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Abstract 

Increasing the location accuracy of the Indoor Positioning System (IPS) is an 

important research area in localization. Utilizing mobile beacons in IPS 

environment has made localization more accurate and cost-effective. This research 

developed a Filtered RSSI and Beacon Weight Approach (FRBW) based on 

improved Received Signal Strength Indicator (RSSI) using Kalman filter. This 

approach takes both the distance and improved RSSI measurements between 

beacon nodes into consideration. Kalman filter is applied on the RSSI 

measurements that eliminate noise of the signal and then applied on FRBW 

positioning algorithm. The developed approach was applied and validated in IPS 

experiments using Bluetooth Low Energy beacons. The results show that this 

FRBW approach has better positioning accuracy and minimum location error, and 

can be applied in IoT applications in smart city. 
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1.1 Background  

It is very important to locate objects in any place for many reasons, using the Global 

Navigation System; objects can be located in an outdoor environment, where walls 

or people do not obstruct the signal. However, this system loses its ability to 

accurately locate object positions in an indoor environment; hence, the importance 

of an Indoor Navigation System that can navigate in an indoor environment and 

locate objects. 

 

Indoor navigation has become very important recently in order to locate people, 

devices and objects within the building where GPS signal does not pass due to walls 

and other factors. 

 

Smartphones are nowadays equipped with many advanced technologies such as 

sensors and Bluetooth Low Energy (BLE). Utilizing existing technologies such as 

the Wi-Fi network or BLE for IPS system can significantly reduce the cost and 

complexity of IPS system deployment in an indoor environment.  

 

Many technologies such as Wi-Fi and BLE have been adopted to locate objects in 

indoor environment with only hundreds of centimeters of error, however, using 

existing technologies such as Wi-Fi has minimized the deployment cost, but still 

the accuracy is the main concern for researchers. 

 

In this research, we have adopted the Kalman filter in order to eliminate the noise 

in RSSI signal, and improve the RSSI signals quality. Furthermore, we have 

developed the Filtered RSSI (Received Signal Strength Indicator) based Weight 
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(FRBW) algorithm that utilizes the Beacon’s weight along with the smoothed RSSI 

values to estimate the objects position in an indoor environment. The results show 

the position error was decreased to only a few centimeters.  

 

The remainder of this section is organized as follows. The objectives and aims of 

this research are presented in Section 1.2 while. Section 1.3 explains the indoor 

positioning system problems. Contributions are in Section 1.4. Publications are 

listed in Section 1.5, and the overall structure of this thesis is outlined in Section 

1.6. 

1.2 Research Objective  

The primary objective of this research is to develop an Indoor Positioning System 

using the Bluetooth Low Energy beacon network and smartphone. 

 

The second objective of this research is to Improve Indoor Positioning accuracy by 

development of a Filtered RSSI and Beacon Weight algorithm. 

 

The last objective of this research is to achieve navigation quality as required by 

user such as reliability, usability and cost. 

 

1.3 Problems  

Locating objects in an indoor environment has attracted many researchers in the 

last decade. The radio frequency signals cannot travel through walls, and objects 

such as furniture or people can obstruct the signal path and force the signal to travel 
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more until it reaches the receiver, and therefore the outdoor positioning systems 

such as the GPS cannot locate objects in the indoor environment. Different 

technologies such as WiFi, UWB and ultrasonic signals have been used to estimate 

the objects coordinates in the indoor environment, however, these technologies 

were either expensive or hard to deploy or the positioning accuracy is very low. 

Due to this reason, our aim in this research is to develop a positioning algorithm 

that can use the existing technologies with a very low infrastructure cost with high 

accuracy in locating object position. 

 

1.4 Thesis Contributions 

The main contributions of this thesis are summarized as follows: 

1. The development of indoor positioning system using existing technologies in 

smartphones; the BLE. 

 

2. The development of a new indoor positioning system algorithm that uses 

Kalman filter as a RSSI signal smoother. 

 

3. The developed indoor positioning system uses low cost and powerful beacons 

that serves as a reference point in the iBeacon network to estimate the mobile 

position. 

 

4. The implementation and demonstration of the indoor positioning system is 

designed to allow easy and quick implementation. 
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5. The experimental validation of the developed system shows a high accuracy in 

locating the objects in an indoor environment. 

 

6. The developed indoor positioning system using the Filtered RSSI and Beacon 

Weight (FRBW) algorithm has a minimum location error of up to 30 cm and 

can be applied in IoT applications in smart city. 

  

1.5 Publications 

Laial Alsmadi, Xiaoying Kong, Kumbesan Sandrasegaran  “Improve Indoor 

Positioning Accuracy Using Filtered RSSI and Beacon Weight Approach in 

iBeacon Network” in “The 19th International Symposium on Communications 

and Information Technologies (ISCIT 2019), Vietnam 

1.6 Thesis Layout  

This section of the study shows the order of the topics, their importance and 

relationship to each other. This thesis is structured into five Chapters.  

 

Chapter 2 gives an overview of the navigation systems, current indoor positioning 

systems algorithms and technologies, and the related work carried out in the area of 

the indoor positioning system using different radio frequency technologies. 
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Chapter 3 concentrates on the developed FRBW algorithm and gives a detailed 

description of its phases, which starts by smoothing and eliminating the noise in the 

RSSI signals using the Kalman filter. The idea of Centroid Localization algorithm 

and the Beacons’ weight are also explained in this chapter. The estimated distance 

using the Path-Loss model based on raw RSSI values is explained in details. 

 

Chapter 4 gives a full description of the equipment and tools that have been used 

in this study. This start with Estimote Beacons and applications such as the Matlab 

and Beacon Scanner. The validation of our developed FRBW algorithm is also 

discussed. The estimated position results of the 19 different mobile positions are 

given. In addition, a comparison of the FRBW results with other approaches such 

as the Estimote and Path-Loss are explained.  

 

Chapter 5 presents the conclusions and proposes the future work in the field of 

Indoor Positioning Systems. 

 



Chapter 2: Literature Review 

7 

 

2.  

 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Literature Review 

8 

2.1 Overview of Positioning Systems 

Location Based Services (LBS) are increasingly becoming advanced with mobile 

and telecommunication technologies spewing out at an alarming rate (Raper et al. 

2007). Mobile guides and navigation tools have thus become useful digital devices 

(Krisp & Keler 2015). These navigation systems help people with tasks in 

environments that are not familiar to them. (Zheng 2011) argues that location aware 

technologies such as the Global Positioning System (gps) have helped people in 

their social networks by geotagging contents such as videos and photos while at the 

same time others have used them to check in or leave reviews for the location of 

restaurants, schools, hospitals and social facilities.  

 

Using the Global Navigation System, objects can be located in an outdoor 

environment, where the signal is not obstructed by walls or people. Outdoor 

navigation has assisted the transport industry by guiding drivers and even providing 

information about passengers as well as traffic flows (Li, Wang & Zhang 2015). 

Assistive technology has been enhancing the flexibility with which the elderly and 

the virtually impaired are able to move around their environments (Hakobyan et al. 

2013). These devices have the ability to detect obstacles and redirect a virtually 

impaired person (Peng et al. 2010) as well as provide the measure of space (Shen 

et al. 2008) thereby smoothening navigation for the elderly and the disabled 

(Stepnowski, Kamiński & Demkowicz 2011).  The Location Based Technology has 

also assisted in crime detection, disaster and emergency management, and social 

participation (Choy et al. 2016).  
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However, this system loses its ability to accurately locate object positions in an 

indoor environment due to inadequate indoor positioning methods and lack of 

Geographic Information System (GIS) data, hence, this shows the importance of an 

Indoor Navigation System that can navigate in indoor environment and located 

objects (Raper et al. 2007). Indoor navigation has become very important recently 

to locate people, devices and objects within the building where GPS signals don’t 

pass due to walls and other factors. Supermarkets, national museums, airports and 

pharmacies require the location services while locating objects and artefacts and 

therefore the need to develop an indoor navigation system is increasing (Huang et 

al. 2018). 

 

Many technologies such as NFC (Ozdenizci, Coskun & Ok 2015), Wi-Fi (Retscher 

& Roth 2017), UWB (Alarifi et al. 2016), RFID (Bai 2016), Bluetooth RRR, and 

Bluetooth Low Energy (BLE) have been adopted to locate objects in an indoor 

environment with only hundreds of centimeters of error. However, using existing 

technologies such as Wi-Fi has minimized the deployment cost, but still the 

accuracy is the main concern for researchers. In this research, we have adopted the 

Kalman filter that was able to eliminate the RSSI noise and improve the signal 

quality, and then the distance error reduced to only a few centimeters using our 

developed Filtered RSSI and Beacon Weight (FRBW) algorithm. 

 

Navigation systems are used to locate any wanted object regardless of its current 

location, and the Global Positioning System (gps) is the most common system that 

can detect and find the exact location of any object in an outdoor environment. This 

is due to the standardization of the positioning of objects in the outdoor space as 
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compared to the indoor space. The only limitation for outdoor navigation would be 

experienced in urban areas where the signals are obstructed due to high buildings 

and other similar barriers, which is a phenomenon, referred to as the canyon effect. 

However, the GPS loses its ability to provide accurate location due to signal 

problems in an indoor environment.  

 

The first problem encountered is the indoor space model. Unlike the outdoor space, 

the indoor space has not been standardized. This may be due to a number of things 

including architectural factors that make buildings unique in their design and 

navigation patterns (Huang et al. 2009). For instance, one may simply look at You-

Are-Here maps in order to locate a room in a building manually and without much 

technology. However, when it comes to technology in indoor navigation, much will 

be required. Complex computing, standardization and modelling of indoor space 

are beyond researchers (Afyouni, Ray & Claramunt 2016). This makes this area of 

research even greyer.  

 

In addition, the Indoor Positioning System is a new technology that can provide 

precise location of any object, even when satellite signals are partially or completely 

blocked, especially inside the buildings. Besides, this indoor navigation technology 

suffers from lack of a universal solution such as the GPS that is witnessed with the 

outdoor positioning. To fill this gap, this research focuses on algorithms that would 

help in locating objects position within a building despite of these obstacles and 

reduce the positioning localization error to a few centimeters only using existing 

technologies that are embedded in smartphones. 
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2.1.1 Outdoor Positioning Systems 

The outdoor navigation system uses the Global Navigation Satellite Systems 

(GNSS) such as GPS, Galileo, BeiDou and GLONASS to navigate and locate any 

object in the open space (Huang et al. 2018). The Global Positioning System (gps) 

which was developed by the US air force in 1973 is considered the standard outdoor 

navigation system. It provides users with location, navigation, and indicate the time 

(Chen 2012). The GPS system uses a constellation of 24 satellite called the initial 

operational capability (IOC) and consists of three segments: the space segment, the 

control segment; and the user segment (El-Rabbany 2002). 

 

GPS satellites broadcast the signals with high accuracy; however the accuracy of 

the received signal depends on satellite geometry and receiver design features and 

quality (El-Rabbany 2002), which means the accuracy of GPS enabled smartphone 

is within 4.9 m under an open sky (van Diggelen & Enge 2015). Although it is easy 

to scale the GPS system, GPS does not work well in an indoor environment because 

the GPS signal can by blocked by building or any other physical barrier. 

