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Abstract

An electronic nose (e-nose) is capable of identifying chemical compounds through
sensing and analysing odour molecules. As a type of machine olfaction, e-nose plays
a significant role in the odour analysis area and has received considerable attention
from researchers all over the world. The e-nose system comprises a set of active
gas sensors that detect the odour and transduce the chemical vapours into electrical
signals. The odour "fingerprint" captured by the gas sensors can then be analysed
and identified with pattern analysis methods, e.g., Principal Component Analysis
(PCA), Cluster Analysis (CA), Support Vector Machine (SVM), and Artificial Neural
Networks (ANNs). E-nose has been extensively applied in the areas of agriculture,
medical diagnosis, environmental monitoring and protection, food safety, the military,
cosmetics and pharmaceuticals.

In order to meet the growing demand from the global odour analysis market, a
novel e-nose system, which has a high-efficiency and low-cost odour analysis, was
designed and built in this dissertation through collaboration with different research
areas. Firstly, inspired by the knowledge of the human olfactory system, an automated
fault monitoring and alarming electronic nose (e-nose) system, named “NOS.E”, for
odour detection and identification has been designed. This design is based on reliable
hardware and software designs as well as an airflow intake system design which is the
most significant part of NOS.E. Just as the air inhalations are important and necessary
activities for the olfactory perception by controlling the airflow in the human olfactory
system, the airflow control design is a crucial and essential element to guarantee the
precise odour analysis procedure in the e-nose system. Different parts of the NOS.E
are built together under a particular control logic, which was designed to improve the
e-nose test efficiency by saving operation time. In addition, the fault detection and
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alarming design generates a high-reliability performance for the e-nose by constantly
monitoring the working status of the air intake system, to make sure all the actuators
are working under the guidance of the proposed control logic.

A novel e-nose data pre-processing method, based on a recently developed non-
parametric kernel-based modelling (KBM) approach is presented. The experimental
results show that when extracting the derivative-related features from signals collected
by the NOS.E, the proposed non-parametric KBM odour data pre-processing method
achieves more reliable and stable pre-processing results compared with other pre-
processing methods such as wavelet package correlation filter (WPCF), mean filter
(MF), polynomial curve fitting (PCF) and locally weighted regression (LWR). Moreover,
this dissertation also proposes a novel e-nose pattern analysis algorithm, which is a
hybrid of genetic algorithm (GA) and supervised fuzzy support vector machine (FSVM).
GA was used to select the informative features and the optimal model parameters
of FSVM. FSVM was used as a fitness evaluation criterion and the sequent odour
classifier, which would reduce the outlier effects to provide a robust classifier which
has a steady classification accuracy.

In addition, several studies were conducted with the NOS.E system. The first
was to evaluate the performance of NOS.E based on data collected from different
types of alcohols. A comprehensive two-dimensional gas chromatography coupled
with time-of-flight mass spectrometry (GC×GC-TOFMS) was used to provide the
standard comparison for the evaluation in this study. The second study focused on the
effectiveness of KBM data pre-processing method and FSVM odour pattern analysis
method. The third study explores the potential to implement NOS.E in the biomedical
engineering area, while the fourth study applied NOS.E in the wildlife protection area
by rapidly identifying legal from illegal wildlife parts. As a proof-of-concept test, water
buffalo horn and rhinoceros horn samples were selected as the test targets in this study.

The study results indicated the reliability and effectiveness of the developed NOS.E
system. The NOS.E system is able to be applied to various applications based on the
user-friendly and rapid odour analysis tests. Moreover, the NOS.E has the potential to
be a universal odour analysis platform implemented in different applications.
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Chapter 1

Introduction

This chapter starts with the motivation and scope of this thesis, then introduces some
related research topics, and finally shows the outline of this thesis.

1.1 Problem Statement

The electronic nose (e-nose) is a device that imitates the mammalian olfactory system
and is designed to detect and classify different aroma mixtures. The e-nose system
comprises several active gas sensors that detect the odour and transduce the chemical
vapours into electrical signals [1, 2]. The odour "fingerprint" captured by the gas sensors
can then be analysed and identified with pattern analysis methods, e.g., Principal
Components Analysis (PCA), Cluster Analysis (CA), Support Vector Machine (SVM),
and Artificial neural networks (ANNs). As a type of machine olfaction, e-nose plays a
significant role in the odour analysis area and has received considerable attention from
researchers all over the world [3–6]. E-nose devices have been extensively applied in
the areas of agriculture, medical diagnosis, environmental monitoring and protection,
food safety, the military, cosmetics and pharmaceuticals [3, 6–13].

Existing research has made significant contributions to e-nose technologies [14–21].
The studies on e-nose mainly focus on two different parts: 1. The design of a hardware
system (such as sensor design and main control system design) [11, 13, 22–27]; 2.
The algorithms for e-nose, such as data pre-processing methods and odour pattern
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analysis methods [11, 16, 28–34]. Moreover, some researchers develop their e-nose
research based on the commercially available e-nose products (such as the fox e-nose
(Alpha MOS, France), the portable Cyranose 320 (Cyrano Science, USA), Airsense
PEN2 and PEN3 (Airsense Analytics GmbH, Germany) [3, 35–41]. These studies on
e-nose have made considerably advances in this area.

Generally speaking, most of the existing works have been laboratory based rather
than field based [16, 18, 19]. Furthermore, the costs of current commercial e-nose
products are too high for the majority of consumers [20, 37]. In addition, sensor
drift, sensitivity and system reliability are the main issues which the industry are
particularly concerned about in regards to implementing e-nose systems in industrial
contexts[5, 42]. Considering its high efficiency and cost-effectiveness compared with
other odour analysis techniques (e.g. gas chromatography and mass spectroscopy),
e-nose technology has the greatest potential to be applied in different fields [43–45].

1.2 Motivations and Aims

Many studies are devoted to improving the sensor drift and sensitivity by using different
algorithms and sensor materials [46–50]. This dissertation focuses on the application of
specific instruments with designed airflow and control system to improve the reliability
of the e-nose systems [5, 44]. Based on the innovative engineering technologies such as
the automated air intake system and control logic, an efficient e-nose system (named
“NOS.E”) was developed to bring lab-based research into a low cost portable device
for the use of a variety of commercial applications (e.g. meat freshness monitoring,
environmental protection, health monitoring, etc.). The automated air intake control
system in the NOS.E does not need the users to configure the test manually for
each test. Therefore, it can improve the test efficiency by saving operation time
when performing the odour analysis test multiple times. The automated test mode
eliminates the incorrect manipulations caused by the manual test, thus improving the
data quality and test performance [51–53]. Moreover, the additional design of the
airflow control fault detection and monitoring can improve the reliability of the NOS.E
system and guarantee a valid test dataset by terminating the system when the faults
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occur. Therefore, NOS.E has the potential to be a universal odour analysis platform
implemented in diverse applications [44].

In order to produce reliable pattern analysis results for e-nose applications, data
pre-processing methods are used to improve the stability of the feature extracted
from the pre-processed odour data. These pre-processing techniques mainly include
wavelet package correlation filter (WPCF), mean filter (MF), polynomial curve fitting
(PCF) and locally weighted regression (LWR). [54, 55]. Even though these methods
are relatively mature and efficient, at times they are unable to obtain reliable results
due to individual variations in the test system and unexpected responses caused by
the gas interference or fluctuations of environmental parameters [51–53]. Moreover,
these unexpected responses treated as noise will potentially reduce the stability and
reliability of certain features. Experimental results will be significantly influenced
especially for the derivative-related features which are sensitive to noise.

To seek a data pre-processing method which can overcome the drawbacks of current
data pre-processing techniques for e-nose systems, this dissertation proposes a novel non-
parametric kernel-based modelling (KBM) data pre-processing method. Furthermore,
this method is tested by the proposed NOS.E odour detection and identification system.
The NOS.E system mainly comprises an efficient power system, an automated air
intake system, an interchangeable metal-oxide (MOX) gas sensor array board, and a
fast data acquisition module. The target odour is drawn into the mixing chamber by
the gas sampling pump, before going into the gas chamber, where the sensor array
senses the odour stimulus.

The performance of the pattern analysis algorithm in the various e-nose platforms
and applications are different, and there is no single pattern analysis technique that
could be applied in all the e-nose applications to achieve the best performance [32].
Therefore, based on the NOS.E system, a hybrid of genetic algorithm (GA) and
supervised fuzzy support vector machine (FSVM) odour pattern analysis methods is
proposed for perfumes classification. The accuracy of classification for the proposed
method is evaluated with the other popular pattern analysis algorithms.

The aim of this dissertation is to present an automated e-nose system equipped
with a rapid data acquisition and control system, unique air intake system, novel data
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pre-processing and pattern analysis methods. The proposed e-nose system is designed
as a reliable and efficient odour analysis platform which could be implemented in
different applications.

As such, the research in this project has the following aims:

1. Develop an odour analysis system through the combination of the commercial
gas sensors, reliable power supply system, rapid data acquisition and control system,
and an unique air intake system.

2. Implement the special air flow control logic in the proposed odour analysis
system for automated control purpose.

3. Design an effective test protocol which contains the configuration parameters for
different user scenarios.

4. Perform the entire system integration to produce an automated odour analysis
system.

5. Apply the novel kernel-based modelling data pre-processing method to provide a
reliable key feature for the odour analyser.

6. Propose a hybrid of genetic algorithm (GA) and supervised fuzzy support
vector machine (FSVM) algorithm as the odour pattern analysis method for different
perfumes.

7. Complete experimental subjects with different studies, collect and process data
to assess the performance, reliability, ease-of-use, and effectiveness of the developed
odour analysis prototype.

8. Discuss the plan of further developments and improvements to advance the
prototype designs toward future commercialisation target.
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1.3 Research Topics in the Proposed Odour Anal-

ysis System

In this dissertation, to fulfill the future commercialisation plan, several research topics
have been studied to design the proposed automated odour analysis system. The topics
being considered are separately discussed below.

1.3.1 Comprehensive electronic nose equipment design

Contrasting with the majority e-nose systems which had been studied in the research
lab, this dissertation tries to design a universal odour analysis platform which contains
both specific instruments, novel data processing algorithm and general test protocol
designs. Therefore, except the internal high performance sensor technology, some
external factors such as environmental parameters (humidity, ambient temperature and
atmosphere), the presence of other interfering odours during standard test procedure,
the quality of the power system, data processing circuit, accuracy in analogue to the
digital data conversion process, etc. must be given special consideration to improve
the performance of the odour analysis system [20, 37, 43–45].

Hardware design

Since this dissertation will not focus on the innovation of the specific sensor techniques,
metal oxide gas sensors are chosen as the primary sensor array solution considering
their high efficacy and popularity in the global market [5, 42]. Signal processing circuits
are designed to remove noise from the outputs of these gas sensors [2, 3]. A reliable
power system will also improve the signal quality by providing the stable and clean
power rails for the whole system. Moreover, an external high performance analogue to
the digital (A/D) unit will help to improve the accuracy of A/D conversion tasks, and
transmit the signals rapidly to the reliable digital signal processor (DSP) for further
processing. In addition, some electrical/signal isolation design will also help to improve
the reliability of the e-nose system.
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Air intake system design

Based on the mechanical and electronics designs, the performance of the gas sensors
is improved by using the special air intake system which is designed to isolate the
interfering odours and improve the sensitivity of gas sensors. Moreover, the feasibility
and effectiveness of different reference gas sources are also take into account in the
comprehensive e-nose equipment design topic [56–60].

Automated airflow control method

Currently, there are different test platforms that contribute to the e-nose research area,
while some of them are commercial equipment, the other parts are self design and
develop system. With the exception of some commercial odour analysis equipments
(e.g. GC×GC, GCMS, fox e-nose, etc.), most of the odour analysis test platforms
follow various test protocols which make it difficult to make a comparisons between test
results. Furthermore, commercial odour analysis equipment is considered expensive
and time consuming for the majority of researchers [20, 37]. Hence, based on the
hardware and air intake system design, the unique automated airflow control method
and general test protocol are studied to improve the repeatability and efficiency of
odour analysis tests by providing an automated and standard test protocol to allow
inter-study data comparisons.

1.3.2 Data Analysis Methods

While the other odour analysis techniques (e.g. GC×GC, GCMS) focus on the analysis
of all chemical compounds in the target items, the e-nose based odour analysis platform
is mainly designed to sense the mixture of VOCs/odour profile of the test items without
identifying the specific chemical compounds [2, 3]. In contrast, other data analysis
methods (e.g. pre-processing, feature selection, pattern analysis, etc.) are used to
detect different items by recognising the "odour-prints" which is the unique signal
matrix generated by gas sensor arrays according to different odour sources [1, 2, 32].
Considering the differences of the e-nose platforms (e.g. sensor type, dimensions of
the gas chamber, design of the air intake system, etc.), in order to find the best data
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analysis method based on the e-nose platform which the user tested, multi-methods
need to be evaluated [2, 32]. The block diagram of the typical e-nose data analysis flow
is shown in Figure 1.1. The data pre-processing methods are used to remove the noise
from the e-nose signals, extract and select the useful key features. Based on these key
features, the pattern analysis methods are introduced to make the machine understand
the meaning of the odour signals.

Fig. 1.1 The block diagram of the e-nose data analysis flow.

Data Pre-processing

In order to get reliable pattern analysis results for e-nose applications, data pre-
processing methods were used to improve the stability of the feature extracted from
the pre-processed odour data. These pre-processing techniques mainly include wavelet
package correlation filter (WPCF), mean filter (MF), polynomial curve fitting (PCF)
and locally weighted regression (LWR), etc. [54, 55]. Even though these methods are
relatively mature and efficient, they are sometimes unable to obtain reliable results
due to individual variations in the test system and unexpected responses caused by
the gas interference or fluctuations of environmental parameters [51–53]. Moreover,
these unexpected responses treated as noise will potentially reduce the stability and
reliability of features. Experimental results will be significantly influenced especially
for the derivative-related features which are sensitive to noise. Therefore, a new non-
parametric KBM method is exploited to model the gas sensor response [61–63] and
guarantee the smoothness of the filtered signals. Unlike most of the previous data
pre-processing methods, in which the filtering techniques are used to remove the noise,
our approach reduces the noise based on non-parametric modelling to improve the
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classification accuracy; nevertheless, the identification of the model is based on the
raw data.

In the odour pattern analysis stage, the features are often extracted from the
data recorded until the steady-state response of gas sensors is reached. Feature
extraction methods generally fall into two categories: the human-supervised extraction
based on expert knowledge and the automatic feature extraction methods that are
completely data-driven. In this dissertation, we have extracted the features by using
a human-supervised method as the proof-of-concept process. Considering that the
derivative-based features are sensitive to noise, to demonstrate the effectiveness of
our proposed method in dealing with noisy signals, we chose six derivative-based
features commonly used by other works [64, 65]: the response of the maximum 1st

derivative (Dres), the response of the maximum 2nd derivative (Dresx), the response
of the minimum 2nd derivative (Dresn), time interval between gas-in and maximum
1st derivative of response (tDres), the time interval between gas-in and maximum 2nd

derivative of response (tDresx), and the time interval between gas-in and minimum 2nd

derivative of response (tDresn). The diagram of these features is shown in Fig. 1.2.
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Pattern analysis

Usually, classification problems need to process a massive amount of data, and it is not
easy to find useful information from these chaotic data unless some key information
in these data is grabbed. That is why feature extraction is the most important
phase in pattern analysis tasks. The pattern analysis method is used to make the
machine understand the meaning of the odour datasets. Currently, there are several
different pattern analysis techniques available [2], and the various analysis results are
achieved based on these techniques [32]. Genetic algorithm (GA)-based techniques
have an advantage over statistical methods because they are distribution-free, i.e.,
no prior knowledge is needed about the statistical distribution of the data. GA also
automatically discovers the discriminant features for a class. Considering the outlier
effects and noise issues, some fuzzy based classification algorithms such as fuzzy c-
mean, fuzzy art, fuzzy NN, etc. are also implemented to the e-nose field. Fuzzy
neural network has a considerable improvement in e-nose classification performance
compared to a common back-propagation network [66]. Fuzzy ARTMAP has been
applied to discriminate three different e-nose datasets and the performance is better
than back-propagation trained multilayer perceptron (MLP) [67]. The performance of
fuzzy clustering c-mean (FCM) combined with SVM e-nose classifier is better than
the other well-known machine learning algorithms [68]. Fuzzy-wavelet neural network
model has also been implemented to the e-nose field for food quality class evaluation
and prediction [69].

In this dissertation, in addition to the application of the PCA and SVM in our
e-nose studies, we also explored a novel e-nose pattern analysis method which is
the combination of self-supervised GA and supervised fuzzy support vector machine
(FSVM). The genetic algorithm was used to improve the classifier accuracy by optimising
the feature matrix and the optimal model parameters of FSVM. FSVM was used as the
odour classifier, which would reduce the outlier effects. A robust classifier is provided,
which has a steady classification accuracy by applying a fuzzy membership to each
input point and reformulated the SVMs. Different types of fuzzy membership can be
set to solve classification problems, and it can handle class imbalance datasets problem
in the presence of outliers and noise [70–72].
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1.3.3 Industrial need

Based on researchers’ achievements in the e-nose applications, the advantages of
applying e-noses in the industrial field are obvious [20, 37]. Most studies have shown
association with industrial partners regarding the availability of the samples and the
user scenarios [5]. Hence, it is critical and essential for the e-nose researchers to pay
more attention to the industrial need in future research and development activities.

It is likely that only experiments showing stable use will be a convincing factor for
the industry when considering the uptake of such a device [5]. Therefore, reliability is
the first factor that needs to provide high-level consideration within the design of the
NOS.E odour analysis system. The reliability factor takes into account repeatability,
meaning that the operation of the NOS.E should be consistently safe and result able to
be repeated within a similar test environment. The reliability also requires reasonable
adaptability in the various working environment.

Durability must also be considered during the entire phase of the development,
because the market will abandon a product which needs frequent repairs when per-
forming a scheduled odour analysis task. Durable design is required mainly for the
purpose of maintenance, which will consist of electrical, mechanical and PCB design,
and when considering the installation of parts and sensors in the sensor chamber.

Another important concept that needs to be considered is ease of use for the end
users. If the system is too complicated to use, then it would be difficult to operate for
the majority of potential users. Therefore, a user-friendly interface will be designed to
complete all the operations related to the NOS.E odour analysis task

When people are considering commercialisation, the cost is an important factor.
Balancing the cost and performance (or service) will enhance the competitive power in
the global market [5, 73, 74]. In the design of the NOS.E, we start considering this
problem when selecting appropriate gas sensors. A Metal Oxide Semiconductor (MOS)
gas sensor was chosen for its reliable performance and its ability to sense more sensitive
odours compared with other types of gas sensors. The MOS gas sensors are quite
popular in the global market and thus more readily available, which will be preferable
when further maintenance is required. It also means the cost of the MOS gas sensor
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is lower than the other types of gas sensors. In addition to the sensor selection, the
cost-performance balance concept will be embedded in the design of the other parts
such as power system design, air intake system design, mechanical design, etc. [5, 74].

1.4 Dissertation Contribution

This dissertation presents the research and development of a novel automated odour
detection and identification system with applications in health monitoring and wildlife
products identification. The primary contributions of this dissertation are summarised
as follows:

• Firstly, this dissertation proposed a new automated e-nose system which has
the potential to be a universal odour analysis platform to allow inter-study data
comparisons.

Inspired by the knowledge of the human olfactory system, an automated fault
monitoring and alarming electronic nose (e-nose) system, named ”NOS.E”, for
odour detection and identification has been designed. This design is based on the
reliable hardware and software designs as well as airflow intake system design
which is the most significant part of the NOS.E. The hardware design contains
an isolated power system; an automated air intake system (which consists of air
input and exhaust ports, filters, solenoid valves, pumps, and a sensor chamber);
a fault detection and alarming based airflow control feedback monitoring system;
an interchangeable gas sensor array; as well as a fast data acquisition and control
system. The software design is mainly based on the control logic and a remote
user interface (named as "NOS.E Analyzer") which is used to control NOS.E
equipment, record, store and analyse the data. Based on these designs, the NOS.E
was developed to bring lab-based research into a low cost portable device for
the use of a variety of commercial applications (e.g., meat freshness monitoring,
environmental protection, health monitoring, etc.). The automated air intake
control system can improve the test efficiency by saving operation times when
performing the odour analysis test multiple times. The automated test mode
can eliminate the incorrect manipulations caused by the manual test, and thus
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improve the data quality and test performance. Moreover, the additional design
of the airflow control fault detection and monitoring can improve the reliability of
the NOS.E system and guarantee a valid test dataset by terminating the system
when the faults occur. Therefore, NOS.E is able to become a universal odour
analysis platform to allow inter-study data comparisons.

• Secondly, a novel non-parametric KBM odour data pre-processing method is
introduced in the e-nose application as a reliable and effective data pre-processing
method. This data pre-processing method can provide more reliable and stable
pre-processing results compared with the other pre-processing methods.

