
Investigating Byzantine Agreement
Consensus Algorithm of Algorand

Yu Liu

Supervisor: Dr. Ling Chen

Dr. Wei Bian

School of Computer Science
University of Technology Sydney

This dissertation is submitted for the degree of
Master of Analytics

March 2020

I would like to dedicate this thesis to my loving parents . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Yu Liu
March 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Yu Liu declare that this thesis, is submitted in fulfilment of the requirements for the award
of Master of Analytics, in the school of Computer Science at the University of Technology
Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition,
I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.
This research is supported by the Australian Government Research Training Program.

Signature:

Date:

Production Note:

Signature removed prior to publication.

00/03 /J-02---0

Acknowledgements

I would like to express my sincerest gratitude to my principal supervisor, Dr Ling Chen, who
gave me the opportunity to embark on this research degree and for being extremely patient
and supportive in guiding me over the course of this journey. I would also like to thank
my co-supervisor, Dr Wei Bian, who encouraged me to explore blockchain technology and
encouraged me to put the pieces together to form a complete work. I could not have finished
this research without their valuable help.

Thanks to all my research colleagues and friends in the school of Computer Science for
their kind help to overcome my struggles. I would like to express my appreciation to Mr Wei
Wu, Miss Jiamiao Wang, Mr Shaosheng Wang, Mr Yunqiu Xu, Miss Congai Li, and all my
other lovely friends in this school.

Last but not least, I thank my parents for their support. They have always encouraged,
guided, and supported me, no matter when I succeeded or failed.

Abstract

After its rapid development and broad adoption in its early stage, blockchain technologies
are experiencing a bottleneck in terms of their scalability in processing transactions. There
have been various proposals to overcome this difficulty, but very few are able to avoid the
curse of the blockchain trilemma in relation to balancing scalability, decentralization, and
security. However, Algorand demonstrates its superior capability to process transactions and
maintain safety when the number of users increase. In particular, its consensus diminishes
the probability of chain forks, which generates the feasibility of double-spend attacks in
blockchains. In order to determine if Algorand could be the answer to the trilemma, this
thesis presents an investigation of its consensus algorithms and a thorough analysis of its
performance and some potential downsides of the proposal.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Background . 1
1.2 Consensus . 1
1.3 Research Questions . 4
1.4 Aims & Objectives . 5
1.5 Organization of Thesis . 5

2 Literature Review 7
2.1 Blockchain . 7

2.1.1 Chain Structure . 7
2.1.2 Asymmetric Encryption . 8
2.1.3 Transactions . 8
2.1.4 Block . 9

2.2 Consensus Algorithm . 10
2.2.1 Proof-of-Work . 10
2.2.2 Proof-of-Stake . 19
2.2.3 Byzantine Fault Tolerance consensus 21

2.3 Blockchain Trilemma . 22
2.4 Algorand . 24

3 Investigation of Consensus Algorithm 27
3.1 Implementation of Simulator . 27

3.1.1 Communication Model . 27
3.2 Implementation of Consensus Algorithms 34

3.2.1 Security Assumption . 34

xii Table of contents

3.2.2 Blockchain . 35
3.2.3 Cryptography Sortition . 35
3.2.4 Byzantine Agreement⋆ . 37
3.2.5 Voting . 38
3.2.6 Reduction . 40
3.2.7 Binary Byzantine Agreement . 41

4 Analysis & Findings 47
4.1 Round Completion Time . 47
4.2 Resistance to Dishonest Voting . 51
4.3 Sortition . 52

5 Conclusion 59

References 61

List of figures

2.1 Simplified Visualization of Blockchain . 8
2.2 Transaction Example . 9
2.3 Block Structure[51] . 9
2.4 Computational Puzzle in Bitcoin[39] . 11
2.5 Hash Rate . 12
2.6 Difficulty . 12
2.7 Mining Pool Distribution[9] . 13
2.8 Simplified Payment Process of Bank System 15
2.9 Forked Chain . 15
2.10 Double Spend Attack . 16
2.11 Difficulty Comparison of Bitcoin and Bitcoin Cash[7] 17
2.12 Example:Cuck Hash tables . 18
2.13 2 Hop Blockchain Structure . 20
2.14 Byzantine General Problem . 21
2.15 Quorum Hierarchy[33] . 22

3.1 Peer-to-Peer Network . 28
3.2 Block Propagation Delay[19] . 30
3.3 Transaction Propagation Delay[19] . 31
3.4 Gossip Pipe and Receiver . 31
3.5 Flowchart of Consensus . 32
3.6 Interaction Demo . 34

4.1 Round Completion Time . 47
4.2 Average Round Completion Time . 48
4.3 Number of Vote Messages Generated . 49
4.4 Completion Time of Varying Proportions of Dishonest Users 52
4.5 Average Selected Sub-users per round . 55

xiv List of figures

4.6 Number of Users per Group . 55

List of tables

2.1 Consensus Protocol Comparison . 23

4.1 Probability of Failing at Sortition According to Tokens 53
4.2 Number of address according to balance in US dollar[8] 54

Chapter 1

Introduction

1.1 Background

Bitcoin, as the pioneer of blockchain, achieved great success over the past decade. It pro-
posed a decentralized network that can validate and record transactions in a public ledger
without trusted intermediates. Many applications adopted its distributed model and tamper-
proof structure into their innovations, including cryptocurrencies, smart contracts, and supply
chains [15, 29]. It is undeniable that blockchain has a tremendous potential to challenge
the existing centralized systems. However, the majority of blockchain applications have to
address the blockchain trilemma[22] hurdles before being seen as a feasible alternative to
centralized models.

1.2 Consensus

Unlike traditional fiat currency, blockchain-based digital currency does not have an inter-
mediate, such as banks or payment service companies, who have a higher trust level to
verify and finalize payments. Without regulation from central authorities, dishonest users can
deliberately make payments to different people with the same tokens. This malicious attempt,
called double-spending, is the most critical issue for all blockchain applications. Because
participants are distributed, there is a high possibility that a simple storage mechanism
could lead to diverged versions of the ledger. To prevent the partitioning of the ledger in
the network, blockchain relies on the notion that the majority of participants will follow a
consensus protocol to reach agreement asynchronously.

2 Introduction

Proof-of-work

There have been various categories of consensus protocols implemented and adopted by
blockchain applications. Of these protocols, the earliest and most widely adopted is the
proof-of-work consensus. In proof-of-work-orientated blockchains, users have to solve
computational puzzles by repeatedly guessing pseudo-random answers to append new trans-
actions to the public ledger. The user who finds the answer first will collect the transactions,
propose a new block, and append it after the latest block in the blockchain. The block
becomes valid when the majority of users confirm its validity and start proposing new blocks
after it. In rare cases where two valid blocks are produced simultaneously and temporally
produce a chain fork, one of the forks will gradually become the longest chain having most of
the proof-of-work efforts if the majority of the users continue building on it. Although there is
a low possibility that a chain fork will be produced, an attacker can utilize massive computing
power to create forks and reverse transactions forcefully if his chain becomes the longest
one. In this rare case, proof-of-work-based blockchains recommend that users confirm the
transactions until specific numbers of new blocks are generated after the first observation of
the transactions in the public ledger. For example, Bitcoin suggests observing at least six
subsequent blocks to confirm transactions after appending into the ledger. Generating six
blocks takes approximately one hour, which significantly impacts the efficiency of processing
transactions and renders Bitcoin unpractical for day-to-day payments. Furthermore, Bitcoin
periodically adjusts the mining difficulty to regulate block generation with a fixed interval.
This not only ensures the security of Bitcoin as the total computational power increases but
also stabilizes the price of coins and creates a healthy financial ecosystem. It is also the
reason that most of the blockchain applications either adopt or extend the structure of the
proof-of-work consensus. Inevitably, they also inherit some of the drawbacks that do not
allow them to break through the trilemma.

Moreover, proof-of-work faces other issues during block generation. Firstly, the block
size limits the volume of transactions that can be stored. Secondly, the massive amount
of energy consumed by all miners to generate one block is purely wasted to generate a
meaningless unique number. Last but not least, difficult mining generates the pooled-mining
strategy that initially allows miners to share computational power and efficiently generate
blocks. However, there have been a few private mining pools in which cryptocurrency
companies have invested that have started to dominate the majority of the computational
power in the system. Although none of the giant pools occupy more than 51% of the power
in the system, it raises concerns of centralization if multiple mining pools decide to cooperate
in the mining process.

1.2 Consensus 3

Alternatives

Several alternative consensus algorithms have been proposed to address the issues of proof-
of-work. The most accepted concept is the proof-of-stake, which randomly selects represen-
tatives according to their tokens to propose blocks and update the public ledger. Instead
of allocating heavy computational work to all the miners, it selects a subset of users to
generate blocks resulting in the minimum consumption of resources. Therefore, most of
the proof-of-stake-based consensus can confirm transactions in a more efficient and quicker
way. In terms of security, this scheme relies on honest users owning the majority of the total
tokens to defend against the overwhelming probability of attack. Attackers must spend a
significant amount of monetary value and take risk losing their investment to undertake an
attack. It also eliminates the possibility of brute-force attack using computational resources
and the dominance of centralized computational power. However, it is argued that relying on
the weighted probability shifts the centralization to digital tokens. Compared with investing
in computational power, stacking tokens is more simple and costs less without the heavy
computational efforts required to re-produce the chain.

In addition to proof-of-stake, Byzantine Fault Tolerant-based blockchain, like Hyper-
ledger Fabric[1], reaches consensus while assuming a fraction of the network is dishonest.
Generally, these blockchain applications validate blocks by collecting more than a threshold
of specified votes from the network with the assumption that the distributed system could
remain functional as long as 2/3 of the majority are honest and defend against malicious
attacks. The drawback of this system is that most of these proposals select master nodes to
take charge of broadcasting and validations, which inevitably causes the framework head
towards centralization. It also potentially exposes users to other forms of attack, especially
targeted attacks on users holding a significant number of tokens.

Algorand

Many proposals have attempted to mitigate the effect of chain forks and improve scalability
through implementing a new consensus algorithm, but they all struggle to balance every aspect
of the trilemma. Some variants of proof-of-work sacrifice the complicated cryptography
of mining to shorten the interval of block generation. This could increase the volume of
processed transactions but weaken the security of blockchains and increase the probability of
chain forks. In the case of proof-of-stake, it solves the problems of centralized computational
power and improves the efficiency of the network. However, a heavy reliance on the
probability weighted by monetary value shifts the centralization from computing power to

4 Introduction

tokens. More importantly, the chain fork that directly causes the double-spending threats is
not optimized.