 

The GPS does not require the user to transmit any data, and it operates 

independently of any telephonic or internet reception, though these technologies 

can enhance the usefulness of the GPS positioning information. The GPS provides 

critical positioning capabilities to military, civil, and commercial users around the 

world. The United States government created the  system, maintains it, and makes 

it freely accessible to anyone with a GPS receiver (El-Rabbany 2002).  
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2.1.2 Indoor Positioning Systems 

Modern smartphones are rapidly becoming very important in our daily life not only 

for communication purpose, but also as a navigation, medical and learning device. 

The wireless indoor navigation system is a system to locate objects or people inside 

a building using radio waves, magnetic fields, acoustic signals, or other sensory 

information collected by mobile devices (Curran et al. 2011). 

2.2 Indoor Positioning Systems: Technologies and Algorithms 

2.2.1 IPS: Technologies  

The wireless based communication requires two parts, the station that sends the 

wireless signals and the station that receives the wireless signals. Different 

technologies have been used in indoor navigation systems. 

 

The propagation of the wireless wave can be influenced by reflection, scattering, 

and diffraction. The signal strength can be affected by multi path fading or shadow 

fading in the indoor environment (Li, Wang & Zhang 2015). 

 

The wireless indoor navigation system is much cheaper and easier to deploy than 

any other approach, however, there are still problems in the accuracy, and many 

approaches and technologies have been used to minimize the error. In the following 

sections, we shall explore all the available wireless technologies that have been used 

in Indoor Positioning Systems. 
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2.2.1.1  Wi-Fi 

Wi-Fi is a technology for radio wireless local area networking of devices based on 

the IEEE 802.11 (-Wi-Fi). The most common forms are IEEE 802.11b and 802.11g.  

It employs various bands in its operation such as 2.4 GHZ and 5 GHZ. The IEEE 

802.11 standard is a set of media access control (MAC) and physical layer (PHY) 

specifications for implementing wireless local area network (WLAN) computer 

communication in the 2.4, 3.6, 5, and 60 GHz frequency bands (LAN). They are 

created and maintained by the IEEE LAN/MAN Standards Committee (IEEE 802). 

Wi-Fi allows wireless deployment of local area network (LANs) and areas where 

the connective cables cannot be placed. There are various hindrances to its 

accessibility such as the material used in building, whereby thick metals and bricks 

may block the accessibility of the signals (Ismail et al. 2008). 

 

There are many factors, which determine the maximum range the Wi-Fi signal can 

achieve such as the transmitter antenna type, interference caused by the 

environment, the transmitter output power and the receiver antenna type. The output 

power of any transmitter that uses the radio frequency signals is measured in dBm. 

The transmitted signal in 802.11 b/g standard reaches 100 metres in an open space 

when transmitted at 30 dBm (Downey 2013). 

 

The 802.11b and 802.11g function on the 2.4 GHz uses 14 channels spaced 5 MHz 

from each other except for a 12 MHz space before the channel 14 bandwidth to 

transmit over the 14 overlapping channels with 22 MHz length (IEEE 2012). The 

2.4 GHz channels are depicted in Figure 2.1 

 

https://en.wikipedia.org/wiki/IEEE_802.11y-2008
https://en.wikipedia.org/wiki/IEEE_802.11ad
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Metropolitan_area_network
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Figure 2.1: Wi-Fi channels on the 2.4 GHz frequency band (Wifi). 

 

The 802.11ac standard can work on both 2.4 GHz and 5 GHz bands. In this version, 

the bandwidth was doubled from 20 MHz to 40 MHz per channel and supports 

multiple antennas (Christ & Wernli Sr 2013).  

 

Wi-Fi Positioning Systems have a greater upper hand as compared to other 

positioning systems. This is because of its compatibility with almost every other 

device without necessitating installation of additional software. Following its 

comparative advantage, this system has been the most widespread for indoor 

localization and navigation systems (Ismail et al. 2008). 

 

Wi-Fi hotspots have been employed in most commercial sites and buildings 

providing access network in the area.  The leap in technology has made the 

production of devices that support Wi-Fi possible. These devices include laptops, 

tablets and mobile phones. This significantly reduces the cost of infrastructure and 

setting up the network coverage; therefore, making it a preference for most 

buildings (Li, Wang & Zhang 2015).  

 

Many Indoor Positioning Systems have adopted Wi-Fi network to find objects in 

the indoor environment because of its high availability and low infrastructure cost. 
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However, due to many Wi-Fi networks security settings and restrictions in public 

places, the Wi-Fi based IPS system is not always the good option to deploy the IPS.  

 

2.2.1.2  RFID 

Radio-frequency identification (RFID) is a well-known technology that 

uses electromagnetic fields to identify and track tags. The tags contain 

electronically-stored information (Finkenzeller 2010).  RFID systems consist of 

two elements: the transponder which is located in the object to be identified and the 

readers (Finkenzeller & Waddington 1999). The reader uses the radio-frequency 

electromagnetic field to read the data in the tag and get the identification of the 

tagged object.  

 

There are various RFID tracking applications such as hospital patient tracking, asset 

tracking, supply chain, security, and medical and healthcare assets tracking. 

Recently, RFID technologies have been widely deployed in modern logistics and 

inventory systems for efficient monitoring and identification (Han et al. 2016). This 

is because RFID technology is considered low-cost, usable, and provide a reliable 

form of automatic identification, which makes it a cost effective technology to use 

for localization in indoor environments. Furthermore, RFID has favorable 

characteristics such as contactless communication, security and a high data rate and 

non-line-of-sight readability (Elkhodr, Shahrestani & Cheung 2016). 

 

The main disadvantages of RFID technology are the data collisions, which happens 

while transmitting data between the tag and reader. When the RFID reader reads 

from more than one tag at the same time, the tag collision occurs, while the reader 
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collision occurs when two readers read the same tag at the same time (Li, Wang & 

Zhang 2015). Another disadvantage of RFID is the communication range which is 

around 1 – 2 metres. 

2.2.1.3  Inertial Navigation System 

The Inertial Navigation System (INS) is a complete navigation system that does not 

depend on any external reference to calculate the position, orientation and the 

velocity of a moving object. The INS uses computer and various sensors such as 

the accelerometers, gyroscopes and magnetometers along with different algorithm 

such as Kalman filter to calculate the object parameters (Fu & Retscher 2009). 

 

The INS system is composed of at least three gyrometer and three accelerometers 

that enable the system to drive a navigation solution. This navigation solution 

contains at least the position (normally latitude, longitude) (Christ & Wernli Sr 

2013). 

 

Estimating objects position using the INS suffers from drift due to the fact the any 

error in acceleration measurement will cause position error because acceleration is 

integrated to find the position (Berrabah & Baudoin 2011). It has been reported by 

(Diaz, Ahmed & Kaiser 2019) that the position estimation error caused by using 

medium and low cost MEMS in inertial navigation systems is due to the z-axis 

gyroscope. However, (Christ & Wernli Sr 2013) suggests that using aiding device 

such as the GPS would solve the INS system drift problem.  
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2.2.1.4  Ultra Wide Band (UWB) 

Ultra-wideband is a radio technology that is able to use a very low energy level for 

short-range, high-bandwidth communications over a large portion of the radio 

spectrum (UWB). The UWB frequency ranges between 3.1 to 10.6 GHz. 

 

The UWB technology is very suitable for indoor localization because the UWB 

signals can go through any object and nothing can block the UWB signal. UWB 

utilizes the time difference of arrival (TDOA) of the RF signals to obtain the 

distance between the reference point and the target (Song, Jiang & Huang 2011). 

 

Ultra-wide-band localization can achieve high accuracy of up to 20 centimeters in 

the indoor environment. Although the accuracy of UWB is high, it is a very 

expensive technology and it requires at least three receivers to receive signals from 

each tag. In addition, the readers must be synchronized correctly to achieve high 

position accuracy. The other drawback of using UWB for IPS system is the 

complexity of the system installation.  

 

2.2.1.5  Bluetooth Low Energy (BLE) 

The BLE is a very popular wireless communication that connects devices over 

small distances (SIG). The Special Interest Group (SIG) regulates and manages the 

Bluetooth technology. The Bluetooth channels starts at a frequency of 2402 MHz 

and ends at frequency 2480 MHz, which makes 79 channels during the data 

transmission phase. 

  



Chapter 2: Literature Review 

18 

 

The Bluetooth output power determines the maximum distance that Bluetooth 

device can connect with another Bluetooth device, based on this, three classes are 

used to classify the Bluetooth devices (Poole 2005) as shown in Table 2.1 

 

Table 2.1: Bluetooth classes and their corresponding ranges 

Class Maximum Output Power (dBm) Range 

One 20  up to 100 m 

Two 4  up to 10 m 

Three 0  10 cm 

 

Bluetooth version 4.0 also, called smart Bluetooth or Bluetooth Low Energy (BLE) 

version was developed in 2010 and released in 2011 and it comes with a low energy 

feature to collect data from the sensors of low rate devices, which allows Bluetooth 

module to reduce power consumption with the connected devices. 

 

BLE enjoys a physical layer bit-rate of 1 Mbit/s and transmission power between -

20 dBm to +10 dBm (ensuring low power consumption). The number of 

transmission channels has been reduced from 79 to 40 2 MHz wide channels (Figure 

2.2), which are classified into two types (Instruments 2016): 

 

 Advertising physical channel: The last three channels (37, 38, 39) used 

for discovering devices, and these initiate the connection between devices 

and broadcast data. The BLE advertising allows devices to broadcast 

information defining their intentions. 
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 Data  physical  channel: The remaining channels are dedicated for 

communication  between  connected devices 

 

 

Figure 2.2: Adopted from (Instruments 2016) 

 

The BLE devices can operate in four different roles (Instruments 2016) as following: 

 

 Peripheral: An advertiser is connectable and operates as a slave in a 

connection such as the heart rate monitor. 

 Central: It scans for advertisers, initiate the connections and operates as a 

master in one or more connection such as the smartphones. 

 Broadcaster: A non-connectable advertiser that broadcasts the data such 

as the temperature sensor. 

 Observer: It scans for advertisement but cannot initiate connections such 

as remote display. It’ function is to receive data and present it. 

 

2.2.2 IPS: Mechanism and Algorithms  

There are many techniques used to estimate the distance between the mobile device 

and Beacon in the indoor environment; in addition, many algorithms are proposed 
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in the literature to estimate the positioning and reduce the distance error. In this 

section, the main indoor positioning techniques and algorithms are explained. 

 

2.2.2.1 Indoor Positioning System Mechanism 

2.2.2.1.1 TIME OF ARRIVAL (TOA) 

Time of Arrival (ToA) also referred to as the Time of Flight (ToF) is one of the 

simplest ranging technique used in outdoor and indoor positioning systems and it 

means the travel time of radio signal from transmitter to the receiver (ToA).  

 

Three parameters are required to calculate the distance using this technique as per 

Equation (2.1) (Shi & Ming 2016): 

 The exact time the signal transmitted at the transmitter. 

 The exact time the signal arrives at the receiver. 

 The signal speed.  

𝑑 =  𝑐 ∗  (𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙  −  𝑡𝑠𝑒𝑛𝑡 )  (2.1) 

 

2.2.2.1.2 TIME DIFFERENCE OF ARRIVAL (TDOA) 

In this technique, the time the signal was sent is not important, so it is based on just 

the time the signal was received at two reference points and the signal speed, and 

then by finding the difference between the arrival time of the signal at both 

reference points, the distance can be calculated using Equation 2.2 (Roberts 2004): 

∆𝑑 =  𝑐 ∗  (∆𝑡) (2.2) 
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Where: 

   d: distance 

   c: signal speed 

t: the arrival time of the signal 

 

 2.2.2.1.3 ANGEL OF ARRIVAL (AOA) 

The Angle of Arrival technique is defined as the angle between the propagation 

direction and its reference direction. The reference direction is known as 

orientation, which is the fixed direction against which the AOAs are measured 

(Rong & Sichitiu 2006) . The angle of arrival approach requires an antenna array at 

the receivers. Multiple receivers estimate the AoA of a signal RRR. 