Unlike most of the previous data pre-processing methods, in which the filtering
techniques are used to remove the noise, our approach reduces the noise based
on non-parametric modelling to improve the classification accuracy; nevertheless,
the identification of the model is based on the raw data. Generally, researchers
use filtering based methods to process the raw data of the MOS gas sensor
response. However, sometimes, the filter based pre-processing methods cannot
obtain the desired effects due to the individual variation of the test system and
the unexpected responses caused by the interference gas. Especially, as the filter
based methods cannot always guarantee the smoothness of the filtered signals,
in feature extraction stage, unacceptable outliers might be generated. In order
to obtain a better result and facilitate the automated feature extraction, we
adopted a non-parametric kernel-based modelling method (which applied the
finite impulse response to describe the system’s characteristics) as the novel
e-nose data pre-processing method. Furthermore, this method is tested by three
standard signals (linear signal, logarithmic signal and sigmoid signal) and the
recently developed NOS.E odour detection and identification system. Then the
goodness-of-fit and the Coefficient of Variation (CoV) method is employed to
evaluate the performance of the non-parametric KBM odour data pre-processing
method. According to the test results, when extracting derivative-related features,
the proposed non-parametric KBM method provides more reliable and stable
pre-processing results compared with the other pre-processing methods such as
wavelet package correlation filter (WPCF), mean filter (MF),polynomial curve
fitting (PCF) and locally weighted regression (LWR).
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• Thirdly, a hybrid of a genetic algorithm (GA) and supervised fuzzy support
vector machine (FSVM) pattern analysis method is explored in this dissertation.
This method is used to solve the uncertainty of high dimensional singularity in
the feature set and handle the imbalance of datasets in the present outliers and
noise problems in the e-nose area.

In order to increase the veracity and reliability of an e-nose system, multi-sensor
is widely used in odour pattern analysis. The feature vectors extracted from all
chemical sensors compose a high-dimensional feature set, and this dimensionality
will lower its discrimination. This problem can be addressed by using GA based
feature selection algorithm, which aims to choose only the informative features.
The proposed method is one kind of wrapper technique, which means that
accuracy of a classifier matters in this situation. The feature set extracted from
gas sensors contains noise, and many training datasets have unbalanced data. To
solve these problem, the accuracy of FSVM can be regarded as an evaluation
criterion. In addition to selected informative features, model parameters of FSVM
can also be optimized simultaneously in genetic irritation.

In this dissertation, we present a novel e-nose pattern analysis method which
is the combination of self-supervised genetic algorithm (GA) and supervised
fuzzy support vector machine (FSVM). Genetic algorithm was used to improve
the classifier accuracy by optimizing the feature matrix and the optimal model
parameters of FSVM. As a robust odour classifier, FSVM is used to reduce the
outlier effects by applying different types of fuzzy membership to each input
point and reformulated the SVMs, and it can handle class imbalance datasets
problem in the presence of outliers and noise.

1.5 Dissertation Outline

The outline of the dissertation is as follows:

Chapter 1

This chapter presents the problem statements, motivation and aims, the research
topics and the outline of the dissertation.
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Chapter 2

A brief review of the olfaction system and odour analysis platforms is firstly
presented in this chapter. Then, an overview of data pre-processing methods for e-nose
is introduced. Finally, an over of some popular odour pattern recognition algorithms
for e-nose is provided.

Chapter 3

To obtain reliable experimental results, an automated odour detection and iden-
tification system is developed. We first design a proof-of-concept prototype which is
based on an isolated power system, an automated air intake system (which consists of
air input and exhaust ports, filters, solenoid valves, pumps, and a sensor chamber),
a fault detection and alarming based airflow control feedback monitoring system, an
interchangeable gas sensor array, and the fast data acquisition and control system.
Through the optimisation of this design (which mainly includes the optimisation of
mechanical, electrical and PCB design), we develop a new prototype which has the
potential to be a universal odour analysis platform that could be applied in different
user scenarios.

The work in this chapter has been submitted for publication:

• Wentian Zhang, Taoping Liu, Maiken Ueland, Shari L. Forbes, X Rosalind Wang
and Steven W. Su, “ Design of an efficient electronic nose system for odour
analysis and assessment.” Measurement. (Under Review)

Chapter 4

The design of data processing and analysis methods for e-nose in NOS.E systems is
investigated in this chapter. The traditional data techniques mainly include wavelet
package correlation filter (WPCF), mean filter (MF), polynomial curve fitting (PCF)
and locally weighted regression (LWR), etc. [54, 55]. Some unexpected responses
(caused by the gas interference or fluctuations in environmental parameters) which
are treated as noise will potentially reduce the stability and reliability of features.
Experimental results will be significantly influenced especially for the derivative-related
features which are sensitive to noise. The novel non-parametric kernel-based modelling
(KBM) data pre-processing method can overcome this drawback of current data pre-
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processing techniques and provide a relatively smooth estimated signal response for
e-nose system.

The work in this chapter has been published in:

• Zhang, Wentian, Taoping Liu, Lin Ye, Maiken Ueland, Shari L. Forbes, and
Steven W. Su. "A novel data pre-processing method for odour detection and
identification system." Sensors and Actuators A: Physical, 287, 113-120, 2019.

Chapter 5

A novel e-nose pattern analysis algorithm which is a hybrid of genetic algorithm
(GA) and supervised fuzzy support vector machine (FSVM) is studied in this chapter.
GA was used to select the informative features and the optimal model parameters
of FSVM. FSVM was used as fitness evaluation criterion and the sequent odour
classifier, which would reduce the outlier effects to provide a robust classifier which has
a steady classification accuracy. This proposed algorithm has been compared with some
commonly used learning algorithms, such as support vector machine, the k-nearest
neighbors and other combination algorithms. The experiment results show that the
proposed odour classification algorithm can significantly improve the classification
accuracy by selecting high-quality features and reach to 92.05% classification accuracy.

The work in this chapter has been published in:

• Liu, Taoping, Wentian Zhang, Peter McLean, Maiken Ueland, Shari L. Forbes,
and Steven W. Su. "Electronic Nose-Based Odor Classification using Genetic
Algorithms and Fuzzy Support Vector Machines." International Journal of Fuzzy
Systems 20, no. 4: 1309-1320, 2018.

Chapter 6

The study of exhaled breath for health diagnosis and monitoring is becoming an
increasingly popular area of research. Unlike most traditional health monitoring and
diagnosis through the use of bodily fluids (e.g. through blood, urine), breath collection
is non-invasive and convenient. Furthermore, studies have shown there are many
metabolomic compounds in human breath that could be used for health monitoring
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and disease diagnosis. Metabolomics are influenced by an individual’s lifestyle, diet,
and the environment. These factors make breath analysis an attractive option for
personalised health care.

To explore the potential biomedical applications, we apply NOS.E for the rapid
detection and identification of human health conditions in this chapter. By detecting
the changes in the composition of an individual’s respiratory gases, which have been
shown to be linked to changes in metabolism, e-nose systems can be used to characterize
the physical health condition. We demonstrated our system’s viability with a simple
dataset consisting of breath collected under three different scenarios from one volunteer.
Our preliminary results show the popular classifier SVM can discriminate NOS.E’s
responses under the three scenarios with high performance. In future work, we will
aim to gather a more varied dataset to test NOS.E’s abilities.

The work in this chapter has been published in:

• Wentian Zhang, Taoping Liu, Miao Zhang, Yi Zhang, Huiqi Li, Maiken Ueland,
Shari L. Forbes, X. Rosalind Wang, and Steven W. Su. “NOS. E: A New Fast
Response Electronic Nose Health Monitoring System." In 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 4977-4980. IEEE, 2018.

Chapter 7

The utilisation of NOS.E in wildlife products identification is considered in this
chapter.

This chapter proposed the e-nose prototype (NOS.E II) which used an efficient and
reliable method to identify illegal wildlife parts. The novel mechanical and airflow
designs as well as kernel based data preprocessing methods were implemented in the
NOS.E II to improve its sensitivity and portability. As a proof of concept test, water
buffalo horn and rhinoceros horn samples were selected as the test targets to identify
legal from illegal wildlife parts. The NOS.E prototype also has potential to be used
globally to differentiate a diverse range of trafficked species including large cats (e.g.
tigers, leopards), elephants (including ivory), pangolins, bears, sea turtles, sharks, and
a range of exotic birds and reptiles, all of which have distinct odour signatures.
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The work in this chapter has been submitted for publication:

• Wentian Zhang, Taoping Liu, Steven W. Su, Shari L. Forbes, and Maiken Ueland.
“Development of the Electronic Nose for Wildlife Products Identification." Forensic
science international.

Chapter 8

This chapter summarizes the works of this PhD dissertation and presents the future
research developments.





Chapter 2

Background

In this chapter, we first provide a brief introduction and understanding of mammalian
olfactory systems (using human olfactory as an example), then we describe the structure
and principle of machine olfactory systems (electronic nose). Finally, the data processing
theories, as the mathematical foundation for solving the odour identification problems
in this dissertation, are introduced.

2.1 Olfactory System in Humans and Machines

2.1.1 Human olfactory system

The sensitivity and range of human olfactory systems are remarkable, enabling people
to detect and identify between thousands of odours [75]. Over the past decades, based
on the solid understanding of the olfactory system which people achieved through
the studies of molecular, physiological, genetic, and developmental biology studies.
Growing interest in the biological modelling of the olfactory system has attracted many
researchers to reveal two fundamental and significant topics: what is olfaction and how
do human scent [75–78]?

Generally speaking, olfaction is a chemoreception that forms the sense of smell.
It occurs when odorant molecules are detected by odour receptors (ORs) and are
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transmitted to the brain through the olfactory bulb for further recognition. However,
the actual mechanism is more complicated than we understand [75, 76, 78–82].

In air-breathing animals including humans, odorant molecules are volatile, hydropho-
bic, with low molecular mass (less than 300 daltons) organic compounds [2, 75, 79].
These odorant molecules are uncharged and vary widely in structure to include
many chemical molecular classes, including organic acids, alcohols, aldehydes, amides,
amines, aromatics, esters, ethers, halogenated hydrocarbons, hydrocarbons, ketones,
nitriles, other nitrogen-containing compounds, phenols, and sulfur-containing com-
pounds [2, 75, 79].

The functional organization of the olfactory system is shown in Figure 2.1. Odorant
molecules reach the ORs via orthonasal transport through the nares when sniffing or
from the oral cavity through the pharynx (back of the throat) when eating [2, 81].
Odorant molecules are captured by specific ORs located in the olfactory epithelium
at the top of the nasal cavity. The olfactory information is transported through the
olfactory nerves across the tiny holes in the cribriform plate of the ethmoid bone to
the olfactory bulb, where the olfactory nerves make their first synapses with second-
order neurons (mitral cell) in intricate spherical masses of neuropil called glomeruli.
The olfactory tract is responsible for transmitting the information from the olfactory
bulb to the anterior olfactory nucleus, the olfactory tubercle, the prepyriform cortex,
and the amygdala, and eventually to higher brain centres that process the olfactory
signals [2, 83].

Three different cells constitute (or make up) the olfactory epithelium: the supporting
cell which is a type of glia cell; receptor cell which is treated as the bipolar olfactory
sensory neurons with dendritic cilia projecting from their terminal ends in a thin mucus
layer (10–100 μM thick); and basal cells (like stem cells) which make new olfactory
receptor cells [2, 83].

2.1.2 Machine olfactory system

While gas chromatography mass spectrometry instruments (GCMS) have been identified
as a gold standard for odour analysis and the evolution of the more sophisticated
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two dimensional gas chromatography coupled with time-of-flight mass spectrometry
(GC×GC-TOFMS) have both become popular in the analysis of scent in recent machine
olfactory system studies [84–87]. Electronic nose (e-nose) technology still draws enough
attention on the global market and has the great potential to be applied in different
fields for its high efficiency and cost-effectiveness compared with other machine olfactory
techniques [43–45].The odour detection and identification system presented in this
dissertation is mainly based on the e-nose technique.

E-nose technique

E-nose is capable of identifying chemical compounds through sensing and analysing
odour molecules. As a kind of machine olfaction, e-nose technology has the great
potential to be applied in different fields [1, 3–6].

Based on the human olfactory system (Figure 2.1), and the similarities between
human olfactory system and e-nose system (Figure 2.2), a sensor array is used to mimic
the olfactory receptor (OR) to transform the odorants information to the electrical
signals. These signals can be processed by the "olfactory bulb" of the e-nose which is a
micro-controller. Moreover, to recognise the odorants information, a computer is used
to represent the brain, and the pattern recognition algorithms are the "content of the
brain" in this computer.
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Fig. 2.2 The similarities between human olfactory system and e-nose system.

The block diagram of a typical e-nose system is shown in Figure 2.3. According
to the different applications and project requirements, we choose a particular number
of gas sensors to build a sensor array. The odorant molecules of target items will be
extracted into the e-nose by an air intake system, which consists of different actuators,
a gas sensor array and data acquisition and control modules. The sensor array will
generate specific electric signals once they are contacted by the target gas appropriately.
The data acquisition system is used to collect these data and data preprocessing
methods are used to process them before extracting the key features for the odour
classifier. The odour classifier will take responsibility to identify and recolonize the
target using appropriate pattern analysis algorithms and will send the results to the
users [1–4, 14].

Fig. 2.3 The block diagram of a typical e-nose system

Based on the above typical e-nose system structure, extensive studies have been
carried out as highlighted below:
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• Zhang, Lei, et al. [11] introduced a rapid scheme (GAT–RWLS method) which was
used in the e-nose system to solve the discreteness and improve the reproducibility
of MOS gas sensors. Additionally, this paper also demonstrates that one sensor’s
discreteness is steady and keeps unchanged when the sensor is exposed to different
kinds of gas components. The performance of the e-nose system used in this
paper would be better if the author redesigned the air intake system in their
design (e.g. smaller gas chamber and isolated sensor array).

• Herrero, José Luis, et al. [13] designed a wireless portable e-nose prototype with
a web-based application to analyse the pollutants in water. Different types
of Neural Networks (Feedforward using Backpropagation learning algorithm
and Radial-Basis Functions based neural network) were used in this paper and
achieved a 91% and 94% success of classification based on 12 water samples
with different pollutants. Although the design of the prototype can be improved
(such as mechanical design), the e-nose framework proposed in this paper is quite
valuable for the future e-nose works.

• Zhao, Zhenzhen, et al. [16] applied a feature-based spectrum analysis technique
algorithm in optical e-nose signal processing area. This algorithm includes the
primary feature extraction mechanism, and the enhanced technique with fault
tolerance. It shows a valuable solution for optical e-nose by demonstrating the
proposed feature extraction mechanism can extract the features from the sensing
responsive spectra of the odours and can uniquely represent the odour. However,
it seems that the optical e-nose system used in this paper is more complex than
the general e-nose system. Perhaps this e-nose system is low portability and
sophisticated to operate for the users.

• Sun, Hao, et al. [22] proposed an e-nose system which was used to detect the
common bacteria in wound infection. Based on some sensor array optimisation
methods (e.g. Wilks’ Λ statistic, Mahalanobis distance, principal component
analysis (PCA), linear discriminant analysis (LDA), and genetic algorithm),
they achieved considerable accuracy of classification (up to 96.15%) for eight
different kinds of samples detected, such as culture medium, Escherichia coli,
Staphylococcus aureus, and Pseudomonas aeruginosa, etc.. However, using 34
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gas sensors to construct the original sensor array will raise the cost and power
consumption for the e-nose system. Perhaps it would be more efficient by the
surveys regarding the response characteristics of the sensors and the chemical
compounds of the target items.

• Westenbrink, E., et al. [23] developed an e-nose instrument equipped with an
array of 13 electrochemical and optical sensors for the detection of colorectal
cancer. Based on the 92 urine samples dataset, their e-nose system can identify
colorectal cancer against irritable bowel syndrome with a sensitivity of 78% and
a specificity of 79% by using an (n-1) K-nearest-neighbour algorithm. However,
for a diagnostically related paper, how to avoid the cross infection issues is not
mentioned in this paper.

• Li, Dong, et al. [26] reported a novel headspace integrated e-nose used to discrimi-
nate Chinese medical herbs. Principal components analysis and Sammon mapping
were used as the feature extraction method before applying Fisher discriminant
analysis as the recognition solution. The correct classification accuracy of the
headspace integrated e-nose for discriminating thirteen species of herbs is 100%
which is an exciting result for e-nose research. Although temperature modulation
technology was widely used to enhance the sensor selectivity, for MOS type gas
sensors, perhaps this technique would affect the sensor performance due to the
variable heating temperature inside these sensors.

• Zhang, Lei, et al. [28] proposed an odour recognition model which is named a
cross-domain discriminative subspace learning (CDSL) for multiple electronic
noses (E-noses). The authors considered the drift of the gas sensor as a cross-
domain classification problem; therefore they can apply a CDSL model which is
a cross-domain learning framework to solve this problem. The proposed model
can guarantee that the well-trained classification method can be easily applied to
different e-nose systems. Accordingly, in the future, there is a possibility that the
model studied in this paper could provide some support to the commercialisation
procedure of the e-nose system.

• Jing, Ya-Qi, et al. [32] developed a bioinspired neural network data processing
method by applying the mechanism of the olfactory system in their e-nose
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research. The primary objective of their method is to improve the efficiency
of data processing in the e-nose area. Despite having only one parameter (μ
which controls the speed of the slow variable current) in their neuron model,
the performance of their method still shows great potential for a bioinspired
approaches.

Other than the studies listed above which are based on the self-designed e-nose
system, many researchers also proposed their work by using the popular commercial
products which can be summarised as follows:

• Cui, Shaoqing, et al. [35] identified American ginseng and Asian ginseng based
on the FOX 4000 (Alpha MOS, Toulouse, France) e-nose system. The e-nose test
result is compared with GCMS test result and achieved a similar recognition result;
therefore, they claim that e-nose could be used as a rapid and nondestructive
method to identify the species of the ginseng.

• de Swart, Jara, et al. [36] evaluated the effect of smoking on faecal VOC com-
position by using Cyranose 320 (Cyrano Science, USA) e-nose equipment. The
research outputs in this paper demonstrated that for the future faecal VOC
profile study, the researchers should consider the smoking status of the patient.

• Yang, Wenjian, et al. [38] studied the effect of hot air drying on volatile compounds
of Flammulina velutipes by using FOX 3000 (Alpha MOS, Toulouse, France)
and GCMS apparatus (7890A/5975C, Agilent Technologies, Santa Clara, CA,
USA). The results in this paper may provide a theoretical basis for the formation
mechanism of flavour substances in dried F. velutipes.

• Xu, Lirong, et al. [40] analysed the degree of the oxidation in edible oil by
using the PEN3 portable e-nose (Win Muster Airsense Analytics Inc., Schwerin,
Germany). Combined with CA, PCA, and LDA pattern recognition methods,
this paper claimed that the e-nose technique could be used as an alternative to
the American Oil Chemists’ Society (AOCS) Official Method for rapid detection
of edible oil oxidation.
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Metal oxide semiconductor gas sensor

There are many different types of gas sensors which are already implemented in the
e-nose area [2, 5, 3, 14, 88–95]. A brief summary is listed below:

• Metal Oxide Semiconductor (MOS) type gas sensor: [10, 96–102], etc.

• Electrochemical type gas sensor: [103–108], etc.

• Conducting polymers and non-conducting polymers type gas sensor: [109–114],
etc.

• Optical type gas sensor: [115–119], etc.

• Quartz crystal microbalance type gas sensor: [120–125], etc.

• Surface Acoustic Wave (SAW) type gas sensor: [126–131], etc.

• Biology type gas sensor: [132–136], etc.

Among these sensors, the MOS type gas sensor is the most widely used and easily
achieved in the market gas sensor [3]. Although the MOS type gas sensor has some
drawbacks (such as high power consumption, sensitive to humidity, poor precision, etc.),
it still attracts considerable attention from the e-nose researchers and manufactures
for its high sensitivity, stable performance, limited sensing range, rapid response and
recovery times for low mol. wt. compounds (not high), etc. [3, 14, 31, 137]. In
this dissertation, considering the stable performance, low operational expenses and
maintenance costs as well as easy to use characteristics, the MOS based gas sensors
are adapted in the proposed odour detection and identification system.

The MOX sensor array of an e-nose is designed either to detect gases or vapors.
These sensors are not tuned to a single chemical, but to detect families of chemicals.
All of the sensors start out at a measured resistance, their baseline resistance. If there
has been no change in the composition of the air, the outputs stay at the baseline
resistance and the percent change is zero, as shown in Figure 2.4 (b). Each sensor
changes its resistance, by a different amount, making a pattern of the change once
the gas compound is changed as shown in Figure 2.4 (a). If a different compound had
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caused the air to change, the pattern of the sensors’ change would be different which
is shown in Figure 2.4 (c). This creates a pattern of sensor responses, whereby the
machine can be trained to recognize the target items [137, 138].

Fig. 2.4 Gas Sensor Array operating principle

2.1.3 The contrast between human olfactory and Machine ol-

factory system

In the human olfactory system, sniffs are derived in the olfactory cortex and are
rapidly modulated in an odorant-dependent fashion by a dedicated olfactometer system.
Sniffs are not merely a stimulus carrier but are rather a central component of the
olfactory perception [80]. Just as deviations in nasal airflow can distort olfactory
perception [80, 139], so do deviations in e-nose airflow influence the odour analysis
results. Like when the olfactory scene disappears when no air flows in the nasal
cavity [80, 140], so does the stimulus for the sensor array disappear when the airflow
system is closed in the e-nose system. Therefore, the innovative engineering technologies
such as the automated air intake system and control logic could be used to improve
the performance of the e-nose system. Moreover, the functional organization of the
machine olfactory system is similar to the human olfactory system. Thus, to find the
similarities and differences between human olfactory and machine olfactory system is
highly necessary to the design of any e-nose system [2].

Firstly, olfactory perception has been treated as a “holistic” sense. That is, a mixture
that contains many individual odorants can be immediately identified, holistically, as
one specific entity, without having to first identify each component odorant within
the mixture. For example, there are more than 100 odorants in coffee, but it could
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be recognised immediately without particularising the odour of any constituent. Even
roses have more than 270 odorants, yet still could be identified as rose instantly.
A similar holistic approach is used to identify unique perfumes, people using some
specific adjective descriptors (e.g. sweaty, herbal, spicy, floral, etc.) to classify different
odours [2]. Indeed, most “odours” represent mixtures of hundreds of odorants that
blend together in a recognisable fusion. This holistic approach to olfaction is believed
to be a critical survival feature that was optimised during evolution to instantly
distinguish complex mixtures from each other, without time-consuming preliminary
“chemical analyses” of each component in the mixture [2, 79]. Similarly, the e-nose
odour analysis technique also completes the recognition task based on the signal matrix,
which contains the sensor responses to the stimulus from all the odourants from the test
sample. Therefore, e-nose is used to rapidly identify the different odour as a "holistic"
fashion, rather than precise individual chemical analyses [10].