However, Algorand, a proof-of-stake blockchain combined with Byzantine Fault Toler-
ance, achieves a breakthrough in relation to the trilemma. The distributed system consists of
an efficient cryptographic sortition weighted by the user’s weights, and validation processes
secured by a Byzantine Fault Tolerance-inspired voting scheme. It is also capable of securing
the ledger when a small proportion of users are malicious. As observed from its extraordinary
results, Algorand can reach agreements within a short period, and the performance remains
constant while scaling to a large number of users[23]. Furthermore, its block generation
scheme eliminates the possibility of chain forks which are the main cause of double-spending
attacks.

1.3 Research Questions

The blockchain trilemma refers to the struggle of achieving decentralization, scalability,
and security without sacrificing one or two of these properties. As the hype surrounding
blockchain continues to heat up, its scalability, in terms of handling a larger number of
transactions more quickly desperately needs a solution. Improving scalability without
weakening decentralization and security is easier said than done. In the case of Bitcoin,
some of the community suggested increasing the block-size limit to achieve a more massive
throughput of transactions. Theoretically, this is the most efficient and straightforward way to
do this, without making significant changes to the existing framework, but the trade-offs are
not just an increment in message delays. A longer propagation time exacerbates the problem
of chain forks and partitions in the network. Furthermore, it increases the storage cost of
maintaining the full blockchain, which could potentially lead to more centralized mining.
The same trade-off applies not only to Bitcoin but also to other blockchain applications.

Algorand, a democratic and scalable cryptocurrency, is a promising blueprint to show that
blockchain can achieve safety with minimum computational cost, a negligible probability
of forks, a tolerance to malicious behaviors, and it can confirm transactions quickly. With
these properties, it seems able to solve the trilemma problem. Although Algorand delivers
promising results, a few have argued that its security assumptions are impractical in the
real environment[14, 47]. In order to have a better understanding of how the consensus
algorithm can solve the trilemma problem, this thesis presents an exploratory investigation
of the consensus algorithms, broken down into the following questions:

• What is the best way to investigate Algorand’s consensus algorithm?

1.4 Aims & Objectives 5

• How does the consensus algorithm confirm a block quickly while scaling to a large
number of users?

• How does the consensus algorithm perform and tolerate dishonest behaviors?

• What effects does the sortition algorithm have on agreement when the tokens are
distributed unevenly?

1.4 Aims & Objectives

In order to thoroughly analyse Algorand’s consensus algorithm with limited released re-
sources, the investigation is carried out by fulfilling the following objectives to answer the
research questions:

1. To construct a close-to-real distributed network simulator

2. To construct a blockchain with Algorand’s consensus algorithm

3. To collect simulated data and analyze the performance of the consensus algorithm

4. To identify possible drawbacks and improvements to the consensus algorithm

1.5 Organization of Thesis

This thesis comprises five chapters. The overall structure is shown as follows:

• Chapter 1: Introduction

• Chapter 2: Literature Review

• Chapter 3: Investigation of Consensus Algorithm

• Chapter 4: Analysis & Findings

• Chapter 5 Conclusion

Chapter 2 provides a literature review on the standard structure of blockchain applications.
It also reviews different consensus algorithms adopted by blockchains to reach agreement
and the difficulties in improving them. Chapter 3 describes how the investigation is per-
formed, including the implementation and analysis of a simulator and Algorand’s consensus
algorithms. Chapter 4 gives an analysis of the results and verifies the performance of the
algorithms with different configurations. Lastly, chapter 5 concludes this thesis.

Chapter 2

Literature Review

2.1 Blockchain

2.1.1 Chain Structure

In the past decade, the world witnessed the rapid growth of blockchain applications in both
the financial market and technology. Among various categories of blockchain applications,
Bitcoin has to be the most well-known and valuable one. It was initially proposed by Satoshi
Nakamoto in 2008 to serve as a public ledger that valid transactions without enforcing trusted
third party authorities in a Peer-to-Peer network. The public ledger can be visualized as a
chain of linked blocks where transactions are stored. In the chain, individual block binds itself
with a parent block using a cryptography link. Within each block, transactions along with
a set of metadata are serialized and hashed to generate a hash-based proof-of-work, which
cannot be changed unless repeating the proof-of-work[37]. The proof-of-work generated
hash serves as a unique and pseudo-random identification to a single block, which is called
block hash in blockchain applications. Any attempt to add or remove data in an existing
block will generate a new block hash and cause domino effects to the subsequent blocks of it.
For example, if an attacker reversed a transaction and resulted in a new block hash in block
10 in Figure 2.1, the descendant blocks’ block hash will be changed because of the previous
block hash field has been changed. In order to validate the new blocks, he has to repeat the
proof-of-work process for block 11 and block 12 until the latest block. The longer the chain
grows, the more work the attacker has to do. Theoretically, he can never produce a new
chain to bypass the chain maintained by the majority, unless he has a tremendous amount
of computing power to control the entire network. It plays a critical role in securing the
blockchain and preventing the network from reaching diverged versions of ledger. The similar
kinds of strategies to guide the distributed network reaching an agreement are commonly

8 Literature Review

called consensus algorithm. Apart from consensus algorithms, digital signature mechanisms
are leveraged to encrypt, verify, and secure transactions, while blockchain does not have
any trusted intermediate to validate the legality of transactions. For this reason, most of the
blockchains feature with anonymity, autonomy, transparency, and immutability[32].

Fig. 2.1 Simplified Visualization of Blockchain

2.1.2 Asymmetric Encryption

In the absence of a trusted intermediate, blockchain relies heavily on asymmetric encryption
to secure the safety of the data in the system. The asymmetric cryptography scheme generates
a pair of private keys and public keys which allows the user to sign a message digitally with
the private key and prove its correctness with the public key. The generation of a key pair
is dependent on a one-way function that produces a public key from a private key, and the
private key cannot be forged by only knowing the public key. Moreover, in this system,
the sender can use the receiver’s public key to encrypt a message, while the receiver has
to decrypt the message using the private key [49]. Hence, in the blockchain, participants
privately reserve their secret key but reveal their corresponding public keys to the entire
network. This property gives the system the feature of anonymity. Users can send transactions
as long as they provide publicly verifiable proofs to certify their ownership. Real-world
identification is not necessarily involved or required in public blockchain applications.

2.1.3 Transactions

In a blockchain network, users make and broadcast transactions to announce ownership trans-
fer from themselves to new owners. Despite payments in the digital cash model, transactions
can be implemented in other scenarios, such as the real-time tracking of information in the
supply chain industry and data records in the Internet of Things. Under most circumstances,
one transaction consists of an input and output field, which indicates where the tokens are
from and where they are to be paid. Both of these fields contain asymmetrically encrypted
messages, which can be encrypted privately or verified by the public key.

2.1 Blockchain 9

Fig. 2.2 Transaction Example

Figure 2.2 gives a brief example of a transaction in a blockchain. The input field points
to the output field of a previous transaction where the sender receives money from either
the system or other participants. Furthermore, the input field contains the number of tokens
along with a digital signature of this transaction and the public key to unlock a locking script
in the previous output field. To complete the transaction, the output field records the number
of tokens that the receiver will get and it has a locking script that can be redeemed by the
receiver’s corresponding public key. After the transaction is collected into a new block and is
appended into the longest blockchain, it can be considered to be a confirmed transaction.

2.1.4 Block

Blocks are the essential building blocks of blockchains. Starting with a genius block, a
blockchain generates a new block pointing to an existing one in the chain. A block commonly
has a unique hash value proving its uniqueness in the chain and other metadata required by
different blockchain applications.

Fig. 2.3 Block Structure[51]

Figure 2.3 illustrates a commonly used block structure, which contains:

1. Block version which specifies the version of protocols to validate this block

10 Literature Review

2. Parent Block hash which indicates the unique hash value of its predecessor block

3. Merkle Tree Root which is the data structure to store all the transactions’ hashes and
enables a fast search and verifies the procedure

4. Timestamp which gives the block generation time

5. nBits which indicates the mining difficulty in the proof-of-work based system

6. Nonce which is a field used in a computational puzzle to produce a unique hash value

2.2 Consensus Algorithm

Blockchain applications run in distributed networks where none of the nodes have a dominant
power to control the direction of running. Therefore, this raises a crucial problem of how an
individual node reaches agreement on new blocks or updates to the system when everyone
shares a similar level of trust? Reaching consensus in such a network can be transformed
into the Byzantine General’s problem, which describes how a distributed computing system
follows specific strategies to avoid total failure when information propagates imperfectly or
part of the system fails[30]. In order to securely reach agreement, a variety of consensus
algorithms have been developed for blockchain applications, including proof-of-work, proof-
of-stake, and other strategies.

2.2.1 Proof-of-Work

The concept of proof-of-work requires a moderate amount of computational work from the
requester to provide proof to the server to prevent service abuse and spam attack[25]. When
Bitcoin was introduced back in 2008, it proposed a similar system as Adam Back’s hash cash,
which computes digital tokens from a CPU cost-function[3]. Generally, the proof-of-work
system will initialize feasible computational puzzles of moderate difficulty for the user to
solve. The solution will become proof for the user to claim its right to perform any operation
on the blockchain. As soon as a solution has been proved, no changes can be applied unless
the computation work is repeated. This is the most fundamental component of the system
in defending it against malicious attack and avoiding messages spamming the network. To
encourage users to solve puzzles and grow the chain, the system gives them incentives to
keep producing new blocks and allows them to surcharge proportional to the size of the
transactions for recording transactions in blocks.

2.2 Consensus Algorithm 11

Bitcoin

Fig. 2.4 Computational Puzzle in Bitcoin[39]

Of all the proof-of-work-based blockchain, Bitcoin was the first and requires the most
intensive computational work. The value of bitcoin tokens rose greatly to approximately
US $20,000 by the end of 2017, and was seen as digital gold in the cryptocurrency market.
Behind all the hype and madness of Bitcoin is a robust cryptography function and consensus
algorithm. Firstly, Bitcoin generates a computational puzzle based on the SHA-256 hash
function, which generates a unique output with a fixed length. The uniqueness suggests that
the output will be different once any change has been applied to the input.