 

 

Figure 2.3: Adopted from (Oreilly) 

 

 2.2.2.1.4 RECIEVED SIGNAL STRENGTH INDICATOR (RSSI) 

The RSSI, which stands for the Received Signal Strength Indicator, represents the 

measured power in the received signal. The RSSI values is measured in dBm, where 

dBm is the decibel milliwat. It is represented in a negative form, when the RSSI 

values is higher, then the signal is stronger and vice-versa. Based on this, the signal 

with -70 RSSI values is weaker than the signal with -10 RSSI values (RSSI). 
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2.2.2.2 Indoor Positioning System Algorithms 

2.2.2.2.1 TRIANGULATION:  

 Triangulation is the process of estimating the objects location using the geometric 

properties of triangles (Triangulation). It has two techniques to estimate the 

position, the lateration and angulation. 

 

In lateration technique, the TOA or TDOA mechanism are used to measure and 

estimate the distance between two nodes. However, this technique requires extra 

hardware for time synchronization. The angulation technique uses the AOS 

mechanism to estimate or measure the distance between two nodes and it does not 

require any time synchronization, which lower the deployment cost. 

2.2.2.2.2 FINGERPRINT  

Fingerprinting uses the RSSI values of a group of devices to create a signature 

(Fingerprint) of a specific location (Fingerprint). This is done by storing these 

values, along with the addresses of their corresponding devices in a database. Once 

several Fingerprints of different locations are created, continuous scans are 

performed and a runtime Fingerprint is generated every time. The last generated 

fingerprint is then compared to each one of the saved Fingerprints in order to obtain 

the closest match, which represents the location of the user. 

2.2.2.2.3 PROXIMITY  

The proximity approach is one of the easiest and simplest approaches in order to 

achieve meter level accuracy in an indoor environment. It just check the presence 
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of an object within the specific area by measuring the strongest received RSSI value 

and then decides whether it’s close or far. 

 

The accuracy of the proximity method depends on the number of deployed Beacons 

in the designated area. This method suits applications that are proximity based in 

the navigation system. 

 

The proximity approach does not provide the exact location of the object in the area; 

it just provides information such as near or far. 

2.3 Related Work 

Indoor positioning technologies in literature include Radio-frequency identification 

(RFID), WiFi, Bluetooth, ZigBee, inertial navigation, geomagnetic, and computing 

vision, etc. The RFID technology uses radio waves to identify and track objects 

automatically (WiKi - RFID). RFID systems consist of two elements: the 

transponder and the readers (Finkenzeller & Waddington 1999). Wi-Fi positioning 

uses devices of radio wireless local area networking based on the IEEE 802.11 

(Chen 2012). Using the existing Wi-Fi network for indoor positioning can minimize 

the cost of deployment. There is no need for extra software or hardware (Ismail et 

al. 2008) . The Bluetooth (Bluetooth Specifications) is a personal area network 

standard that is widely used for short distance communications. Bluetooth is easy 

to deploy, requires low power consumption and is cheap (Zhou & Pollard 2006).  

 

The positioning mechanisms include the time of arrival (ToA) method that depends 

on precise measurement of arrival time; and the time difference of the arrival 
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(TDOA) method that measures the relative time at each node, the angle of arrival 

(AOA) that measures the angle of the received signal; and the received signal 

strength indication (RSSI), which calculates the position based on the signal 

strength. 

 

iBeacon is a new technology using Bluetooth Low Energy that was developed 

by Apple in 2013 (iBeacons) . The modern smartphones are equipped with BLE 

technology which can be utilized for indoor positioning based on their RSSI values 

(Boucaron, Coadou & de Simone 2010), (Faragher & Harle 2015). The 

advertisement packet that sent by iBeacon contains information such as 

broadcasting power, advertising interval, measured power and RSSI values 

(Newman 2014).  

 

There is a very important relationship between the distance and RSSI value. This 

relationship can be modelled using the Path Loss Exponent Model as explained in 

the next section. Using the iBeacon to build an indoor positioning network is a new 

challenge to meet the indoor accuracy and reliability requirements in smart city 

applications.   

 

The comparison of major current used indoor positioning technologies are 

demonstrated  (Brena et al. 2017) in the table below: 

 

 

 

https://en.wikipedia.org/wiki/Apple_Inc.
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Table 2.2: Comparison of indoor positioning technologies (Brena et al. 2017) 

IPS Technology Accuracy Strengths Weaknesses 

Wi-Fi 1.5 m Low cost, good 

precision 

Vulnerable to access point 

changes 

Bluetooth 30 cm–metres Low cost, good 

precision 

Intrusive; needs signal 

mapping 

RFID 1–5 m Very low cost passive 

side 

Very low precision 

 

Many algorithms were proposed so as to estimate the position of the objects in the 

indoor environment using RSSI approach. These include least square method 

(Wang et al. 2013), fingerprint and the weight centroid localization (WCL). The 

least square method uses the distance of the receiver to multi Beacons to compute 

the position of the receiver. The accuracy of the fingerprint approach is very high 

but the offline phase is time consuming and expensive (Chen et al. 2013), (Deepesh 

et al. 2016). 

 

The WCL proposed by (Blumenthal et al. 2007) is a fast and simple algorithm that 

uses centroid algorithm to compute location of devices; whereby the localization is 

computed by taking the average value of known iBeacons coordinates. Research in 

(Zhao et al. 2018) proposed improvements based on the WCL algorithm; however 

the estimated error is still significantly high. 

 

The Averaged Weighted Based Centroid Localization proposed by (ARUN et al.) 

uses weights that are dependent on the average value of the estimated location of 
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the estimated mobile position and the actual mobile position. AWBCL has better 

positioning accuracy (the accuracy of finding object location or position) and 

reduced location error (the error of estimated object location or position) than the 

conventional simple WCL algorithm. 

 

2.4 Conclusion  

In summary, the Indoor Positioning System is a new technology that can provide 

the precise location of any object, even though satellite signals are partially or 

completely blocked, which is especially the case inside buildings. In this chapter, 

we have given a brief description of the current technologies and algorithms used 

in indoor positioning systems. 

 

The accuracy of locating the objects in an indoor environment along with the system 

deployment cost are the main concern in IPS systems. In this research, we have 

developed a BLE Beacon base that utilizes the built-in BLE in almost all new 

smartphones to deploy IPS systems with high positioning accuracy and it is a 

relatively cheap system. 

 

The IPS allows developing diverse applications in smart city such as guiding the 

users in a big shopping centers or airports. In addition, they can be used in museums 

as a virtual guide that provide contextual information based on the location. Another 

important application is the asset tracking. 
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3.1 Overview 

Positioning systems are used to locate any wanted object regardless of its current location, 

there are many positioning systems, however, the most common and well known 

positioning system is the Global Positioning System that can detects locations of objects 

in an outdoor environment (gps). Due to the signal problems with the GPS, the ability to 

find objects in an indoor environment is limited, and consequently the Indoor Positioning 

System is used, which is a relatively new technology that can find the exact location of 

any object where the GPS signal is lost or blocked. i.e. inside the buildings and tunnels 

(El-Rabbany 2002). Indoor positioning is one of the most important functions in smart 

city applications. 

 

Indoor positioning using Bluetooth Low Energy (BLE) Beacons is an emerging 

technology. BLE Beacons have the advantages of small size, low cost and low energy 

consumption (SIG). 

 

Positioning using Beacons is based on computing the distance between the positioning 

device and Beacons. Three distances from three Beacons will determine one’s position. 

There is no direct distance measurement from the Beacon signals. The measurement of 

the signal power using Received Signal Strength Indicator (RSSI) is used to indirectly 

compute the distance. However, the RSSI measurements and distance computing contain 

errors and many algorithms were developed in order to decrease this error.  

 

Research efforts have been made to minimize the distance error and increase the position 

accuracy. The centroid localization algorithm proposed by (Bulusu, Heidemann & Estrin 
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2000) (Bulusu, Heidemann & Estrin 2000) uses the beacons coordination to estimate the 

position of the unknown mobile position using the centroid formula, however, the 

position accuracy using this algorithm is very low. The Weighted Centroid Localization 

algorithm(WCL) (Blumenthal et al. 2007) uses the weight as a factor to estimate position. 

The Average Weighted Based Centroid Localization (AWBCL) algorithm proposed by 

(ARUN et al.) which is based on the WCL algorithm has increased the location accuracy; 

however the position error is still high. 

 

Increasing the location accuracy of the Indoor Positioning System (IPS) is an important 

research area in localization. Utilizing mobile Beacons in an IPS environment has made 

localization more accurate and cost effective. The cost of deploying IPS BLE based is 

very little when compared with other IPS technologies. For example, the main cost of 

deploying IPS BLE systems is the BLE Beacons, which costs between $30 - $50 

depending on the hardware specifications. On the other hand, the IPS UWB based system 

tag started by $250, in addition to UWB readers that costs a few hundred dollars. 

 

This research develops a Filtered RSSI and Beacon Weight Approach (FRBW) based on 

improved Received Signal Strength Indicator (RSSI) values using a Kalman filter. This 

algorithm takes both the distance and improved RSSI measurements between beacon 

nodes into consideration. Kalman filter is applied on the RSSI measurements that 

eliminate noise of the signal and then this is applied to the FRBW positioning algorithm.  

 

The developed algorithm was applied using eight Beacons. The results show that this 

FRBW approach has better positioning accuracy and minimum location error; and can be 

applied in IoT applications in a smart city. 
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3.2 Indoor Positioning Using Kalman Filter and Beacon Weight 

Positioning 

 

The developed Indoor Positioning System algorithm is developed as the following two 

major phases: reducing measurement errors in RSSI using the Kalman filter; and 

computing the position using the Beacon Weight algorithm. The approach is designed as 

shown in Figure 3.1.  Each phase is presented in this section below.  

 

Figure 3.1: Positioning algorithm using Kalman filter and integrated Beacon weight 

 

3.2.1 Filtering RSSI Measurements using the Kalman filter 

The received RSSI measurements have high levels of noise. Therefore, to get better and 

precise information, the raw RSSI measurements need filtering. In the literature, 

researchers applied the Kalman filter to estimate RSSI errors in wireless LAN based 

positioning (Apte & Powar 2006). In the following sections, the Kalman filter is 
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explained, followed by the discussion of measured RSSI values before and after applying 

the Kalman filter. 

3.2.1.1 Measuring Distance using Estimote Beacons 

The current iBeacons available in the market such as the Estimote iBeacons suffer from 

high distance error in the indoor environment localization; therefore, many algorithms 

have been developed to increase the localization accuracy and to decrease the localization 

error, however, the localization accuracy is still low and the error is too high. 

 

 In this thesis, we have developed a novel indoor positioning algorithm that has 

significantly decreased the distance error and increased the indoor positioning accuracy, 

as we will explain in Chapter 4. 

 

To validate the measured distance using the Estimote iBeacons, eight BLE Beacons were 

deployed, and the mobile positions were chosen in three different places as shown in 

Figure 3.8, where (di) represents the distance between the Beacon (Bi) and mobile 

position (Poi), i = 1,2,…, 8: 

 

Figure 3.2: Mobile and Beacons positions 
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Based on mobile position 15, the measured distance between the mobile device and the 

Estimote Beacons is illustrated in Figure 3.3 using the Estimote model. 

