An Efficient Electronic Nose System for Odour Analysis and Assessment

Wentian Zhang

Faculty of Engineering and Information Technology
University of Technology Sydney

This dissertation is submitted for the degree of $Doctor\ of\ Philosophy$

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: **2019.12.19**

Acknowledgements

I would like to express my great appreciation to my supervisor A/Prof. Steven W. Su for his continual support, guidance, help and encouragement during my PhD study. A/Prof. Steven has brought me into the topics of electronic nose, and provided an excellent research platform and brilliant insights into my research works. It is my honor to have a supervisor who always inspires me to achieve higher targets. His conscientious and meticulous attitude on research has had a significant influence on my work.

I would also like to demonstrate my sincere gratitude to my co-supervisors Prof. Shari L. Forbes (Université du Québec à Trois-Rivières, Canada), and Dr. Maiken Ueland (University of Technology Sydney, Australia), for their solid support regarding the odour analysis in terms of the chemical compound analysis field, which enables me to have a deeper understanding of my research works.

Many thanks to the other co-supervisors of mine: Dr. Rosalind X. Wang (Commonwealth Scientific and Industrial Research Organisation, Australia), and Prof. Hung Nguyen (Swinburne University of Technology), for their precious comments and suggestions on my research.

Special thanks to my colleagues in A/Prof. Steven W. Su' research group, in particular, Dr. Tao Zhang, Dr. Lin Ye, Taoping Liu, Kairui Guo, Wenhui Chen, Yao Huang and Hairong Yu, for their selfless help. Working together with them will be a good memory. I am also grateful to my friends, Dr. Ye Shi, Dr. Zhichao Sheng, Haimin Zhang, Zhiyuan Shi, Dr. Daniel Roxby, Cheng Yong, Wei Tian, for their warm help.

I also wish to express my appreciation to the staff members in the school of biomedical engineering, University of Technology Sydney.

My deepest gratitude goes to my family for their immeasurable support and encouragement.

This project was supported by the Wildlife Crime Tech Challenge (WCTC) and funded by the United States Agency for International Development (USAID).

Thanks to DATA61 for providing PhD top-up scholarship.

Thanks to UTS FEIT Data Arena Research Exhibit Grant for supporting this research.

Abstract

An electronic nose (e-nose) is capable of identifying chemical compounds through sensing and analysing odour molecules. As a type of machine olfaction, e-nose plays a significant role in the odour analysis area and has received considerable attention from researchers all over the world. The e-nose system comprises a set of active gas sensors that detect the odour and transduce the chemical vapours into electrical signals. The odour "fingerprint" captured by the gas sensors can then be analysed and identified with pattern analysis methods, e.g., Principal Component Analysis (PCA), Cluster Analysis (CA), Support Vector Machine (SVM), and Artificial Neural Networks (ANNs). E-nose has been extensively applied in the areas of agriculture, medical diagnosis, environmental monitoring and protection, food safety, the military, cosmetics and pharmaceuticals.

In order to meet the growing demand from the global odour analysis market, a novel e-nose system, which has a high-efficiency and low-cost odour analysis, was designed and built in this dissertation through collaboration with different research areas. Firstly, inspired by the knowledge of the human olfactory system, an automated fault monitoring and alarming electronic nose (e-nose) system, named "NOS.E", for odour detection and identification has been designed. This design is based on reliable hardware and software designs as well as an airflow intake system design which is the most significant part of NOS.E. Just as the air inhalations are important and necessary activities for the olfactory perception by controlling the airflow in the human olfactory system, the airflow control design is a crucial and essential element to guarantee the precise odour analysis procedure in the e-nose system. Different parts of the NOS.E are built together under a particular control logic, which was designed to improve the e-nose test efficiency by saving operation time. In addition, the fault detection and

alarming design generates a high-reliability performance for the e-nose by constantly monitoring the working status of the air intake system, to make sure all the actuators are working under the guidance of the proposed control logic.