Further, the randomness of the hash function ensures that output is unpredictable and
cannot be constructed without knowing the input. With these features, Bitcoin periodically
generates a computational puzzle requiring a user to find an SHA-256 result to satisfy certain
difficulty levels. Specifically, the user has to construct a block header containing a handful of
fields of metadata described in the previous section. By hashing the concatenated data from
the block header and incrementally changing the Nonce data from 0 by 1, the user will get a
unique output every time. However, to limit the possibility that large numbers of users solve
the puzzle simultaneously, Bitcoin only approves the result, starting with a fixed number of
zeros. In addition, the hash output has to be lower than a target threshold value specified by
the system. Otherwise, the output will not be qualified as a solution to the puzzle. Since
the output of SHA-256 is random and unpredictable, the only way to find a solution is by
guessing the nonce one by one. To claim the right to append a new block, users compete

12 Literature Review

with each and whoever solves the puzzle first has to broadcast the block to the network. After
it has been confirmed by the majority of the network, a new round will start. As only those
blocks finalized in the longest chain will be considered valid, it is always suggested to start a
new trial as soon as a new block is announced.

To regulate the block generation interval, Bitcoin introduces the field of difficulty dis-
cussed in the previous section. It acts as a threshold value that forces computational solutions
to be lower than it. In addition to regulating solutions, Bitcoin will adjust the difficulty every
2016 rounds to regulate block production within a fixed interval of around 10 minutes. In
Bitcoin, users who always attempt to solve cryptography puzzles and produce blocks are
referred to as miners, which is widely applied to other proof-of-work-based applications.
After successfully generating one block, miners will be rewarded with tokens that are newly
generated in this block by the system to encourage them to maintain the liveness of the
network. The excellent price of Bitcoin stimulates miners to invest in expensive computing
equipment and they expect high profits to be returned as the mining reward. As a result,
the total hashing power continues to rise, which forces the system to increase the difficulty
to control block production intervals. Figures 2.5 and 2.6 clearly show that the hash rate
and difficulty started to increase when Bitcoin was drawing wide attention from developers,
miners, and investors. The current estimated time for a solo miner is approximately 98 years
with moderate computing power. The probability of finding a new block is similar to looking
for a specific star in the infinite universe.

Fig. 2.5 Hash Rate Fig. 2.6 Difficulty

Mining Pool

The enormous amount of effort required to create a new block generates a new strategy called
Mining Pool where miners share their computing resources with others to find a nonce that
solves the cryptography puzzle since the chance for a solo miner is merely zero. Mining
pools are funded and managed by private companies focusing on the Bitcoin business. Public
mining pools allow an individual miner to join the pool in order to gather more computing

2.2 Consensus Algorithm 13

resources. In order to join the pool, individual miners will be assigned with relevant loads
of computational work proportional to their hashing power. If a new block is successfully
confirmed into the chain, the block reward will be distributed according to their contribution
to the process. This seems feasible and is the only way for people to make profits from
mining. However, everything has its pros and cons. It does not only allow a solo miner to
participate in mining, it also leads to an issue of over-concentrated hash power and potential
security threats.

Fig. 2.7 Mining Pool Distribution[9]

As discussed in the Bitcoin white paper, the system remains secure as long as honest
nodes control the majority of the computing power, estimated to be 51 %, and they will
produce the longest chain and surpass the speed of malicious nodes [37]. Figure 2.7shows
approximately 20 major mining pools possessing tremendous computing power control
almost 100 percent of the total hash power and dominate block generation in the current
Bitcoin network. From the perspective of maintaining the network, this guarantees that
Bitcoin will keep supplying new coins, confirming transactions and growing chains. No
matter how hashing powers are concentrated, the entire network will remain live when pools
perform honestly.

However, mining pools in China are estimated to occupy around 80 percentage of the
total hash power, which raises concerns that the over-powered hash rate will perform attacks
on the consensus algorithm and control the growth of the chain. The hashing power has
already exceeded the minimum security level, which suggests that they can manipulate the

14 Literature Review

entire network’s trade by producing blocks recording transactions in favor of themselves and
initialize double-spending attacks.

Double Spending & Chain Fork

Why is the concentrated hashing rate in mining pools causing anxiety in the community?
Because overpowered computational resources enable a user to perform a double-spend
attack, a typical malicious behavior in the digital cash scheme. Different from fiat currency,
digital currency can be spent more than one time before payment is finalized. This is
where the bank comes into play as a trusted intermediate that manages tokens and verifies
transactions. In a centralized system, a bank will create, verify, and approve a transaction
for its customers. Let us say that user A wants to make a payment of $5 to merchant B via
credit card. He will authorize his bank to create a $5 transaction from his account to the
merchant’s account. Before completing the transaction, the $5 turns into a pending state and
the bank will deny any malicious behaviors from user A. As soon as the bank of merchant B
receives the payment and successfully verifies the legality of the payment, it will confirm
the transaction and append the new fund into B’s account. Hence, a bank with a higher level
of trust will take care of the payment processes and secure the customers’ assets. However,
the most apparent drawback of this centralized scheme is that intermediaries gain complete
control of everything. If merchant B’s bank insists that they did not receive a transaction
from user A and hides the transaction request, merchant B does not have any evidence to
claim back his money from the trade.

Moreover, malicious attackers can manipulate the system by only targeting central author-
ities. Users have no privacy when intermediaries store their payment history and personal
details. Although a trusted bank or operators try their best to protect personal information, it
is common that leaking could take place at any second. Moreover, governments with a certain
authority level could pressure a financial service provider to provide customers’ details and
trading history. Therefore, the bank as a service provider and trusted intermediary is in the
most vulnerable spot in the centralized system.

In contrast, Bitcoin is a decentralized system without any trusted intermediary involved
in the system. There is no central node to ensure the ledgers in the distributed nodes are the
same [51]. Following the rules of the proof-of-work consensus, the miner who solves the
computational puzzle first broadcasts its result to the network. If the new block propagates to
the entire network before any other miner solves the puzzle during this period, all nodes will
reach a consensus on this new block. However, due to network latency, propagation is not
fast enough to reach each node of the network simultaneously.

2.2 Consensus Algorithm 15

Fig. 2.8 Simplified Payment Process of Bank System

Fig. 2.9 Forked Chain

Meanwhile, some nodes may reach agreement on a different block and start a new round
of mining. In this rare case, the network reaches agreement on a diverged version of blocks
and generates two chains for miners to mine new blocks. To recover from a diverged ledger,
Bitcoin states that only the longest chain that has the largest pool of computing power could
serve as proof [37]. This also explains why Bitcoin’s chain is never one single straight chain.
Splits in the chain could take place at any time and at any height in the system. As long as
the majority of miners start mining on one of the split chains, there will be one that outpaces
another.

Blocks that are not in the longest chain are marked as invalid. In these invalid blocks,
transactions that are not recorded in the longest chain’s blocks are broadcast back to the
transaction pool, where pending transactions are stored. By using this temporary weakness in
the blockchain, attackers can send two transactions with the same token to different people,
because the coin cannot be split like fiat currency. In Bitcoin, a user’s balance is the sum of
the total number of satoshi (minimum Bitcoin token unit) in his unused transaction outputs in
his received payments. If user A only has a five satoshi balance from one transaction output
field, and he needs to make a three satoshi payment to user B, the transaction will consist of

16 Literature Review

five satoshis as input, three satoshis to user B and two satoshis back to user A as output fields.
These five satoshis will be invalid until a block in the main chain records the transaction.
Hence, a malicious user with enough computing power can temporally create a blockchain
fork on purpose. One possibility is that the block has stored his transaction end up in the
side chain rather than the main one. As a result, the transaction will be unconfirmed. The
process of this attack is briefly illustrated in Figure 2.10, where Bob successfully performs a
double-spend attack on Alice. The second possibility is that the attacker made two different
payments with the same token. Two miners accidentally generated two blocks at the same
height without noticing that Bob created two transactions using the same token. Both
transactions are recorded separately in these two blocks. However, one of the transactions
will become valid when one of the chains finally surpasses the other and becomes the
main chain. In these two cases, the attackers have performed the double-spending attack
successfully. For this reason, Bitcoin suggests that users observe a further six blocks to be
mined after the block where the transactions are recorded. This is the most crucial reason
why a bitcoin payment is not efficient or scalable like traditional payment services, such as
Mastercard and PayPal.

Fig. 2.10 Double Spend Attack

There are two types of Bitcoin forks which enforce the new network rules. Firstly, a
soft fork is backward-compatible, which means that the old version of the protocols can still
verify the new blocks as valid [2]. In contrast, a hard fork always requires nodes to upgrade
their software. Otherwise, new blocks mined under the new rule will be seen as invalid by the
old one. However, both of them will result in a fork because the enforced new rules will not
validate the blocks mined following the old protocol after the adoption of new one. Hence, a
software fork requires the majority of miners and nodes to update their software to enforce

2.2 Consensus Algorithm 17

the new protocol in the new chain. Last but not least, the fork can be utilized by bitcoin to
recover from cyberattacks or temporary malfunctions of the software.

Variants of PoW

As the mining difficulty continues to climb, it is becoming harder for solo miners to partic-
ipate in mining the system. As discussed in the previous part, immense mining pools are
dominating the block generations. Furthermore, the electricity consumption of the mining
hardware raised the community’s concerns with greenhouse gas emissions. Some argue that
bitcoin mining is nonsense and a waste of computing power. Moreover, bitcoin’s block gen-
eration interval is regulated by the system, which makes the safe confirmation of transactions
seem impractical in day-to-day payments. In comparison, payment service providers such as
Visa and Mastercard, handle approximately 1700 transactions per second [38]. To resolve the
aforementioned drawbacks, both researchers and community members have proposed and
implemented various applications which utilize either new protocols or improved algorithms.

In August 2017, Bitcoin cash permanently hard-forked from the Bitcoin main chain with
an incompatible software update [31]. As Bitcoin was extremely popular at that time, the
block size limit slows down the transaction speed, and the community needs an update to
bypass the restriction. Bitcoin Improvement Proposal number BIP141[21] was proposed to
improve block storage and transaction efficiency. However, a large group of miners and com-
munity members and miners who refused to adopt the new proposal kept mining with older
protocols, resulting in a fork. They thought an increase in transaction volume in the block
would not effectively mitigate the struggles of scalability and transaction speed. In contrast,
they designated a breakdown on the limitation of the block size. Furthermore, they wanted to
maintain Bitcoin as a pure transactional currency rather than a digital investment[43]. As a
result, Bitcoin Cash hard forked from Bitcoin but inherited most of the Bitcoin’s features. The
most notable improvements are the increased limitation of block size to 8MB and decreased
mining difficulty. The following graph shows the difference in the mining difficulty since the
hard fork.