 

 

Figure 3.3: Estimated Distance using Estimote model 

 

The average measured distance between Mobile at position 15 and the Beacons 5, 6 and 

7 along with error is shown in Table 3.1: 

Table 3.1: Beacons 5, 6, 7: Distances – Estimote Model 

 True Distance (m) Average Measured Distance (m) Distance Error (m) 

Beacon 5 6 7.2 1.2 

Beacon 6 0 3.2 3.2 

Beacon 7 4.6 6.9 2.3 
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The average measured distance error between the mobile and Beacons using the default 

Estimote model is very high. Using the Path-Loss model has significantly reduced the 

distance error, as we will explain in the next section. 

 

3.2.1.2 Measuring Distance using Path-Loss Model 

The wireless signals, which are an electromagnetic radio frequency, suffers an attenuation 

when transmitted due to many factors such as the distance and nature of the medium. 

When the transmitted signal experiences objects, it gets reflected, refracted, diffracted, 

and scattered.  

 

The receiver can receive direct attenuated signal in an environment surrounded by 

buildings and trees which is also called line of sight (LOS) (Brena et al. 2017) or indirect 

attenuated signal due to other physical effects like reflection, refraction, diffraction and 

scattering, which is called non line of sight (NLOS).   The free space propagation model 

is the simplest path loss model in which there is a direct-path signal between the 

transmitter   and   the   receiver   with   no   atmosphere attenuation or multipath 

components, based on the fact that the strength of a radiation field decreases by 1/d1. The 

Friis free space equation is used to measure the amount of power received relative to the 

power transmitted. Friis equation is expressed in the following formula: 

𝑃𝑟  =  𝑃𝑡  
𝐺𝑡𝐺𝑟𝜆2

(4𝜋𝑅)2
   (3.1) 

Where: 

   Pr: received power in Watts 

Pt: transmitted power  

Gt: transmitter antenna gain 

   Gr: receiver antenna gain 



Chapter 3: Development of Indoor Positioning Algorithm using Filtered RSSI and   

Beacon Weight approach in iBeacon Network (FRBW) 

34 

   R: distance between the antennas in meters 

    λ: wavelength of the transmitted and received signal in meters 

 

The log-distance propagation model is an extension to the Friis space propagation model. 

It incorporates a path-loss exponent that is used to predict the relative received power in 

a wide range of environments. The path loss is the reduction in power density of an 

electromagnetic waves as it propagates through space (Log-distance) and it can be 

expressed as the ratio of power of transmitted signal to the power of the same signal 

received by the receiver on a given path. It is a function of the propagation distance.  

 

The log-distance path loss model assumes the path loss takes place exponentially with 

distance. The path loss in dB is given by Equation (3.2): 

𝑃𝐿 ̅̅ ̅̅ (𝑑) = 𝑃𝐿̅̅̅̅  (𝑑0) + 10𝑛 𝑙𝑜𝑔 (
𝑑

𝑑0
)   (3.2) 

Where: 

   n: path loss exponent value. 

   d: distance (metres). 

   d0: reference distance (metres). 

 

    

Table 3.2 lists some typical values for the path loss exponent. However, the path-loss 

exponent value varies according to the environment. In a free space environment, n is 

equal to 2. In practice, the value of n is calculated using empirical data. 

Table 3.2: Path loss exponent for different environments. 

Environment Path Loss Exponent n 

Free Space 2 

Urban Area Cellular Radio 2.7 – 3.5 

Shadowed Urban Cellular Radio 3 - 5 
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Line-of-Sight in Building 1.6 - 1.8 

Obstruction in Building 4 – 6 

Obstruction in Factories 2 - 3 

 

 

The Log-Distance path-loss model can describe the relation between RSSI and distance 

(Oguejiofor et al. 2013) as following: 

𝑅𝑆𝑆𝐼 = −10 𝑛𝑙𝑜𝑔10(
𝑑

𝑑0
) +  𝐴0  (3.3) 

Where: 

   d: distance in metres 

   n: path-loss exponent 

   d0: reference distance 

   A0: referenced RSSI value at d0 

 

Let’s assume: 

A0 = 1 

d0 = 1 

n = 2 (for indoor location). 

 

 

Based on the above assumption, Formula 3.3 can be rewritten as: 

𝑑 =  10
(
(𝑇𝑥𝑃𝑜𝑤𝑒𝑟 − 𝑅𝑆𝑆𝐼)

10𝑛)⁄
  (3.4) 

 

Where: 

TxPower: Strength of the transmitted signal. 

 

Based on mobile position 15, the measured distance between the mobile device and the 

Estimote Beacons using the Path-Loss model is illustrated in Figure 3.4. 
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Figure 3.4: Estimated Distance at Position 13 using Path-Loss model 

 

The average measured distance between Mobile at position 13 and the Beacons 5, 6 and 

7 along with error is shown in Table 3.3: 

Table 3.3: Average measured distance using Path-Loss model 

 True Distance (m) Average Measured Distance (m) Distance Error (m) 

Beacon 5 6 5 1 

Beacon 6 0 1.5 1.5 

Beacon 7 4.6 3.8 0.7 

 

 

The average measured distance error between the mobile and Beacons using the Path-

Loss model has achieved better results compared to the Estimote model. However, the 

positioning error is still high, and therefore smoothing RSSI values using the Kalman 

filter and integrating the Beacons weight will achieve an acceptable distance error as we 

will discuss in details in Chapter 4. 
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It is very important to mention here, the difference between the RSSI and TxPower. The 

RSSI value, as explained earlier, measures the received signal strength, while the 

TxPower is a factory-calibrated, read-only constant, which indicates what is the expected 

RSSI at a distance of 1 metre to the Beacon. The IEEE 802.11 standard specifies that 

RSSI can be on a scale of 0 to up to 255 and that each chipset manufacturer can define 

their own “RSSI_Max” value. The Estimote Beacon’s RSSI ranges from -26 to -100 dbm. 

The signal strength depends on the distance and broadcasting power value (Technical). 

 

The RSSI values are heavily influenced by different environmental factors such as 

absorption, interference or diffraction, and thus RSSI values tend to fluctuate and produce 

high levels of noise. To achieve a better estimation of the objects location in an indoor 

environment, the Kalman filter is applied on the raw RSSI values before computing the 

distance. 

 

The measured raw RSSI values have a lot of noise. Figure 3.5 illustrates the RSSI values 

of Beacon 1 at position 1.  

 

 

Figure 3.5: RSSI – Beacon 1 - Position 1 
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3.2.1.3 Kalman Filter 

The Kalman filter which was proposed and developed by R.E. Kalman in 1960 to solve 

discrete data linear filtering problem (Kalman 1960). Since then, the Kalman filter has 

been the subject of extensive research and application, particularly in the area of 

autonomous or assisted navigation.  

 

The Kalman filter is an algorithm that uses a series of measurements observed over time, 

containing statistical noise and other inaccuracies, and produces estimates of unknown 

variables that tend to be more accurate than those based on a single measurement alone,  

and this is done by estimating a joint probability distribution over the variables for each 

timeframe (Maybeck & Siouris 1980), (Sorenson 1970). 

 

The regular Kalman filter assumes linear models. The step from the current state to the 

next state, and the translation from state to measurement should be linear transformations.  

The Kalman filter has numerous applications in technology. A common application is for 

guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and 

dynamically positioned ships (Sorenson 1970). 

 

The basic Kalman filter assumes linear models, which means the step from the current 

state to the next state and the transition from each state should be linear. Extensions and 

generalizations to the Kalman filter have also been developed, such as the extended 

Kalman filter (EKF) and the unscented Kalman filter (UKF) which work on nonlinear 

systems. The underlying model is similar to a hidden Markov model except that the state 
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space of the latent variables is continuous and all latent and observed variables have 

Gaussian distributions. The state-space model of the system is expressed as follows: 

 

𝑥𝑡 = 𝐴𝑥𝑡_1 + 𝐵𝑢𝑡 + 𝑤𝑡   (3.5)    

 

The current state 𝑥𝑡 is defined as a combination of the previous state 𝑥𝑡_1, a control 

input u and noise 𝑤, and A, B are matrices. 

The observation model of Kalman filter is expressed as: 

𝑧𝑡 = 𝐶𝑋𝑡 + 𝑣𝑡   (3.6) 

Where: 

C: is the transformation matrix. 

𝑣 : is the measurement noise. 

 

The Kalman filter has two steps: the prediction and update steps. In the prediction phase, 

the next state of the system is predicted based on the previous measurements, while in the 

update step, the current state of the system is estimated given the measurement at that 

time step (Welch & Bishop 1995). There are five equations in both steps which are as 

follows: 

 

 Time Update (prediction): 

 

1. Project the state ahead : 

   𝑥𝑡
− = 𝑥𝑡−1  +  𝐵𝑢𝑡  (3.7) 

 

2. Project the error covariance ahead: 

�̅�𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄  (3.8) 
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 Measurement Update (correction): 

 

1. Computer the Kalman Gain: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1  (3.9)  

 

2. Updated the estimate via zk 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−)  (3.10)  

3. Update the error covariance: 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−  (3.11) 

Where: 

x̂t
− is the predicted state at time step t. 

  x̂t−1 is the state estimate at time step t − 1  

  Q is the covariance of the process noise. 

  R is the covariance of measurement noise. 

  Pt
− is the predicted error variance. 

  Pt  is the updated error variance. 

  Kt is the Kalman gain at time step t. 

 

3.2.1.4 Smoothed RSSI Values using Kalman Filter 

The measured RSSI values are heavily influenced by the environment and have high 

levels of noise; therefore, applying the Kalman filter to all measured values eliminates 

the noise, which will affect positively the ability to find the objects position at later stages. 

 

To begin with RSSI values filtration, first, we assumed that the matrices A, B and H are 

numerical constants and set them to 1, this is also, assuming that the mobile and position 

are static at a certain time frame; hence, the RSSI value is a constant in the measured time 

frame and other parameters are considered as a process noise. Based on these 

assumptions, the model can be constructed by ignoring u and set A to an identity matrix. 
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The Kalman filter for RSSI estimation is designed as follows: 

1. State of interest x is designed to be RSSI at time step t: 
 

                        𝑥𝑡 = 𝑅𝑆𝑆𝐼(𝑡)             (3.12)                         

 

2. The process model of the Kalman filter is designed as: 
 

           

                 𝑥𝑡̇ = 𝐴𝑥𝑡 + ℰ                   (3.13)                 

  where A=1 in our design, ℰ is the process noise. 

 

3. The measurement model is designed using the relationship between the state 

of interest and the received RSSI measurement: 

 

                        𝑍𝑡 = 𝐻𝑥𝑡 + ℾ       (3.14)                               

Where 𝑍𝑡 is the RSSI measurement at time step t. H=1 in our design. ℾ is the measurement 

noise.  

We use a time step from t-1 to t for the Kalman filter update, and update the Kalman filter 

process for state of interest, Kalman gain, and variance from time step t-1 to t. 