Secondly, the relationship among the nasal airflow, the number of odorant molecules,
and the olfactory response is complex. It has been reported that three primary variables
are used to determine the response of the olfactory system: the number of molecules
(N), the duration of the air inhalations (T ), and the volume of the air inhalations(V ).
These primary variables, in turn, define the three additional derived variables of
concentration (C = N/V ), delivery rate (D = N/T ), and airflow velocity (F = V/T ).
Together, these six variables characterise the nature of the response in the olfactory
system. They are not independent variables, such that an increase in N will also
increase C and D, if T and V remain unchanged. So, if an increase in N results in an
increase in the olfactory response, it may also be attributable to the changes in C and
D [79].

Since the functional organization of the e-nose system is similar to the human
olfactory system, the response of the e-nose system also follows the definition discussed
above. Therefore, the sensitivity of the e-nose system can be improved by reducing
the dimensions of the sensor chamber. The airflow velocity and the duration of the
test can also be modified according to different applications. While a lower air flow
speed and longer test time was used for a low concentration target odour, a higher air
flow speed and shorter test time will be applied for a high concentration target odour
respectively [2, 79, 80].
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In addition, while the olfactory system uses a combinatorial receptor coding scheme
to encode odour identities, the e-nose system is designed based on the similar method
which uses the combination of odour signal "finger-prints" generated by the gas sensor
array to analyse the odour of target item [2, 3, 141]. Just like one OR recognises
multiple odorants, one odorant is recognised by multiple ORs. Moreover, different
odorants are recognised by different combinations of ORs. This is similar for the
e-nose system,whereby one gas sensor recognises multiple odorants, one odorant is
recognised by multiple gas sensors, and different combinations of gas sensors recognise
different odorants. That is the basic working principle of the sensor array in an e-nose
system [2, 3, 14, 141].

Moreover, there are some drawbacks for the odour classification of the human
olfactory system. First, there are natural interindividual variations in the emotional
properties of odours. Tags such as happy, charming, offensive, and sickening are
common associations with odours, and these subjective evaluations can affect the odour
analysis results [83]. Second, there are individual deviations in the olfactory perception
based on genetic differentiation [2]. Third, there are individual variations in the use of
odour descriptors even among qualified experts. Fourth, there are limited descriptors
used to represent a large number of odour sensations [2]. For this last reason, measures
of similarity rather than adjective descriptors have been used to quantify odour quality
by arranging odour sensations in multidimensional spaces.

In the e-nose system, emotions will have no influence for the odour classification
results. The individual differences caused by the deviations in different equipment
(e.g. machining errors, data acquisition errors, the value of electronic components
errors, etc.) can be controlled within the reasonable and acceptable range based on
the rich engineering experiences, sophisticated mathematics methods and high-quality
components [5, 42, 44]. As for the odour description, unlike the human olfactory
system, based on the specific mathematical theories, the odour analysis results in the
e-nose system will be calculated and then presented use some graphic patterns (e.g.
radar figure, parallel coordinator graph, 3D ) or some index parameters (e.g. air quality
index, mead freshness index) [2]. Therefore, the odour analysis results are much more
objective compared with the descriptors used in the human olfactory system.
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2.2 Data Pre-processing Methods for E-nose

Data pre-processing is an important technique in an e-nose system; it can improve
the recognition result by guaranteeing the reliable information extracted from the
pre-processed sensor responses. [1–4, 54, 142, 143]. Signal preprocessing techniques
include noise reduction, baseline manipulation, normalization, feature extraction, the
reduction of array inputs, and the scaling of individual sensor signals [2, 52, 142–151].

This dissertation applied a new non-parametric kernel-based modelling data pre-
processing solution to improve the reliability and stability of the e-nose classifier. In
addition, to optimizing the feature matrix and the optimal model parameters of fuzzy
support vector machine (FSVM) based e-nose classifier, genetic algorithm (GA) was
also used as a pre-processing method in this dissertation.

In this section, we first review non-parametric kernel-based modelling approach
genetic algorithm method. Then describe the application of GA in the e-nose area.

2.2.1 Kernel based modelling method

Recently, some key mathematical tools and concepts as well as the computational
aspects from machine learning techniques were introduced to the control community,
e.g. reproducing kernel Hilbert spaces, kernel methods and regularisation networks, the
representer theorem and the connection with the theory of Gaussian processes [62]. In
particular, a method which focuses on kernel-based regularisation and its connections
with reproducing kernel Hilbert spaces (RKHS) and Bayesian estimation of Gaussian
processes has great potential to be applied in different fields [62].

For time-invariant linear dynamical systems the output is obtained as a convolution
between the input and the system’s impulse response (IR). This means that system
identification is an example of an inverse problem: indeed, finding the IR from observed
data is a deconvolution problem. Such problems are quite ubiquitous and appear in
different applications e.g. in medicine, geophysics, and image restoration [62]. In this
dissertation, this method is regarded as a novel data pre-processing method which is
used to reduce the noise based on non-parametric modelling to improve the classification
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accuracy. The main idea is to model the gas sensors’ response based on the IRs which
are found from the gas sensors’ raw signal. The rebuilt response is smoother than the
original sensors’ response, and can therefore provide more useful information for the
odour classifier.

Although the KBM method performs like a ”filter”, it’s more accurate to be
considered it as a kind of curve fitting method. Compared with classical curve fitting,
dynamical modelling takes both the current input and the previous behaviour of the
system into consideration, and therefore, the modelling-based approach can provide
more curve structure information than curve fitting-based methods. But, for traditional
dynamical modelling approaches, these models are usually parametric models (e.g.
ARX model). A specified order of the system should be pre-set before estimating
the parameters, that is, the complexity of the parametric model is usually bounded.
In fact, it is difficult to identify the exact order when the input is a step signal and
the observation is polluted with noise. For this reason, a non-parametric modelling
approach, IR model, is introduced. Unlike the estimation of a parametric model, the
KBM method is more flexible since the estimation of impulse response does not need
to consider the order of the system. However, finding the impulse responses from
the noised observation is an ill-posed inverse problem, which is insufficient for the
stimulation of the system to estimate a large number of parameters of the IR model. To
solve this problem, a newly developed non-parametric modelling approach [61, 152, 62]
was introduced, which adds a regularisation term with a well-selected kernel function.
The kernel-based regularisation helps prevent overfitting caused by the noise-polluted
observations, and obtain a more accurate and robust estimation [153, 154]. In addition,
this kernel-based method projects the parameters of IR into a RKHS which can reduce
high-frequency components in the IR model.

Furthermore, for e-nose data, considering the efficiency factor, only the raising
part of the signal response (like a step response) is commonly used for odour pattern
analysis tasks; the recovery of signal response is ignored. The proposed KBM data
pre-processing method is specifically designed for the step response signals, especially
like e-nose data.
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When t with sampling time T is selected as the time index. The relationship
between the input (u) odour intake, which can be approximately treated as a step
stimulation compared with the reference gas (baseline), and the output (y) gas sensor
response can be described by a single input single output (SISO) dynamic system.
Hence, the discrete time output y can be calculated by the impulse response (IR) of
this system by the following equation [63, 152]:

y(t) =
N∑

τ=1
u(t − τ)g(τ) + ε(t), t = 1, 2, 3 · · · , N (2.1)

where g(·) represents the parameters of the finite impulse response (FIR). q represents
the shift operator, i.e. qu(t) = u(t + 1), ε(t) is the Gaussian white noise and N is the
total sampling number. Traditionally, the parameter g(·) is estimated by minimize the
following cost function derived from Eq. 2.1:

y(t) =
N∑

t=1
(y(t) −

∞∑
τ=0

u(t − τ)g(τ))2. (2.2)

Assuming that function g ∈ R
m, then function g in the regularisation term can be

projected into a reproducing kernel Hilbert space (RKHS).

The IR model can be identified by minimising the cost function [63, 155]:

min
g

(
N∑

t=1
(y(t) −

∞∑
τ=0

u(t − τ)g(τ)[g])2 + γ‖g‖2
H

)
. (2.3)

2.2.2 Genetic algorithm

As a global search optimisation technique, Genetic Algorithm (GA) is a population-
based evolutionary computation algorithm. It aims to find an “individual” with the
best fitness from the searching space composed of many feasible solutions. The main
idea of GA is the survival of the fittest. While applying GA to solving an optimisation
problem, specific variables should be determined in advance: a population set, a fitness
function, a stopping criterion and control parameters like population size, maximum
iterations as well as crossover and mutation rate [156, 157].

A standard GA follows these three main steps:
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• 1. Initialization: generate an initial population of individuals composed of zeros
and ones.

• 2. Perform the following sub-steps iteratively until the current generation meet
the stopping criterion:

– 2.1. Evaluation: calculate the fitness of each individual in the current
generation based on a predefined fitness function;

– 2.2. Selection: a portion of existing individuals were selected to breed a new
generation relying on a fitness based process, where fitter individuals are
more likely to be selected:

– 2.3. Genetic operation: breed a new population by applying the following
operators:
2.3.1. Reproduction: copy the selected individual as parent to the new
population;

Let us assume Npj represents the genotypic length of the j − th parameter
which need to be optimised, then Npj can be calculated by:

Npj = round

[
log2

(
θpj,upper − θpj,lower + Δ

Δpj

)]
+ 1, (2.4)

where θpj,upper and θpj,lower represent the upper and lower bound of searching
domain respectively. Δpj is a pre-set parameter and denotes the required pre-
cision. The genotype gpj for parameters j should be decoded into phenotype
θpj by:

θpj = θpj,lower + (θpj,upper − θpj,lower)
⎛
⎝∑Npj

i=1(g(i)
pj )Npj−1

2Npj

⎞
⎠ , (2.5)

where g
(i)
pj denotes the value of the i − th position of gpj.

2.3.2. Crossover: bred new offspring by recombining the chosen nodes from
two parent vectors randomly;
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Parts of genes between two genotypic individuals are exchanged, and the
number of crossover points is decided by the number of optimisation objects.

2.3.3. Mutation: create a new offspring by randomly mutating a randomly
chosen node of one selected individual.

One gene may be altered randomly. A 0-valued gene will be changed to 1
or vice versa in the followed mutation step.

• 3. Return the parameters of the tree to obtain the highest fitness as the best
approximate solution.

As an effective search algorithm, GA is used to solve the optimisation problems [158,
159]. In the e-nose area, GA has also been applied for feature selection or sensor
array optimisation problems [5, 22, 160]. In order to improve e-nose performance by
optimizing feature selection techniques, Gardner, JW et al. introduced a novel search
method procedure, V-integer genes genetic algorithms (GA), and compared with other
search methods such as sequential forward or backward searches (SFS or SBS) and
X-binary genes GAs. Their test results show that the V-integer genes GA approach is
an accurate, and importantly, a very fast search method when compared to some other
feature selection techniques [161]. After analyzing the average fingerprint spectrum
and its principal component scores, Shi, Bolin et al. applied GA to select and optimize
the effective sensors which can significantly contribute to identifying Xihu-Longjing
tea from three producing areas and two tree species [162].

2.3 Pattern Analysis Techniques for E-nose

Similar to the function of the brain in the human olfactory system, the pattern analysis
method is used to make the machine understand the meaning of the odour datasets
collected by the e-nose. Currently, there are many different pattern analysis techniques
available [2]. Some popular papers that focused on e-nose pattern analysis can be
summarised as:

• Principal Components Analysis (PCA): [40, 58, 163–172], etc.
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• Support Vector Machine (SVM): [10, 172–176, 59, 177–179], etc.

• Linear Discriminant Analysis (LDA),: [164, 165, 170, 171, 180–185], etc.

• Cluster Analysis (CA): [40, 186–191], etc.

• Artificial Neural Networks (ANNS): [164, 185, 187, 192–198], etc.

Except these classical e-nose pattern analysis methods, some novel odour analysis
solutions are listed below:

• Zhang, Lei, et al. [28] proposed an odour recognition model which is named as
cross-domain discriminative subspace learning (CDSL) for multiple electronic
noses (E-noses).

• Jing, Ya-Qi, et al. [32] proposed a bioinspired neural network e-nose classification
method. This neural network mimics the main structures of the mammalian
olfactory system. It contains olfactory sensing neurons, mitral cells, and granule
cells.

• Jiang, Xue, et al. [33] developed an efficient active learning (AL) e-nose classi-
fication algorithm which is based on improved query by committee (QBC) for
RBFNN (name as EQBC-RBFNN).

• Esme, E., et al. [68] studied a hybrid e-nose classifier which is the combination
of unsupervised fuzzy clustering c-mean (FCM) and supervised support vector
machine (SVM).

• Luo, Hanxiao, et al. [199] presented a quantum-behaved particle swarm optimisation-
based restricted Boltzmann machine (QPSO-RBM) method as a novel e-nose
classifier.

• Zhang, Lei, et al. [200] applied an evolutionary cost-sensitive extreme learning
machine (ECSELM) method in e-nose as a new odour classification method.

• Peng, Chao, et al. [201] presented a quantum-behaved particle swarm optimisation-
based kernel extreme learning machine (QPSO-KELM) for e-nose classification.
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• Zhang, Lei, et al. [202] proposed a novel multi-feature kernel semi-supervised
joint learning model (MFKS), which is a semi-supervised learning approach that
can be used as the classification framework for e-nose.

• He, Aixiang, et al. [203] presented a novel dictionary learning approach to improve
the classification performance of the e-nose.

• Li, Ming, et al. [204] proposed a spiking neural network (SNN)-based odour
recognition method for e-nose.

In this section, we first describe principal components analysis (PCA) and support
vector machine (SVM) which are most popular and classical e-nose pattern analysis
methods. We then briefly explore the implementation of the fuzzy support vector
machine (FSVM) in e-nose research.

2.3.1 Principal components analysis

PCA is a conventional unsupervised pattern analysis method used as a visual tool
to show groupings and separations within datasets. The mechanism of this method
is to transform the odour information from the high-dimensional feature space to a
low-dimensional visual space (e.g. 2D or 3D) by finding new coordinates that maximize
variances of the test samples [2, 205]. The unsupervised pattern analysis feature
indicates that this method is closer to the way that the human olfactory system
works using intuitive associations with no, or little, prior knowledge. The visualised
characteristic provides the user a high-efficiency method to view the odour data from
its most informative viewpoint [2, 206].

Given G=(G1, G2, · · · , Gm) as a m-dimension variable, m is the channel numbers of
the sensor array. Ga=[F1, F2, · · · , Fn], a=1, · · · , m represents the feature vector where
n is the numbers of the feature. Therefore, the covariance matrix of these features can
be described as:

F = E[GGT ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g11 g12 · · · g1n

g21 g22 · · · g2n

· · · · · · · · · · · ·
gm1 gm2 · · · gmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)
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The portion of data variance accounted for the components can be expressed as [207]:

κ1:j =
∑j

i−1 λi∑m
i−1 λi

, (2.7)

where j is the order of components, λi is the eigenvalue associated with the i − th

component.

Let us select α ∈ (0, 1) as the key features percent ratio with respect to the whole
features, select s as the first s components. Then the first s components key features
percent ratio can be expressed as:

P = κ1 + κ2 + · · · + κs, (2.8)

when s < j, and P ≥ α, then we can use the first s components to represent the
original information.

2.3.2 Support vector machine

SVM is a practical supervised pattern analysis algorithm which is theoretically well
founded and with an excellent generalisation ability [173]. As a classical pattern
analysis algorithm, SVM already proved to be successful in a number of practical
applications and has been used regularly in e-nose research [10, 172–176, 59, 177–179].
An SVM learns a discriminant function that separates positive and negative examples
with the maximum margin. The equation of hyperplane is in the form of:

ωT x + b = 0, (2.9)

where ω and b represent the weight vector and bias respectively.

The margin γ can be write as:

γ = 2
‖ω‖ . (2.10)
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The objective of SVM is to find an optimal hyperplane to separate two different
classes of samples. Nonnegative slack variables ξ = (ξ1, ξ2, ..., ξM ) are introduced to mea-
sure the misclassification degree of the training samples. Therefore, the mathematical
formula of optimisation problem can be deduced by solving:

min
w,b

{1
2‖w‖2 + C

∑M
i=1 ξi}

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(ωT x(i) + b) ≥ 1 − ξi

, i = 1, 2, ...M.

ξi ≥ 0
(2.11)

Where the parameter C is an error penalty term, which determines the influence of
the misclassification on the objective function. Increasing C will give more importance
to the errors on the training set in determining the optimal hyperplane.

In addition, kernel function K : (x1, x2) → K(x1, x2) could be applied in SVM to
solve the nonlinear classification problems by transforming the original low-dimensional
space into a higher-dimensional space [173, 208, 209, 155]. In this dissertation the
RBF kernel is implemented in the SVM classifier.

2.3.3 Fuzzy support vector machine

SVM is an effective algorithm in dealing with classification problems, but there are
still some limitations of this tool especially in classifying real-world data. Because
some training samples are more meaningful than other data points. These important
samples must be classified perfectly even if some noise or outliers are neglected [70].
Fuzzy SVM (FSVM) applies a fuzzy membership function to every training data pn,
hence the input data are transferred to fuzzy training samples, expressed as [210]:

{(pn, yn, sn|pn ∈ R
n), σ < sn ≤ 1}, n = 1, ..., N, (2.12)
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where each training point pn is given a label yn ∈ {1, −1}, σ is a sufficiently small
positive number. And the fuzzy membership sn is a function of time tn:

sn = f(tn) = (1 − σ)
(

tn − t1

tn = t1

)2
+ σ, (2.13)

where sndenotes the weight of the corresponding training point towards one class and
(1− sn) is the weight of noise or less important points. Therefore, the hyperplane
optimisation problem can be defined as [70, 210]:

min
w,b,ξ

1
2‖w‖2 + csT ξ, (2.14)

restrictions on condition to:
⎧⎨
⎩ yn(wT pn − b) ≥ 1 − ξn

ξn ≥ 0, n = 1, ...N.
(2.15)

A smaller sn decreases the influence of the parameter ξn, such that the corresponding
sample pn is regarded less substantial. In a similar way as SVM, the Lagrangian
multiplier function can be constructed as [70]:

min
w,b,ξ

max
α,β

{1
2‖w‖2 + csT ξ − ∑N

n=1 αn[yn(wT xn − b)

+ξn − 1] − ∑N
n=1 ξnβn}. (2.16)

Then the optimal problem can be transferred to [70]:

max
a

{∑N
n=1 an − 1

2
∑N

n=1
∑N

m=1(amanymtnpT
mpn)}

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ an ≤ snC

, n = 1, ...N.∑N
n=1 anyn

(2.17)

The parameter ai can be solved by the Sequential Minimal Optimisation (SMO)
technique, which was proposed by Haykin [211].





Chapter 3

The Design of NOS.E Equipment

This chapter presents an efficient electronic nose (e-nose) system, named “NOS.E”,
for odour analysis and assessment. In addition to the reliable hardware and software
designs, an airflow intake system is implemented to ensure the precise odour analysis
procedure in the NOS.E system. Additionally, a particular control logic was introduced
to improve the test efficiency of the NOS.E by reducing operation time. Furthermore,
the fault detection and alarming design can generate a high-reliability performance by
constantly monitoring its working status. To evaluate the performance of the NOS.E,
three types of alcohols were tested by the NOS.E and compared to data collected
by comprehensive two-dimensional gas chromatography coupled with time-of-flight
mass spectrometry (GC×GC-TOFMS). The results indicate that the NOS.E can
successfully distinguish three different alcohols with high efficiency and low cost and
has the potential to be a universal odour analysis platform implemented in various
applications.

3.1 Introduction

The electronic nose (e-nose) is a device that imitates the mammalian olfactory system
and is designed to detect and classify different aroma mixtures. The e-nose system
comprises several active gas sensors that detect the odour and transduce the chemical
vapours into electrical signals [2]. Some classical pattern analysis algorithms (e.g.
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Principal Components Analysis (PCA), Support Vector Machine (SVM), and Artificial
neural networks (ANNs), etc.) can be used to analyse these e-nose electrical signals.

Existing research has made great contributions to e-nose technologies [14–21, 212–
215]. However, most of the existing works have been laboratory based rather than
field based [16, 18, 19, 214]. Additionally, the cost of current commercial e-nose
products are too high for the majority of consumers [20, 37]. In addition, sensor
drift, sensitivity and system reliability are the main issues which the industry are
particularly concerned about in regards to implementing e-nose systems in industrial
contexts [5, 42]. Considering its high efficiency and cost-effectiveness compared with
other odour analysis techniques (e.g. gas chromatography and mass spectroscopy),
e-nose technology has the great potential to be applied in different fields [43–45].