A novel e-nose data pre-processing method, based on a recently developed non-parametric kernel-based modelling (KBM) approach is presented. The experimental results show that when extracting the derivative-related features from signals collected by the NOS.E, the proposed non-parametric KBM odour data pre-processing method achieves more reliable and stable pre-processing results compared with other pre-processing methods such as wavelet package correlation filter (WPCF), mean filter (MF), polynomial curve fitting (PCF) and locally weighted regression (LWR). Moreover, this dissertation also proposes a novel e-nose pattern analysis algorithm, which is a hybrid of genetic algorithm (GA) and supervised fuzzy support vector machine (FSVM). GA was used to select the informative features and the optimal model parameters of FSVM. FSVM was used as a fitness evaluation criterion and the sequent odour classifier, which would reduce the outlier effects to provide a robust classifier which has a steady classification accuracy.

In addition, several studies were conducted with the NOS.E system. The first was to evaluate the performance of NOS.E based on data collected from different types of alcohols. A comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) was used to provide the standard comparison for the evaluation in this study. The second study focused on the effectiveness of KBM data pre-processing method and FSVM odour pattern analysis method. The third study explores the potential to implement NOS.E in the biomedical engineering area, while the fourth study applied NOS.E in the wildlife protection area by rapidly identifying legal from illegal wildlife parts. As a proof-of-concept test, water buffalo horn and rhinoceros horn samples were selected as the test targets in this study.

The study results indicated the reliability and effectiveness of the developed NOS.E system. The NOS.E system is able to be applied to various applications based on the user-friendly and rapid odour analysis tests. Moreover, the NOS.E has the potential to be a universal odour analysis platform implemented in different applications.

Publications

The contents of this thesis are based on the following papers that have been published, accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers:

- 1. Zhang, Wentian, Taoping Liu, Lin Ye, Maiken Ueland, Shari L. Forbes, and Steven W. Su. "A novel data pre-processing method for odour detection and identification system." Sensors and Actuators A: Physical, 287, 113-120, 2019.
- 2. Zhang, Wentian, Taoping Liu, Maiken Ueland, Shari L. Forbes, Rosalind X. Wang, and Steven W. Su. "Design of an efficient electronic nose system for odour analysis and assessment." Measurement (Under review).
- 3. Zhang, Wentian, Taoping Liu, Steven W. Su, Shari L. Forbes, and Maiken Ueland. "Development of the Electronic Nose for Wildlife Products Identification." Forensic science international (Submitted for publication).
- Liu, Taoping, Wentian Zhang, Peter McLean, Maiken Ueland, Shari L. Forbes, and Steven W. Su. "Electronic Nose-Based Odor Classification using Genetic Algorithms and Fuzzy Support Vector Machines." International Journal of Fuzzy Systems 20, no. 4: 1309-1320, 2018.
- 5. Liu, Taoping, Wentian Zhang, Lin Ye, Maiken Ueland, Shari L. Forbes, and Steven W. Su. "A novel multi-odour identification by electronic nose using non-parametric modelling-based feature extraction and time-series classification." Sensors and Actuators B: Chemical, 298, 126690,2019.

Conference Papers:

1. Zhang, Wentian, Taoping Liu, Miao Zhang, Yi Zhang, Huiqi Li, Maiken Ueland, Shari L. Forbes, X. Rosalind Wang, and Steven W. Su. "NOS. E: A New Fast Response Electronic Nose Health Monitoring System." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4977-4980. IEEE, 2018.

