiang Wu

to

School of Electrical and Data Engineering
Faculty of Engineering and Information Technology
University of Technology Sydney
NSW2007, Australia

September 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Lingxiang Wu declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: 2019/09/01

ABSTRACT

a topic connecting computer vision and natural language processing. Research on image captioning has great impact to help visually impaired people understand their surroundings, and it has potential benefits for the sentence-level photo organization. Early work typically tackled this task by retrieval methods or template methods. Modern methods were mainly based on a combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). However, generating accurate and descriptive captions remains a challenging task. Accurate captions refer to sentences consistent with the visual content, and descriptive captions refer to those with diverse descriptions rather than plain common sentences. Generally, the vision model is required to encode the context comprehensively and the language model is required to express the visual representation into a readable sentence consistently. Additionally, the training strategy also affects the performance.

In this thesis, we develop methods and technics to generate descriptive and accurate image captions from three aspects with neural networks. First, we consider how to express the visual representation consistently in the language model. We propose a Recall Network that can selectively import the visual information using GridLSTM units in the RNN. This design efficiently prevents the RNN from deviating from the visual representation while gradually generating each word. Second, we explore a comprehensive visual representation in the vision model based on Graph Neural Networks (GCN). A grid-level visual graph is introduced to work collaboratively with a region-level graph, and GCN are applied to aggregate visual neighborhood information in the graphs. Finally, we design a new training strategy with Reinforcement Learning (RL) technics to boost captions' diversity. Unlike previous CNN-RNN frameworks, our framework contains an additive noise module which can manipulate the transition hidden states in the RNN. We train the noise module by our proposed noise-critic training algorithm.

Then we extend the caption generation into Modern Chinese Poetry creation from images. We identify three challenges in this task: (a) semantic inconsistency between

images and poems, (b) topic drift problems, and (c) frequent occurrence of certain words. Regarding the challenges, we develop a Constrained Topic-Aware Model. Particularly, we construct a visual semantic vector via image captions. A topic-aware generator is developed based on the Recall Network. An Anti-Frequency Decoding scheme is introduced to constrain the high-frequency characters.

Overall, we propose three novel modules for image captioning and an image-to-poetry framework. This thesis can facilitate the connection between computer vision and natural language, and it extends the generation into specific domains.

ACKNOWLEDGMENTS

irst and foremost, I must thank my supervisor Min Xu for her continuous support and guidance throughout my PhD. Min provided me much freedom on what I want to do, and thus made my PhD life pretty enjoyable. She is foresighted and professional, and she always provided helpful suggestions when I was confused. I am grateful that Min kindly supported me when I met difficulties in research or in personal life.

I am also thankful to Wenguan Wang and Shengsheng Qian for their generous guidance, encouragement and collaboration. It is a great opportunity to collaborate with them in two projects. I enjoyed very much discussing research with them, and I learned various aspects from them such like insightful thinking and technical writing.

There are many others I would like to express thanks during my two interns. Great thanks to Jinqiao Wang and Guibo Zhu who were my mentors in National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences. They introduced me in the research community and helped me a lot in my first research attempt. Also, a big thanks to Jianwei Cui, who is my mentor in Xiaomi Corporation. I was fortunate enough to work with Jianwei and had the freedom to choose my tendentious task.

My life in UTS would not be such enjoyable without my friends and colleagues in Sydney: Tianrong Rao, Haimin Zhang, Zhongqin Wang, Lei Sang, Ruiheng Zhang, Xiaoxu Li etc. Great thanks to Lei Sang for his generous ideas and professional collaboration. Thanks to Stuart Perry, Qiang Wu and Sean He for being my candidate assessment panels. Thanks for Dadong Wang for being my co-supervisor. Thanks to Jian Zhang for making their server available to me when we are short of GPUs at the beginning of my PhD. Thanks to Chandranath Adak (UTS) for providing this thesis template. Thanks to NVIDIA who provided a GPU for our research.

Finally, I owe many thanks to my boyfriend Xinyu Tang for his constant support and free help. He is an anonymous author in most of my papers. This thesis is dedicated to my parents and boyfriend for your love and support all these years.

LIST OF PUBLICATIONS

RELATED TO THE THESIS:

- 1. **Lingxiang Wu**, Min Xu, Jinqiao Wang, Stuart Perry, *Recall What You See Continually Using GridLSTM in Image Captioning[J]*, IEEE Transactions on Multimedia (TMM) 2019. (*Published*).
- 2. **Lingxiang Wu**, Min Xu, Shengsheng Qian, Jianwei Cui, *Image to Modern Chinese Poetry Creation via A Constrained Topic-Aware Model[J]*, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM). (*Under review*).
- 3. **Lingxiang Wu**, Min Xu, Wenguan Wang, Lei Sang, *Diverse Image Captioning with Trainable Noise and Dual Level Visual Graphs[J]*, IEEE Transactions on Image Processing (TIP). (*Under review*).