Many studies have been devoted to improving the sensor drift and sensitivity by
using certain algorithms and sensor materials [46–50]. Inspired by the knowledge of
olfactory systems [2, 80], we present an e-nose instrument with the well-designed airflow
and control systems which can improve the reliability of the e-nose system [5, 44].
In the human olfactory system, air inhalations are derived in the olfactory cortex
and are rapidly adjusted and controlled by a specialised olfactometer system in an
odorant-dependent mode. These inhalations are not only stimulus carriers but also
essential elements of the olfactory perception [80]. For instance, deviations in nasal
airflow can distort olfactory perception [80, 139], and the olfactory scene disappears
when no air flows in the nasal cavity [80, 140]. Likewise, in an e-nose system, different
test targets will correspond to the different air flow parameters (such as duration
and speed). Moreover, deviations in airflow can distort odour analysis results, and
stimulus for the sensor array disappear when the airflow system is closed. Therefore, by
using the innovative engineering technologies such as the automated air intake system
and control logic, an automated e-nose system (named “NOS.E”) was developed to
bring lab-based research into a low cost portable device for the use of a variety of
commercial applications (e.g. meat freshness monitoring, environmental protection,
health monitoring, etc.).

The automated air intake control system in NOS.E does not need the users to
configure the test manually for each test. Therefore, it can improve the test efficiency
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by saving operation time when performing the odour analysis test multiple times. The
automated test mode eliminates the incorrect manipulations caused by the manual
test, thus improving the data quality and test performance [51–53]. Moreover, the
additional design of the airflow control fault detection and monitoring can improve the
reliability of the NOS.E system and guarantee a valid test dataset by terminating the
system when the faults occur. Therefore, NOS.E is able to become a universal odour
analysis platform to allow inter-study data comparisons [44].

In order to assess the performance of the proposed NOS.E system, we collected
headspace samples from three different alcohols: Johnnie Walker Green Label Whisky
(JW), Grey Goose Vodka (GG), and Jack Daniels Tennessee Whiskey (JD). The
samples were analysed using comprehensive two-dimensional gas chromatography
coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and the NOS.E
system. GC×GC-TOFMS has been identified as a gold standard for odour analysis and
became the preferred method in recent studies [84, 85, 216, 217]. Using data collected
and processed with the recently developed non-parametric kernel based modelling
(KBM) algorithm [218] and principal component analysis (PCA), a comparison between
the GC×GC-TOFMS and NOS.E for alcohol odour analysis showed that the NOS.E
system could successfully identify the three different alcohols with high efficiency and
low cost. Moreover, by using the popular classifier, support vector machine (SVM),
we can achieve 93.33% average classification accuracy to identify these three types of
alcohols.

This chapter is structured as follows. Section 3.2 is devoted to the equipment design.
Reliable automated airflow control designs are developed in section 3.3. Section 3.4
provides experimental material and methods. The experimental results are analysed in
section 3.5. The conclusions are drawn in section 3.6.
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3.2 NOS.E Equipment Design

3.2.1 Hardware design

Two NOS.E hardware platforms (Fig. 3.1 and Fig. 3.1) were built for different applica-
tions. Both these platforms consist of the power supply module, the sensor module,
the driver module, the communication module, and the microcontroller (MCU). The
power module (Fig. 3.3) provides different isolated power rails for the other parts of
the equipment to enable the NOS.E system to work with the driver circuits (Fig. 3.4)
to satisfy the proposed automated airflow control logic. The data processing in this
chapter is based on the NOS.E II prototype. The NOS.E I related works will be
demonstrated in Chapter 4, Chapter 5, and Chapter 6.

Fig. 3.1 NOS.E I Equipment.

The design of the NOS.E power system is shown in Fig. 3.3. The 100 − 240V AC

power source is converted to 20V DC which will be converted as isolated V DD_5V

and V CC_12V power rails. The V DD_5V provides different power rails (V DD_3V 3
and V DD_1V 9) for the MCU. The V AA_5V (transferred from V DD_5V ) is used
to provide the power for sensors as well as to generate the reference voltage for the
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Fig. 3.2 NOS.E II Equipment.
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Fig. 3.3 NOS.E Power System Diagram.

Fig. 3.4 shows the circuit used to control the different actuators. When this circuit
receives a high logic level control signal from MCU, the base current is switched on Q1
and the forward current IF is flowed through the emitting diode of U1, R3 and the
collector-emitter of Q1. Inside the U1, an integrated photodetector detects the light
generated by the emitting diode. According to the current transfer ratio (CTR) of U1
(Equation 3.1), the output current flows through R4 and generates the Gate-Source
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voltage (VGS) to turn on Q2 to let V CC_12V provide the power to the actuator.
Therefore, a high logic level signal is achieved through the Status port. If the Control
port sends a low logic level signal to this circuit, likewise, a low logic level signal is
collected through the Status port.

IO = IF ∗ CTR, (3.1)
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Optoisolator

Fig. 3.4 NOS.E Schematic of Driver Circuits. R represents the resistor; C represents capacitor; Q1 is NPN switching
transistors; U1 is high speed optocoupler; Q2 is N-Channel MOSFET.

The working statuses of different actuators are monitored by the circuit shown in
Fig. 3.5. While the high logic level Status signal represents that the actuator is opened,
the low logic level Status signal means that the actuator is closed. The monitoring
signal “Status” is isolated by the high-speed optocoupler, then the isolated signal
(actuator working status) is sent to a buffer before being collected by the MCU.

The interchangeable sensor array is built with eight commercially available metal
oxide gas sensors: TGS 2620, TGS 2602, TGS 2600,TGS 2600, TGS 2603, TGS 2610D,
TGS 2611E, and TGS 2612 (FIGARO ENGINEERING INC, Mino, Osaka JAPAN).
The target input gases stimulate the gas sensors to generate specific voltage outputs.
An analogue to digital converter is used to convert these voltage outputs to digital
signals which are sent to the MCU for data processing. The MCU completes the tasks
such as data acquisition, actuator control, data pre-processing and communicating
with the host computer.
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Fig. 3.5 NOS.E Schematic of Automated Control Monitoring Circuits. R represents the resistor; C represents capacitor;
U2 is high speed optocoupler; U3 is Operational Amplifier.

3.2.2 Software design

The software architecture (Fig. 3.6) of NOS.E is based on two main parts: The first part
is the host computer software which is designed as the user interface, and the second
part is the slave computer software, which is located inside the NOS.E instrument.

The host computer is designed as the user interface (see Fig. 3.7) which is used
to configure the NOS.E equipment. This interface can send the commands to control
the different actuators and show the real-time working status of these actuators by
receiving the fault detection and alarming feedbacks from the slave computer. The user
interface is also used to record, store, and analyse the data by using related widgets
and commands. The output wave-forms of gas sensors is displayed to the user in real
time. The collected odour data is stored on the local disk in the text format. Key
features of the odour data are extracted and shown to the user in graph.

The slave computer can collect the odour data through an analogue to digital
module and the data acquisition program embedded in the MCU, and transmit the
odour data to the host computer through WIFI module. The WIFI module uses the
universal asynchronous receiver transmitter (UART) interface to communicate with the
MCU. The slave computer can also communicate with the host computer to manage
all the actuators by using control commands and work status feedbacks.
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Fig. 3.6 Block Diagram of NOS.E Software Architecture. Dashed blue line represents the actions related with users;
Solid blue line represents the signal chain; Solid green line represents the airflow chain; Solid red line represents the
power chain.

3.3 Reliable Automated Airflow Control Design for

the NOS.E

The airflow control design is a critical element in the e-nose system, analogous to
the important and necessary activities of air inhalations that control the airflow in
the human olfactory system [80]. An e-nose’s air intake system contains the mixing
chamber, the gas chamber, the driver circuits, and the actuators (the sampling pumps
and the solenoid valves). The primary function of the air intake system in the NOS.E
is to ensure the odour tests are executed routinely and automatically by controlling
the actuators and work with the MCU to implement the automated control logic.
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Fig. 3.7 Control and Configuration Panel.

3.3.1 Automated airflow control phase

NOS.E’s airflow control logic reduces the test errors caused by manual initialisation and
configuration of the test system. Eight phases have been designed in the NOS.E control
logic. Each working phase has different airflow parameters, which are fixed based on
the manual training mode, then preprogrammed into the user interface. Moreover,
these airflow parameters are also varied for different applications. Based on the target
application selected by the users, the controller will send different commands to control
the working status of the actuators. Table 3.1 shows the specific status of the different
actuators which are related to the proposed automated control logic. In this table,
V1, V2, V3, P1, and P2 represent the control signal of valve I, valve II, valve III, pump I
and pump II. T1, T2 and T3 are the control phase ID signals sent by the controller. In
addition, H indicates the high logic level signal, and L indicates the low logic level
signal.

Phase I: Equipment warming up and chamber washing

To warm up the equipment and wash the chamber, the first step involves opening the
solenoid valve I, solenoid valve III, pump I and pump II; and closing valve II. These
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Table 3.1 The Automated Control Logic for NOS.E
Phase V1 V2 V3 P1 P1 T1 T2 T3

I H L H H H L L L
II L L H L H L L H

PAUSE L L L L L L H L
III H L H H H L H H
IV L L H L H H L L
V L H H H H H L H
VI H L H H H H H L
VII H L H H H H H H

Note: H: High logic level signal; L: Low logic level signal.

actuators will stay at this working status for 300 seconds before closing Valve I and
Pump I. Then the instrument automatically switches to the next phase. The logic
function of phase I is shown in Equation 3.2.

YI = V1V̄2V3P1P2T̄1T̄2T̄3. (3.2)

Phase II: Vacuuming I

To reduce the response time of the airflow system, a negative pressure environment
is created by closing solenoid valve I and pump I, and opening the solenoid valve III,
and pump II for 10 seconds. This negative pressure will enable the input gas contact
with the gas sensor immediately once the valve I or valve II, valve III and pump I are
opened. The logic function of phase II is shown in Equation 3.3.

YII = V̄1V̄2V3P̄1P2T̄1T̄2T3. (3.3)

Phase PAUSE

After the vacuuming I phase, all the solenoid valves and pumps are closed for 10
seconds to let the user know the equipment is ready to collect data. At this point,
NOS.E also reminds the user to connect the test sample to the sample input port. The
logic function of the pause phase is shown in Equation 3.4.

YP = V̄1V̄2V̄3P̄1P̄2T̄1T2T̄3. (3.4)
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Phase III: Baseline setup

To setup the baseline for the sensor array, NOS.E opens solenoid valve I, solenoid valve
III, pump I, and pump II for 20 seconds. The logic function of phase III is shown in
Equation 3.5.

YIII = V1V̄2V3P1P2T̄1T2T3. (3.5)

Phase IV: Vacuuming II

Before the testing phase, a negative pressure environment is created to reduce the
response time of the airflow system. This step involves opening the solenoid valve III,
and pump II; and closing the solenoid valve II and pump I. The status of these actuators
will keep for 10 seconds. The logic function of phase IV is shown in Equation 3.6.

YIV = V̄1V̄2V3P̄1P2T1T̄2T̄3. (3.6)

Phase V: Testing

During the testing phase, NOS.E opens all actuators except the solenoid valve I. The
targeted gas is quickly extracted into the airflow system, and starts to collect data for
another 90 seconds. The logic function of phase V is shown in Equation 3.7.

YV = V̄1V2V3P1P2T1T̄2T3. (3.7)

Phase VI: Baseline Recovery

To exhaust the target gas after the testing phase, NOS.E opens all actuators except
the solenoid valve II for 90 seconds. The fresh air moves through the airflow system,
as the concentration of the targeted gas decreases, the sensor array response returns
toward the baseline. The odour data is saved in the local folder after this phase. The
logic function of phase VI is shown in Equation 3.8.

YV I = V1V̄2V3P1P2T1T2T̄3. (3.8)



52 The Design of NOS.E Equipment

Phase VII: Chamber washing

To clean the air intake system, NOS.E opens all actuators except the solenoid valve I.
The fresh air is moves through the system for 300 seconds, then NOS.E sends notice to
the user that the system will start the next round test automatically within 5 seconds.
The logic function of phase VII is shown in Equation 3.9.

YV II = V1V̄2V3P1P2T1T2T3. (3.9)

3.3.2 Fault detection for airflow control

An incorrect airflow control logic will lead to the inappropriate working status of the
actuators as well as the incorrect test data. There are certain risks that the test will
fail when the users are performing the odour analysis tests without monitoring the
equipment working status. Therefore, we designed an automated airflow control and
fault detection system (shown in Figure 3.8) to improve the reliability of the NOS.E
system. The actuators are controlled by the commands (V1, V2, V3, P1, and P2) which
come from the controller. According to the working status of actuators, some feedback
signals (V ′

1 , V ′
2 , V ′

3 , P ′
1, and P ′

2) are collected by the monitoring circuits (Figure 3.5).
The control phase ID signals (T1, T2, and T3) are combined with the control commands
and feedback signals by using the shifting register before monitoring the feedback
results. The feedback output is sent to the controller, and if the actuators’ working
status and phase ID are correct, the controller will send the next round of control
commands; otherwise, if any unexpected errors occur, the controller will terminate the
system then sends the specific fault and an alarm will inform the users [219–221].

The error of fault detection for automated airflow control system fN(k) can be
calculated by the following equation:

fN(k) =
n∑

i=1
[YN(k − i) − Y ′

N(k − i)]2, (3.10)

where N ∈ {I, II, P, III, IV, · · · V II} is the current test phase, n is the duration of the
current working phase, i is the length of the monitoring window, YN(k − i) represent
actuators’ control signals sent by the controller, Y ′

N(k − i) indicates working status
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Fig. 3.8 Diagram of NOS.E Automated AirFlow Control and Fault Detection Design. V1, V2, V3, P1, and P2 are the
valve and pump control signals sent by controller; T1, T2 and T3 are the control phase ID signals sent by controller;
V ′

1 , V ′
2 , V ′

3 , P ′
1, and P ′

2 are the working status feedback signals collected from the solenoid valves and pumps.

feedback signals collected from the actuators.

Since there are eight working phase in the NOS.E automated control system, fN (k)
can also be written as:

f(k) = [fI(k), fII(k), fP (k), fIII(k), · · · , fV II(k)]T . (3.11)

Y (k) is a vector representation of the control signals in different working phases:

Y (k) = [YI(k), YII(k), YP (k), YIII(k), · · · , YV II(k)]T , (3.12)

As in the above, Y ′(k) is a vector representation of the working status feedback
signals collected from the actuators in each working phase:
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Y ′(k) = [Y ′
I (k), Y ′

II(k), Y ′
P (k), Y ′

III(k), · · · , Y ′
V II(k)]T . (3.13)

As found in Table 3.1, all the control and phase ID signals should match with the
designed order and logic level. The NOS.E system cannot work appropriately if just
one of the signals’ logic level is mis-matched with the proposed control logic. The fault
detection threshold (Equation 3.10) is set at 1, i.e. fN(k) = 1. Once the calculated
error is equal to 1, the controller will terminate the NOS.E system and send fault
information and alarm the user.

3.4 Material and Methods for the NOS.E Reliabil-

ity Tests

3.4.1 Automated airflow control and fault detection system

We first test the stability and reliability of NOS.E before using it on alcohol samples.
This is done over a period of three days when the complete sequence of eight working
phases was automatically run 90 times (30 times per day). The NOS.E user interface
(see Fig. 3.7) was used to monitor the status of the different actuators throughout
this period. The presence of green text "open" under an actuator means it is working,
whereas the red text “closed” below an actuator indicates this actuator has stopped
working and has closed. In addition, faults simulation tests were also performed by
manually turning off/on the power of different actuators when the NOS.E system was
running. The results were monitored by the NOS.E user interface.

3.4.2 Alcohol samples

In this dissertation, 24 samples were collected from three different alcohols bought from
BWS, (Haymarket, Sydney, Australia) (NJW = 8, NGG = 8, NJD = 8). Each sample
(5mL) was put into 20 mL vials, which were sealed airtight with a screw cap containing
a 1.3 mm thick polytetrafluoroethylene/silicone septum (Sigma-Aldrich, Castle Hill,
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NSW, Australia). These samples were separated into two groups. Fifteen samples
(NJW = 5, NGG = 5, NJD = 5) were analysed by NOS.E in two consecutive days, the
first three samples were analysed on day 1, and the other two samples were analysed
on day 2. Another identical nine samples were tested by the GC×GC-TOFMS within
one day.

3.4.3 GC×GC-TOFMS

Sample collections of the different alcohols were completed via headspace sampling via
headspace sampling using a 50/30 μm divinylbenzene/ carboxen/ polydimethylsiloxane
(DVB/CAR/PDMS) 24 Ga Stableflex solid-phase microextraction (SPME) fibre and
manual fibre holder (Supelco, Bellefonte, PA, USA). According to the manufacturer’s
recommendations, the fibre was initially conditioned for 60 min at 270 ℃ before its first
use. The DVB/CAR/PDMS fibre was exposed to the sample headspace and the VOCs
were allowed to adsorb onto the fibre for 60 min. The fibre was thermally desorbed for
5 min at 250 ℃ into the inlet of the GC×GC-TOFMS and carried through the column
via a helium carrier gas for separation and analysis. The parameters of the oven were
configured as follows; initial temperature of 35 ℃ held for 5 min, then increased to 240
℃ at a rate of 5 ℃ per min and held for another 5 min. The secondary oven temperature
offset was 10 ℃. The mass range observed was 29 to 450 amu at an acquisition rate of
100 spectra per second for 1000 seconds with an additional acquisition delay of 120
seconds. The total run time of GC×GC-TOFMS for each sample is 51 min. Fibre
blanks were run in-between samples to ensure no cross contamination occurred between
samples.

3.4.4 NOS.E

The NOS.E equipment was warmed up for 30 min by powering and opening all the
actuators. The NOS.E Analyser was used to complete the configuration of the test
time for each operation phase. (Phase I: 300 seconds; Phase II: 10 seconds; PAUSE:
10 seconds; Phase III: 20 seconds; Phase IV: 10 seconds; Phase V: 90 seconds; Phase
VI: 90 seconds; Phase VII: 300 seconds). Repeat time, which is applied as 5 in this
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dissertation, is used to setup the test rounds to let the NOS.E complete the data
collection automatically. The reference gas (fresh air) was connected to the input
port I of the NOS.E equipment. Two sampling needles were inserted in the vial’s
septum, while one needle was connected to the reference gas, another needle was used
to connect the sample vial to the input port II, to allow the headspace samples to
be analysed. After preparation, the automated NOS.E odour analysis tests were run
through the NOS.E Analyser. The NOS.E system saves the test datasets and stops
running automatically once three tests are completed. It took 830 seconds to run each
NOS.E test.

3.4.5 Data processing

Principal component analysis (PCA) is a conventional unsupervised pattern analysis
method used as a visual tool to show groupings and separations within datasets.
The mechanism of this method is to transform the odour information from the high-
dimensional feature space to a low-dimensional visual space (e.g. 2D or 3D) by
finding new coordinates that maximize variances of the test samples [2, 205]. The
visualised characteristic provides users with a highly efficient method to view the odour
data from its most informative viewpoint [2, 206]. Therefore, the GC×GC-TOFMS
chromatographic datasets and NOS.E key features datasets (which were extracted from
the voltage signals collected from three different alcohols) were tested and compared
using PCA techniques to evaluate the performance of the NOS.E system. Additionally,
the most popular classification algorithm, SVM, was applied to verify the performance
of the NOS.E system.

3.5 Results and Discussion

3.5.1 Automated airflow control and fault detection system

During the automated airflow control test where the full sequence of eight control
phases were run, no fault alarms were triggered (results not shown), indicating the
system ran exactly as configured. The automated operation mode was able to improve
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the test efficiency by saving the user considerable time. Moreover, the automated test
mode can eliminate the incorrect manipulations caused by manual testing, and thus
improve the data quality and test performance. In addition, the faults simulation test
results listed in Table. 3.2 showed that this design can timely terminate the NOS.E
system and show the fault information. In this table, row N/A represents the correct
control commands and monitoring status for all the actuators in each phase. Row V ′

1

to P ′
2 indicates the abnormal working status (which is bold and underlined in each

row) monitored by the MCU. This fault detection and monitoring design can improve
the reliability of the NOS.E system and guarantee a valid test dataset by terminating
the system when the faults occur.

Table 3.2 The Simulation Test Results of NOS.E Fault Detection Design
Phase Fault Status V1 V2 V3 P1 P1 NOS.E

N/A H L H H H Running
V ′

1 L L H H H Terminated
V ′

2 H H H H H Terminated
I V ′

3 H L L H H Terminated
P ′

1 H L H L H Terminated
P ′

2 H L H H L Terminated
N/A L L H L H Running
V ′

1 H L H L H Terminated
V ′

2 L H H L H Terminated
II V ′

3 L L L L H Terminated
P ′

1 L L H H H Terminated
P ′

2 L L H L L Terminated
N/A L L L L L Running
V ′

1 H L L L L Terminated
V ′

2 L H L L L Terminated
P V ′

3 L L H L L Terminated
P ′

1 L L L H H Terminated
P ′

2 L L L L H Terminated
N/A H L H H H Running
V ′

1 L L H H H Terminated
V ′

2 H H H H H Terminated
III V ′

3 H L L H H Terminated
P ′

1 H L H L H Terminated
P ′

2 H L H H L Terminated
N/A L L H L H Running
V ′

1 H L H L H Terminated
V ′

2 L H H L H Terminated
IV V ′

3 L L L L H Terminated
P ′

1 L L H H H Terminated
P ′

2 L L H L L Terminated
N/A L H H H H Running
V ′

1 H H H H H Terminated
V ′

2 L L H H H Terminated
V V ′

3 L H L H H Terminated
P ′

1 L H H L H Terminated
P ′

2 L H H H L Terminated
N/A H L H H H Running
V ′

1 L L H H H Terminated
V ′

2 H H H H H Terminated
VI V ′

3 H L L H H Terminated
P ′

1 H L H L H Terminated
P ′

2 H L H H L Terminated
N/A H L H H H Running
V ′

1 L L H H H Terminated
V ′

2 H H H H H Terminated
VII V ′

3 H L L H H Terminated
P ′

1 H L H L H Terminated
P ′

2 H L H H L Terminated

Note: H: High logic level signal; L: Low logic level signal.
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3.5.2 Alcohol samples analysis

The alcohol samples were first analysed using GC×GC-TOFMS and presented as total
ion chromatograms (TIC) (Figure 3.9). Although the two whisky samples have similar
chemical compounds, these alcohol samples still showed a distinct pattern based on
the total ion chromatogram (TIC). The whisky samples (Figure 3.9a and Figure 3.9c)
demonstrated a considerable variation in the TICs. Grey Goose Vodka samples showed
a much purer compound pattern as evident in Figure 3.9b demonstrating a much less
complex odour profile compared to the other two alcohols.

a. Green Label

b. Grey Goose

c. Jack Daniels

Fig. 3.9 GC×GC-TOFMS TIC contour plots representative of (a) Green Label Whiskey samples, (b) Grey Goose
Vodka samples, and (c) Jack Daniels Tennessee Whiskey samples.