Table of contents

List of figures

List of tables

1	Intr	oducti	ion	1	
	1.1	Proble	em Statement	1	
	1.2	Motiv	ations and Aims	2	
	1.3	Research Topics in the Proposed Odour Analysis System			
		1.3.1	Comprehensive electronic nose equipment design	5	
		1.3.2	Data Analysis Methods	6	
		1.3.3	Industrial need	10	
	1.4	Disser	tation Contribution	11	
	1.5	Disser	tation Outline	13	
2	Bac	kgroui	nd	19	
	2.1	Olfact	ory System in Humans and Machines	19	
		2.1.1	Human olfactory system	19	
		2.1.2	Machine olfactory system	20	
		2.1.3	The contrast between human olfactory and Machine olfactory		
			system	27	

	2.2	Data l	Pre-processing Methods for E-nose	30
		2.2.1	Kernel based modelling method	30
		2.2.2	Genetic algorithm	32
	2.3	Patter	en Analysis Techniques for E-nose	34
		2.3.1	Principal components analysis	36
		2.3.2	Support vector machine	37
		2.3.3	Fuzzy support vector machine	38
3	The	Desig	gn of NOS.E Equipment	41
	3.1	Introd	luction	41
	3.2	NOS.I	E Equipment Design	44
		3.2.1	Hardware design	44
		3.2.2	Software design	47
	3.3	Reliab	ble Automated Airflow Control Design for the NOS.E	48
		3.3.1	Automated airflow control phase	49
		3.3.2	Fault detection for airflow control	52
	3.4	Mater	ial and Methods for the NOS.E Reliability Tests	54
		3.4.1	Automated airflow control and fault detection system	54
		3.4.2	Alcohol samples	54
		3.4.3	$GC \times GC$ -TOFMS	55
		3.4.4	NOS.E	55
		3.4.5	Data processing	56
	3.5	Result	ts and Discussion	56
		3.5.1	Automated airflow control and fault detection system	56
		3.5.2	Alcohol samples analysis	58
	3.6	Concl	usions	60

4	Dev	elopm	ent of the Data pre-processing and classification methods	63
	4.1	Introd	uction	63
	4.2	Experi	imental Setup	65
		4.2.1	Data pre-processing simulation setup	65
		4.2.2	Perfume test experimental setup	66
	4.3	Metho	dology	68
	4.4	Experi	imental Results and Discussion	73
		4.4.1	Data pre-processing simulation results	73
		4.4.2	Perfume test results	74
		4.4.3	Classification results	75
	4.5	Conclu	ision	76
5	Flor	atronio	Nose based Odour Classification using Genetic Algorithm	
J				
	and	Fuzzy	Support Vector Machine	7 9
	5.1	· ·	uction	
		Introd		79
	5.1	Introd	uction	79 81
	5.1	Introd Metho	dology	79 81 81
	5.1	Introd Metho 5.2.1	uction	79 81 81 82
	5.1	Introd Metho 5.2.1 5.2.2 5.2.3	uction	79 81 81 82 84
	5.1 5.2	Introd Metho 5.2.1 5.2.2 5.2.3	uction	79 81 81 82 84
	5.1 5.2	Introd Metho 5.2.1 5.2.2 5.2.3 Materi	uction	79 81 81 82 84 89
	5.1 5.2	Introd Metho 5.2.1 5.2.2 5.2.3 Materi	uction	79 81 81 82 84 89
	5.1 5.2	Introd Metho 5.2.1 5.2.2 5.2.3 Materi 5.3.1 5.3.2 5.3.3	uction	79 81 81 82 84 89 92
	5.15.25.3	Introd Metho 5.2.1 5.2.2 5.2.3 Materi 5.3.1 5.3.2 5.3.3	uction	79 81 81 82 84 89 92

	5.5	Concl	usions	98
6	AN	New Fa	ast Response Electronic Nose Health Monitoring System	n 99
	6.1	Introd	luction	99
	6.2	Electr	onic Nose System	100
	6.3	Data	Processing	103
		6.3.1	Feature extraction	103
		6.3.2	SVM	103
	6.4	Exper	imental Setup and Results	105
		6.4.1	Experimental setup	105
		6.4.2	Cross validation	106
		6.4.3	Results	107
	6.5	Concl	usion and Future Works	108
7	Dev	elopm/	ent of the New Electronic Nose for Wildlife Products Id	en-
		ation		111
	7.1	Introd	luction	112
	7.2	Equip	ment Design	114
		7.2.1	Sensor chamber design	114
		7.2.2	Instrumentation design	115
	7.3	Mater	rial and Methods	117
		7.3.1	Rhinoceros horn and water buffalo horn samples	117
		7.3.2	NOS.E II test condition	117
		7.3.3	Data Processing for NOS.E II	118
	7.4	Result	ts and Discussion	121
		7.4.1	KBM pre-processing result	121