OTHERS:

- Lingxiang Wu, Jinqiao Wang, Guibo Zhu, Min Xu, Hanqing Lu, Person re-identification via rich color-gradient feature[C], IEEE International Conference on Multimedia and Expo (ICME) 2016. (Published).
- 2. **Lingxiang Wu**, Min Xu, Guibo Zhu, Jinqiao Wang, Tianrong Rao, *Appearance features in Encoding Color Space for visual surveillance[J]*, Neurocomputing 308: 21-30 (2018). (*Published*).
- 3. Ruiheng Zhang, **Lingxiang Wu**, Yukun Yang, Wanneng Wu, Yueqiang Chen, Min Xu, *Multi-camera Multi-player Tracking with Deep Player Identification in Sports Video[J]*, Pattern Recognition. (*Under review*).

TABLE OF CONTENTS

Li	st of	Public	eations	vii
Li	st of	Figure	es	xiii
Li	st of	Tables	5	xv
1	Intr	oduct	ion	1
	1.1	Overv	iew	1
	1.2	Main	Challenges	2
	1.3	Contr	ibutions and Outlines	3
Ι	Fou	ındat	ions	7
2	Rela	ated W	'orks	9
	2.1	Tradit	tional Captioning Methods	10
		2.1.1	Retrieval-based Methods	10
		2.1.2	Template-based Methods	10
	2.2	Mode	rn Captioning Methods	11
		2.2.1	Neural Network Methods	11
		2.2.2	Dense Captioning and Styled Captioning	12
		2.2.3	Other Vision-language Tasks	12
3	Pro	blem S	Statement	15
		3.0.4	Training with Cross Entropy Loss	15
		305	Training with Reinforcement Learning	16

II	Pro	opose	d Methods for Image Captioning	17				
4	Lan	iguage	Model: Recall Network	19				
	4.1	Introd	luction	20				
	4.2	2 LSTM Background						
	4.3	Metho	od	22				
		4.3.1	Framework Overview	22				
		4.3.2	Recall the Visual Information Continually in the Decoder	24				
		4.3.3	Recall with the Depth Dimension LSTM	25				
		4.3.4	Different Vision Models	27				
	4.4	Exper	iments	28				
		4.4.1	Datasets	29				
		4.4.2	Evaluation Metrics	30				
		4.4.3	Training Details	30				
		4.4.4	Experiments on Full Images	31				
		4.4.5	Experiments on Dense Captioning	37				
	4.5	Summ	nary	38				
5	Visi	ion Mo	del: Dual GCN	41				
	5.1	Introd	luction	41				
	5.2	GCN Background						
	5.3	Image	captioning by two visual relation graphs	43				
		5.3.1	Problem Formulation	44				
		5.3.2	Region Visual Graph	44				
		5.3.3	Grid Visual Graph	45				
		5.3.4	GCN for Directed Labeled Graph	45				
		5.3.5	RNN Generator	46				
	5.4	Exper	iments	46				
		5.4.1	Experimental Setup	46				
		5.4.2	Comparative Models	47				
		5.4.3	Ablative Analysis	48				
		5.4.4	Comparison with State-of-the-art Models	49				
	5.5	Summ	nary	50				
6	Tra	ining S	Strategy: Noise Agent	5 1				
	6.1	Introd	luction	51				

8	Con	clusio	n	89			
	7.5	Summ	ary	88			
	- -	7.4.7	Effects of Hyperparameter λ				
		7.4.6	Qualitative Evaluation				
		7.4.5	Quantitative Evaluation				
		7.4.4	Comparative Methods				
		7.4.3	Evaluation Metrics				
		7.4.2	Implementation Details				
		7.4.1	Dataset	79			
	7.4	Exper	iments	79			
		7.3.4	Anti-frequency Decoding	77			
		7.3.3	Topic-Aware Poetry Generation	74			
		7.3.2	Visual Semantic Vector Construction	71			
		7.3.1	Problem Formulation	71			
	7.3	Creati	ng Poetries From Images	70			
	7.2	Backg	round	69			
	7.1	Introd	uction	65			
7	Cre	ating N	Modern Chinese Poetry from Images	65			
II	ΙΕχί	tensio	ons	63			
	6.5	Summ	ary	61			
		6.4.6	Qualitative analysis				
		6.4.5	Diversity Evaluation				
		6.4.4	Comparison with State-of-the-art Models				
		6.4.3	Ablative Analysis				
		6.4.2	Comparative Models				
		6.4.1	Experimental Setup				
	6.4	Exper	iments	57			
		6.3.3	Parallel Noise Decoding	57			
		6.3.2	Noise Critic Training	55			
		6.3.1	Gaussian Noise Agent	54			
	6.3	Boosti	ng Caption Diversity with a Noise Agent	54			
	6.2	RL Background					