Figure 3.11 and Figure 3.12 show the PCA results of three different alcohols by
using GC×GC-TOFMS and the NOS.E platform. In Figure 3.11, all of the replicate
alcohol samples tested were tightly clustered and illustrated similar VOC profiles. In
addition, all three alcohol types were clearly distinguished from each other. According
to the NOS.E PCA results, although the alcohol samples from the same origin were
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Fig. 3.10 NOS.E Responses for Three Alcohol Samples.

not tightly clustered, these three alcohol types were still distinctly separated from each
other and could be easily identified. Considering the low cost and fast analysis time,
the performance of the NOS.E is acceptable. The classification results are shown in
Table 3.3. We achieved 100% average accuracy of SVM classification when identifying
GG with JW and JD samples. The average accuracy of SVM classification for the JW
and JD samples is 97.8%. For the multi-classification of these three alcohol samples,
we can recognise them with 93.33% average accuracy of SVM classification. Overall, it
was determined that the NOS.E can provide an efficient method to identify different
items based on their odour.
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Fig. 3.11 GC×GC-TOFMS PCA Analysis Results

Table 3.3 Classification Results of three Alcohols
Alcohols Accuracy of SVM Classification

JW VS GG 100%
JW VS JD 97.8%
GG VS JD 100%

JW VS GG VS JD 93.33%

3.6 Conclusions

This chapter proposed a new e-nose instrument, NOS.E, which was used for standardi-
sation of odour detection and identification purposes. Based on the specific control
logic, an automated air intake design (motivated by the human olfactory system) and
the related fault detection and alarming design were equipped in the proposed NOS.E
system. To validate the design of the automated airflow control and fault detection
design, the NOS.E system was run 90 times over three days. The status of the airflow
system was monitored by the NOS.E user interface. According to the test results, the
NOS.E system can successfully execute the designed control logic. Moreover, the fault
detection and monitoring system is able to provide the insurance to avoid wasting
resources by timely terminating the system when a fault status of actuators is detected.
The performance of the designed NOS.E system has been tested by three different
alcohols and compared with the results of GC×GC-TOFMS by using PCA pattern
recognition techniques. In summary, compared with the time consuming and expensive
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GC×GC-TOFMS odour analysis method, the proposed e-nose system is a suitable
odour analysis platform in terms of its low cost, high efficiency and reliability features.
Future works will continue to develop the platform and improve the performance of
the airflow control in the NOS.E. The intent is to build more NOS.E prototypes to
validate its repeatability before implementing NOS.E in different applications (e.g.
food quality assessment, illicit drug detection, wildlife products identification, etc.).
Finally, a remote e-nose system based on the cloud and Narrow band Internet of Things
(NB-IoT) technologies will be built.





Chapter 4

Development of the Data
pre-processing and classification
methods

4.1 Introduction

Electronic nose (e-nose) is capable of identifying chemical compounds through sensing
and analysing odour molecules. As a kind of machine olfaction, E-nose plays a significant
role in the odour analysis area and has received considerable attention from researchers
all over the world [3–6]. The e-nose system comprises a set of active gas sensors that
detect the odour and transduce the chemical vapours into electrical signals [3, 4]. The
odour "fingerprint" captured by the gas sensors can then be analysed and identified with
pattern classification methods, e.g., Principal Components Analysis (PCA), Cluster
Analysis (CA), Support Vector Machine (SVM), and Artificial neural networks (ANNs).
E-nose has been extensively applied in the areas of agriculture, medical diagnosis,
environmental monitoring and protection, food safety, the military, cosmetics and
pharmaceuticals [3, 6–13].

Currently, by using different e-nose platforms, the studies on e-nose mainly focus
on two different parts: 1. The design of hardware systems (such as sensor design and
main control system design) [11, 13, 22–27]; 2. The algorithms for e-nose, such as data
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pre-processing methods and odour classification methods [11, 16, 28–34]. Moreover,
some researchers develop their e-nose research based on the famous commercial e-nose
products (such as the fox e-nose (Alpha MOS, France), the portable Cyranose 320
(Cyrano Science, USA), Airsense PEN2 and PEN3 (Airsense Analytics GmbH, Ger-
many) [3, 35–41]. These studies on e-nose have made great progress in this area.

In order to get reliable classification results for e-nose applications, data pre-
processing methods are used to improve the stability of the feature extracted from
the pre-processed odour data. These pre-processing techniques mainly include wavelet
package correlation filter (WPCF), mean filter (MF), polynomial curve fitting (PCF)
and locally weighted regression (LWR), etc. [54, 55]. Even though these methods
are quite mature and efficient, sometimes they are unable to obtain reliable results
due to individual variations in the test system and unexpected responses caused by
the gas interference or fluctuations of environmental parameters [51–53]. Moreover,
these unexpected responses treated as noise will potentially reduce the stability and
reliability of features. Experimental results will be significantly influenced especially
for the derivative-related features which are sensitive to noise.

To seek a data pre-processing method which can overcome the drawbacks of current
data pre-processing techniques for e-nose system, this dissertation proposes a novel non-
parametric kernel-based modelling (KBM) data pre-processing method. Furthermore,
this method is tested by recently developed NOS.E odour detection and identification
system. The NOS.E system (shown in Fig. 4.1) mainly comprises an efficient power
system, an automated air intake system, an interchangeable metal-oxide (MOX) gas
sensor array board, and a fast data acquisition module. The target odour is drawn
into the mixing chamber by the gas sampling pump, before going into the gas chamber,
where the sensor array senses the odour stimulus.

Before applying the non-parametric KBM approach [61] [62] in the area of e-nose
data pre-processing, three standard signals (linear signal, logarithmic signal and sigmoid
signal) are used to test the performance of five different pre-processing methods (WPCF,
MF, PCF and LWR). The results (presented in Section 4.3) show that the proposed
method provides more reliable pre-processing results compared with other methods.
Moreover, these data pre-processing methods are applied on real odour signals collected
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by the NOS.E system and then the Coefficient of Variation (CoV) method is employed
to evaluate the stability of derivative-related features [222]. The CoV analysis results
(listed in Table 4.2) for different perfume features indicate that the proposed method
is much better than other data pre-processing methods.

Fig. 4.1 Block Diagram of NOS.E System.

4.2 Experimental Setup

4.2.1 Data pre-processing simulation setup

In this study, three different standard simulated test signals (as shown in Fig 4.2):
linear signal (Lin) y = x; logarithmic signal (Log) y = log(x) and sigmoid signal (sig)
y = 1

(1+exp(x)) are used to test the performance of five different pre-processing methods
(KBM, WPCF, MF, LWR and PCF). Firstly, these signals are polluted by Gaussian
noise with the Signal-to-Noise Ratio (SNR) ranging from 10dB to 50dB. Then the
polluted signals are processed by the five different data pre-processing methods. Finally,
the Normalized Root Mean Square Error (NRMSE) is used as a criterion to determine
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the goodness-of-fit between the pre-processed signals and the original signal, where the
NRMSE costs vary between -Inf (bad fit) to 1 (perfect fit).
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Fig. 4.2 Simulated Test Singals.

4.2.2 Perfume test experimental setup

In this study, the NOS.E system is used to detect two different kinds of perfume samples
(bought from David Jones, Bondi Junction, Sydney, Australia) to verify the performance
of the proposed data pre-processing method. The diagram of NOS.E perfume test
experimental setup is shown in Fig. 4.3. Users can operate the NOS.E system via a
touchscreen Pad. The integral components of this system are assembled in a carrying
case. The sensor array in NOS.E equipment is composed of ten commercially available
metal oxide gas sensors: TGS 2611E, TGS 2612, TGS 2610D, TGS 2611C,TGS 2610C,
TGS 2602, TGS 2600, TGS 2620, TGS 2603, and TGS 2602. The input gases are
sensed by the sensor array, converted to digital signals and then sent to the host
computer for data processing.

In this dissertation, perfume I is CHANEL Chance, and perfume II is CHANEL
Gabrielle. The test protocol of the NOS.E system are listed in the following steps
(using perfume I as an example).
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Fig. 4.3 Diagram of NOS.E Perfume Test Experimental Setup.

• 1. Prepare the test sample;
Prepare 1mL perfume using a 10mL headspace vial.

• 2. Power on NOS.E equipment and open all the actuators to warm up the NOS.E
equipment for 60 minutes (to make sure the equipment works at the ideal working
status);

• 3. Set up the test time for each phase using the NOS.E Analyser;
Chamber washing time for 300 seconds; Vacuum I for 10 seconds; Baseline

setup for 20 seconds; Vacuum II for 10 seconds; Test time for 90 seconds; Baseline
recovery for 90 seconds and Chamber washing II for 300 seconds.

• 4. Connect the test sample I;
As shown in Fig. 4.1, the headspace vial has two sampling needles, one for the

fresh air input and the other for the target gas output to NOS.E equipment.

• 5. Configuration;
Click Configuration button on the user interface to send all the operating

parameters and instructions to the slave computer.
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• 6. Baseline set up;
Click Baseline Set up button, and the NOS.E system will start to collect the

data until the baseline recovery phase is complete.

• 7. Save the data;
Once the test is completed, the data will be saved in the local folder automati-

cally.

• 8. Review the test results;
Click Analyser button to review the sensor responses and key features.

• 9. Repeat the same sample followed from steps 5 to 8 for ten times, and these
repetitions are counted as ten acquisitions.

Followed by the NOS.E odour test protocol, 60 perfume samples (30 perfume I
samples, 30 perfume II samples) were collected by the NOS.E system. Each sample
was collected 10 times, hence, 600 odour datasets (300 perfume I datasets, 300 perfume
II datasets) were analysed. The odour datasets used in this dissertation were obtained
under 25 ℃ to 27 ℃ ambient temperature and 50% RH ambient humidity.

4.3 Methodology

In this section, a new non-parametric KBM method is exploited to model the gas
sensor response [61–63]. Unlike most of the previous data pre-processing methods, in
which the denoising is based on the filtering techniques, our approach reduces the noise
based on non-parametric modelling to improve the classification accuracy; nevertheless,
the identification of the model is based on the raw data.

Generally, the researchers use filtering based methods to process the raw data of
the MOX gas sensor response. However, sometimes, the filter based pre-processing
methods cannot obtain the desired effects due to the individual variation of the test
system and the unexpected responses caused by the interference gas [51–53]. Especially,
as the filter based methods cannot always guarantee the smoothness of the filtered
signals, in feature extraction stage, unacceptable outliers might be generated. In order
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to obtain a better result and facilitate the automated feature extraction, we adopted a
non-parametric modelling method which applied the finite impulse response to describe
the system’s characteristics.

In this dissertation, t with sampling time T is selected as the time index. The
relationship between the gas input (u), which can be approximately treated as a step
stimulation, and the gas sensor response (y) can be described by a single input single
output (SISO) dynamic system. Hence, the discrete time output y can be calculated
by the impulse response (IR) of this system by the following equation:

y(t) =
∞∑

k=1
g0

kq−ku(t) + ε(t), k = 1, 2, 3 · · · , ∞, t = 1, 2, 3 · · · , N (4.1)

where g0
k represents the coefficient of the impulse response. q represents the shift

operator, i.e. qu(t) = u(t + 1), ε(t) is the Gaussian white noise.

Considering the impulse response decays exponentially for linear stable systems,
we here express the system by using the mth finite impulse response (FIR) as:

G(q, c) =
m∑

k=1
gkq−k, c = [g1, g2, · · · , gm]T . (4.2)

Hence, the model in Eq.(4.1) is able to be transferred as:

y(t) = ϕT (t)c + ε(t), (4.3)

where ϕ(t) contains the input information of the system:

ϕ(t) = [u(t − 1), u(t − 2), · · · , u(t − m)]T . (4.4)

Then, the FIR model can be written as:

YN = φNc + εN , (4.5)
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where N = M − m, and M is the number of data point that we collected. YN is a
vector representation of sensor’s responses:

YN = [y(1), y(2), · · · , y(t), · · · , y(N)]T , (4.6)

where y(t) denotes the t-th element of YN .
εN is a vector representation of Gaussian white noise:

εN = [ε(1), ε(2), · · · , ε(t), · · · , ε(N)]T , (4.7)

where ε(t) denotes the t-th element of εN .
The i-th row of φN ∈ R

N×m is [u(m + i − 1), u(m + i − 2), · · · , u(i)].

Assuming that function g ∈ R
m, then function g in the regularisation term can be

projected into a reproducing kernel Hilbert space (RKHS).
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Fig. 4.4 Simulated Response Comparison for Different Data Pre-processing Methods.

The IR model can be identified by minimising the cost function:

ĉ = arg min
c∈Rm

||YN − φNc||22 + γcT P −1c, (4.8)
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Fig. 4.5 Data pre-processing Results for Perfume I.

where P represents the kernel matrix which is defined as:

p(i, j) = e−ρ‖i−j‖2
, ρ > 0. (4.9)

The estimated IR model from Eq.(4.8) can provide better and smoother results
compared to LASSO (Least Absolute Shrinkage and Selection Operator) or Ridge
regression using the prior information in kernel matrix P −1 [62]. Furthermore, as
the system is stable, after a while, the impulse response will be close to zero. Hence,
when m is too big, we expect that the last several parameters of the estimated FIR
approach to zero. Therefore, an extra L1 regularisation was added to sparsify the
transfer function identified, and the cost function can be rewritten as:

ĉ = arg min
c∈Rm

||YN − φNc||22 + γcT P −1c + α||c||1. (4.10)

where α is a positive coefficient to control the trade off between L1 regulariser and
kernel regulariser γcT P −1c.
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Table 4.1 goodness-of-fit Result

Method Test Signal
goodness-of-fit Result
Signal-to-Noise Ratio

10dB 20dB 30dB 40dB 50dB
N/A Linear 0.0567 0.7016 0.9056 0.9702 0.9906
N/A Logarithmic 0.1713 0.7379 0.9171 0.9738 0.9917
N/A Sigmoid 0.2970 0.7777 0.9297 0.9778 0.9930
KBM Linear 0.8411 0.9492 0.9818 0.9900 0.9912
KBM Logarithmic 0.8605 0.9553 0.9843 0.9916 0.9927
KBM Sigmoid 0.8815 0.9620 0.9859 0.9914 0.9922

WCTF Linear 0.6740 0.8950 0.9605 0.9661 0.9635
WCTF Logarithmic 0.7139 0.9063 0.9568 0.9670 0.9696
WCTF Sigmoid 0.7557 0.9137 0.9573 0.9633 0.9638

MF Linear 0.7057 0.9066 0.9694 0.9875 0.9912
MF Logarithmic 0.7414 0.9179 0.9730 0.9887 0.9919
MF Sigmoid 0.7802 0.9296 0.9750 0.9860 0.9876

LWR Linear 0.7579 0.9256 0.9766 0.9923 0.9969
LWR Logarithmic 0.7936 0.9349 0.9784 0.9905 0.9927
LWR Sigmoid 0.8253 0.9432 0.9772 0.9841 0.9850
PCF Linear 0.8409 0.9498 0.9841 0.9950 0.9984
PCF Logarithmic 0.8598 0.9542 0.9815 0.9873 0.9881
PCF Sigmoid 0.8783 0.9538 0.9711 0.9735 0.9738

Note: N/A: Not Applicable; KBM: Kernel-based modelling; WTCF: Wavelet Transform Correlation Filter; MF:
Mean Filter;
LWR: Locally Weighted Regression; PCF: Polynomial Curve Fitting.

The above equation can be considered as a special case of elastic net [223] which the
L2 norm regularisation is weighted by kernel matrix P −1. We here rearrange Eq.(4.10)
and define two new parameters as:

φ∗
N = 1√

1 + γ

⎡
⎣ φN√

γB

⎤
⎦ , (4.11)

where B is the upper triangular matrix from Cholesky factorisation of kernel matrix
P −1 (P is symmetric) and

Y ∗
N =

⎡
⎣YN

0

⎤
⎦ . (4.12)

Then, the cost function Eq.(4.10) can be written as:

ĉ∗ = arg min
c∗∈Rm

||Y ∗
N − φ∗

Nc∗||22 + α√
1 + γ

||c∗||1, (4.13)

where c∗ is defined as:
c∗ =

√
1 + γc. (4.14)

Due to the limitation of the input signal, the input matrix φT
NφN is not orthogonal.



4.4 Experimental Results and Discussion 73

As efficient algorithms for solving wide classes of convex optimisation problems,
interior-point methods are always efficient in terms of computation time and resource
consumptions [224]. The Eq. (4.13) is convex but not differentiable. The L1 regu-
larisation LSP (Least Squares Problems) can be transformed to a convex quadratic
problem, with linear inequality constraints. Therefore, we adopt an interior-point
method (primal-dual interior-point method) [225] for this L1 norm regularisation for
ĉ∗. As the result, ĉ∗ can be restored to ĉ as:

ĉ = 1√
1 + γ

ĉ∗. (4.15)

4.4 Experimental Results and Discussion

4.4.1 Data pre-processing simulation results

The datasets listed in Table. 4.1 come from the average of 100,000 times simulations,
which show the goodness-of-fit test results for three test signals. According to this
table, although PCF achieves higher goodness-of-fit results for linear signal (SNR from
20dB to 50dB), the proposed non-parametric KBM method can also achieve quite close
results. As for the logarithmic signal and sigmoid signal, the proposed method achieves
higher goodness-of-fit results than the other methods, which indicates the signals
processed by the proposed method are more close to the original signals. Therefore, the
proposed non-parametric KBM method provides more reliable pre-processing results.
Moreover, since the original test signals (linear signal, logarithmic signal and sigmoid
signal) are smooth and noiseless, when using these signals to evaluate the different
data pre-processing methods, the method achieves higher goodness-of-fit is considered
as a more smooth method. In addition, the simulated response results (see Fig. 4.4) for
different data pre-processing methods indicate that the proposed method can provide
more smooth results compared with other pre-processing methods.



74 Development of the Data pre-processing and classification methods

4.4.2 Perfume test results

Based on the different data pre-processing methods, perfume I is used as an example
to show the waveforms for the sensors which have responsed to the test samples, and
results are plotted in Fig. 4.5. From this figure, it can be more directly seen that the
proposed non-parametric KBM method can provide more smooth response waveforms
compared with the other methods. Therefore, the proposed method can achieve much
more reliable derivative-related features.

In odour classification stage, the features are often extracted from the data recorded
until the steady-state response of gas sensors are reached. Feature extraction methods
generally fall into two categories: the human-supervised extraction based on expert
knowledge and the automatic feature extraction methods that are completely data-
driven. In this study, we have extracted the features by using a human-supervised
method as the proof-of-concept of the presented method. Considering the derivative-
based features are sensitive to noise, to demonstrate the effectiveness of our proposed
method in dealing with noised signals, we in particular chose six derivative-based
features commonly used by other works [64, 65]: the response of the maximum 1st

derivative (Dres), the response of the maximum 2nd derivative (Dresx), the response
of the minimum 2nd derivative (Dresn), time interval between gas-in and maximum
1st derivative of response (tDres), the time interval between gas-in and maximum 2nd

derivative of response (tDresx), and the time interval between gas-in and minimum 2nd

derivative of response (tDresn). The diagram of these features is shown in Fig. 1.2.

All the derivative-related features listed in Fig. 1.2 are extracted based on the six
different pre-processed datasets. Then the Coefficient of Variation (CoV: V arcoef (x))
assessment method was used to evaluate the stability of these features. According to
Eq. 4.16, a smaller CoV value will indicate the better feature stability:

V arcoef (x) = σ(x)
x̄

× 100%, (4.16)

where σ(x) is the standard deviation of the feature x, and x̄ is the mean value of the
feature x.
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Based on the CoV analysis results (listed in Table 4.2) for features of different
types of perfumes, the proposed non-parametric KBM method has a smaller CoV value
compared with the other methods, which means this method could provide more stable
feature datasets in terms of improving the performance of the classification task.