 

In our approach, we have deployed eight Beacons in different positions. The following 

figure shows the RSSI values of Beacon 5 before and after applying the Kalman filter: 
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Figure 3.6: RSSI Comparison before and after Kalman filter for Beacon 5 at position 1 

 

3.2.2 Computing Positioning using Beacon Weight 

The Centroid Localization algorithm proposed by (Bulusu, Heidemann & Estrin 2000) 

uses the centroid to find the mobile position, while the Weighted Centroid Localization 

(WCL) algorithm proposed by (Blumenthal et al. 2007) uses the weight of each Beacon 

to estimate the mobile position. In this thesis, the concepts of CL and WCL algorithm 

have been expanded to be used with the smoothed RSSI values instead of using the raw 

RSSI values. In the following sections, we shall explore the centroid localization and then 

the Beacon’s weight to estimate the mobile position using eight deployed Beacons. 

 

3.2.2.1 Centroid Location 

The Centroid Localization Algorithm (Afyouni, Ray & Claramunt 2016) is a simple free-

range localization algorithm that calculates the unknown objects coordinates based on 

other two known objects coordinates intersection points, which is mathematically 

represented by Equation 3.15:  
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(𝑋𝑐 ,𝑌𝑐) =  (
𝑥1+𝑥2….+𝑥𝑛

𝑛
,

𝑦1+𝑦2….+𝑦𝑛

𝑛
)  (3.15) 

 

In our approach, there are six intersection points that represents the centroid X and Y 

coordinates as following: 

 

Intersection points between Beacon a and Beacon b:  

The centroid points between Beacon a (Xa, Ya) and Beacon b (Xb, Yb) is (XCab,YCab) and 

is shown in Figure 3.7 and represented in Equation 3.16: 

 

Figure 3.7: Centroid points between Beacon a and Beacon b 

 

 

 (XCab, YCab) = (
𝑋𝑎+𝑋𝑏

2
,

𝑌𝑎+𝑌𝑏

2
 ) (3.16) 

 

Intersection points between Beacon a and Beacon c:  

The centroid points between Beacon a (Xa, Ya) and Beacon c (Xc, Yc) is (XCac,YCac) and 

is shown in Figure 3.8 and represented in Equation 3.17: 
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Figure 3.8: Centroid points between Beacon a and Beacon c 

 

(XCac, YCac) = (
𝑋𝑎+𝑋𝑐

2
,

𝑌𝑎+𝑌𝑐

2
 )  (3.17) 

 

Intersection points between Beacon b and Beacon c:  

The centroid points between Beacon b (Xb, Yb) and Beacon c (Xc, Yc) is (XCbc,YCbc) and 

is shown in Figure 3.9 and represented in Equation 3.18: 

 

 

Figure 3.9: Centroid points between Beacon b and Beacon c 

 

 (XCbc, YCbc) = (
Xb+Xc

2
,

Yb+Yc

2
 )    (3.18) 

 

Although the Centroid Localization Algorithm is easy to use, the accuracy is poor, so 

various forms of modification have been proposed to increase the localization. In this 
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study, we have combined the Weight Centroid Localization Algorithm along with 

Centroid Algorithm to obtain better results as we will explain later. 

 

3.2.2.2 Position Estimation using Beacon Weight  

The Weight Centroid Localization (WCL) algorithm is an enhancement approach to the 

CL algorithm that considers the impact of the proximity between the Beacons and mobile 

device and assign weights for each Beacon to improve the objects position.  

 

The smaller distance between the Beacon and smartphone will have a larger impact and 

therefore more weight, while the larger distance between the Beacon and smartphone will 

have less impact and therefore less weight.  The impact of the Beacon and the smartphone 

is in inverse proportional to the distance. The value of Beacon weight is calculated based 

on Equation 3.19. 

wij  =  
1

(dij)g                  (3.19)                              

 

Where: 

  dij refers to the distance between Beacon and smartphone. 

 g refers to the adjustable degree, and it depends on the environments. 

 

The WCL algorithm uses Equation (3.20) and Equation (3.21) to estimate the unknown 

mobile position based on the known Beacon position. 

𝑥𝑒𝑠𝑡  =  
∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  (3.20) 
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𝑦𝑒𝑠𝑡  =  
∑ 𝑤𝑖 ∗ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

  (3.21) 

 

Although the WCL algorithm has significantly increase the localization accuracy, but the 

positioning error is still high. (ARUN et al.) have proposed enhancement to the original 

WCL algorithm which is called the Average Weighted Centroid Localization (AWCL) 

algorithm and it calculates the weight of each Beacon using the RSSI values only as per 

Equation 3.22: 

𝑤𝑖𝑗  =  (𝑃𝑟𝑒𝑓  ∗  10(
𝑅𝑆𝑆𝐼

20
))^𝑔 (3.22) 

 

 The AWCL algorithm uses the intersection between Beacons to find the average weight 

of each Beacon. 

 

3.2.2.3 Position Estimation using Filtered RSSI and Beacon Weight (FRBW). 

The smartphone position in an indoor environment is calculated using our developed 

Filtered RSSI and Beacon Weight (FRBW) algorithm that integrates the smoothed RSSI 

using the Kalman filter, CL, WCL and AWCL algorithms (Figure 3.10).  
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Figure 3.10: FRBW algorithm 

 

The workflow of FRBW Algorithm is as following: 

 

Step 1: 

The first step in the FRWB algorithm is to smooth and eliminate the noise from the 

measured RSSI values by applying Kalman on all received RSSI values from all Beacons.  

 

Step 2: 

The distance between the smartphone and all deployed Beacons (in our scenario, we have 

deployed eight Beacons) is calculated using smoothed RSSI estimation by using the 

following Equation.  

di  =  10
(
(TxPower − RSSI_KF)

10n)⁄
       (i=1,2..8)          (3.23) 
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Step 3:  

The results of step 2 will be eight different distances between the smartphone and the 

deployed Beacons. The true distance is calculated using equation (3.24).  

dtrue_i =  √(x i − x o)2 + (y i − y o)2     (i=1,2..n)        (3.24) 

 

Step 4:  

The error in distance is calculated using Equation 12. 

Δdi = di − dtrue_i    (i = 1,2, … n)                   (3.25) 

Δdi is the distance error between the smartphone and the Beacons. 

 

As we have deployed eight beacons, there will be eight distance error; the FRWB 

algorithm considers only three beacons with the least distance error for the next step. The 

other Beacons data are discarded at this stage. 

 

Step 5:  

The following calculations are carried out at each intersection: 

 The weight of each Beacon using Equations 3.19. 

 The average of Beacon’s weight. 

 The centroid coordinates between each Beacon.  
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Intersection between Beacon a and Beacon b 

 

Figure 3.11: Calculations at Beacon a and Beacon b intersections 

 

The weight of Beacon a and Beacon b is calculated using Equation 3.19 and named  𝑊𝑎 

and 𝑊𝑏   respectively. The average weight of Beacon a and Beacon b is then calculated 

using Equation 3.26. 

w1avg = (𝑊𝑎 + 𝑊𝑏) / 2      (3.26) 

 

The centroid points of Beacon a and Beacon b are calculated as explained earlier in 

Section 3.2.2.1 using Equations 3.27.  

 

Two centroid points between Beacon a (Xa, Ya) and Beacon b (Xb, Yb) is (XCab,YCab)  

 (XCab, YCab) = (
𝑋𝑎+𝑋𝑏

2
,

𝑌𝑎+𝑌𝑏

2
 )  (3.27) 
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Intersection between Beacon a and Beacon c 

 

Figure 3.12: Calculations at Beacon a and Beacon c intersections 

 

The weight of Beacon a and Beacon c is calculated using Equation 3.19 and named  𝑊𝑎 

and 𝑊𝑐   respectively. The average weight of Beacon a and Beacon b is then calculated 

using Equation 3.28. 

w2avg = (𝑊𝑎 + 𝑊𝑐)/2     (3.28) 

 

Where: 

 𝑊𝑎: Beacons’ a weight 

             𝑊𝑐: Beacons’ b weight 

 

The centroid points of Beacon a and Beacon c are calculated as explained earlier in 

Section 3.2.2.1 using Equations 3.29.  
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Two centroid points between Beacon a (Xa, Ya) and Beacon c (Xc, Yc) is (XCac,YCac)  

(XCac, YCac) = (
𝑋𝑎+𝑋𝑐

2
,

𝑌𝑎+𝑌𝑐

2
 )  (3.29) 

 

Intersection between Beacon b and Beacon c 

 

Figure 3.13: Calculations at Beacon b and Beacon c intersections 

 

The weight of Beacon b and Beacon c is calculated using Equation 3.19, named  𝑊𝑏 and 

𝑊𝑐   respectively. The average weight of Beacon b and Beacon c is then calculated using 

Equation 3.30. 

w3avg = (𝑊𝑏 + 𝑊𝑐)/2      (3.30) 

 

Where: 

 𝑊𝑏: Beacons’ b weight 

             𝑊𝑐: Beacons’ b weight 
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The centroid points of Beacon b and Beacon c are calculated as explained earlier in 

Section 3.2.2.1 using Equations 3.31.  

 

Two points intersection between Beacon b (Xb, Yb) and Beacon c (Xc, Yc) is (XCbc,YCbc)  

 (XCbc, YCbc) = (
𝑋𝑏+𝑋𝑐

2
,

𝑌𝑏+𝑌𝑐

2
 )   (3.31) 

 

Step 6:  

The estimated mobile coordinates are then calculated as per Equation 3.32 and Equation 

3.33 as following: 

𝑋𝑒𝑠𝑡  =  
𝑤1𝑎𝑣𝑔  ∗ 𝑋𝐶𝑎𝑐 + 𝑤2𝑎𝑣𝑔 ∗ 𝑋𝐶𝑎𝑏  + 𝑤3𝑎𝑣𝑔  ∗ 𝑋𝐶𝑏𝑐  

∑ 𝑤𝑖𝑎𝑣𝑔
𝑛
𝑖=1

  Where n=1, 2, 3   (3.32) 

 

𝑌𝑒𝑠𝑡  =  
𝑤1𝑎𝑣𝑔  ∗ 𝑌𝐶𝑎𝑐 + 𝑤2𝑎𝑣𝑔 ∗ 𝑌𝐶𝑎𝑏  + 𝑤3𝑎𝑣𝑔  ∗ 𝑌𝐶𝑏𝑐  

∑ 𝑤𝑖𝑎𝑣𝑔
𝑛
𝑖=1

   Where n=1, 2, 3 (3.33) 

 

Step 7:  

The estimated position error is calculated using equation 3.34: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑟𝑟𝑜𝑟 =  √(𝑥𝑒𝑠𝑡 −  𝑥0)2 +  (𝑦𝑒𝑠𝑡 − 𝑦0)2  (3.34) 

 

3.3 Conclusion 

 

In this chapter, the Filtered RSSI Beacon Weight (FRBW) algorithm was introduced and 

explained in details. The first stage of this algorithm is smoothing the measured RSSI 
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values received by each Beacon using the Kalman filter. The centroid points and the 

weight of each Beacon are then calculated to estimate the smartphone position. 

 

The FRBW algorithm improves the positioning precision and accuracy in indoor 

environments using a different technique. 

 

The results of our developed FRBW algorithm has achieved a higher accuracy level when 

compared with the current algorithms, as we will show in the next chapter.  
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Chapter 4: FRBW Algorithm Validation using Beacon Experiments 

55 

4.1 Introduction 

The Filtered RSSI and Beacon Weight (FRBW) algorithm consists of two main 

stages; in stage one, the Kalman filter is applied on all measured RSSI values to 

eliminate the signal noise and to get a smooth and filtered signal, and the second 

stage computes the weight of each Beacon and estimates the object position in 

indoor environment. 

 

To validate our indoor positioning approach, we deployed eight Beacons sensors 

from Estimote and smart phones in an indoor environment. The mobile was tested 

on eight different locations and then calculated and then estimated mobile positions 

were compared with the actual mobile positions.  