Fig. 2.11 Difficulty Comparison of Bitcoin and Bitcoin Cash[7]

18 Literature Review

The immense success of Bitcoin stimulated the generation of large number of alternative
coins. Some of these altcoins are constructed on the framework of Bitcoin. Litecoin
substitutes the SHA-256 hash with a Scrypt function. From the perspective of encryption, it
is designed to prevent brute force attacks to password-based key derivation function, such as
the SHA-256 function in Bitcoin, by requiring an intensive amount of memory [26]. The
memory requirements make the paralleled calculations of the SHA-256 hash impossible in
Litecoin. Additionally, Litecoin confirms transactions at a faster speed than Bitcoin and with
shorter block generation intervals. Notably, Litecoin has become the second most adopted
cryptocurrency after Bitcoin.

Similar to Litecoin, Tromp suggested a replacement of SHA-256 with the Cuckoo hash
function that reduces the complexity of the computational puzzle. As shown below, the
Cuckoo hash maps a key to a location in two tables, where individual keys have two alternative
positions. If a new key is inserted into the position of A, A will be removed from the left
table to the position indicated by the arrow pointing to the right table. The hash function
keeps inserting new keys until it reaches a maximum number of iterations or the tables are
completely filled [40]. In order to solve the Cuckoo hash-based puzzle, the Cuckoo hash
table stores enumerated nonces as alternate key locations. If there is a graph containing a
fixed length of cycles, the puzzle will be solved[45].

Fig. 2.12 Example:Cuck Hash tables

Different from utilizing cryptography functions, King presented Primecoin whose proof-
of-work was established upon searching the prime number[27]. In Primecoin, miners have to
compute prime numbers that extend the Cunningham chain of the second kind and bi-twin
chain of the first kind. Scientists can access the prime number in the blockchain. This is
one of the first blockchain applications that transfer the meaningless mining in Bitcoin to
generate some scientific computing values.

2.2 Consensus Algorithm 19

2.2.2 Proof-of-Stake

The concept of proof-of-stake consensus was initially proposed by a Bitcoin community
member to transfer computing power-weighted mining to a token-weighted vote[44]. The
system weights individual users by their tokens over the total tokens in the system. A higher
ratio indicates a higher trust level because users who possess a large number of tokens are
less likely to attack the system to generate threats to their assets. Replacing the proof-of-work
based consensus rule could potentially speed up the transaction process, reduce the cost of
mining new blocks, and allow stakeholders to participate in the network. Therefore, the
system will be secure as long as honest users own the majority of tokens.

Nextcoin is a pure proof of stake blockchain application, which assigns a feasible target
for miners to compute. Equation 2.1 calculates target values[48], where Be representing the
individual’s total effective tokens is the only parameter that differs from the probability of
solving puzzles. To prevent the system from stalling due to a lack of active users, NextCoin
allows coin leasing between accounts. Users can temporarily lease coins to other accounts
for a limited period. These coins will be added to the receivers’ effective balance temporarily.

T = Ts×S×Be (2.1)

1. T represents the target hash value

2. Ts represents the base target

3. S is the time since the last block’s generation

4. Be is the balance of the user

Peercoin is one of the earliest blockchain applications to adopt proof-of-stake consen- sus.
The system qualifies miners according to the concept of the coins’ age, which is calculated
from the length of time the user has held the coins[28]. The coin’s age significantly affects
the difficulty of the computational puzzles the miners have to solve in the Peercoin’s protocol.
Miners with more extended holding periods and a larger quantity of coins will theoretically
have a higher probability of mining the next block. However, there are some time-based
constraints to regulate miners’ behaviors. Firstly, coins have to be held by miners in their
wallets for at least one month. The reset will force a miner to a cool-down period of thirty
days to allow others to participate in mining with a higher probability[42]. Moreover, the cool-
down period increases the cost of malicious users who conduct an attack with a significant
amount of investment in coins. This might result in a fall in market price to increase the cost
of the attack.

20 Literature Review

Bentov proposed a proof of activity scheme extended from the Bitcoin protocol. He
argued that pure proof-of-stake mitigates some of the drawbacks of Bitcoin, such as reducing
the power centralization, but it shifts the risks to the centralization of tokens[4]. In the
proof-of-stake system, users possessing a substantial amount of tokens could enforce double-
spending attacks, since they overwhelm others by a much larger probability of mining blocks
in consecutive rounds. The attackers can also bribe or persuade stakeholders not to behave
honestly or intentionally enforce a fork to reverse some of the transactions in the ledger. With
this in mind, proof of activity takes the approach of following-the-satoshi which breaks down
all active Bitcoins into the minimum unit satoshi and applies a pseudo-random value to it
[4]. Then the algorithm searches the current holders of these satoshis through the transaction
history. Assuming that there are ten coins in the system and 2 of these coins are randomly
selected, if Bob has five coins and Alice has two coins, it is apparent that Bob has a higher
probability of being the miner in the new round.

Rather than relying on just proof-of-stake or proof-of-work, 2-hop proposed a new chain
structure combining both of these consensuses. Figure 2.13 illustrates the 2 hop chain, where
the black outlined blocks represent the proof-of-work-based chain, and the red outlined
blocks represent the proof-of-stake-based chain, but they are twisted with the constraints
that a proof-of-work mined block can only be mapped to one proof-of-stake block in one
round, and it has to link to blocks mined by both of the consensus rules [20]. To satisfy the
constraints, the system performs proof-of-work mining and proof-of-stake mining alternately.

Fig. 2.13 2 Hop Blockchain Structure

This mining strategy secures the system if one side of the miners is malicious. For
example, PoW miners record a fraudulent transaction in the block. However, the following
PoS miners are aware of his malicious behavior and they decide to give up mining in this
round. The proof-of-work miner cannot continue his attack because his proposed block did
not accept the links from the PoS mined blocks. Hence, the system will not validate his
proposal. This mining scheme reduces the risks of centralized computing and monetary
power in a pure proof-of-work and proof-of-stake system.

2.2 Consensus Algorithm 21

2.2.3 Byzantine Fault Tolerance consensus

How to reach agreement in the decentralized and distributed blockchain network is a variant
of the Byzantine General’s Problem, which describes how a group of generals can reach
agreement on a plan to either attack or retreat, however, because the generals are some
distance apart from each other, they must rely on information being passed by messengers,
who could be traitors sending erroneous messages[30]. A general makes a decision according
to the messages he receives from the rest of the generals. It is assumed that all generals have
to act the same to succeed in the war. In the computing world, this describes the tolerance of
a distributed computing system when parts of it malfunction. Marshall Pease proved that a
system with 3n+1 nodes can tolerate up to n malicious nodes before total failure[41].

Fig. 2.14 Byzantine General Problem

Hyperledger Fabric is one of the early pioneers in developing blockchain applications
based on Practical Byzantine Fault Tolerance(PBFT)[11]. It leverages the PBFT’s safety
assumptions that a distributed system with 3n+1 can still work safely with up to n nodes
being malicious or idle. In the Fabric network, each node joins as a validating peer. Within
groups of nodes, the system selects one node as a leader, who is responsible for collecting
transactions and creating blocks. In each round, nodes send transaction requests, verify
transactions, and broadcast results to their peers. After a fixed amount of time has passed or
the transactions are collected, each leader node broadcasts a block containing the unconfirmed
transactions and collects the votes from the peers. If more than 2n+1 nodes agree on the
proposed block, it is finalized and appended into the blockchain. Similar to selecting a leader
node in Fabric, the Honey Badger[36] deploys a group of master nodes to handle transactions
and reach an agreement. Although the system is proved to handle a significant amount of
transactions in short period, the set up of master nodes fails the nature of decentralization of
blockchain.

22 Literature Review

Steall adopted the Federate Byzantine agreement, where nodes build up quorums based on
their knowledge of other nodes’ trust levels. Figure2.14 illustrates a tiered quorum structure.
In the top tier, only one of nodes v1,v2,v3,v4 can be malicious. Otherwise, it will fail the
security threshold specified by the Byzantine Fault Tolerant Problem. Since it depends on
itself, it can only form quorum slices from this tier. In the middle tier, the nodes designate
two nodes from the top tier to construct quorum slices. Nodes in the leaf tier depend on two
nodes from the middle tier relying on the top tier. As the tiers and nodes are increasing, the
trust hierarchy becomes more complex and robust.

Fig. 2.15 Quorum Hierarchy[33]

2.3 Blockchain Trilemma

Blockchain has shown the public its potential to build a tamper-proof ledger system running
without central authorities and challenging the traditional banking system. Many variations
of blockchain have capitalized on Bitcoin’s backbone protocol. However, Bitcoin’s protocol
has always been criticized for some of its apparent drawbacks, including security, scalability,
centralized computing pools and energy waste due to the mining process. The above sections
have analyzed some proposals to mitigate the drawbacks from different perspectives. Table
2.1 overviews and compares the consensus protocols.

The table shows that the variants of the proof-of-work consensus have limitations in
terms of fulfilling every aspect of the expectation. Researchers call this the trilemma but
blockchain applications can only achieve two of these[22]:

1. Decentralization

2. Scalability

3. Security

2.3 Blockchain Trilemma 23

Proof-of-Work Proof-of-Stake Byzantine Fault Tolerance

Computing Power Intensive Low Low

Energy Cost Moderate Low Low

Chain Fork Possible Difficult Difficult

Double Spend Possible Difficult Difficult

Pool Mining
Depending on mining
difficulty Hard to prevent

Master or leader nodes
in some models cause
centralization

Transaction Processing
Depending on mining,
but most are impractical Fast Fast

Table 2.1 Consensus Protocol Comparison

Firstly, decentralization defines that a blockchain system runs in a fully distributed
fashion, and none of the users can have dominant computing power to control the network.
Most proof-of-work-based consensus fails to achieve this standard, especially those that
require more than moderate level of powers. The concentrated mining pools have proven that
leveraging a difficult computational puzzle is gradually causing centralization. Theoretically,
a user occupying more than 50% of the network’s total computing power can perform attacks
on the ledger[52].