Table 4.2 The Odour Features’ Coefficient of Variation for Perfume I and Perfume II

Features Perfume I Perfume II
KBM WTCF MF LWR PCF N/A KBM WTCF MF LWR PCF N/A

TGS 2610C Dres 1.64 19.85 1.94 1.22 17.45 41.18 1.40 29.94 2.27 1.13 19.65 47.25
TGS 2610C Dresx 0.71 11.16 4.10 1.49 28.24 12.31 0.72 7.05 4.32 1.49 16.13 14.42
TGS 2610C Dresn 0.90 56.94 1.82 0.84 57.13 34.82 0.61 66.92 1.87 0.72 43.51 70.85
TGS 2610C tDres 0.59 6.32 2.28 0.80 33.66 31.17 0.66 3.42 2.59 0.97 33.87 31.48

TGS 2610C tDresx 2.22 53.52 12.31 14.02 26.18 48.91 2.58 82.42 14.96 15.59 30.55 50.81
TGS 2610C tDresn 11.07 18.50 17.10 57.13 29.37 15.93 18.69 21.88 18.14 56.91 16.13 17.70

TGS 2602I Dres 1.91 112.57 10.99 23.57 83.36 37.07 2.44 90.16 11.35 17.94 54.53 81.65
TGS 2602I Dresx 1.68 66.50 10.27 10.77 17.66 22.97 1.85 52.55 11.12 11.20 19.49 39.82
TGS 2602I Dresn 1.58 43.97 16.55 48.21 60.17 31.33 1.79 33.04 17.94 51.49 67.42 33.99
TGS 2602I tDres 10.90 30.30 17.52 120.75 37.24 16.510 13.35 33.49 19.31 95.21 15.38 19.25

TGS 2602I tDresx 3.43 103.43 14.50 34.42 109.80 43.46 2.54 73.34 13.09 20.40 64.10 80.94
TGS 2602I tDresn 2.64 85.17 16.38 8.09 18.11 22.66 3.67 87.15 17.98 3.03 15.61 41.02

TGS 2620 Dres 4.00 47.97 18.04 62.07 60.17 30.60 4.92 39.21 18.67 63.21 66.40 31.17
TGS 2620 Dresx 3.70 6.46 3.50 3.78 6.32 6.54 2.56 3.63 2.39 2.55 3.23 3.67
TGS 2620 Dresn 2.94 3.66 2.79 3.04 3.69 3.69 3.00 4.02 2.85 3.05 4.28 4.06
TGS 2620 tDres 3.94 4.36 3.69 3.89 4.33 4.41 4.60 5.17 4.29 4.56 5.12 5.23

TGS 2620 tDresx 3.34 4.18 3.13 3.52 5.15 4.23 2.93 4.00 2.74 3.15 4.49 4.04
TGS 2620 tDresn 1.12 6.78 2.05 0.95 5.63 6.04 1.19 6.57 2.25 0.73 4.60 9.89

TGS 2603 Dres 0.52 27.88 4.40 2.61 71.53 26.75 0.40 21.38 4.35 4.00 5.49 23.89
TGS 2603 Dresx 0 7.65 1.63 0.56 21.44 7.93 0.40 5.11 1.54 0.22 8.90 10.12
TGS 2603 Dresn 0 8.21 2.53 1.49 9.30 15.89 0 4.48 2.69 1.64 6.92 12.92
TGS 2603 tDres 0 6.76 3.66 0.76 5.93 43.86 0 5.35 3.98 1.02 5.24 40.47

TGS 2603 tDresx 4.66 5.65 36.88 62.61 69.01 44.10 8.71 5.49 37.96 65.71 5.49 42.65
TGS 2603 tDresn 3.03 36.98 5.91 58.37 79.67 53.22 0 14.10 3.16 37.05 22.34 46.67
TGS 2602II Dres 0 10.71 9.56 0.53 36.24 49.88 0 8.50 4.41 0.70 38.62 53.05

TGS 2602II Dresx 0.10 12.20 7.82 52.17 15.26 41.60 0.06 5.53 8.93 55.90 14.76 39.37
TGS 2602II Dresn 0.66 20.53 12.96 9.22 60.15 38.52 0.43 20.77 9.78 16.62 53.35 39.57
TGS 2602II tDres 1.33 43.22 17.30 42.88 65.11 48.52 3.46 17.41 13.45 44.96 34.93 40.79

TGS 2602II tDresx 2.52 17.24 33.01 5.96 9.05 40.38 3.82 18.06 26.64 2.11 6.67 44.34
TGS 2602II tDresn 0 9.60 23.55 38.84 76.17 39.82 0 5.75 26.79 40.32 75.87 40.30

4.4.3 Classification results

Based on different data pre-processing methods (non-parametric KBM, WPCF, MF,
PCF and LWR), we extracted six derivative-related key features for the classification
of the two types of perfumes by using the SVM classifier with RBF kernel. We used
the five-fold cross-validation method for classification. The full dataset is partitioned
into training and test sets by randomly selecting 20% of the data from each sample to
form the test set and the remaining data to form the training set. This process was
performed five times: where each data sample appears exactly once in a test set. The
five-fold cross-validation method is run ten times and the averaged accuracy is used to
assess the perfume classification accuracy.

The classification results are listed in Table 4.3. Without any pre-processing
methods, the SVM classifier achieved a 62.57% average accuracy of classification. When
the odour dataset was processed by WPCF, we achieved 94.12% average classification
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accuracy. The MF pre-processing method for SVM classifier has a 68.57% average
classification accuracy. The PCF and LWR pre-processing methods attained 87.80% and
71.50% average classification accuracy, respectively. According to these classification
results, the proposed non-parametric KBM method achieved a much higher average
classification accuracy (96.23%) than other methods. The confusion matrix for the
classification accuracy based on different data pre-processing methods is shown in
Fig 4.6. The classification accuracy clearly indicates that the proposed data pre-
processing method can provide more stable features to improve the performance of the
odour classifier.

Table 4.3 Classification Results
Pre-processing Method Parameters of Pre-processing Method Average Accuracy of SVM Classification (%)
N/A N/A 62.57
Kernel-based modelling method Kernel = RBF , ρ = 0.0005, m = 200 96.23
Wavelet Package Correlation Filter W avelet = Daubechies − 3, Level = 5 94.12
Mean Filter W indow width = 7 68.57
Polynomial Curve Fitting Order = 3 87.80
Locally Weighted Regression τ = 5 71.50
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Fig. 4.6 The confusion matrix for the classification accuracy for different data-preprocessing methods.

4.5 Conclusion

A novel non-parametric KBM odour data pre-processing method has been presented and
its effectiveness has been tested on the recently developed NOS.E system. According
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to the test results, when extracting derivative-related features, the proposed non-
parametric KBM method provides more reliable and stable pre-processing results
compared with the other pre-processing methods. Based on these derivative-related
features, NOS.E system can detect and identify two different perfumes with a 96.23%
classification accuracy by using popular SVM classifier.

Further study will focus on the areas below: 1. Collecting different samples to
validate the implementation of the NOS.E system across various odour identification
and classification applications; 2. Improving the efficiency and functionality of the
NOS.E system by further research outputs with the proposed non-parametric KBM
data pre-processing method and NOS.E hardware design optimisation; 3. Considering
discriminative models for feature extraction [226]); 4. Applying some cost-sensitive
classification algorithms to improve the performance of NOS.E system [200].





Chapter 5

Electronic Nose based Odour
Classification using Genetic
Algorithm and Fuzzy Support
Vector Machine

5.1 Introduction

The electronic nose (e-nose) is a device intended to detect and identify odours or flavors
based on the analysis of the responses of an array of gas sensors by using machine
learning algorithms. Over the last decades, in order to improve its performance, the
algorithms that have been employed to analyze electronic nose data have undergone
several important developments being driven by the fast growth of machine learning
technologies [3, 4, 82].

Benedetti, Simona, et al. [173] used Principal Component Analysis (PCA) and
Artificial Neural Network (ANN) to evaluate seventy samples of honey of different
geographical and botanical origin data and showed a 83.5% accuracy rate. By uti-
lizing support vector machine (SVM) for the calibration of the e-nose arrangement,
Brudzewski, Kazimierz, et al. presented an interesting case study for milk recogni-
tion [173]. The results of numerical experiments in this paper showed that for the
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e-nose, SVM algorithm has good generalization ability for the reasonably small size
of training datasets. In order to improve e-nose performance by optimizing feature
selection techniques, Gardner, JW et al. introduced a novel search method procedure,
V-integer genes genetic algorithms (GA), and compared it with other search methods
such as sequential forward or backward searches (SFS or SBS) and X-binary genes
GAs in paper [67]. Their test results showed that the V-integer genes GA approach is
an accurate and a fast search method when compared to some other feature selection
techniques.

Based on the dataset collected by PEN2, Yu, Huichun et al. [164] achieved an
80% to 100% correct rate when classifying Longjing green-tea quality grade using the
ANN algorithm. To correlate the e-nose measurements with the tea taster’s scores
in paper [227], Bhattacharyya, Nabarun, et al. obtained 81% to 85% classification
rate for Back-Propagation-Multilayer Perceptron (BP-MLP), 86% to 91% classification
rate for Radial Basis Function (RBF) network, and 91% to 94% classification rate
for probabilistic neural network (PNN) with unknown tea samples. In paper [228],
Cynkar, Wies, et al. predicted the geographical origin of Tempranillo wines produced
in Australia and Spain by using PCA, partial least squares discriminant analysis
(PLS-DA), and stepwise linear discriminant analysis (SLDA) with full cross validation
(leave-one-out method) to analyse the data collected by a mass spectrometry based
electronic nose (MS-EN). The PLS-DA showed 85% accuracy rate while SLDA showed
86% accuracy rate. After analyzing the average fingerprint spectrum and its principal
component scores in paper [162], Shi, Bolin et al. applied GA to select and optimize
the effective sensors which can significantly contribute to identifying Xihu-Longjing tea
from three producing areas and two tree species. Based on the e-nose data collected
by Wedge et al. at 2009, Gromski, Piotr S et al. compared the classification accuracy
of four pattern recognition algorithms, which include linear discriminant analysis
(LDA), PLS-DA, random forests (RF) and SVM. They recommended that SVM with
a polynomial kernel should be favoured as a classification method over the other
statistical models that they assessed [229].

Usually, classification problems need to process a massive amount of data, and it’s
not easy to find useful information from these chaos data unless we try to grab the key
information. That’s why feature extraction is the most important phase in classification
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problems. GA-based techniques have an advantage over statistical methods because
they are distribution-free, i.e., no prior knowledge is needed about the statistical
distribution of the data. GA also automatically discovers the discriminant features for
a class. Considering the outlier effects and noise issues, some fuzzy based classification
algorithms such as fuzzy c-mean, fuzzy art, fuzzy NN, etc. are also implemented
in the e-nose field. Fuzzy neural network has a considerable improvement in e-nose
classification performance compared to a common back-propagation network [66].
Paper [67] indicated that Fuzzy ARTMAP can be applied to discriminate three different
e-nose datasets and the performance is better than back-propagation trained multilayer
perceptron (MLP). Paper [68] enunciated the performance of fuzzy clustering c-mean
(FCM) combined with SVM e-nose classifier is better than the other well-known machine
learning algorithms. Moreover, [69] implemented fuzzy-wavelet neural network model
to the e-nose field for food quality class evaluation and prediction.

In this dissertation, we present a novel e-nose classification method which is the
combination of self-supervised genetic algorithm (GA) and supervised fuzzy support
vector machine (FSVM). GA was used to improve the classifier accuracy by optimizing
the feature set and the optimal model parameters of FSVM. FSVM was adopted as
the evolution criterion and the sequent odour classifier, which can reduce the outlier
effects to provide robust and accurate classification.

5.2 Methodology

5.2.1 Genetic algorithm

Genetic Algorithm (GA) is a population-based global searching optimisation technique.
According to Darwin’s principle of natural selection, GA aims to find an individual with
the best fitness value from the searching space composed of many feasible solutions.
These solutions are represented by genotypes, and the genotypes with better fitness
value may have a higher probability to be selected as parents for the upcoming
generation. Crossover and mutation operators help the algorithm converge efficiently
and hence the algorithm has less chance to get local optima than other methods. Also,
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GA does not require any knowledge of the domain and any information about the
structure of the problem to be optimized. It also works well even if the objective
function is not smooth where the derivative methods cannot be applied. Therefore,
GA can be regarded as a useful tool in feature selection. Fig. 5.1 depicts the basic
evolutionary cycle of GA.

Fig. 5.1 Basic Evolutionary Cycle of GA.

5.2.2 Fuzzy support vector machine

SVM is an effective algorithm in dealing with classification problems, but there are still
some limitations of this tool especially in classifying real-world data. Some training
samples are more meaningful than other data points. These important samples must
be classified perfectly even if some noise or outliers are neglected. Fuzzy SVM (FSVM)
applies a fuzzy membership function to every training data pn, hence the input data



5.2 Methodology 83

are transferred to fuzzy training samples, which are expressed as [70, 210, 230]:

{(pn, yn, sn|pn ∈ R
n), σ < sn ≤ 1}, n = 1, ..., N, (5.1)

where each training point pn is given a label yn ∈ {1, −1}, σ is a sufficiently small
positive number. And the fuzzy membership sn is a function of time tn:

sn = f(tn) = (1 − σ)
(

tn − t1

tn = t1

)2
+ σ, (5.2)

where sndenotes the weight of the corresponding training point towards one class and
(1− sn) is the weight of noise or less important points. Therefore, the hyperplane
optimisation problem can be defined as [70]:

min
w,b,ξ

1
2‖w‖2 + csT ξ. (5.3)

restrictions on condition to:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(wT pn − b) ≥ 1 − ξn

, n = 1, ...N.

ξn ≥ 0,

(5.4)

A smaller sn decreases the influence of the parameter ξn, such that the corresponding
sample pn is regarded less substantial. In a similar way as SVM, the Lagrangian
multiplier function can be constructed as [70]:

min
w,b,ξ

max
α,β

{1
2‖w‖2 + csT ξ − ∑N

n=1 αn[yn(wT xn − b)

+ξn − 1] − ∑N
n=1 ξnβn}. (5.5)

Then the optimal problem can be transferred to [70]:
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max
a

{∑N
n=1 an − 1

2
∑N

n=1
∑N

m=1(amanymtnpT
mpn)}

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ an ≤ snC

, n = 1, ...N.∑N
n=1 anyn

(5.6)

The parameter ai can be solved by the Sequential Minimal Optimisation (SMO)
technique, which was proposed by Haykin [211].

5.2.3 Proposed method

SVM is a powerful classifier, but there are still some limitations of this algorithm in the
application of e-nose. In SVM, each training sample belongs to either one class or the
other exactly, and all training samples are treated uniformly for each class. However,
features extracted from all chemical sensors are affected by the noise and sensor drift,
which leads to the overlapping of features with each other, as shown in the parallel
coordinate plot (Fig. 5.2). In this case, each training sample no more belongs to one
of the two classes exactly. It may belong to one class with a large probability and be
meaningless with a low probability. It is required that the meaningful training samples
should be classified correctly without caring about whether the meaningless samples are
misclassified or not. Therefore, fuzzy membership associated with each training sample
is introduced to solve this problem. Besides, some less discriminable features are existed
in the feature set. This high-dimensionality may lower the classification accuracy. To
solve the above mentioned problems, the proposed method applied the accuracy of
FSVM as an evaluation criterion to select the most informative features. Besides
feature selection, model parameters of FSVM can also be optimized simultaneously in
genetic irritation. The detailed coding and decoding system, crossover and mutation
operation, fitness evaluation, and system architecture for the proposed method are
described as follows.
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Fig. 5.2 Parallel Coordinate Plot of Perfumes Feature Set.

Coding and Decoding

In order to implement the proposed method, a coding and decoding system is required.
A common method is to use a vector constituted only by zeros and ones as a genotypic
representation of actual problems. The proposed method is able to select features
and optimize classifier simultaneously. Therefore, the genotype consists of two parts:
feature mask and FSVM parameters. Fig. 5.3 shows an example of the genotype of
one individual.
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Fig. 5.3 Genetic Constitution of an Individual.

Feature mask gf is a binary vector with a length of Nf , where a 0 or 1 at the i − th

position represents the absence or presence of the i − th feature. When initializing the
feature mask, the value of the i − th position is decided by:

gi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, P (gi
f = 1) = Nselected/N

, i = 1, 2...Nf .

0, P (gi
f = 0) = 1 − Nselected/N .

(5.7)

Where Nselected is a pre-set parameter and denotes the number of selected features.
This strategy helps reducing features in genetic evolution.
The relationship between feature mask gf and its phenotype representation is:

X̃ = X · diag(gf ). (5.8)

Where X and X̃ denote the original dataset and the dataset after feature selection
respectively.

Npj represents the genotypic length of the j − th parameter of FSVM. For the RBF
kernel function based FSVM, there are two parameters. The parameter C determines
the complexity of the SVM model. The value of γ affects the shape of RBF function.
Npj is calculated by:

Npj = round

[
log2

(
θpj,upper − θpj,lower + Δ

Δpj

)]
+ 1. (5.9)

Where θpj,upper and θpj,lower represent the upper and lower bound of searching
domain respectively. Δpj is a pre-set parameter and denotes the required precision.

The genotype gpj for parameters j should be decoded into phenotype θpj by:
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θpj = θpj,lower + (θpj,upper − θpj,lower)
⎛
⎝∑Npj

i=1(g(i)
pj )Npj−1

2Npj

⎞
⎠ . (5.10)

Where g
(i)
pj denotes the value of the i − th position of gpj.

Crossover and Mutation Operation

Homologue crossover operator is adopted in this research, which is a random mechanism
for exchanging parts of genes between two genotypic individuals. The number of
crossover points is decided by the number of optimisation objects. In mutation
operation, the proposed method adopts two different strategies for FSVM parameters
and feature mask. In terms of parameters optimisation, one gene may be altered
randomly. A 0-valued gene will be changed to 1 or vice versa. In terms of feature
selection, two genes may occasionally be selected and then swap their value, which
may keep Nselect from change. Fig. 5.4 illustrates the crossover and mutation operation
of the proposed method.

2selectN

2selectN

Fig. 5.4 Crossover and Mutation Operation of Proposed Method.
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Fitness Evaluation

The accuracy of FSVM is applied as an evaluation criterion. Considering about the
unbalanced training set, the balanced accuracy is applied to evaluate the fitness of
each GA individual:

fitness = 1
2

(
TP

TP + FN
+ TN

TN + FP

)
. (5.11)

Where True Positive (TP ), True Negative (TN), False Negative(FN) and False
Positive(FP ) stand for the numbers of true positive, true negative, false negative and
false positive respectively. For example, in the proposed two perfumes classification
problem, for a given odour sample, TP increase 1 when this sample was classified to
perfume 1 and the true class of this sample is also perfume 1. FP increase 1 when the
sample was predicted as perfume 1 but the true class label is perfume 2. The weight is
set to 1/2 because the two classes are equally important.

In order to evaluate the fitness of the current generation more rationally, the
proposed method splits the training set into 10 equal size subsets and performs 10-fold
cross validation (10-CV). Of the 10 subsets, one single subset, defined as subset B, is
retained as the validation data, and the remaining 9 subsets consist of subset A as
training data. The 10 statistical results (TP, TN, FN and FP) can then be averaged
to calculate the fitness. Fig. 5.5 reveals the process of performing FSVM based fitness
evaluation with 10-CV.

System Architecture

The architecture of the proposed method is presented in Fig. 5.6. This diagram is drawn
mainly relying on the data flow between each component. Starting from the top-left
corner of the diagram, the information of gas molecules was recorded by chemical
sensor array and stored in a dataset. Then pre-processing techniques were adopted to
ensure the high quality of the extracted features. In order to test the performance of
the methodology, the dataset composed by features was hence divided into two parts,
namely, training set and testing set. The GA-FSVM algorithm had only access to the
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Fig. 5.5 Fitness Evaluation using 10CV.

training set. After the evolution of several generations, the optimal feature selection
rules and the best FSVM classifier were obtained as the outputs. The rules and the
classifier were applied to the testing set. The classification accuracy of the testing set
can be used to verify the performance of the algorithm. In the GA-FSVM module, the
number of selected features should be set in advance, which would influence the initial
population, as described in the previous section. The training set is split into subset A
and B. These two sets perform like training and validation procedure in testing the
classifier. Subset A is used to train a FSVM model with rough parameters and features,
while subset B is used to tune the variables based on the fitness function.

5.3 Materials and Experiment

5.3.1 Experiment set up

500 test samples from two different perfumes, were prepared for testing. 250 samples for
the perfume I, Hollister cologne; the other 250 samples were prepared for the perfume
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Fig. 5.6 Algorithm Flow Chart.

II, Vera Wang Princess Perfume. For each sample, we used the perfume bottle to
spray six times towards the 10mL volume headspace crimp top vial, then closed it. As
Fig. 5.7 shows, the headspace was sampled and injected into the NOS.E gas input port
by the sampling needle.

The basic test system diagram of our e-nose was shown in Fig 5.8, the power
supply, NOS.E equipment, ventilation system, WI-FI communication port and NOS.E
analyzer, a friendly user interface used to collect and analyze odour data for NOS.E.
The headspace of the sample vial was sampled through the sampling needle to NOS.E
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Fig. 5.7 Samping Preparation.

Table 5.1 Feature Types and Descriptions Used in Perfume Classification
Type Symbol Description

Response xm The maximum response value
Time Parameter tdres Time interval form time of gas-in to time of maximum 1st derivative in response stage
Time Parameter tdresx Time interval from time of gas-in to time of maximum 2nd derivative in response stage

Integral intPres Integral from time of gas-in to time of peak

gas input port. While the different perfume odours go into our equipment, 4 metal
oxide gas sensors will produce the different responses. Each test lasted for 1220 seconds
which included five phases, equipment preparation phase, baseline setup phase, test
phase, baseline recovery phase and equipment rest phase. All the test data was stored
as TXT format in the personal computer for the algorithms training.

The odour datasets used in this chapter were collected at 25 ℃ to 27 ℃ (ambient
temperature) and 50% RH ambient humidity.
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Fig. 5.8 Test System Diagram.

Table 5.2 Comparison of Different Feature Reduction Methods
Method Number of selected features Number of total features Maximum accuracy (%)

Proposed Method 6 16 92.05
PCA+FSVM 11 16 79.31
SAE+FSVM 10 16 80.37

5.3.2 Pre-processing

The raw response obtained directly from the chemical sensor array cannot be used in
the e-nose system due to its low signal-to-noise ratio (SNR) and the sensor drift. A
pre-processing step is therefore needed.