 

4.2 Experiment Design  

4.2.1 Equipment and Tools 

This section gives details of all equipment, devices and software used in 

implementing the Indoor Positioning System algorithm throughout the design and 

validation phases. 

 

4.2.1.1 Estimote iBeacons 

The Estimote Beacons is built on BLE and iBeacon technologies and it has been 

used in this research to estimate the position of the objects in an indoor 

environment.  
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Beacons are BLE devices that broadcast small data packets at regular time intervals 

and commonly operate on coin-cell batteries. The BLE devices operates in sleep 

mode most of their time, however, at a predefined intervals, they wake up and 

transmit the data packet. The Beacon manufacturer provides a software tool that 

enable the developers to either increase or decrease the broadcast interval that best 

suits the application needs. This method allows the BLE device to operate for 

months and years.  

 

According to the Bluetooth Core Specification (SIG), the data broadcasted by a 

BLE beacon is contained into packets and are formatted as shown in Figure 4.1 

 

 

Figure 4.1: BLE Packet Structure (SIG) 

 

The  iBeacon  protocol,  developed  by  Apple  in  2013,  was  the  first  Beacon 

technology made available. Its uses BLE technology to transmit data to other BLE 

enabled devices. It started as a way of turning iOS devices into advertisers that can 

transmit data to other listening iOS devices. This system was also used to estimate 

the distance between broadcasting and receiving devices (iBeacons). 
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The iBeacon packet consists of three-part identifiers of the Beacon (Technical) as 

shown in Table 4.1:  

Table 4.1: iBeacon Data Frame 

ID Data Size Data Type 

UUID 16 bytes String 

Major 2 bytes Unsigned short number 

Minor 2 bytes Unsigned short number 

 

The iBeacon data field is shown in Figure 4.2 as following: 

 

Figure 4.2: iBeacon Data Field (Herrera Vargas 2016) 

 

These values provided by the advertisement can be modified according to the 

applications settings and requirements. The hierarchical configuration of these 

values provides identifying information about the Beacon. While the UUID can be 

distinguished to a corporation, major and minor values can be used to distinguish 

between regions and sub-regions of a corporation. 

 

Eddystone is an open Beacon format developed by Google in 2015, the latest 

version of Eddystone, which was announced in April 2016 added a 

cryptographically secure method to configure the Beacon broadcasted message 
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called Eddystone - EID. Eddystone protocol is discoverable by Android and iOS 

devices. The Eddystone data field is limited to 31 bytes as shown in figure 4.3: 

 

 

Figure 4.3: Eddystone Data Field (Herrera Vargas 2016) 

 

The Eddystone protocol (GitHub) describes several different frame types that can 

be used individually or in combinations to create Beacons for a variety of 

applications. 

 Eddystone - UID: A unique and static ID with a 10-byte Namespace and a 

6-byte Instance component. 

 Eddystone – URL: A compressed URL that is usable by the client once 

parsed and compressed. 

 Eddystone – TLM: Contains Beacon status data such as battery voltage and 

uptime. 

 Eddystone – EID: Encrypted UID and accessible by authorized apps only. 

The BLE Beacons such as Beacon from Estimote is a dedicated hardware Beacons 

that are compatible with iBeacon and Eddystone protocols. 

 

Estimote Beacons are small wireless sensors that can be easily placed anywhere in 

a physical location, The Estimote Beacons consists of a 32-bit ARM Cortex M0 



Chapter 4: FRBW Algorithm Validation using Beacon Experiments 

59 

CPU with 256 KB flash memory, accelerometer, temperature sensor and a 2.4 GHz 

Bluetooth Low Energy (BLE) module. The BLE module broadcasts information 

within a range of 70 metres (SDK). Though the signals are often distracted under 

real world conditions, a range of about 40-50 metres can be expected. As stated in 

(Technical), the battery is able to last more than three years on default settings on 

a single CR2477 battery. Figure 4.4 shows an Estimote Beacon and its board. 

 

Figure 4.4: Estimote Beacons – Hardware structure (Hardware 2014) 

 

The Estimote Beacons technical details (Technical) are shown in Table 4.2: 

Table 4.2: Estimote BLE Beacons Technical Specifications 

Parameter  

Processor 1. ARM® Cortex®-M4 32-bit processor with FPU 

2. 64 MHz Core speed 

3. 512 kB Flash memory 

4. 64 kB RAM memory 

Radio:  

2.4 GHz transceiver 

1. Bluetooth® 4.2 LE standard 

2. Range: up to 200 meters (650 feet) 

3. Output Power: -20 to +4 dBm in 4 dB  

4. Sensitivity: -96 dBm 

5. Frequency range: 2400 MHz to 2483.5 MHz 

6.No. of channels: 40 

Sensors 1. Motion sensor (3-axis) 

2. Temperature sensor 

3. Ambient Light sensor 

4. Magnetometer (3-axis) 

5. Pressure sensor 
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Using the Estimote SDK (SDK), mobile applications are enabled to receive and 

understand BLE Estimote signals in order to calculate the proximity of nearby 

locations and objects. The Beacons specifics provide information about their type, 

ownership and approximate locations, temperature or motions. 

 

Based on Estimote documentation, there are four fixed proximity zones for 

estimating the distance to a Beacon (SDK) as following: 

 Immediate:  

The Immediate proximity state represents a high level of confidence that 

the device is physically very close to the Beacon. This is for example the 

case when holding the smart- phone directly onto a Beacon. 

 Near: 

The Near proximity state indicates a proximity of about 1-3 metres, if there 

are no obstructions between the device and the beacon that might cause 

distractions. 

 Far: 

The Far proximity state indicates a detected Beacon without much 

confidence in the accuracy that is too low to determine whether it is Near 

or Immediate. The Far proximity state relies on the accuracy property to 

determine the potential proximity to a Beacon. 

 Unknown: 

The Unknown proximity state indicates a state where Beacons can not be 

determined. This might happen if the ranging has just begun or if the 

accuracy level is insufficient for measurements to determine a state that is 

either Far, Near or Immediate. 
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4.2.1.2 Smartphone  

Since the introduction of the first consumer mobile phone in 1980s by Motorola, 

there have been continuous developments in the technology used to make mobile 

phones. Nowadays, mobiles are very powerful and equipped with many sensors 

such as Accelerometers, Gyroscope and other sensors, which can ease our daily 

life tasks. 

 

Thanks to these developments, nowadays, mobile phones are built using very 

advanced technologies. For example, they are equipped with fast CPUs, large 

RAMs and different wireless technologies. As a result, mobile phones have 

become capable of performing complex tasks. In the past, these tasks would require 

conventional computers. 

 

Mobile phones are commonly equipped with Radio Frequency (RFID) 

technologies, specifically Bluetooth (IEEE 802.15.1) and Wi-Fi (IEEE 802.11). 

Many researchers have implemented IPSs using smartphones due to their high 

computational capabilities and their availability with almost everyone. 

 

In this research, we have utilized the HUAWEI Y7 mobile to implement our IPS 

system using our developed FRWB algorithm.  

 

The HUAWEI smartphone running Android is  used to connect data in positioning 

experiment  such as timing and RSSI values.  
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Figure 4.5: HUAWEI Mobile 

 

4.2.1.3 Beacon Scanner Application 

An Android Beacon Scanner application (Figure 4.6) that can capture the Radio 

Signal Strength Indicator (RSSI) has been used in this study.  

 

The main benefit of this application is that it can capture the RSSI values, the RSSI 

values are then smoothed using the Kalman filter and using our developed FRBW 

algorithm, we have achieved better position accuracy as will show in section 4.4. 
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Figure 4.6: Beacon Scanner Application 

 

The application capture data such as RSSI, UUID, Major, Minor and Estimated 

distance (Figure 4.7). The distance measured using the Estimote model is not 

accurate; hence, there is a need to achieve a better and more accurate positon 

estimation.  

 

 

Figure 4.7: Data collected using the Beacon Scanner Application 
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4.2.1.4 Estimote Beacon Application and Cloud 

Estimote provides developers with two important tools. First, the Cloud service 

enables the developers and researchers to manage Estimote Beacons remotely 

allowing them to access settings of Beacons and locations saved with Indoor 

Location SDK (Figure 4.8). 

 

 
 

Figure 4.8: Estimote Cloud Tool 

 
Second, the Estimote scanner application (Figure 4.9) allows the developer to 

develop applications for indoor environments   
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Figure 4.9: Estimote Scanner Application 

 

4.2.1.5 Matlab Software 

MATLAB is a multi-paradigm numerical computing environment and proprietary 

programming language developed by Mathworks. The Matlab software is used in 

this research to import the Beacon Scanner software data. The data has been 

manipulated and the Kalman applied to reduce the RSSI noise, as we will explain 

in details in the next section. 

 

4.2.2 Experiment Environment  

Eight Beacons from Estimote with known coordination named B1(x1,y1), 

B2(x2,y2), … Bi(xi,yi) (i = 1,2, … 8) were deployed in the experiment area. The 

mobile device was positioned in 19 different locations to validate our approach. 

The Beacons RSSI values were collected using a smart phone application. The 

collected RSSI values were then smoothed using the Kalman filter. The weight of 
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each Beacon then is calculated and applied to the mobile position estimation. 

(Figure 4.10) shows the deployed Beacons position and the 19 different mobile 

locations. 

 

Figure 4.10: Experiment Setup 

 

The Estimote Beacons coordinates are shown in Table 4.3: 

Table 4.3: Estimote Beacons Coordinates 

Beacon Name X – Axis (m) Y – Axis (m) Z – Axis (m) 

Beacon 1 13 8 210 

Beacon 2 13 5 210 

Beacon 3 13 1 210 

Beacon 4 10 1 210 

Beacon 5 7 1 210 

Beacon 6 1 1 210 

Beacon 7 1 5.6 210 

Beacon 8 1 8 210 

 

 The mobile position coordinates are shown in Table 4.4 
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Table 4.4: Mobile Positions Coordinates 

Position Name X – Axis (m) Y – Axis (m) 

Position 1 13 8.5 

Position 2 13 6 

Position 3 13 4.5 

Position 4 13 2 

Position 5 13 1 

Position 6 12 1 

Position 7 11 1 

Position 8 10 1 

Position 9 9 1 

Position 10 8 1 

Position 11 6 1 

Position 12 5 1 

Position 13 4 1 

Position 14 2 1 

Position 15 1 1 

Position 16 1 2 

Position 17 1 3 

Position 18 1 4 

Position 19 1 5 

The following table shows the experiments condition and algorithm parameters. 

Table 4.5: Experiment Parameters 

Parameters Value 

Number of iBeacons 8 

iBeacons Z coordinate (Beacon height) 210 cm 

Receiver Android mobile 

Filtering approach Kalman Filter 

Path loss exponent (n) 2 



Chapter 4: FRBW Algorithm Validation using Beacon Experiments 

68 

 

Each iBeacon has its unique name, UUID, Major and Minor attributes that helps 

in identifying each one and collects the required data such as RSSI values. Table 

4.6 shows the deployed Estimote Beacons attributes. 