Second, scalability is always the most critical aspect of concern in a system which has
a large number of users. Generally, scalability measures how well a system handles an
increase in the number of participants and an increase in the consumption of computing
power[10]. From the perspective of the participants, the blockchain system has a solid
consistency in handling dramatically expanded diameters and the increased complexity of
the network. However, its extremely low transaction throughput makes its adaptation in
daily usage challenging. With the recommendation to observe six blocks mined after the
block where transaction is confirmed, Bitcoin can only securely process 7 transactions per
second[50]. In comparison to Bitcoin, centralized payment services intermediary claims to
handle transactions from 2000 up to 56000 per second[46].

Last, a blockchain system should be secure from attacks that utilize computing resources
to tamper with the ledger, such as double-spending and intentional forking chains[22]. So far,
there have been no cases of attacks on a particular mainstream blockchain system. However,
this does not guarantee a safe future. The majority of blockchains face potential threats from
attackers. Specifically, either a proof-of-work or proof-of-stake-based blockchain is only

24 Literature Review

safe under the assumption that 51% of the total computing power or monetary value is in the
hands of honest users.

To conclude, it is apparent that blockchain systems have struggled to satisfy all properties
in the trilemma. It is simple for a proof-of-work-based system to meet the requirement of full
decentralization and to perform consistently with an increasing volume of the network. The
most challenging part is to balance security and throughput. Most proof-of-work systems
sacrifice throughput to ensure security by difficult computational puzzles. However, the
concentrated mining power resulting from a moderate mining strategy also generates potential
threats to the system.

In comparison, proof-of-stake-based blockchain mitigates the potential of computing
power-based attacks and relies on a selection weighted by the user’s tokens. However, it
has been argued that proof-of-stake only shifts the competition from computing resources to
monetary tokens. The system is still under the threat of individuals with too much power.
Furthermore, the Byzantine Fault Tolerance system can ensure safety when a part of the
network behaves dishonestly. However, some current applications which require leader nodes
to take charge of the network are potentially causing centralization and it could expose the
system to focused attack aimed at the leaders.

2.4 Algorand

The previous section explains that blockchains struggle to maintain a balance between
decentralization, scalability and security. However, the newly proposed Algorand appears to
break through the trilemma to build a secure, scalable and distributed ledger.

Algorand is a proof-of-stake blockchain utilizing a Byzantine Fault Tolerant-based
consensus algorithm to maintain a public ledger without a central authoriy[23]. The consensus
updates the ledger by randomly selecting representatives to propose blocks and perform
consecutive rounds of voting to reach agreement. In order to validate a result in one step,
it has to receive a minimum number of votes. Specifically, the threshold of validating a
result has to be enough to secure the system when it is possible that there are malicious users
attempting to stop the network from reaching agreement. A detailed process is be explained
in the following paragraph.

At the beginning of each round, users privately perform cryptography sortition with
a random seed and check if they are selected as a block proposer, according to binomial
probability. Qualified users will collect pending transactions in the system and broadcast the
proposed blocks. After new blocks are proposed, the system will start multiple rounds of
the voting procedure to collect votes from the committee members on behalf of the entire

2.4 Algorand 25

network. Since the system leverages Byzantine Fault Tolerance to protect the ledger from
malicious attack, those block candidates who receive more votes than the threshold in the
final step will be confirmed and added to the blockchain.

The Algorand proposal has shown promising results that the network can reach consensus
in a relatively short time and scale to a large number of users. Moreover, it claims that its
proof-of-stake-based Byzantine Agreement eliminates chain fork with a negligible possibility
of the occurrence of chain fork. As the majority of blockchain applications struggle to
mitigate the side effects of chain forks and balance all three aspects of the trilemma, this
impressive consensus opens a new chapter. In order to verify this outstanding result, an
investigation and analysis of its consensus protocol is presented in the forthcoming chapters.

Chapter 3

Investigation of Consensus Algorithm

This section is dedicated to explaining the design of the simulator and investigating the con-
sensus algorithms of Algorand. The simulator was built based on a discrete-event framework.
The consensus algorithms were implemented according to the Algorand proposal[23] and
modified to fit into the simulator. The simulator is programmed in Python.

3.1 Implementation of Simulator

3.1.1 Communication Model

Algorand nodes run in a decentralized peer-to-peer network, where nodes randomly establish
connections with active nodes. Messages directly propagate through the communication pipe
between two nodes. Each node either actively broadcasts messages or passively listens to
its neighbours to participate in the network. Algorand spreads messages by leveraging the
Gossip protocol, which requires nodes to broadcast incoming messages to their neighbors
and their neighbors will broadcast the received messages to their neighbors. By repeating
this process, the entire network will gradually receive the messages. Because there are
no specific central servers that can handle an enormous number of requests and respond
simultaneously, there are some downsides to this scheme, one being that propagation delay
increases with the expansion of the network’s diameters and complexity. Another drawback
is that request and message flooding could temporally overload a node. Without a trusted
authority and regulations, a short period of time with asynchronous updates can expose the
node to potential Sybil attacks. Algorand specifies that an individual node has to verify
messages before any action takes place and only broadcasts messages with a valid proof once
to prevent message spamming[23].

28 Investigation of Consensus Algorithm

Fig. 3.1 Peer-to-Peer Network

Since no official simulator or source code had been released at the time of this investiga-
tion and as Algorand shares a similar network model and message size with Bitcoin, a discrete
events-driven simulator with randomly sampled message propagation delays collected from
Bitcoin was constructed. The Bitcoin network has been actively running with a large number
of participants for ten years. Its propagation history, network complexity, and randomness
should be a guideline to propagation delays in Algorand. Bitcoin core states that new connec-
tions are established only when a new node joins or an existing node is disconnected[13], and
it was confirmed by Miller that the network topology remains relatively the same within a
short period of time[35]. Therefore, the simulated network executes one round of Algorand’s
protocol with the same set of randomly sampled delays from Bitcoin’s transaction delays.
Randomly sampling delay data every round also satisfies the setup in Algorand’s experiments,
where each user replaces its peer after finishing one round.

In Algorand, there are three types of messages which play a significant role in forwarding
the consensus. These messages individually contain block priority, block proposal, and votes.
By referencing the experiments described in[23], a block priority message containing priority
and sortition proofs is approximately 200 bytes. Compared with priority messages, the vote
messages have some extra fields, storing a public key, a signature, and two hash values,
which requires approximately 100 bytes. The size of these fields is estimated according to
the Ed25519 encryption scheme specified in Algorand’s cryptography library[18]. Similarly,
Bitcoin transactions are, on average, 500 bytes in size, as observed from Bitcoin Visuals[6].
Although they share different sizes, Decker suggests that 96% of all transactions smaller than
1 KB are mainly caused by round-trip delays[16]. Hence, the size difference is negligible

3.1 Implementation of Simulator 29

when sampling delays for priority and vote messages from the transaction delay data of
Bitcoin. In the simulator, priority and vote delays are grouped into one category. Furthermore,
the block proposal message is configured to be the same size as the block message in Bitcoin.
But it can be tuned and approximated by adding 80ms delay for each kilobyte to a block
over 20kB[16] to satisfy simulations with different sizes of blocks. These two kinds of
delays are individually and randomly sampled from the delay data according to its probability
distributions. In order to add more randomness, there is one more random shuffle within the
delays before assigning it to the gossip pipes.

Moreover, two sets of Bitcoin delay data, shown in Figures 3.2 and 3.3, are not delays
between the source node and its directly connected peers. It is collected from two monitors
that connect all reachable nodes in Bitcoin. They track and collect the message delay time
from the source node to all other monitored nodes. The delay data are calculated according
to the time it was firstly announced and the time that the other nodes broadcast an INV
message to notify the reception of that message. Therefore, it is a distribution of the time
that one message takes to propagate to the entire network rather than delays between directly
connected peers. However, the distribution in Figure 3.2 is not used to estimate block
propagation delay because the Bitcoin network has a high-speed relay network to minimize
the propagation of blocks between miners[5]. The Algorand proposal does not have the same
strategy to propagate blocks. Furthermore, the proposal mentions that block messages take 5
seconds to reach the majority of the network and other small-sized messages take 1 second.
In order to mitigate the effects caused by the sampled delays, these messages are respectively
configured to reach 90% of the nodes in 5 seconds and 1 second. In the simulated network,
each Algorand node has a connection with every other node instead of random connections
to utilize the sampled data as reasonable delays.

Algorithm 1: AssignDelay(sel f ,bloc_delay_data,msg_delay_data)

//sample delay data;
block_delay_samples← Random_Sample(num_nodes,block_delay_data);
msg_delay_samples← Random_Sample(num_nodes,msg_delay_data);
//construct pipe to simluate a message pipe;
for node in Network do

pipe← Gossip_Pipe(sel f ,node,block_delay,msg_delay);
node.pipes.append(pipe)

end

Algorithm 1 demonstrates the procedure of sampling data and constructing gossip pipes
between nodes. Before running the consensus, each node performs random sampling to
generate a set of delays, whose size is equal to the number of total nodes except itself. Then

30 Investigation of Consensus Algorithm

Fig. 3.2 Block Propagation Delay[19]

it initializes the gossip pipes to store the delay between itself and the rest of the nodes in the
network.

Figure 3.4 shows the simplified process of gossiping and receiving the process in one
Algorand node. The processor handles incoming messages and makes progress toward
consensus. Whenever an event in the processor triggers message broadcasting, the sender
unit will forward the message to the peers through the gossip pipes. To receive messages from
the network, the listener runs as a background application that always listens to incoming
messages. It will hold the message until its delay time has passed. This process stimulates
transmission delay in the network.

Algorithm 2: Listener()
while True do

if newMessages then
timer← 0;
while timer < pipe.delay do

timer+= 1//Internal clock ticks to delay the message processing;
timeout(1);

end
recieved_Msg.append(message)

end

Algorithm 2 illustrates how the listener schedules delays for messages. First of all,
the listener keeps running and is triggered whenever there is a new message sent through

3.1 Implementation of Simulator 31

Fig. 3.3 Transaction Propagation Delay[19]

Fig. 3.4 Gossip Pipe and Receiver

the gossip pipe. For example, if there is a message that comes in at 0 seconds with a
ten millisecond delay, the listener starts a timeout process to simulate the delay until the
internal clock has ticked ten times. To clarify, one tick of the simulator’s clock represents
one millisecond. Moreover, rather than sleep the listener for ten milliseconds, ticking 1
millisecond by 1 can prevent itself from missing messages during the period of the timeout.