Wavelet transform domain filter [231] is one of the most popular data pre-processing
method in increasing SNR of e-nose system, it is used in this chapter to show the effec-
tiveness of the proposed classification method. The used wavelet basis was ‘daubechies
3’, and decomposition level was set to 6. Fig. 5.9 shows an example of raw response
curve and filtered result of the first sensor (MQ2) for Vera Wang Princess Perfume in
one test.
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Fig. 5.9 Raw Response and Filtered Curve of MQ2 Gas Sensor for Vera Wang Princess Perfume.

In order to reduce the influence of sensor drift, normalization is adopted in this
chapter. This could eliminate the influence of concentration. The relative response is
calculated by:

R(t) = (Y (t) − Baseline)
Baseline

. (5.12)

Where Y (t) denotes the raw response of sensor.

The response of the gas sensors after filtering and normalizing are presented in
Fig. 5.10. It is obvious that the baseline of each sensor is in the same level. In addition,
these curves are smoother than the raw data.
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Fig. 5.10 Sensor Responses after Pre-processing.

5.3.3 Feature extraction

Features extracted from gas sensor’s steady state response are widely used in odour
classification. In this study, traditional features according to the characteristics of the
response are chosen, as shown in Table 5.1. Four features were extracted from the
response of one sensor, hence in this experiment, the number of the feature set is 16.

5.4 Comparison Results

5.4.1 Feature reduction

Two feature reduction techniques were chosen to compare with the proposed hybrid
approach by averaging the result of 500 tests.
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Principal Component Analysis (PCA) with SVM is a classical combination in the
field of odour classification. PCA reduces the interrelated variables and retains the most
informative principal components as selected features. The state-of-the-art feature
reduction method is Sparse Auto-Encoder (SAE) Neural Network. SAE compresses
the input features to the comprehensive interlayer neurons.
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Fig. 5.11 Relation Curves of Mean Accuracy with Number of Selected Features in 500 Tests.

Table 5.3 Details of Selected Features
Selected features Sensor Description

Feature 5 MQ3 Integral from time of gas-in to time of peak
Feature 6 MQ3 The maximum response value
Feature 7 MQ3 Gas-in to time of maximum 1st derivative in response stage
Feature 8 MQ3 Time interval from time of gas-in to time of maximum 2nd derivative in response stage
Feature 9 MQ8 Integral from time of gas-in to time of peak
Feature 14 MQ135 Integral from time of gas-in to time of peak

The same FSVM classifier is used in this section. The proposed method is able to
select features and optimize the classifier at the same time. Therefore, in the case of
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Fig. 5.12 Features for Two Perfumes.

PCA and SAE, another GA is applied to find the best parameters for each classifier
respectively.

The comparison of different feature reduction methods is shown in Table 5.2.
Fig. 5.11 shows the relation curve of mean accuracy with the number of features. The
accuracy curve of the proposed method reached a peak at 92.05%, where the number
of selected features is 6. Then the accuracy curve gradually declined and stabilized at
90.81%. The SAE based algorithm worked well while PCA performed worst in this
perfume classification task. The specific information of selected features is listed in
Table 5.3. Most features are extracted from sensor 2 (MQ3), while sensor 1 (MQ2)
have no contribution to the accuracy. In addition, Integral is the most effective feature
in odour classification.

In order to verify the correctness of the proposed method in selecting informative
features, we used a visualization technique to reveal the change of feature space, whose
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Fig. 5.13 Features Selected for Two Perfumes.

Table 5.4 Comparison of Different Algorithms for Perfume Classification Problem
Method Training samples Test samples Mean Accuracy In 500 Tests (%)

Perfume I Perfume II Perfume I Perfume II
KNN[232] 125 125 125 125 51.37
SVM[233] 125 125 125 125 86.04

FSVM 125 125 125 125 90.81
PCA+SVM 125 125 125 125 63.47

PCA+FSVM 125 125 125 125 79.31
GA + SVM[234] 125 125 125 125 89.82
SAE + FSVM 125 125 125 125 80.37

Proposed Method 125 125 125 125 92.05

results are shown in Fig. 5.12 and Fig. 5.13. Fig. 5.12 presents all 16 features of
randomly chosen 10 samples of each perfume respectively, and Fig. 5.13 shows the
feature selection result. Feature values have been normalized and quantized to different
colours. It is obvious that the selected feature space is more separable than the original
one.

5.4.2 Classification

The proposed hybrid approach is compared with other classification methods by
averaging the results of 500 tests. The comparison result is listed in Table 5.4.

The proposed method has the highest average classification accuracy compared
with other algorithms. This accuracy derives from two aspects: (a) when Nselected was
set to 16, the accuracy represents the performance of FSVM classifier, according to
Table 5.4, FSVM is more precise than SVM in our experiment; (b) GA selected the
most informative features and provided the best model parameters to FSVM.
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5.5 Conclusions

Odour classification is a challenging machine learning problem with a high dimensional
singularity in the feature set and imbalance of datasets in the present outliers and
noise problem. We have shown that the proposed odour classification algorithm is able
to handle the feature selection and datasets imbalance issues and practically even for
small datasets. Implementing the proposed odour classification method to other e-nose
applications is currently under consideration.



Chapter 6

A New Fast Response Electronic
Nose Health Monitoring System

6.1 Introduction

The study of exhaled breath for health diagnosis and monitoring is becoming an
increasingly popular area of research. Unlike most traditional health monitoring and
diagnosis through the use of bodily fluids (e.g. through blood, urine), breath collection
is non-invasive and convenient. Furthermore, studies have shown there are many
metabolomic compounds in human breath that could be used for health monitoring
and disease diagnosis [37, 235–239]. Metabolomics is influenced by an individual’s
lifestyle, diet, and the environment. These factors make breath analysis an attractive
option for personalised health care.

Previous works have shown human breath can be used in monitoring and diagnosing
conditions such as lung cancer [37, 235, 240], diabetes [237, 241], urinary track infec-
tions [242], asthma [168], malaria [243], etc. Many of these conditions are becoming
more prevalent in the modern society due to aging populations and increased pollu-
tion [244, 245]. For example, researchers from the U.S. Centers for Disease Control and
Prevention (CDC) have shown that about 1 in 7 older U.S. adults have lung diseases
such as asthma or chronic obstructive pulmonary disease (COPD). Lung obstruction is
the third leading cause of death in the United States [246].
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Many current breath analysis studies are based on gas chromatography mass
spectroscopy instruments (GCMS), which provide a vast amount of information to
researchers and clinicians [243, 247–250]. However, GCMS is bulky, expensive and
requires expert knowledge for operation; making it unsuitable for personalized health
care. Electronic nose (e-nose) instruments are an attractive alternative to GCMS
because they have smaller dimensions and are lighter weight. E-nose systems mimic
natural olfactory systems by using a combination of gas sensors with overlapping and
distinct responses to different input odours. These signals from the sensors are collected
by a data acquisition system, and then pre-processed. Data preprocessing can take
many different forms such as baseline correction, normalization, feature extraction, etc.
Modern machine leaning techniques can then be employed to identify the input gases.
Fig. 6.1 shows a block diagram of a typical e-nose system.

Fig. 6.1 Basic Block Diagram of Electronic Nose.

We present here a new e-nose system that has a fast response time of under three
minutes, making it a suitable system for rapid diagnosis. As a proof of concept we
analyzed breath samples from one healthy adult in three different conditions: normal,
smoking and alcohol consumption, and used a well-known classifier to discriminate
between the classes.

6.2 Electronic Nose System

We designed and developed a new e-nose system called “NOS.E” for monitoring exhaled
breath (Fig. 6.2). This system contains a PAD-based control and display panel, an
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air-intake system, power system, a gas-sensor array, and a controller unit all housed
inside a handheld case. Fig. 6.3 shows the handhold part which was used as the breath
input port. The sensor array is composed of four commercially available metal oxide
gas sensors: TGS 2600, TGS 2602, TGS 2603, and TGS 2620. Table 6.1 lists the
sensitivity characteristics of these sensors. The input gases are analyzed by the sensor
array and then converted to digital data, and transmitted to the controller unit for
data processing.

Fig. 6.2 UTS e-nose System "NOS.E".
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Fig. 6.3 Breath Input Port of the NOS.E.

Table 6.1 Gas Sensors Sensitivity Characteristics

Sensor Name Target Gases

Sensor 1: TGS 2620 Ethanol, Hydrogen, Iso-butane, CO, Methane, etc.
Sensor 2: TGS 2602 VOCs, Ammonia, H2S, etc.
Sensor 3: TGS 2600 Hydrogen, Ethanol, Iso-butane, etc.
Sensor 4: TGS 2603 Trimethylamine, Methyl mercaptan, etc.
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6.3 Data Processing

6.3.1 Feature extraction

Feature extraction of gas sensor steady-state responses are widely used in odour
classification. Applications of feature extraction methods generally fall into two
categories: manual extraction using expert knowledge and automatic methods that
are data focused. In this study, we chose to extract the features manually as a
proof-of-concept for the instrument. We chose four features common to many other
works [64, 65]: maximum response value (xm), time interval between gas-in and
maximum 1st derivative of response (tdres), time interval between gas-in and maximum
2nd derivative of response (tdresx), and integral between time of gas-in and time of peak
(intPres).

6.3.2 SVM

To verify the performance of our NOS.E system, we chose one of the most popular
classification algorithms, SVM, to identify the three different exhaled breath conditions.
SVM is an effective algorithm in dealing with classification problems. An SVM learns a
discriminant function that separates positive and negative examples with the maximum
margin. The objective of SVM is to find an optimal hyperplane to separate two
different classes of samples. The equation of hyperplane is in the form of:

ωT x + b = 0, (6.1)

where ω and b represent the weight vector and bias, respectively.

Nonnegative slack variables ξ = (ξ1, ξ2, ..., ξM) are introduced to measure the
misclassification degree of the training samples. Therefore, the mathematical formula
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of optimisation problem can be deduced by solving:

min
w,b

{1
2‖w‖2 + C

∑M
i=1 ξi}

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yn(ωT x(i) + b) ≥ 1 − ξi

, i = 1, 2, ...M.

ξi ≥ 0
(6.2)

Where the parameter C is an error penalty term, which determines the influence of
the misclassification on the objective function. Increasing C will give more importance
to the errors on the training set in determining the optimal hyperplane. In this study,
by using genetic algorithms (GAs) we set the value of C as 901.

Instead of calculating distances between the transformed patterns in the new feature
space, distances can still be measured in the original space with the introduction of the
so-called kernel functions K : (x1, x2) → K(x1, x2). Normally, we defined the kernel
instead of getting it from transformations, because it is much easier to work with
kernel over the original low dimensional data space; it can be proven that the final
classification function depends on the kernels only. In this study we use the Gaussian
(RBF) kernel:

K(x1, x2) = exp

(
(x1 − x2)2

2σ2

)
. (6.3)

We apply GAs to select σ=6.01 as the optimal value for the parameter of RBF kernel.

The final classification function, effectively implementing the maximal margin
hyperplane in the feature space, is:

F (x) = sign

(∑
i

yiαiK(x, xi) − b

)
, (6.4)

where the αi are the solutions of the dual problem and are non-zero only for a subset
of vectors xi called support vectors [251].
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6.4 Experimental Setup and Results

6.4.1 Experimental setup

Fig. 6.4 Test System Diagram of UTS NOS.E.

Sixty total exhaled breath samples (three different scenarios) were analyzed by the
NOS.E system: 20 normal breath; 20 exhaled breath after smoking; and 20 exhaled
breath after alcohol consumption. One volunteer was used for consistency and was
instructed to breathe through an air input port to the NOS.E equipment, which then
analysed the sample. The volunteer was asked to breath out using a "ha" expiration 12
times for each sample.

All samples were collected within seven hours. The set of samples from each
scenario took a total of 60 minutes to collect. Normal breath samples were collected
first, followed by smoking, and then alcohol consumption. Between normal and smoking
samples, the equipment was allowed to run a blank for 115 minutes in order to ensure
no sample was left in the air system. The volunteer spent 5 minutes smoking one
cigarette just before smoking samples were taken. Between the smoking and alcohol
consumption samples, the equipment was cleaned for 110 min by allowing room air to
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flow through the system. The volunteer drank 100mL of red wine in 10 minutes before
the last set of breath tests were conducted. Our experimental setup here means the
samples taken for each scenario should be very similar, we emphasise here that the
aim of this preliminary experiment is to show initial proof-of-concept for our e-nose
system, more rigorous trials will be scheduled in the next phase.

Fig. 6.4 shows the basic test diagram which comprised of the power supply, NOS.E
equipment, Wi-Fi communication unit and NOS.E analyzer (a user friendly interface
used to collect and analyze odour data for NOS.E.). All the data were stored and later
analyzed for classification.

Example responses of the gas sensor array under the three proposed scenarios are
shown in Fig. 6.5. The odour datasets used in this chapter were collected under 25
℃ to 27 ℃ ambient temperature and 60% RH ambient humidity.
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Fig. 6.5 Example responses from NOS.E for the three scenarios we tested.

6.4.2 Cross validation

We used a five fold balanced cross validation method for classification. The full dataset
is partitioned into training and test sets by randomly selecting 20% of the data from
each scenario to form the test set and the remaining for the training set. This process
was performed five times: where each data sample appears exactly once in a test set.
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SVM was run as a binary classifier as well as a multi-class classifier. In the former
case, two scenarios were tested against each other, thus yielding three classification
problems: normal vs. smoking, normal vs. alcohol, and smoking vs. alcohol. The
RBF kernel (C = 901, σ = 6.01)is implemented in the binary SVM calssifier. In the
multi-class classification, one-versus-one (1V1 ) strategy is applied. It evaluates all
possible pairwise classifiers and thus induces k(k − 1)/2 (where k is the number of
classes) individual binary classifiers. Applying each classifier to a test example would
give one vote to the winning class. A test example is labeled to the class with the most
votes [252].

6.4.3 Results

Table 6.2 shows the results of the four classifications performed. From the table, it was
evident that when separating breath samples post alcohol consumption with normal
and smoking breath samples, 100% and 95% classification accuracy were achieved,
respectively. The accuracy of identification for the normal breath and smoking breath
samples lies on 97.5%. Moreover, for the multi-classification task, we can identify these
three breath types with 98.334% classification accuracy.

According to these preliminary test results, the NOS.E system can identify different
human breath under three different common conditions, which means the proposed
solution has certain possibilities to implement to monitor the human health conditions
with well-trained data processing algorithms. In the next step, we will schedule more
test scenarios to improve the NOS.E system design and the performance of the human
breath classifier.

Table 6.2 Classification Accuracy of three Breath Scenarios

Breath Scenarios SVM Classification Accuracy

Normal VS Cigarette 97.5%
Normal VS Wine 100%

Wine VS Cigarette 95%
Normal VS Cigarette VS Wine 98.334%
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6.5 Conclusion and Future Works

We present here a new fast response electronic nose system, NOS.E, which can analyse
a sample in under three minutes. We tested our system with some initial human
breath sample from one healthy volunteer in one day under three different metabolomic
scenarios. Using simple features from the responses and support vector machine
classifier, we were able to easily distinguish the breaths from each scenario. We
achieved high classification accuracy of over 95% in all comparisons. This initial study
showed that our e-nose system can detect changes to odour components in exhaled
breath and could be in the future applied in the human health monitoring area.

For future work, we will recruit a small group of healthy volunteers and collect
samples under a variety of scenarios and at different times, which will allow us to test
NOS.E’s capability. Ultimately, we aim to build and test an e-nose system that can be
used to monitor human health through breath.

We envisage the NOS.E system can be deployed as part of a cloud based health
monitoring system (shown in Fig. 6.6). The hardware e-nose equipment will be installed
on site to monitor the exhaled breath of patients. The data collected can be uploaded
to a remote server, which will monitor or diagnose the health conditions. Users can
check these data and control the e-nose equipment through a cell phone or personal
computer. Furthermore, health professionals can also monitor the same data and
provide their feedback to the users. This cloud based comprehensive system would
allow continuous and efficient monitoring of users’ health. By introducing doctors and
the remote server in this new e-nose health monitoring system, its application could
be expanded to medical areas such as general health screening and disease diagnosis.
Moreover, this new system can also bring a lot of benefits for the users by saving a lot
of time and improve the diagnosis efficiency.
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Fig. 6.6 Remote Server based Electronic Nose System.





Chapter 7

Development of the New Electronic
Nose for Wildlife Products
Identification

The scale of illegal wildlife trade has rapidly increased in recent decades due to the
huge profit margin. At the same time, this trend is also threatening biodiversity and
accelerating the extinction for many species (such as rhinoceros, elephants, sea turtles
etc.). In order to combat the illegal wildlife trade, law enforcement has collaborated
with researchers to apply several strategies for inspecting and identifying legal from
illegal wildlife parts. Generally, the suspect wildlife parts are analysed in the laboratory
by using isotopic fingerprinting or DNA analysis. However, these tests are time-
consuming, complex and cannot be conducted on-site. Although wildlife detection dogs
are used to detect illegal wildlife parts on-site in some countries, there are many factors
such as behavioural and individual deviations that can affect these results. Based
on the electronic nose (e-nose) prototypes developed by the NOS.E team (University
of Technology Sydney), this chapter proposes a new e-nose prototype (NOS.E II)
which uses an efficient and reliable method to identify illegal wildlife parts. Novel
mechanical and airflow designs as well as kernel based data preprocessing methods
were implemented in the NOS.E II to improve its sensitivity and portability. As a
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proof-of-concept test, water buffalo horn and rhinoceros horn samples were selected as
the test targets to identify legal from illegal wildlife parts.

7.1 Introduction

Illegal wildlife trade has rapidly developed into an international crisis due to the
enormous amount of contraband involved in this area. The value of the international
organised environmental trade in flora and fauna (excluding fisheries and timber) is
estimated to be between 7 and 23 billion USD annually [84, 253–255]. These illegal
activities are endangering biodiversity and driving many species towards extinction [256–
259]. The main problem in the enforcement of the illegal wildlife trade is the lack of
an efficient and reliable solution to identify legal from illegal wildlife parts, such as
water buffalo horn from rhinoceros horn [253].

Generally, laboratory analysis such as isotopic fingerprinting or DNA analysis is
required to confirm the identity of suspect wildlife parts which can not be identified
during the inspection activities [84, 254, 260, 261]. However, these tests are time
consuming, destructive and cannot be conducted on-site. A non-destructive headspace
solid phase microextraction (HS-SPME) coupled with comprehensive two-dimensional
gas chromatography–time-of-flight mass spectrometry (GC×GC-TOFMS) method has
been proposed to identify different species of wildlife products like rhinoceros horns and
ivory samples [84, 262]. However, it also requires laboratory analysis as the GC×GC-
TOFMS instrumentation is non-portable, expensive and requires expert knowledge for
operation. Although wildlife detector dogs are sometimes employed on-site, there are
natural interindividual variations in their response to odours [2, 263]. Moreover, there
are individual deviations in the olfactory perception based on genetic differentiation [2].
Nevertheless, the GC×GC-TOFMS and detector dog methods have already proved
the effectiveness of detecting and identifying wildlife contraband by analysing the
volatile organic compounds (VOCs) or odours of the target items [84]. Therefore,
electronic nose (e-nose) technology, which is also based on the detection of these
volatile compounds, is introduced in this chapter as an alternative and cost-effective
solution for wildlife products identification [43–45].
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E-nose technology is capable of detecting chemical compounds by sensing and
analysing odour molecules. As a type of machine olfaction, e-nose technology has the
potential to be applied in different fields [1, 3–6]. Inspired by the knowledge of the
mammals olfactory system (especially for the canine olfactory system) [2, 75, 79, 80],
Figure 7.1 shows the similarities between the canine olfactory system and the e-nose
system. A sensor array is used to mimic the olfactory receptor (OR) to transform
the odorants information to the electrical signals. These signals can be processed by
the "olfactory bulb" of an e-nose which is the micro-controller. Moreover, to recognise
the odorants information, a computer is used to represent the brain, and the pattern
recognition algorithms are the "content of the brain" in this computer.

Fig. 7.1 The similarities between the canine olfactory system and the e-nose system.

This study aims to develop an efficient and reliable e-nose system (named NOS.E)
for the identification of illegal wildlife parts. As a proof of concept test, this study
uses water buffalo horn and rhinoceros horn samples as the test targets to distinguish
legal from illegal wildlife parts. Rhinoceros horns were selected as they are difficult to
distinguish morphologically (often sold as powders, small fragments and sculptures).
Moreover, they represent one of the most endangered mammals globally, and the
international trading of rhinoceros horns are strictly prohibited as they are listed under
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CITES (the Convention on International Trade in Endangered Species of Wild Fauna
and Flora) appendix I (and II in the case of C. s. simum South African and Swaziland
populations) [84, 264–266]. Water buffalo horn is a common “fake” marketed and
improperly sold as rhinoceros horn [84, 267]. The NOS.E prototype also has potential
to be used globally to differentiate a diverse range of trafficked species including large
cats (e.g. tigers, leopards), elephants (i.e. ivory), pangolins, bears, sea turtles, sharks,
and a range of exotic birds and reptiles, all of which have distinct odour signatures [253].

7.2 Equipment Design

7.2.1 Sensor chamber design

In a mammalian olfactory system, the air inhalations play an important role [80, 139,
140]; and the relationship among the nasal airflow, the number of odorant molecules,
and the olfactory response is complex. It has been reported that three primary variables
are used to determine the response of the olfactory system: the number of molecules
(N), the duration of the air inhalations (T ), and the volume of the air inhalations
(V ). These primary variables, in turn, define the three additional derived variables of
concentration (C = N/V ), delivery rate (D = N/T ), and airflow velocity (F = V/T ).
Together, these six variables characterise the nature of the response in the olfactory
system. They are not independent variables, such that an increase in N will also
increase C and D, if T and V remain unchanged. So, if an increase in N results in an
increase in the olfactory response, it may also be attributable to the changes in C and
D [79].