Table of contents

		7.4.2	PCA result	 	. 122
		7.4.3	SVM result	 	. 123
	7.5	Conclu	usion and Future Works	 	. 123
8	Con	clusio	ns and Future Work		127
	8.1	Conclu	usions	 	. 127
	8.2	Future	e Work	 	. 130
${f A}_{f l}$	ppen	dix A	NOS.E User Manual		133
$\mathbf{A}_{\mathbf{j}}$	ppen	dix B	NOS.E Sensor Array Specifications		139
$\mathbf{R}_{\mathbf{c}}$	efere	nces			141

List of figures

1.1	The block diagram of the e-nose data analysis flow	7
1.2	Features from the signal used for pattern analysis. Red line represents the time of gas-in, t_{gas-in} . The green line is the time point which has maximum 1^{st} derivative of response, t_{Dres} . The pink line is the time point which has minimum 2^{nd} derivative of response, t_{Dresn} . The blue line is the time point which has maximum 2^{nd} derivative of response, t_{Dresx} . The black line is the time point which has maximum value of response, t_{peak}	8
2.1	Structure of Olfactory System	21
2.2	The similarities between human olfactory system and e-nose system	22
2.3	The block diagram of a typical e-nose system	22
2.4	Gas Sensor Array operating principle	27
3.1	NOS.E I Equipment	44
3.2	NOS.E II Equipment	45
3.3	NOS.E Power System Diagram	45
3.4	NOS.E Schematic of Driver Circuits. R represents the resistor; C represents capacitor; $Q1$ is NPN switching transistors; $U1$ is high speed optocoupler; $Q2$ is N-Channel MOSFET	46

3.5	NOS.E Schematic of Automated Control Monitoring Circuits. R represents the resistor; C represents capacitor; $U2$ is high speed optocoupler; $U3$ is Operational Amplifier	47
3.6	Block Diagram of NOS.E Software Architecture. Dashed blue line represents the actions related with users; Solid blue line represents the signal chain; Solid green line represents the airflow chain; Solid red line represents the power chain.	48
3.7	Control and Configuration Panel	49
3.8	Diagram of NOS.E Automated AirFlow Control and Fault Detection Design. V_1, V_2, V_3, P_1 , and P_2 are the valve and pump control signals sent by controller; T_1, T_2 and T_3 are the control phase ID signals sent by controller; V'_1, V'_2, V'_3, P'_1 , and P'_2 are the working status feedback signals collected from the solenoid valves and pumps	53
3.9	GC×GC-TOFMS TIC contour plots representative of (a) Green Label Whiskey samples, (b) Grey Goose Vodka samples, and (c) Jack Daniels Tennessee Whiskey samples	58
3.10	NOS.E Responses for Three Alcohol Samples	59
3.11	GC×GC-TOFMS PCA Analysis Results	60
3.12	NOS.E PCA Analysis Results	61
4.1	Block Diagram of NOS.E System	65
4.2	Simulated Test Singals	66
4.3	Diagram of NOS.E Perfume Test Experimental Setup	67
4.4	Simulated Response Comparison for Different Data Pre-processing Methods	70
4.5	Data pre-processing Results for Perfume I	71
4.6	The confusion matrix for the classification accuracy for different data-	
	preprocessing methods	76