TABLE OF CONTENTS

Q:
90

LIST OF FIGURES

	FIGURE	age
1.1	Examples of object recognition, full image captioning and dense captioning	2
1.2	Suboptimal descriptions from automatic generators	3
3.1	The basic CNN-RNN framework for image captioning	15
4.1	An illustration of the proposed model. Our model contains two LSTMs at each step. We use the temporal LSTM to transmit the sequential caption states	
	and the depth LSTM to integrate the visual information.	23
4.2	Three different decoder units. (a): The image representation is only processed once with the LSTM. (b): The image representation and word embedding are	
	concatenated as extra inputs for the LSTM. (c): Our Recall Network. $\ \ldots \ \ldots$	26
4.3	Loss comparison on validation split along the training process	32
4.4	CIDEr score comparison on validation split along the training process	33
4.5	Captions generated by the Recall Network. The comparison between the Recal-	
	l Network and the conventional encoder-decoder model shows that our model	
	generates more accurate and detailed captions. The comparison between the	
	generated results and the human annotated ground truth shows that further	
	work should be carried out for more comprehensive content captions	36
4.6	Examples generated by the Recall Network in dense captioning. Each caption	
	corresponds to the bounding box in the same color	38
5.1	Region-level and grid-level visual graph construction	42
5.2	The proposed CNN-GCN-RNN model. The image is represented by a region	
	level graph and a grid level graph. GCN is utilized to encode neighbourhood	
	information	43
6.1	(a) Existing RL framework in captioning. (b) Our proposed one with the noise	
	module	52

LIST OF FIGURES

6.2	The transition details in the noise-added model	54
6.3	Generation examples with naive noise and adaptive noise	56
6.4	CIDEr and BLEU-4 log on validation set while training the noise agent	59
6.5	Generated captions from ResNet baseline, our G-noise model and the Ground	
	Truth (GT)	61
7.1	Three challenges in the image-poetry generation. (a) Semantic inconsistency	
	between the image and the poetry. (b) Topic drift in the subsequent lines.	
	(Relative words are shown in bold.) (c) Frequent occurrence of certain words	
	(shown in bold)	67
7.2	The framework of our proposed CTAM	70
7.3	Comparison on keywords obtained from two different visual models	74
7.4	The topic-aware LSTM details	75
7.5	Comparison results. (a) The occurrences of seven frequently appearing char-	
	acters generated by the model w/ and w/o anti-frequency decoding. (b) The	
	percentage of generated poetries containing keywords	84
7.6	The number of poetry keywords and caption words	85
7.7	Visualization of image captions and related keywords	87
7.8	Visualization of generated results of Sequence model and the CTAM. We	
	manually highlight relative words in poems, and present their generation	
	probabilities in blue bars. Human evaluation results on Semantic consistency	
	(S), Readability (R), Poeticness/Aesthetics (P) and the Average score (A) are	
	shown in orange stripes.	87
7.9	Frequency of character "I" with respect to variant hyperparameter λ	88
8.1	An example with detailed entities. This figure is from RichCaptioning[78]	91

LIST OF TABLES

	ΓABLE I	age
4.1	Dataset size summary	29
4.2	Comparison with the baseline methods	32
4.3	Comparison with the Stacked LSTM	33
4.4	Comparison with the state-of-the-art methods on MSCOCO dataset for Offline	
	Evaluation	34
4.5	Online Evaluation Performance on the MSCOCO Test Server	35
4.6	Dense Captioning Performance on the Visual Genome Dataset	38
5.1	GCN Model Performance comparisons on MSCOCO offline set	48
5.2	Comparisons on the updating times of the Grid GCN	49
5.3	Performance comparisons with the state-of-the-art methods on MSCOCO	
	offline set	49
5.4	Performance evaluation on MSCOCO online Test Server	50
6.1	Performance comparisons for ablation study on MSCOCO offline set	58
6.2	Performance comparisons with the state-of-the-art methods on MSCOCO	
	offline set	59
6.3	Performance evaluation on MSCOCO online Test Server	60
6.4	Diversity Evaluation	60
7.1	Listing of notations in this chapter	71
7.2	Human Evaluation Results	82
7.3	Ablation study with BLEU-1 (%)	84
7.4	Image captioning performance	86