Since the functional organization of the e-nose system is similar to a mammal’s
olfactory system, the response of the e-nose system also follows the definition discussed
above. Therefore, this chapter proposed an airflow design by combining the mixing
chamber and sensor chamber and reducing the dimensions of a new sensor chamber
(Dimensions:95mm*74mm*45mm). Additionally, the airflow velocity and the duration
of the test can also be modified to fit the test target application. While a lower air
flow speed and longer test time was used for a low concentration target odour, a higher
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air flow speed and shorter test time are applied for a high concentration target odour
respectively [2, 79, 80].

The airflow is pumped into the gas mixing and distribution chamber through the
gas input port with the airflow velocity from 220mL/min to 2.2L/min. The gas mixing
and distribution chamber (shown in Figure 7.2) is designed as an air buffer to distribute
one input airflow to four airflows. Moreover, in order to ensure uniform contact of the
airflow with gas sensors, the layout of the sensor array is designed symmetrically and
related to four airflows which come from the gas mixing and distribution chamber.

Fig. 7.2 NOS.E Sensor Chamber.

7.2.2 Instrumentation design

The instrumentation design was based on the NOS.E I prototype developed by the
UTS NOS.E team( see Chapter 3). This chapter is focused on a new e-nose prototype,
NOS.E II (shown in Figure 7.3), by optimizing the airflow and automated control logic
designs. Compared with the NOS.E I, the NOS.E II is more portable and efficient in
terms of dimensions, weight, as well as test time.
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Fig. 7.3 NOS.E Prototype II.

Figure 7.4 shows the block diagrams for the design of the NOS.E I and the NOS.E
II. Considering the sensor array is designed based on eight MOX gas sensors (FIGARO
ENGINEERING INC, Mino, Osaka JAPAN), the number of data acquisition channels
was changed from 10 channels to 8 channels in the NOS.E II. The other designs of the
host computer and slave computer are the same compared with the NOS.E I. Since the
mixing chamber and the sensor chamber are combined as one chamber which is "Mixing
& Sensor Chamber", Valve III is deleted from the design of NOS.E II and Valve IV is
renamed as Valve III in the design of NOS.E II. Accordingly, the automated airflow
control logic is redesigned as shown in Table 7.1. In this table, each row indicates one
of eight working phases in the control logic of the NOS.E II. The control signals of
Valve I, Valve II, Valve III, Pump I and Pump II are represented as V1, V2, V3, P1, and
P2. T1, T2 and T3 are the control phase ID signals sent by the data acquisition and
control module. In addition, the specific status of the different actuators is represented
by using H and L in this tale. The actuators are enabled to work under the high logic
level control signal (H) for the actuator driver circuits. Vice versa, for the low logic
level control signal (L) for the actuator driver circuits the actuators are used to disable
the corresponding actuators.
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Fig. 7.4 Block Diagram of NOS.E Prototype I and NOS.E Prototype II. Solid blue line represents the signal chain;
Solid green line represents the airflow chain; Solid red line represents the power chain.

Table 7.1 The Automated Control Logic for NOS.E II
Phase V1 V2 V3 P1 P2 T1 T2 T3

Warming up & Washing H L H H H L L L
Vacuuming L L H L H L L H

PAUSE L L L L L L H L
Baseline Setup H L H H H L H H

Vacuuming L L H L H H L L
Testing L H H H H H L H

Baseline Recovery H L H H H H H L
Washing H L H H H H H H

7.3 Material and Methods

7.3.1 Rhinoceros horn and water buffalo horn samples

Seven rhinoceros horn and two water buffalo horn samples were obtained from the
Australian Museum collections (shown in Figure 7.5). All the samples are registered in
the Australian Museum with the unique collection number.

7.3.2 NOS.E II test condition

The testing system used in this chapter (shown in Figure 7.6) was set in a MC6�SF −
TA 1200×900-900 secuflow fume (Waldner, Germany). The rhinoceros horn and water
buffalo horn samples were put in individual sampling tins, and heated for 30 min at 90
℃ using a sand bath and hotplate (IKA, Staufen, Germany). A thermometer was used
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Fig. 7.5 Rhinoceros Horn and Water Buffalo Samples.

to monitor the temperature during the sampling period. The NOS.E II collected the
VOC signatures through the sampling needle and hose connected to the sampling tin.
The reticulate oxygen provided by the secuflow fumehood was used as the reference
gas through a cross-connection airflow adaptor. The NOS.E Analyser was used to
configure the NOS.E II equipment, display the real-time responses of the sensor array
and record the test data. The test duration for each round (including the chamber
washing time) was 500 seconds.

7.3.3 Data Processing for NOS.E II

Kernel based modelling method

A new non-parametric kernel based modelling (KBM) algorithm was used as the pre-
processing method to improve the reliability and stability of the test data by building
the model for gas sensor response [218]. Since the sensor response (y) can be described
by a single input single output (SISO) dynamic system, the finite impulse response
(FIR) of this system can be expressed by the following equation:

YN = φNη + εN , η = [g1, g2, · · · , gm]T , (7.1)
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Fig. 7.6 Diagram of the Rhinoceros Horn and Water Buffalo Horn Samples Testing System.

where N = M − m, and M is the number of data points that we collected, m is the
order of FIR. YN represents a vector representation of the sensor’s responses, and φN

is the vector representation of the input information of the system [218].

Therefore, this model can be identified by minimising the cost function:

η̂ = arg minη∈Rm Z(η), (7.2)

Z(η) = ||YN − φNη||2 + γηT K−1η, (7.3)

where γ is a positive scalar, K represents the Stable Spline (SS) kernel matrix [218].

The cost function Z(η) can be written as:

Z(η) = Y T
N YN − Y T

N φNη − ηT φT
NYN + ηT φT

NφNη + γηT K−1η. (7.4)
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The equation below can be achieved by taking the partial derivative of cost function
Z(η) with respect to η,

∂Z(η)
∂η

= 2φT
NφNη − 2φT

NYN + 2γK−1η = 0. (7.5)

Then, the estimated model η̂ is obtained as:

η̂ = (φT
NφN + γK−1)−1φT

NYN . (7.6)

As a result, η̂ can be adapted as

η̂ = KφT
N(φNKφT

N + γIN)−1YN , (7.7)

= K(φT
NφNK + γIm)−1φT

NYN . (7.8)

where IN and Im are identity matrices.

Kernel principal components analysis method

Nonlinear kernel principal components analysis (KPCA) was applied as a visual tool to
verify the effectiveness of the KBM data pre-processing method, show groupings and
separations within datasets as well as an important feature selection tool to improve
the performance of the further classification tasks [268]. In this study, polynomial
kernel and Gaussian kernel were applied to map the test data to the high-dimensional
space.

The Polynomial kernel used is:

K(x1, x2) = (xT
1 x2 + p)d, p ≥ 0, (7.9)

where x1 and x2 are the key features extracted from the odour datasets; p is a free
parameter trading off the influence of higher-order versus lower-order terms in the
polynomial; d is the degree of polynomial.
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The Gaussian (RBF) kernel used in this study is:

K(x1, x2) = exp

(
−(x1 − x2)2

2σ2

)
. (7.10)

where x1 and x2 are the key features extracted from the odour datasets; σ is a free
parameter.

Support vector machine method

Finally, as the popular classification solution, support vector machine (SVM) was
implemented as the "content of the brain" to enable the NOS.E II to recognise the test
samples.

The classification function used is:

F (x) =
∑

i

yiαiK(x, xi) + b, (7.11)

where the αi are the solutions of the dual problem and are non-zero only for a subset
of vectors xi called support vectors [175]; K(x1, x2) is the RBF kernel (Eq. 7.12)
implemented in this study, shown as:

K(x1, x2) = exp

(
−(x1 − x2)2

2σ2

)
. (7.12)

GAs was applied to select σ=6.01 as the optimal value for the parameter of the RBF
kernel in the SVM classifier.

7.4 Results and Discussion

7.4.1 KBM pre-processing result

Of the eight sensors being installed in NOS.E II, four of them (TGS 2611−E, TGS 2602, TGS 2600, and

were selected for further data pre-processing as they gave clear responses to the test
items. The remaining four sensors did not show a response to the particular test subject
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used during the current study and were therefore omitted. Rhinoceros Horn Sample
M47156-18 was used to show the differences between NOS.E II raw data waveforms
(Figure 7.7a) and KBM pre-processed data waveforms (Figure 7.7b). Compared with
the raw data collected by the NOS.E II instrument the KBM pre-processed data
waveforms were smoother and provide more reliable traditional features (especially for
the derivative-related features) used for further data analysis [218].
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Fig. 7.7 KBM Data pre-processing Results for Rhinoceros Horn Sample M47156-18.

7.4.2 PCA result

The Polynomial kernel PCA and Gaussian kernel PCA were used to analyse the wildlife
part datasets, and the results are shown in Figure 7.8. Both the polynomial kernel
and Gaussian kernel PCA can successfully separate the wildlife part samples into
two groups. The water buffalo horn samples (highlighted with the black circle, WSH
represents for the small water buffalo horn sample, WBH represents for the big water
buffalo horn sample) were tightly gathered together compared with the rhinoceros horn
samples (highlighted with the red circle) which were puffed gathered in these figures.
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Fig. 7.8 Rhinoceros Horn Samples and Water Buffalo Horn Samples KPCA Analysis Results.

7.4.3 SVM result

The support vector machine (SVM) with RBF kernel (C = 901, σ = 6.01) is utilised in
this chapter as the odour classifier. A five-fold cross-validation method was implemented
for the SVM classifier and run twenty times in this study, the average accuracy was
used to assess the performance of the NOS.E II wildlife parts recognition ability. The
classification results are listed in Table 7.2. A 93.33% average accuracy of classification
was achieved based on the raw data collected by the NOS.E II. By applying the
KBM method, we achieved 98.33% average classification accuracy. According to these
classification results, the NOS.E II has the ability to recognise the real and fake
Rhinoceros horns with a high successful recognition rate.

Table 7.2 Classification Results
Data Type Parameters of Pre-processing Method Average Accuracy of SVM Classification (%)
Raw Data N/A 93.33
KBM modelling Data Kernel = SS, ρ = 1000, α = 0.98 98.33

7.5 Conclusion and Future Works

This chapter developed an efficient and reliable e-nose prototype (NOS.E II) which was
used to identify legal from illegal wildlife parts. Based on the mammalian olfactory
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system, a unique sensor chamber was developed which combined the mixing chamber
and the sensor chamber into one to improve the sensitivity of the NOS.E II. According
to the novel air intake system, the newly automated control logic is designed and
implemented to improve the test efficiency of the NOS.E II. Since e-noses have not
previously tested rhinoceros horn and water buffalo horn samples, they are used to
analyse the performance of the NOS.E II. According to the test results, the NOS.E
II system can successfully differentiate the legally traded water buffalo horn samples
from illegal rhinoceros horn samples. The rapid detection of wildlife products at
points of entry would greatly assist law enforcement in seizing forensic evidence and
prosecuting offenders [253]. The e-nose prototype proposed in this study could be
used by frontline staff to rapidly detect illegal wildlife products onsite without the
requirement for sophisticated laboratory analysis, and could be deployed at airports,
seaports, mail centres, and other border crossings to identify imported and exported
wildlife contraband. Future works will test more species including large cats (e.g. tigers,
leopards), elephants, pangolins, bears, sea turtles, sharks, and a range of exotic birds
and reptiles to verify the effectiveness of the NOS.E II [253]. The next generation
NOS.E prototype (shown in Figure 7.9) will also be developed to create a portable,
user-friendly, and cost-effective product for border enforcement departments throughout
the world.
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Fig. 7.9 Conceptual design of Portable NOS.E For the Detection of Illegal Wildlife Parts.





Chapter 8

Conclusions and Future Work

8.1 Conclusions

Inspired by the mammalian olfactory system, this dissertation designed and developed
an efficient and reliable machine olfactory system which is based on the e-nose technique.

The proposed e-nose instrument, NOS.E, was used for odour detection and identifi-
cation purposes. Based on the specific control logic, an automated air intake design
and the related fault detection and alarming design were equipped in the proposed
NOS.E system. To validate the design of the automated airflow control and fault
detection design, the NOS.E system was run 90 times over three days. The status
of the airflow system was monitored by the NOS.E user interface. According to the
test results, the NOS.E system can successfully execute the designed control logic.
Moreover, the fault detection and monitoring system is able to provide the insurance
to avoid wasting resources by timely terminating the system when the fault status of
actuators is detected. The performance of the designed NOS.E system has been tested
by three different alcohols and compared with the results of GC×GC-TOFMS by using
PCA pattern recognition techniques. In summary, compared with the time consuming
and expensive GC×GC-TOFMS odour analysis method, the proposed e-nose system is
a suitable odour analysis platform in terms of its low cost, high efficiency and reliability
features.
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As the novel data processing and analysis methods for NOS.E systems, the non-
parametric kernel based modelling (KBM) method is also investigated in this dis-
sertation. The KBM method can overcome the noise introduced by the unexpected
responses (caused by the gas interference or fluctuating environmental parameters)
thus providing high quality derivative-related key features for the odour classifier.
According to the test results, when extracting derivative-related features, the proposed
non-parametric KBM method provides more reliable and stable pre-processing results
and higher accuracy of classification compared with the other pre-processing methods.

As the novel odour pattern analysis algorithm, a hybrid of genetic algorithm (GA)
and supervised fuzzy support vector machine (FSVM) is applied in the NOS.E system
in this dissertation. The key features and the model parameters of FSVM were selected
by the GA. To reduce the outlier effects to provide a robust classifier which has a
steady classification accuracy, FSVM is introduced as the odour classifier. This hybrid
algorithm can significantly improve the classification accuracy by comparing with some
popular machine learning algorithms, such as support vector machine, the k-nearest
neighbours and other combination algorithms.

Based on the NOS.E system we developed, this dissertation mainly utilised the
NOS.E in two different applications: health monitoring based on the analysis of the
human breath and the rapid wildlife parts identification according to the recognition
of their odour signatures.

The study of exhaled breath for health diagnosis and monitoring is becoming an
increasingly popular area of research. Unlike most traditional health monitoring and
diagnosis through the use of bodily fluids (e.g. through blood, urine), breath collection
is non-invasive and convenient. Furthermore, studies have shown there are many
metabolomic compounds in human breath that could be used for health monitoring
and disease diagnosis. Metabolomics are influenced by an individual’s lifestyle, diet,
and the environment. These factors make breath analysis an attractive option for
personalised health care. To explore the potential biomedical applications, the NOS.E
was used for the rapid assessment of human health conditions in this dissertation. By
detecting the changes in the composition of an individual’s respiratory gases, which
have been shown to be linked to changes in metabolism, e-nose systems can be used
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to characterise the physical health condition. We demonstrated our system’s viability
with a simple dataset consisting of breath collected under three different scenarios
from one volunteer. The preliminary results show that the popular classifier SVM can
discriminate NOS.E’s responses under the three scenarios with high performance and
the NOS.E could be applied in the human health monitoring area.

The scale of illegal wildlife trade has rapidly increased due to the huge profit margin.
At the same time, this trend is also threatening biodiversity and accelerating the
extinction for many species (such as rhinoceros, elephants, sea turtles etc.). In order
to combat the illegal wildlife trade, law enforcement has cooperated with researchers
by applying many strategies to inspect and identify the legal from illegal wildlife parts.
Generally, the suspect wildlife parts are analysed in the laboratory by using isotopic
fingerprinting and DNA testing. However, these tests are time-consuming, sophisticated
and cannot be arranged on-site. Although wildlife detection dogs are used to detect
illegal wildlife parts on-site, there are many factors such as emotional and individual
deviations that can affect the test results. Based on the NOS.E system, which used an
efficient and reliable method to identify illegal wildlife parts. The novel mechanical and
airflow designs, as well as the KBM data preprocessing methods, were implemented in
the NOS.E system to improve its sensitivity and portability. As a proof of concept
test, rhinoceros horn and water buffalo horn samples were selected as the test targets
to identify legal from illegal wildlife parts. According to the test results, the NOS.E
system can successfully recognise the legal water buffalo horn samples from illegal
rhinoceros horn samples. It is considering that rapid detection of wildlife products
at points of entry would greatly assist law enforcement in seizing forensic evidence
and prosecuting offenders [253]. The e-nose prototype proposed in this dissertation
can be used by frontline staff to rapidly detect illegal wildlife products onsite without
the requirement for sophisticated laboratory analysis and can be deployed at airports,
seaports, mail centres, and other border crossings to identify imported and exported
wildlife contraband.
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8.2 Future Work

In order to fulfill the future commercialisation plan, the NOS.E design would be further
optimised to improve its performance and make it more cost effective as well.

In order to reduce the power consumption of the NOS.E system, future works will
continue to develop the NOS.E platform by optimising the design of the power system,
airflow control system, as well as the data acquisition and processing system. Low
power consumption management strategies will be considered according to different
user scenarios. In addition, some components would be re-designed by balancing the
cost and performance of the entire NOS.E design. Moreover, more NOS.E prototypes
would be built to validate its repeatability and prepare the further electric performance
tests such as Electro Magnetic Compatibility (EMC) test and Electro-Static discharge
(ESD) test.

Additionally, the following areas will also be focused: 1. Collecting more different
samples to validate the implementation of the NOS.E system across various odour iden-
tification and classification applications; 2. Improving the efficiency and functionality
of the NOS.E system by more research outputs with the proposed non-parametric KBM
data pre-processing method and NOS.E hardware design optimisation; 3. Considering
discriminative models for feature extraction [226]); 4. Applying some cost-sensitive
classification algorithms to improve the performance of NOS.E system [200].

As for the future work in the health monitoring area, we will recruit a small group of
healthy volunteers and collect samples under a variety of scenarios and at different times,
which will allow us to test NOS.E’s capability. We envisage that the NOS.E system
can be deployed as part of a cloud-based health monitoring system. The hardware
e-nose equipment will be installed on site to monitor the exhaled breath of patients.
The data collected can be uploaded to a remote server, which will monitor or diagnosis
the health conditions. Users can check these data and control the e-nose equipment
through a cell phone or personal computer. Furthermore, health professionals can
also monitor the same data and provide their feedback to the users. This cloud-based
comprehensive system would allow continuous and efficient monitoring of users’ health.
By introducing doctors to the remote server in this new e-nose health monitoring
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system, its application could be expanded to medical areas such as general health
screening and disease diagnosis. Ultimately, we aim to build and test a remote NOS.E
system that can be used to monitor human health through the breath.

By implementing the NOS.E in the illegal wildlife parts identification area, future
works will also test more species including large cats (e.g. tigers, leopards), elephants,
rhinoceros, pangolins, bears, sea turtles, sharks, and a range of exotic birds and reptiles
to verify the effectiveness of the NOS.E II [253]. The next generation NOS.E prototype
will also be developed to make it a portable, user-friendly, and cost-effective product
for border enforcement departments throughout the world.

The portable smart NOS.E system which is based on a low-cost hardware platform
and contains the novel data processing algorithm and various communication technolo-
gies (e.g. Bluetooth, WIFI, Narrowband Internet of Things (NB-IoT))will be applied
in more applications, especially for health monitoring, wildlife products identification,
food quality assessment, illicit drug detection, etc.

Finally, based on the optimised NOS.E system, a marketing research task will
be started, then the NOS.E business plan will be carried out toward the NOS.E
commercialisation target.





Appendix A

NOS.E User Manual

Fig. A.1 The Communication Setup for the NOS.E.
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Fig. A.2 The Manual Mode Setup for the NOS.E.

Fig. A.3 The Actuators Setup for the NOS.E.
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Fig. A.4 The Waveform Display Window Setup for the NOS.E.

Fig. A.5 The Export Data Setup for the NOS.E.
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Fig. A.6 The Automatic Mode Setup for the NOS.E.

Fig. A.7 The Automatic Mode Operation Time Parameters Setup for the NOS.E.
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Fig. A.8 The Baseline Setup for the NOS.E.

Fig. A.9 The Testing Phase for the NOS.E.
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Fig. A.10 The Saving Data Phase for the NOS.E.

Fig. A.11 The Automatic Test Mode for the NOS.E Test Round 2.
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NOS.E Sensor Array Specifications

Table B.1 The Sensitivity Characteristics of Sensor Array in the NOS.E
Sensor Model Sensitivity characteristics1

TGS 2600 Hydrogen, Ethanol, Iso-butane, CO, Methane, etc.
TGS 2602 Toluene, Hydrogen sulfide, Ethanol, Ammonia, Hydrogen, etc.
TGS 2603 Trimethyl amine, Ethanol, Methyl mercaptan, H2S, Hydrogen, etc.

TGS 2610C Propane, Iso-butane, Methane, Hydrogen, Ethanol, etc.
TGS 2610D Propane, Iso-butane, Methane, Hydrogen, etc.
TGS 2611C Methane, Iso-butane, Hydrogen, Ethanol, etc.
TGS 2611E Methane, Hydrogen, Iso-butane, etc.
TGS 2612 Propane, Iso-butane, Methane, Ethanol, etc.
TGS 2620 Ethanol, Hydrogen, Iso-butane, CO, Methane, etc.
TGS 2444 Ammonia, H2S, Ethanol, etc.

MQ 2 LPG, Propane, Hydrogen, Ethanol, CH4, CO, etc.
MQ 3 Ethanol, Benzine, Hexane, LPG, CO, CH4, etc.
MQ 8 Hydrogen, Ethanol, LPG, CH4, CO, etc.

MQ 135 Acetone, Toluene, Ammonia, Ethanol, CO, etc.

Note 1: These sensors may also sensitive to other gases, which are not list in this table.
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