Algorand’s consensus protocol consists of three phases, block proposal, reduction, and
the Binary Byzantine Agreement. The result of each phase is e passed to the following one.
Unlike proof-of-work-based blockchain, the result of each phase is determined by collecting
votes from committee members except for block proposing. To participate in the network,
Algorand users privately perform cryptography sortitions to check whether they can propose
a block or vote for block proposals instead of competing with others to solve computational

32 Investigation of Consensus Algorithm

Fig. 3.5 Flowchart of Consensus

puzzles. Moreover, reduction and Binary Byzantine Agreement only validate the results with
votes that pass the threshold. As long as the system satisfies the security assumption, no user
can tamper with the result. In cases where a node hangs at one phase without enough votes
passing the threshold, Algorand sets a maximum waiting time in every vote counting step.
For example, if Bob does not observe any block hash with enough votes, he enters the next
phase with an empty block hash after the maximum waiting time has passed. If Bob observes
a block with enough votes with only 2 seconds, he immediately terminates the waiting and
enters the next phase.

In Figure 3.5, the consensus starts with block proposing at the beginning of one round.
Then, all users have to wait 5 seconds for the priority messages and block proposals to
propagate. Users cannot enter the next phase unless they wait for 5 seconds . After learning
who has the maximum priority, users have to wait for the corresponding block proposal
to start the reduction. Because the block proposal is a much larger size than the priority
message, it might take longer for all users to retrieve the block. Therefore, users who start
Reduction1 first have a maximum waiting time of 65 seconds, where 60 seconds is the
waiting time for the block to reach the majority of the network. The maximum waiting
times of the subsequent steps are 5 seconds. In each step, a user either observes enough
votes to skip some seconds of waiting or waits for the maximum seconds without enough

3.1 Implementation of Simulator 33

votes and passes an empty hash to the next step. If a user reaches agreement first, he has
to wait 5 seconds for the others to finish the round. This waiting applies to every user. The
waiting mechanism indicates that Algorand’s consensus time depends on the number of steps
executed by individual users. Also, the execution of each user’s step relies heavily on the
synchronization of the network and interactions from other users. Assuming that the network
is strongly synchronized and all users actively participate in the network, the best time for
the entire network to reach consensus should be slightly longer than 10 seconds, which is the
sum of the 5 second priority waiting time and the 5 second waiting time after observing final
state of a candidate and some processing time.

From the above explanations, Algorand’s consensus can be considered as an event
and timing-triggered process. Therefore, the Algorand network is modelled based on a
discrete-event driven simulator, which models individual users as processes, schedules events
with delays, and interactions between processes. The simulator provides an estimation of
Algorand’s consensus performance with the randomly sampled delay data, fixed holding time
mentioned above and the simulator’s internal clock ticks.

The simulator starts one round of simulation by initializing a fixed number of Algorand
nodes with equally distributed tokens. Algorand nodes occupy fundamental functions,
including gossip pipes to send/receive messages in the simulated environment, asymmetric
key pairs, cryptography sortition, chain ledger, and consensus protocols. The encryption
scheme is not the focus of tihs investigation, and it only takes milliseconds to run one time.
The verification of messages is replaced with sleep time approximated from the number of
messages been processed. Furthermore, transactions are not involved with the consensus
protocol because the proposers have stored transactions at the stage of constructing block
proposals. If a dishonest proposer attempts to tamper with transactions in a block proposal,
it will result in a change of block hash. Other nodes and the system can quickly notice
the misbehavior. In the experiments, the default block size is 1 Mb, which is the same as
Bitcoin’s. Similar to the process of verification, there is a sleep time for block proposers to
simulate the construction time. After configuring the delay data to each node, the simulator
starts running all nodes simultaneously until the network reaches specific rounds of consensus
or the entire network is stuck in a tentative state. Figure 3.6 displays an example of nodes
running at the same time, and the double-sided arrows represent possible interactions with
other nodes when they succeed in the cryptography sortition for either the block proposer or
the committees. As soon as the simulation starts, the internal clock starts ticking to track the
time consumption.

34 Investigation of Consensus Algorithm

Fig. 3.6 Interaction Demo

3.2 Implementation of Consensus Algorithms

3.2.1 Security Assumption

The security of Algorand applies the Byzantine Fault Tolerance model to ensure that at least
2/3 of tokens are held by honest users. With this assumption, the system can make progress
toward consensus even with malicious interference. Therefore, Algorand specifies that an
adversary can bribe a small proportion of honest users, but it does not allow more than a
minimum threshold-specified number of honest users. Otherwise, the first safety assumption
will not be satisfied and will result in complete failure. Furthermore, it also declares that
the system runs in a bug-free client. With these assumptions, simulated malicious users are
modeled to perform attacks with valid sortition rather than brutally spamming the network or
forging honest users’ key pairs[23].

3.2 Implementation of Consensus Algorithms 35

3.2.2 Blockchain

The blockchain follows the typical design used by the majority of the applications. In
the simulation, each block has a pseudo-random block hash generated by hashing the
concatenation of metadata. The SHA-256 hashing scheme produces a fixed-length collision-
resilient result, which satisfies the ideal hashing primitives in Algorand[12]. The rest of the
fields include a round number indicating the block height, a previous block hash, and the
block proposer’s verifiable random function(VRF) hash result which is used as a random
seed for the next round’s sortition.

As stated in the previous section, the investigation focus on the consensus algorithm and
transactions was not implemented. Hence, the blockchain is a minimal design to supply the
necessary parameters to the consensus algorithm.

3.2.3 Cryptography Sortition

Verifiable Random Function

Algorand constructs cryptography sortition based on the VRF which generates a pseudo-
random hash and a public proof of its correctness. In the following equation, the VRF
function takes a secret key with a given string X as input and produces a hash value and
proof.

< hash,π >←V RFSK(X)

The hash value cannot be recreated without knowing the secret key. However, using
the public key of the corresponding secret key and proof can verify whether the hash is the
correct output. In Algorand, users privately perform sortition and reveal the hashing results
with the public key for verification without exposing their secret keys. This property satisfies
the asymmetric requirement of blockchain applications. The only way for attackers to forge
a validated proof is random guesses which use an enormous amount of computing power.
However, the fast-growing chain will make this kind of attack expensive and infeasible. This
function plays an essential role in maintaining the security of the system and supporting the
sortition algorithms.

Cryptography Sortition

In cryptography sortition, the input string is obtained by concatenating a publicly known
random seed and role parameter. In order to make the seed random and publicly known,
block proposers have to generate the hashing value by concatenating the last round’s seed

36 Investigation of Consensus Algorithm

with the round number and store it in the proposal. The seed for the next round will only
be determined when the network reaches a consensus on one of the block proposals. Seed
generation is shown as follow:

< seedr,r >←V RFsk(seedr−1||r)[23]

Moreover, the role of the parameter limits the purview of the user’s actions for each
sortition result in one round. Users with an intention to participate in every step of the
consensus have to perform the sortition with different role strings. Due to the pseudo
randomness and collision-resistance of VRF functions, changes of input could significantly
affect the result. This indicates that users selected as block proposers might not be qualified to
be committee members caused by a different role parameter as input. It reduces the possibility
of some users dominating an entire round of block proposing and voting. Performing sortition
multiple times in one round also gives users who only own a relatively small number of
tokens the chance to participate in the protocol.

The user starts sortition by computing the hash and proof of the VRF function with its
secret key and the input string as previously explained. Then the sortition randomly selects
a group of sub-users according to a binomial probability of an expected number over the
total. The sub-user is defined as the minimum unit of Algorand’s token. If there are ten
tokens in total in the system, a user who owns three tokens will have three sub-users. The
expected number of sub-users depends on how many proposers or committee members are
expected to ensure safety. From the perspective of the entire system, random selection can be
understood as the problem of coin-flipping. In the view of an individual user, the selection
can be considered as how many sub-users out of w tokens he owns could be selected while τ

sub-users are expected from W total tokens in the system.
Following the binomial distribution, the number of selected sub-users of an individual

user owning w units of tokens has a probability of:

B(k;w, p) =
(

w
k

)
pk ∗ (1− p)w−k,k = selectedsubusers

Then, the sortition cuts the user’s probability distribution into w continuous intervals:

[j

∑
k=0

B(j;w, p),
j+1

∑
k=0

B(j;w, p)
)
, j ∈ 0,1, ...w[23]

,
The last step in Algorithm 3 determines the number of selected sub-users according to

the value of the division result of the VRF hash over the maximum value of 2hashlen−1. The

3.2 Implementation of Consensus Algorithms 37

pseudo-random result from VRF is expected to be uniformly distributed within the interval
of [0,2hashlen−1]. The probability interval in which it falls determines how many sub-users
are selected.

Algorithm 3: Sortition(sk,seed,τ,role,w,W)[23]
< hash,π >←V RFsk(seed||role) ;
p← τ

W ;
j← 0 ;
while hash

2hashlen ̸∈ [∑
j
k=0 B(j;w, p),∑ j+1

k=0 B(j;w, p)) do
j++

end
return < hash,π, j >

• sk: user’s private key

• Seed: random string stored in the last round’s block

• τ: the expected number of proposers or committee members

• role: string to distinct block proposer or committee member

• w: user’s total tokens

• W: total tokens in the system

• j: the number of selected subusers

It is possible that one user can have multiple sub-users selected by the sortition. Therefore,
Algorand states that the number of selected sub-users will be the number of votes in the
voting step. Moreover, the concatenating sortition hash and the index of sub-users will
produce a priority for each block proposer. By referring to this priority, users will discard
unnecessary messages and determine the first candidates to vote for in the subsequent
Byzantine Agreement protocol.

3.2.4 Byzantine Agreement⋆

Algorand’s Byzantine Agreement ⋆ is the consensus protocol that guides users to learn about
the current state of the public ledger in a distributed network. As shown in Algorithm 4, it
consists of three components, which are Reduction, Binary Byzantine Agreement, and Voting.
The first two algorithms contain a fixed number of sub-procedures executed in consecutive

38 Investigation of Consensus Algorithm

Algorithm 4: BA⋆(ctx,round,block)[23]
hblock← Reduction(ctx,round,H(block));
hblock⋆← BinaryBA⋆ (ctx,round,hblock);
//Check if "fina" or "tentative" consensus is reached;
r←CountVotes(round,FINAL,TFinal,τFinal,λST EP);
if hblock⋆ = r then

return < Final,BlockO f Hash(hblock⋆)>
else

return < Tenative,BlcokO f Hash(hblock⋆)>
end

order. Each sub-procedure validates a candidate depending on the result of its voting. The
result of each procedure will determine the subsequent procedure’s input.