 

Table 4.6: Estimote Beacons Attributes 

UUID 

B9407F30-F5F8-466E-AFF9-25556B57FE6D 

Beacon name  Beacon Colour  Major ID Minor ID 

Beacon 1 candy 31594 49037 

Beacon 2 beetroot 16034 60821 

Beacon 3 beetroot 51155 5453 

Beacon 4 lemon 28368 39382 

Beacon 5 beetroot 50056 41317 

Beacon 6 candy 60840 2620 

Beacon 7 lemon 55270 25826 

Beacon 8 candy 11354 12662 

 

 

4.3 Reduced RSSI Measurement Error using Kalman Filter 

The raw RSSI measurements contain a lot of noise that affect on the estimated 

mobile position. We applied the Kaman filter on all received RSSI values to 

eliminate the noise and smooth the signal.  

 

In our experiment, there are 19 different mobile locations during the validation 

phase. The beacons coordinates are fixed during the whole experiments and are 

provided in Table 4.3, while the mobile locations are given in Table 4.4.  
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In this section, we will show the results of applying the Kalman filter on the 

collected RSSI values from different mobile positions named position 4, 6 and 13 

and are follows: 

 

4.3.1 Processing Result at Mobile Position 4:  

In our experiment, the mobile position 4 coordinates are (13, 2). We have collected 

the RSSI values of Beacons. Table 4.7 shows a sample of the collected RSSI values 

of two Beacons named Beacon 3 and Beacon 4 from this location. 

Table 4.7: Beacons RSSI - Position 4 

time Beacon 3 – Position 4 Beacon 4 – Position 4 

 RSSI – Raw RSSI – Kalman RSSI – Raw RSSI - Kalman 

1 -96 -96 -90 -90 

2 -98 -96.6 -85 -89 

3 -91 -95.6 -93 -90.2 

4 -93 -95.9 -96 -90 

5 -87 -96 -94 -89.5 

 

The RSSI values before and after applying Kalman filter on Beacon 3 at mobile 

position 4 is represented in Figure 4.11: 



Chapter 4: FRBW Algorithm Validation using Beacon Experiments 

70 

 

Figure 4.11: Kalman filter results - Beacon 3 - Position 4 

 

Applying the Kalman filter on the received raw RSSI values (-86 dB  -101 dB) of 

Beacon 3 at mobile position 4 (13, 2) has significantly improved the RSSI values 

(-93 dB - -96 dB). The RSSI error was decreased from 15 dB to 3 dB, and the 

average RSSI after Kalman filter is -92.6. 

 

The RSSI values before and after applying the Kalman filter on Beacon 4 at mobile 

position 4 is represented in Figure 4.12: 
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Figure 4.12: Kalman filter results - Beacon 4 - Position 4 

 

Applying the Kalman filter on the received raw RSSI values (-82 dB -99 dB) of 

Beacon 4 at mobile position 4 (13, 2) has significantly improved the RSSI values 

(-88 dB - -91 dB). The RSSI error was decreased from 17 dB to 3 dB, and the 

average RSSI after the Kalman filter is -89.6. 

 

4.3.2 Processing Result at Mobile Position 6:  

In our experiment, the mobile position 6 coordinates are (12, 1). We have collected 

the RSSI values of all Beacons. Table 4.8 shows a sample of the collected RSSI 

values of two Beacons named Beacon 2 and Beacon 4 from this location. 
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Table 4.8: Beacons RSSI - Position 6 

time Beacon 2 – Position 6 Beacon 4 – Position 6 

 RSSI – Raw RSSI – Kalman RSSI – Raw RSSI - Kalman 

1 -101 -101 -101 -100 

2 -94 -100.9 -99 -100.9 

3 -93 -100.9 -94 -100.9 

4 -99 -100.8 -102 -100 

5 -94 -100.9 -96 -100.7 

 

The RSSI values before and after applying the Kalman filter on Beacon 4 at mobile 

position 6 is represented in Figure 4.13: 

 

Figure 4.13: Kalman filter results - Beacon 4 - Position 6 

 

Applying the Kalman filter on the received raw RSSI values (-87 dB -103 dB) of 

Beacon 2 at mobile position 6 (12, 1) has significantly improved the RSSI values 
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(-101 dB - -94 dB). The RSSI error was decreased from 16 dB to 7 dB, and the 

average RSSI after Kalman filter is -96.1. 

 

The RSSI values before and after applying the Kalman filter on Beacon 2 at mobile 

position 6 is represented in Figure 4.14: 

 

Figure 4.14: Kalman filter results - Beacon 2 - Position 6 

 

Applying the Kalman filter on the received raw RSSI values (-93 dB -104 dB) of 

Beacon 2 at mobile position 6 (12, 1) has significantly improved the RSSI values 

(-97 dB - -101 dB). The RSSI error was decreased from 11 dB to 4 dB, and the 

average RSSI after the Kalman filter is -95.8. 
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4.3.3 Processing Result at Mobile Position 13:  

In our experiment, the mobile position 13 coordinates are (4, 1). We have collected 

the RSSI values of all Beacons. Table 4.9 shows a sample of the collected RSSI 

values of two Beacons named Beacon 6 and Beacon 7 from this location. 

Table 4.9: Beacons RSSI - Position 13 

time Beacon 6 – Position 13 Beacon 7 – Position 13 

 RSSI – Raw RSSI – Kalman RSSI – Raw RSSI - Kalman 

1 -98 -98 -98 -98 

2 -101 -98.1 -100 -98.2 

3 -101 -98.1 -92 -97 

4 -95 -97.8 -98 -97.9 

5 -99 -97.9 -101 -97.5 

 

The RSSI values before and after applying the Kalman filter on Beacon 6 at mobile 

Position 13 is represented in Figure 4.15, and applying the Kalman filter has 

significantly improve the RSSI signal and removes noise. The average RSSI value 

is now -97.85 dB. 
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Figure 4.15: Kalman filter results - Beacon 6 - Position 13 

 

The RSSI values before and after applying the Kalman filter on Beacon 7 at mobile 

Position 13 is represented in Figure 4.16, and applying the Kalman filter has 

significantly improve the RSSI signal and removes noise. The average RSSI value 

is now -91.6 dB. 

 

Figure 4.16: Kalman Filter Results - Beacon 7 - Position 13 
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4.4   Experiments Results and Discussion for Distance Processing  

4.4.1 Measured Distance:  

The measured distance between the mobile and the Beacons is calculated using 

different approaches. In this section, we will show the results of measured distance 

using the Path-Loss model and our developed FBRW algorithm. The results show 

a reasonable improvement in measuring distance after applying the Kalman filter 

on the RSSI values as shown in the next sections. 

4.4.1.1 Measured Distance using Raw RSSI and Path-Loss Model:  

Each Beacon transmits a set of data packets that include the UUID, Major ID, 

Minor ID, TxPower and its RSSI value. As we have explained earlier in Chapter 

3, using the Path-Loss Exponent model, the distance can be calculated using the 

raw RSSI values. Equation (3.4) is used in this section to calculate the distance 

between the mobile device and Estimote Beacons. 

 

In our experiment, we have deployed the mobile in 19 different positions, while 

the Estimote Beacons were fixed at specific coordinates as per Section 4.2.2. In 

the next sections, we have chosen three random mobile positions called Position 

4, Position 6 and Position 13, and at each position the measured distance of each 

Beacon is shown, in addition, the average measured distance and the error are 

displayed in a table.  
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4.4.1.1.1 Position 4:  

 

In our experiment, the mobile position 4 coordinates are (13, 2). The measured 

distance of each Beacon is shown in Figure 4.17. 

 

 

Figure 4.17: Measured Distance – Path-Loss Model – Position 4 

 

The average measured distance using each Beacon data with the error is shown in 

Table 4.10 

Table 4.10: Distances using Path-Loss Model (Beacons 3,4,5,7) 

Beacon Distance – True (m) Distance - Measured (m) Distance – Error (m) 

Beacon 3 1 2.1 1.7 

Beacon 4 3.1 0.5 2.6 
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Beacon 5 6 3.6 2.4 

Beacon 7 12.5 4.8 7.6 

 

 
 
 

4.4.1.1.2 Position 6:  

 

In our experiment, the mobile position 6 coordinates are (12, 1). The measured 

distance of each Beacon is shown in Figure 4.18 

 

Figure 4.18: Measured Distance – Path-Loss Model – Position 6 

 

The average measured distance using each Beacon data with the error is shown in 

Table 4.11 

 



Chapter 4: FRBW Algorithm Validation using Beacon Experiments 

79 

Table 4.11: Distances using Path-Loss Model (Beacons 2,3,4,7) 

Beacon Distance – True (m) Distance - Measured (m) Distance – Error (m) 

Beacon 2 4.1 0.3 3.7 

Beacon 3 1 2.8 1.8 

Beacon 4 2 1.0 0.9 

Beacon 7 11 4.1 6 

4.4.1.1.3 Position 13:  

 

In our experiment, the mobile position 13 coordinates are (4, 1). The measured 

distance of each Beacon is shown in Figure 4.19. 

 

Figure 4.19: Measured Distance – Path-Loss Model – Position 13 

 

The average measured distance using each Beacon data with the error is shown in 

Table 4.12 
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Table 4.12: Distances using Path-Loss Model (Beacons 5,6,7,8) 

Beacon Distance – True (m) Distance - Measured (m) Distance – Error (m) 

Beacon 5 3 4.9 1.9 

Beacon 6 3 1.2 1.7 

Beacon 7 5.4 1.7 3.69 

Beacon 8 8 2.9 4.69 

4.4.1.2 Measured Distance using Smoothed RSSI:  

The raw RSSI measurements suffer from high noise, due to this fact and in order 

to minimize the positioning error and increase the accuracy of the measured 

distance, the Kalman filter is applied on all received RSSI measurements. In 

addition, the weight of each Beacon was calculated based on this measured 

distance at each mobile position. 

 

In our experiment, we have deployed the mobile in 19 different positions, while 

the Estimote Beacons were fixed at specific coordinates as per Section 4.2.2. In 

the next sections, we have chosen three random mobile positions called Position 

4, Position 6 and Position 13, and at each position the measured distance of each 

Beacon is shown, in addition, the average measured distance and the error are 

displayed in a table.  

 

4.4.1.2.1 Weight and Distance Computing for Position 4:  

 

In our experiment, the mobile position 4 coordinates are (13, 2). The measured 

distance of each Beacon is shown in Figure 4.20. 
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Figure 4.20: Measured Distance – Smoothed RSSI – Position 4 

 

The average measured distance using each Beacon data with the error is shown in 

Table 4.13 

Table 4.13: Distances using Smooth RSSI values – Position 4 

Beacon 

Average Smoothed 

RSSI (dB) 

Distance – True 

(m) 

Distance – Average 

Measured (m) 

Distance – Error 

(m) 

Beacon 3 -92.64 1 2.15 1.1 

Beacon 4 -89.61 3.1623 0.47 2.6 

Beacon 5 -98.9 6.0828 4.448 1.63 

Beacon 7 -98.5 12.528 4.2413 8.28 
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The weight of three Beacons with the least distance error was calculated using 

Equation (3.19). Figure 4.21 shows Beacon 3, Beacon 4, and Beacon 5 weight at 

this mobile position. The weight of Beacon 7 was not calculated because its 

distance error is high. 

 

Figure 4.21: Beacons Weight – Position 4 

 

The average Weight of Beacon 3, Beacon 4 and Beacon 5 is given in Table 4.14. 

 

Table 4.14: Average Beacons Weight - Position 4 

Beacon Average Weight 

Beacon  3 0.47 

Beacon  4 2.0 

Beacon  5 0.2 
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4.4.1.2.2 Weight and Distance Computing for Position 6:  

 

In our experiment, the mobile position 6 coordinates are (12, 1). The measured 

distance of each Beacon is shown in Figure 4.22. 