5.1	Basic Evolutionary Cycle of GA
5.2	Parallel Coordinate Plot of Perfumes Feature Set
5.3	Genetic Constitution of an Individual
5.4	Crossover and Mutation Operation of Proposed Method
5.5	Fitness Evaluation using 10CV
5.6	Algorithm Flow Chart
5.7	Samping Preparation
5.8	Test System Diagram
5.9	Raw Response and Filtered Curve of MQ2 Gas Sensor for Vera Wang Princess Perfume
5.10	Sensor Responses after Pre-processing
5.11	Relation Curves of Mean Accuracy with Number of Selected Features in 500 Tests
5.12	Features for Two Perfumes
	Features for Two Perfumes
5.13	Features Selected for Two Perfumes
5.136.1	Features Selected for Two Perfumes
5.136.16.2	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101
5.136.16.26.3	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101 Breath Input Port of the NOS.E. 102
5.13 6.1 6.2 6.3 6.4	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101 Breath Input Port of the NOS.E. 102 Test System Diagram of UTS NOS.E. 105
5.13 6.1 6.2 6.3 6.4 6.5	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101 Breath Input Port of the NOS.E. 102 Test System Diagram of UTS NOS.E. 105 Example responses from $NOS.E$ for the three scenarios we tested. 106 Remote Server based Electronic Nose System. 109 The similarities between the canine olfactory system and the e-nose
5.13 6.1 6.2 6.3 6.4 6.5 6.6	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101 Breath Input Port of the NOS.E. 102 Test System Diagram of UTS NOS.E. 105 Example responses from NOS.E for the three scenarios we tested. 106 Remote Server based Electronic Nose System. 109
5.13 6.1 6.2 6.3 6.4 6.5 6.6 7.1	Features Selected for Two Perfumes. 97 Basic Block Diagram of Electronic Nose. 100 UTS e-nose System "NOS.E". 101 Breath Input Port of the NOS.E. 102 Test System Diagram of UTS NOS.E. 105 Example responses from NOS.E for the three scenarios we tested. 106 Remote Server based Electronic Nose System. 109 The similarities between the canine olfactory system and the e-nose system. 113

7.4	Block Diagram of NOS.E Prototype I and NOS.E Prototype II. Solid blue line represents the signal chain; Solid green line represents the airflow chain; Solid red line represents the power chain
7.5	Rhinoceros Horn and Water Buffalo Samples
7.6	Diagram of the Rhinoceros Horn and Water Buffalo Horn Samples Testing System
7.7	KBM Data pre-processing Results for Rhinoceros Horn Sample M47156-18.122
7.8	Rhinoceros Horn Samples and Water Buffalo Horn Samples KPCA Analysis Results
7.9	Conceptual design of Portable NOS.E For the Detection of Illegal Wildlife Parts
A.1	The Communication Setup for the NOS.E
A.2	The Manual Mode Setup for the NOS.E
A.3	The Actuators Setup for the NOS.E
A.4	The Waveform Display Window Setup for the NOS.E
A.5	The Export Data Setup for the NOS.E
A.6	The Automatic Mode Setup for the NOS.E
A.7	The Automatic Mode Operation Time Parameters Setup for the NOS.E. 136
A.8	The Baseline Setup for the NOS.E
A.9	The Testing Phase for the NOS.E
A.10	The Saving Data Phase for the NOS.E
A.11	The Automatic Test Mode for the NOS.E Test Round 2

List of tables

3.1	The Automated Control Logic for NOS.E	50
3.2	The Simulation Test Results of NOS.E Fault Detection Design	57
3.3	Classification Results of three Alcohols	60
4.1	goodness-of-fit Result	72
4.2	The Odour Features' Coefficient of Variation for Perfume I and Perfume II	75
4.3	Classification Results	76
5.1	Feature Types and Descriptions Used in Perfume Classification	91
5.2	Comparison of Different Feature Reduction Methods	92
5.3	Details of Selected Features	95
5.4	Comparison of Different Algorithms for Perfume Classification Problem	97
6.1	Gas Sensors Sensitivity Characteristics	102
6.2	Classification Accuracy of three Breath Scenarios	107
7.1	The Automated Control Logic for NOS.E II	117
7.2	Classification Results	123
В.1	The Sensitivity Characteristics of Sensor Array in the NOS.E	139