Before starting the main procedure of the Byzantine Agreement⋆, users have to collect
the block proposal with the highest priority to the best of his knowledge and verify the
contents. Otherwise, it starts with an empty block. Byzantine Agreement⋆ starts the first
sub-process Reduction with the hash of the block proposal. This process eliminates redundant
block proposals and generates at most one non-empty hash result. Then, BinaryBA⋆ takes
the Reduction result and performs votes to decide if the network agrees on the non-empty
proposal or an empty proposal.

After finishing the Reduction and BinaryBA⋆, users need to check if the entire network
has agreed to finalize returned block hash. If votes for the final state exceed the threshold,
the agreement will be reached and a new round will start. Otherwise, a tentative state will be
reached. Because Algorand did not specify how the node will recovery from the tentative
state, users reaching a tentative state in the simulator will keep counting votes until it observes
a valid result to push itself into a new round.

3.2.5 Voting

In Byzantine Agreement⋆, a valid result has to receive a more than a threshold-specified
number of votes from committee members. The first step of the voting process is to randomly
select a portion of users to represent the entire network. In each procedure that involves voting,
users initiate the Committee Votes in Algorithm 5 with a privately performed cryptography
sortition. The result will determine whether the user could participate in a specific step. To
distinguish hash result in different steps, sortition requires a unique role parameter, which
is a concatenation of a fixed role parameter, round number and step. Changing role string
increases the variety of users to participate in the voting. It can prevent a fixed group of

3.2 Implementation of Consensus Algorithms 39

users to influence on the result of voting continuously. The number of selected sub-users
obtained from sortition will be the number of votes that a user can assign to a voting message.
Generally, if a user has j sub-users selected as committee members, he puts all his votes on
the result he observes in the last step. Because the majority of the network has learned about
the block at the stage of proposing, qualified users construct vote messages based on the
block hash rather than the entire block. Hence, vote messages are relatively small in size,
which enables vote messages to reach the entire network within a short period. With the
block hash, a parameter ctx storing the round status is also passed into BA⋆. It binds the vote
message to a specific step to perform cryptography sortition and verification.

Algorithm 5: CommitteeVotes(ctx,τ,blockhash)[23]
role←< ”committee”,round,step >);
< sorthash,π, j >← Sortition(user.sk,seed,τ,role,w,W);
//only committee members construct votes and messages;;
if j>0 then

Vote_Message(user.pk,ctx.round,ctx.step,blockhash,votes);
Gossip(Vote_Message)

end

The second step of voting is to process the messages and count the votes for each
candidate. Most of the time, users start the subsequent CountingVotes immediately after
executing CommitteeVote in a specific step. During a fixed period λ , CountVote reads the
unprocessed vote message from a buffer. As explained in the previous section, a listener
is always updating new vote messages to the buffer. Before appending a new vote value,
readMessage checks the round and step of the messages and only returns correct ones. As
soon as there is a block hash with more than T ×τ votes, the procedure terminates and passes
the result to the following step. To clarify, T represents the minimum threshold to ensure the
security of the Byzantine Fault Tolerant system. The threshold value may vary at different
conditions, but it is commonly set to be 2/3. Parameter τ is the expected committee size used
in the sortition. These two parameters apply to almost every Byzantine Agreement⋆ step
except the final step. In contrast, if a user cannot observe any result to satisfy the minimum
threshold within the specified time λ , it will return a timeout parameter. The specified time
λ prevents users from hanging forever at a particular step if there are not enough votes to
push it above the threshold.

40 Investigation of Consensus Algorithm

Algorithm 6: CountVote(round,step,T,τ,λ)[23]
timer← 0;
votes←{} //hash table store votes;
vote_msgs← received_Vote_Msg[round,step].iterator();
while timer < λ do

m← vote_msgs.next();
timer+= 1 //internal clock ticks in simulator;
if timer > λ then

return Timeout
else

< round,step,bhash,votes,voter >← readMessage(vote_msg);
counts[(round,step)][bhash]+ = votes;
for bhashincounts[(round,step)] do

if bhash.votes > T ∗ t then
return bhash

end
end

end
end

3.2.6 Reduction

Before starting the Reduction, users have to collect the proposal with the highest priority to
the best of his knowledge to confirm the contents in the block. Due to the random topology
of the Gossip network, there is no guarantee that block messages can reach every user with
minimum delay. A small fraction of nodes might run behind the majority of the network
and does not have the full knowledge of the priorities. These users might vote for a block
candidate different from the majority of the network. To filter out the redundant block hashes
in the voting procedure, Reduction in Algorithm 7 limits the proposed candidates to one with
two consecutive rounds of voting.

Reduction initiates the first round of voting to collect the candidate for whom at least
2/3 of committee members voted. There will be an extra λBLOCK waiting time in the first
counting to leave enough time for block messages to spread in the network. Furthermore, an
empty block is introduced here to prevent the consensus from not progressing when none
of the block proposals are getting enough votes due to attack or network latency. After the
first sub-Reduction, another round of voting is called to vote for the first round’s result. The
second round serves as a double-check to ensure the majority agree with the result of the
previous step. As a result, there could only be one non-empty block hash to pass into the
next phase [23].

3.2 Implementation of Consensus Algorithms 41

Algorithm 7: Reduction(ctx,round,hblock)[23]
//step one;
CommitteeVote(ctx,round,REDUCT ION_ONE,τ_step,hblock);
//some nodes might still waiting for block proposals, timeout extra time;
hblock1←CountVotes(round,REDUCT IONONE ,TST EP,τST EP,λST EP +λBLOCK);
//step two;
empty_hash← Empty_Block(round, lastblock);
if hblock1 = T IMEOUT then

CommitteeVote(round,REDUCT ION_TWO,τ_step,emptyhash)
else

CommitteeVote(round,REDUCT ION_TWO,τ_step,hblock1)
end
hblock2←CountVotes(round,REDUCT IONTWO,TST EP,τST EP,λST EP);
if hblock2 = T IMEOUT then

return empty_hash
else

return hblock2
end

3.2.7 Binary Byzantine Agreement

BinaryBA⋆ shown in Algorithm 7 determines which candidate from the Reduction step will
be finalized as the new block. The algorithm iterates three consecutive voting steps within a
specified maximum, guaranteeing a safe consensus can be reached while the network could

42 Investigation of Consensus Algorithm

be partially controlled by attackers. The rest of this section explains the algorithm in different
scenarios.

Algorithm 8: BinaryBA⋆(round,block_hash)[23]

step← 1 ;
r← blockhash ;
empty_hash← Empty_block(round, lastblock) ;
while step < MAXST EPS do

CommitteeVote(round,ST EP,τ_step,r)
r←CountVotes(round,step,TST EP,τST EP,λST EP);
if r=TIMEOUT then

r← block_hash
else if r ̸= empty_hash then

for step < s′< step+3 do
CommitteeVote(round,s′,τ_step,r)

end
if step =1 then

CommitteeVote(round,FINAL,τ_step,r)
end
return r

step++;
CommitteeVote(round,step,τ_step,r)
r←CountVotes(round,step,TST EP,τST EP,λST EP);
if r=TIMEOUT then

r← empty_hash
else if r = empty_hash then

for step < s′< step+3 do
CommitteeVote(round,s′,τ_step,r)

end
return r

step++;
CommitteeVote(round,step,τ_step,r)
r←CountVotes(round,step,TST EP,τST EP,λST EP);
if r=TIMEOUT then

if CommonCoin(round,step,τST EP) = 0 then
r← block_hash

else
r← empty_hash

end
step++

end

3.2 Implementation of Consensus Algorithms 43

Strong synchronization

Strong synchronization assumes that the majority of users in the network are honest. Fur-
thermore, messages sent by honest users can propagate to the entire network within a known
delay. With these assumptions, users perform BinaryBA⋆ with the result from the Reduction
step. Because the majority of users in this scenario are honest, , the Reduction step should
return a non-empty block hash, which is likely to be proposed by the proposer with the
highest priority. Therefore, honest users vote for and observe the same result in the first
step of BinaryBA⋆. An extra vote that confirms it as the final consensus is required after
BinaryB⋆. The final state has a higher threshold and a larger committee size than the other
steps. If there are enough votes to push the candidate past the threshold, this indicates that a
significant fraction of the complete network obtains the same block hash and confirms its
validity. As a result, the network reaches a final consensus on the block hash.

In situations when a small proportion of users timeout in the first step, users who return
have to conduct votes for the following three steps with the same result returned in BinaryBA⋆.
By doing this, users who cannot return in the same step will not fail at the counting in the
additional steps due to a low participation rate. Because the threshold numbers are the same
in every step, if a large number of users return in a particular step, it will be impossible
for the rest of the users who do not observe the same result to collect enough votes in
the subsequent steps. Otherwise, these users will spend time meaninglessly repeating the
counting. Conducting an extra three rounds can push more users to return a non-empty hash
in the fourth step of BinaryBA⋆.

For instance, if a user times out in the count vote of the first step, he has to check this
value again in the second step instead of starting with an empty hash. This checks whether
the majority has returned a non-empty hash in the first step. After observing enough votes
for the non-empty hash in the second, third and fourth steps, the user returns a non-empty
hash in the fourth step which is the first step of the new iteration.

Weak synchronization

Weak synchronization is a situation where some adversaries try to interrupt the voting process
and stop the network from reaching agreement or the message propagation cannot reach the
entire network within an ideal interval. In a scenario of strong synchronization, the network
can observe the final state immediately after the first step because the majority of users are
honest and voting for the same block hash in both steps. The system will still work without
an extra final vote. However, directly returning the result without calling an extra final vote
will generate a diverged version when the network is weakly synchronized.

44 Investigation of Consensus Algorithm

Let us assume that there are two groups of users with different latencies, where one
can receive messages with acceptable delays. In contrast, the other group is not able to
collect enough votes during the counting process. In this case, the first group might finish
BinaryBA⋆ with a non-empty block hash, but the other group cannot obtain enough votes
to pass the threshold value and eventually returns an empty block hash value. Without the
additional final vote, this will result in a diverged ledger. Similarly, a malicious attacker
with enough votes can intentionally push one of the block hashes to obtain more than the
threshold votes when the entire network is divided.