 

Figure 4.22: Measured Distance – Smoothed RSSI – Position 6 

 

The average measured distance using each Beacon data with the error is shown in 

Table 4.15 

Table 4.15: Distances using Smooth RSSI values – Position 6 

Beacon 

Average Smoothed 

RSSI (dB) 

Distance – True 

(m) 

Distance – Average 

Measured (m) 

Distance – Error 

(m) 

Beacon 2 -95.8 4.1 2.0 2.1 

Beacon 3 -94.3 1 2.6 1.6 
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Beacon 4 -96.1 2 1.04 0.9 

Beacon 7 -95.6 11.9 3.07 8.85 

 
 

The weight of three Beacons with the least distance error was calculated using 

Equation (3.19). Figure 4.23 shows the Beacon 2, Beacon 3 and Beacon 4 weight 

at this mobile position. The weight of Beacon 7 was not calculated because its 

distance error is high. 

 

 

Figure 4.23: Beacons Weight – Position 6 

 

The average Weight of each Beacon 2, Beacon 3 and Beacon 4 is given in Table 

4.16. 
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Table 4.16: Average Beacons Weight - Position 6 

Beacon Average Weight 

Beacon  2 0.7 

Beacon  3 0.38 

Beacon  4 1.0 

 

4.4.1.2.3 Weight and Distance Computing for Position 13:  

 

In our experiment, the mobile position 13 coordinates are (4, 1). The measured 

distance for each Beacon is shown in Figure 4.24. 

 

Figure 4.24: Measured Distance – Smoothed RSSI – Position 13 
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The average measured distance using each Beacon data with the error is shown in 

Table 4.17 

 

Table 4.17: Distances using Smooth RSSI values – Position 13 

Beacon 

Average Smoothed 

RSSI (dB) 

Distance – True 

(m) 

Distance – Average 

Measured (m) 

Distance – Error 

(m) 

Beacon 5 -98.5 3 4 1 

Beacon 6 -97.8 3 1.2 1.8 

Beacon 7 -91.6 5.4 2 3.4 

Beacon 8 -99.0 8 4.4 3.6 

 

 
 

The weight of three Beacons with the least distance error was calculated using 

Equation (3.19). Figure 4.25 shows the Beacon 5, Beacon 6, and Beacon 7 weight 

at this mobile position. The weight of Beacon 7 was not calculated because its 

distance error is high. 

 

 

Figure 4.25: Beacons Weight – Position 13 
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The average Weight of each Beacon 5, Beacon 6 and Beacon 7 is given in Table 

4.18. 

Table 4.18: Average Beacons Weight - Position 13 

Beacon Average Weight 

Beacon  5 0.2 

Beacon  6 0.8 

Beacon  7 0.5 

 

4.4.2 Positioning Estimation  

4.4.2.1 Positioning using FRBW Algorithm:  

The developed Filtered RSSI Beacon Weight (FRBW) algorithm has achieved 

improved accuracy in an indoor environment. The FRBW uses the smoothed RSSI 

values along with the Beacons weight to estimate the mobile coordinates as 

explained in Chapter 3. 

 

Figure 4.26 shows the estimated mobile positions using our developed FRBW 

algorithm and how close it is to the actual mobile position. 
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Figure 4.26: Mobile Positions Estimation using FRBW algorithm 

 

Table 4.19 shows the actual mobile positions coordinates, and the estimated mobile 

coordinates at each position along with the positioning error. 

Table 4.19: Estimated Mobile Coordinates and Error at each Position 

Mobile Position 

X-Axis 

(m) 

X-Axis (m) - 

Estimated 

Y-Axis (m) Y-Axis (m) – 

Estimated 

Position Error 

(m) 

Position 1 13 13 8.5 6.5 2.000 

Position 2 13 13 6 4.714 1.286 

Position 3 13 11.9019 4.5 4.6146 1.104 

Position 4 13 12.0696 2 2.9851 1.355 

Position 5 13 12.8266 1 1.5827 0.608 

Position 6 12 12.1124 1 1.5198 0.5318 

Position 7 11 9.7177 1 1 1.282 

Position 8 10 10.3608 1 1 0.361 

Position 9 9 9.6392 1 1 0.639 
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Position 10 8 9.3272 1 1 1.327 

Position 11 6 4 1 1 2.000 

Position 12 5 6.155 1 1 1.155 

Position 13 4 3.3607 1 2.343 1.487 

Position 14 2 3.3623 1 2.2686 1.862 

Position 15 1 3.1403 1 1.6591 2.239 

Position 16 1 1 2 3.3 1.300 

Position 17 1 2.6861 3 2.8473 1.693 

Position 18 1 2.6261 4 2.7965 2.023 

Position 19 1 1 5 4.354 0.646 

 

4.4.2.2 Comparison between FRBW and Estimote Distance Signals:  

Figure 4.27 shows the estimated mobile positions using our developed FRBW 

algorithm and the Estimote algorithm. 

 

Figure 4.27: Mobile Positions Estimation using FRBW and Estimote algorithms 
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Table 4.20 shows the distance error using the Estimote and FRBW algorithms. 

Table 4.20: Comparison in Position Error – Estimote and FRBW 

Mobile 

Position 

Estimote Algorithm   FRBW Algorithm 

Position Error (m)  Percentage (%) Position Error (m ) Percentage (%) 

Position 1 7.177  15% 2.000 13% 

Position 2 2.3084 8% 1.286 4% 

Position 3 1.184 8% 1.104 8% 

Position 4 2.8224 10% 1.355 9% 

Position 5 4.5358 12% 0.608 7% 

Position 6 1.3986 7% 0.5318 6% 

Position 7 2.0178 9% 1.282 4% 

Position 8 3.3875 10% 0.361 7% 

Position 9 1.5132 7% 0.639 6% 

Position 10 2.0835 8% 1.327 4% 

Position 11 5.4645 13% 2.000 7% 

Position 12 1.7251 7% 1.155 4% 

Position 13 2.548 8% 1.487 4% 

Position 14 3.7454 9% 1.862 8% 

Position 15 3.0888 9% 2.239   12% 

Position 16 6.9685 14% 1.300 6% 

Position 17 4.1226 11% 1.693 4% 

Position 18 3.7034 10% 2.023 13% 

Position 19 2.7879 9% 0.646 5% 
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4.4.2.3 Comparison between FRBW and Path-Loss with raw RSSI Model:  

Figure 4.28 shows the estimated mobile positions using our developed FRBW 

algorithm and the Path-Loss Model using the raw RSSI values. 

 

 

Figure 4.28: Mobile Positions Estimation using FRBW algorithm and Path-Loss Model 

 

Table 4.21 shows the distance error using the Path-Loss Model and FRBW 

algorithm. 

Table 4.21: Comparison in Position Error – raw RSSI and FRBW 

Mobile 

Position 

Raw RSSI Algorithm   FRBW Algorithm 

Position Error (m)   Percentage (%) Position Error (m)  Percentage (%) 

Position 1 8.6069 25% 2.000 13% 

Position 2 2.9135 17% 1.286 4% 

Position 3 1.7417 9% 1.104 8% 

Position 4 3.1053 18% 1.355 9% 

Position 5 5.0498 21% 0.608 7% 

Position 6 1.4586 9% 0.5318 6% 
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Position 7 2.7263 10% 1.282 4% 

Position 8 3.4898 18% 0.361 7% 

Position 9 0.9006 7% 0.639 6% 

Position 10 2.2353 9% 1.327 4% 

Position 11 5.68 22% 2.000 7% 

Position 12 1.6969 9% 1.155 4% 

Position 13 2.432 8% 1.487 4% 

Position 14 4.2835 16% 1.862 8% 

Position 15 3.2069 15% 2.239   12% 

Position 16 7.1908 23% 1.300 6% 

Position 17 1.9628 6% 1.693 4% 

Position 18 4.1141 15% 2.023 13% 

Position 19 2.8411 9% 0.646 5% 

 

 

4.5   Conclusion 

In this chapter, the results of applying our developed Filtered RSSI and Beacon 

Weight (FRBW) algorithm on 19 mobile positions were shown and compared with 

the Estimote algorithm and raw RSSI values. 

 

The results show a significant increase in locating mobile positions in the indoor 

environment when compared to other algorithms. In addition, the distance error 

was decreased and at some mobile positions reached 30 cm error only using 

relative and existing technology. 
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5.  

Conclusion and Future Work 
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5.1  Conclusion 

The positioning systems are used to locate any wanted objects regardless of its 

current location, and there are many positioning systems, however, the most 

common and known positioning system is the Global Positioning System that can 

detects locations of objects in an outdoor environment. Due to the signal problems 

with the GPS, the ability to find objects in indoor environment is limited, hence the 

Indoor Positioning System. which is a relatively new technology, can find the exact 

location of any object where the GPS signal is lost or blocked i.e. inside the 

buildings and tunnels . Indoor positioning is one of the most important functions in 

smart city applications. 

 

Indoor positioning using Bluetooth Low Energy (BLE) Beacons is an emerging 

technology. BLE Beacons have the advantages of small size, low cost and low 

energy consumption. 

 

The accuracy of locating the objects in an indoor environment along with the system 

deployment cost are the main concern in IPS systems. Increasing the location 

accuracy of the Indoor Positioning System (IPS) is an important research area in 

localization. Utilizing mobile Beacons in an IPS environment has made localization 

more accurate and cost-effective.  

 

In this research, we have developed a BLE Beacon based IPS system that utilizes 

the built-in BLE in almost all new smartphones in order to deploy the IPS system 

with high positioning accuracy and a cost-effective solution. 
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The received RSSI measurements have high levels of noise. Therefore, to obtain 

better and precise information, the raw RSSI measurements need filtering. In this 

research, we have applied a filter on RSSI values in order to eliminate the signal 

noise and get a smoother signal.  

 

The developed Filtered RSSI and Beacon Weight Approach (FRBW) algorithm 

applies the Kalman filter on all received RSSI signals, then the centroid points 

between two Beacons along with their weight are calculated as so to estimate the 

smartphone position in the indoor environment. 

 

The first stage in the developed Filtered RSSI and Beacon Weight (FRBW) 

algorithm is smoothing the measured RSSI signals received by each Beacon using 

the Kalman filter. The centroid points and the weight of each Beacon are then 

calculated to estimate the smartphone position. 

 

The developed algorithm was applied using eight Beacons. The results show that 

the FRBW approach has better positioning accuracy and minimum location error, 

and can be applied in IoT applications in smart city. 

 

The results of applying our developed FRBW algorithm show a significant increase 

in locating mobile positions in an indoor environment when compared to other 

algorithms. In addition, the distance error was decreased and at some mobile 

positions reached 30 cm error only using relative and existing technology. 
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5.2   Future Work 

There are some problems that remain open to future research. Although the 

developed algorithm has achieved high positioning accuracy in an indoor 

environment, the algorithm needs more tuning to achieve high positioning accuracy 

at all positions all the time. 

 

One of the parameters, which we think might affect the accuracy level, is the 

measured degree (g) in the Beacons weight using equation 3.4.  

 

The developed indoor positioning system algorithm will be deployed for both 

Android and IOS applications and will integrate the GPS in its next version to serve 

as both an indoor and outdoor navigation and positioning system. 

 

Another important issue to consider when implementing the indoor positioning 

system is the number of deployed Beacons as; the density of deployed Beacons 

increases the positioning accuracy. Increasing the number of Beacons will increase 

the cost of the system; however, prices are currently dropping rapidly, so it will not 

be an issue in the near future. 
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