The additional final state voting can address this issue. As soon as one of the two groups
obtains the result, they start the final state voting with a larger committee size to confirm
agreement. Because the network is divided and votes for different values, there will not
be enough votes to push either of the two values to surpass the threshold in the final vote.
Algorand specifies this as a tentative consensus, which indicates that the system fails to reach
a safe consensus due to the asynchronous network or malicious behaviors. In contrast, the
strongly synchronized network should reach the final state shortly after returning a block
hash in the first step of BinaryBA⋆. Once the final state is observed for one candidate, there
will not be enough votes for the other one to exceed the threshold.

If BinaryBA⋆ starts with an empty hash, the original algorithm does not return it in
the first step, even if it receives enough votes. The first step only returns and calls final on
non-empty hashes. An empty hash needs the second step to receive enough votes and return
it. There is no final vote called for empty hashes. Empty hashes will only be marked as the
tentative state. Since a recovery protocol was not implemented in this research, there will be
a difference in handling an empty hash. If the majority of users enters BinaryBA⋆ with an
empty hash and manages to return in the second step, they will check the count result of the
first three steps. If the empty hash receives more than the threshold votes in all three steps,
the final vote would be called on the empty hash. The simulator considers this case as a final
state because the empty block does not pose a threat to the ledger. Users can start proposing
and voting for a new block in the next round. However, if there are three consecutive rounds
of reaching consensus on empty hashes with only two steps, the epoch of simulating will
end. This indicates that the network needs a reboot to achieve faster message propagation.

Split of Vote

The above case mainly addresses issues caused by network latency or minimum inference
from attackers. This section explains how the BinaryBA⋆ algorithm ensures safety in a
heavily asynchronized scenario, where messages propagate with dramatic delays or attackers
control a significant proportion of the entire network.

3.2 Implementation of Consensus Algorithms 45

With the condition that honest users are divided into two groups to obtain a different
count result in step 1 of BinaryBA⋆, there is an attacker who can push either of the two
groups to have more than the threshold votes which interferes with the user’s subsequent
counting process by manipulating the time at which the messages are sent. Without the
attacker, honest users will gradually learn about the messages within a few iterations and
reach a consensus on one of the block hashes. However, the attacker intentionally only sends
vote messages to the group voting for the empty hash and lets the other group timeout in the
CoutVote. As shown in Algorithm 8, the group which has timed-out in step one will continue
with the non-empty hash again in the second step. Meanwhile, the group with the empty
hash still votes for the empty hash because the attacker pushes them to observe enough votes
to proceed to the second step without timing out. As long as the attacker can manage to sort
enough votes, he can stop the network from reaching consensus by repeating the same action.

In order to protect the protocol from this attack, Algorand introduces a common coin
that makes all users accept a random binary value in step 3 of BinaryBA⋆. As shown in
Algorithm 9, a common coin will sort out the minimum hash value generated from hashing
the concatenation of the committee’s sort hash and indexes of the sub-users from all the
received vote messages in the third step. This will return the last digit of the hash value,
which is either 0 or 1. The binary values represent the non-empty block hash and empty block
hash individually. If the lowest hash is from an honest member, all users should observe the
same digit. Then, in the next step, all users should vote for the same result. This will recover
the network from diverged voting and return within the next few steps.

Algorithm 9: CommonCoin(ctx,round,step)[23]
minhash← 2hashlen;
for msg ∈ receivedV oteMsg[round,step] do

< votes,sorthash >← readMessage(msg);
for 1≤ j < votes do

h← H(sorthash|| j);
if h<minhash then

minhash← h
return minhash mod 2

Chapter 4

Analysis & Findings

In this chapter, the results from the simulation of Algorand’s performance are presented.
The simulation focuses on three major aspects, including the completion time of one round
with users of different sizes , stability with different percentages of dishonest users, and the
distribution of the sortition results with unevenly weighted users. Following the result, an
analysis of the observations from the results will be presented.

4.1 Round Completion Time

Fig. 4.1 Round Completion Time

48 Analysis & Findings

Fig. 4.2 Average Round Completion Time

The boxplot in Figure 4.1 demonstrates the minimum, three-quarter, and maximum time
for users of different sizes to reach agreement. In addition, Figure 4.2 displays the average
completion time per round of the corresponding setups. The completion time gradually
increases with the size of the simulated users until the number approaches 10,000. When the
number surpasses 6000, the average time starts to flatten, as shown in Figure 4.2.

Completing one round in Algorand consists of multiple timing windows. The first is a
mandatory waiting period of ten seconds which allows priority messages to propagate in
the network and wait for other users who have not finished the last round. This ten-second
window ensures the propagation of priority message sent from qualified block proposers to
reach the majority of users and allow a proportion of participants to receive block proposals.
Secondly, there are two essential waiting processes that could be terminated once certain
conditions are satisfied, these being waiting for block proposals and vote messages. In the
waiting period for block proposals, the nodes who received the highest priority message
cannot proceed to the voting phases without receiving and validating the entire block proposal.
This helps eliminate the possibility of blocks containing repeated transactions or intentional
double-spend attack. After receiving and confirming the block, the users can terminate the
waiting period and enter the Byzantine Agreement phase of the consensus. In each step of the
Byzantine Agreement, there is a waiting window which allows users to construct, broadcast
and process vote messages to validate the most popular candidates.

4.1 Round Completion Time 49

As the size of a vote message is small, the majority of users can collect enough votes
to validate a block proposal within seconds. Users immediately proceed to the subsequent
step without wasting time on unnecessary waiting. Due to the random network connection
scheme, a small proportion of users might not receive enough vote messages to validate
any of the proposals. These users enter the next step of voting for an empty hash when the
maximum waiting time finishes. This could prevent them from spending a large amount of
time at a particular step. Although they have wasted time at the previous step, they can catch
up to the other users by spending less time waiting for messages from committee members in
the subsequent step. The flexibility of the time window is crucial to maintain the efficiency
of the consensus.

In the worst-case scenario, the user will timeout in every step which will require establish-
ing new connections. This will not have a significant impact on the system unless more than
20% of the weighted users suffer from connection issues. If this happens, the network will
reach consensus on a tentative state and run a recovery protocol to boost synchronization.

Fig. 4.3 Number of Vote Messages Generated

In addition to the aforementioned waiting periods which significantly influence the
latency of the message propagation of the communication protocol, the verification of the
vote messages also affects the time to complete one round of consensus. The expected
number of committee members in each voting step is configured as constant in the simulation,
where the final step is 10000, and the other steps are 2000. Figure 4.3 shows the average

50 Analysis & Findings

number of vote messages generated in each round with a different number of simulated
users. The blue bar represents the vote messages in the Reduction step and binary BA, which
approaches 2000 and remains constant when the number of users is larger than 2000. The
reason for this is that the number of simulated users is smaller than the committee size. Some
of the users have multiple sub-user which succeed in one sortition. Consequently, there
are less vote messages with higher weights. A similar observation is obtained in the vote
messages in the final step. However, the number of messages did not max out when the
size of the users reaches 10000. This is caused by the configuration of tokens assigned to
each user. The simulator assigns a fixed number of tokens to the users instead of evenly
distributing tokens to users from a fixed set of total tokens because of the limitations of the
RAM.

Although the limitations of the simulator restrict the scaling of users to an even larger
number, the results still show that the protocol is capable of reaching consensus in a constant
time while the number of users is increasing. The main factor affecting the speed of reaching
agreement is the propagation of the blocks when the diameter of the network expands to be
broader and becomes more complex. The size of the block mostly determines the propagation
time if users have a decent network bandwidth. If the block can reach the majority of users
who have a high probability of becoming committee members, agreement can progress faster
in subsequent steps. Furthermore, it might not be wise to increase the waiting window
to achieve a higher throughput of consensus by increasing block size. The increased idle
time could increase the possibility of attackers performing brute force attacks. Also, the
completion time of small-sized groups of users might not reflect performance in the real
world because the Gossip protocol depends on each node broadcasting received messages to
its neighbours[17]. The network connection required to propagate messages among 10000
users is more complicated than small-sized groups. The same-sized messages can reach the
majority of the network with less routing and latency, which should generate a faster round
completion time than the observation from the simulator.

Apart from the limitation of scaling the number of simulated users, the simulator is not
able to simulate the consensus procedure of other blockchain applications. Unlike other
categories of consensus algorithms, Algorand’s consensus is mainly triggered either by
satisfying certain criteria or surpassing a maximum waiting time. The system is always
making progress. However, proof-of-work based consensus stops growing its ledger if there
is no one can find a correct answer to the computational puzzle, which requires much more
computing power than simulating Algorand. Moreover, timing of solving the computational
puzzle and propagation significantly affects the result of consensus. The design of timer in
the simulator could not provide a reasonable estimation to it. Therefore, the simulator is

4.2 Resistance to Dishonest Voting 51

not used to simulate other consensus algorithms. Moreover, the main net of Algorand went
online only for about 6 months. The team is also upgrading new protocols to the published
application. The average round completion time calculated to be around 4 seconds. However,
the outstanding performance at its current early stage can hardly be taken into account. From
the observation of its ledger, newly generated blocks rarely contain transactions and the
number of active users in the system also remains at a relatively low level. Especially, the
active level is far behind some well adopted blockchain applications, including Bitcoin,
Ethereum, Peercoin and others, which have numerous participators and handle high volumes
of transnational activities. Therefore, a more substantial number of users engagement
are needed to compare its performance of scalability with other categories of consensus
algorithms.

4.2 Resistance to Dishonest Voting

The Algorand consensus algorithm can reach safe agreement while malicious users control
up to 20% of the total tokens. In order to demonstrate its performance with interference
from dishonest users, the simulator configures the weighted fractions of dishonest users
who coordinate with each other to vote against the honest majority. The total number of
users simulated in this experiment is 5000. In Figure 4.4, the x label shows the different
proportions of the total number of tokens assigned to the dishonest users varying from 0%
to 20%. The average completion time of one round demonstrates a linear increment in the
completion time with an increasing percentage of tokens owned by dishonest users. The
increment in the completion time is mainly in the vote-counting step. As the number of
weighted tokens gradually increase, the probability of a dishonest user becoming a committee
member increases at the same time. Because dishonest users broadcast the vote messages
against the majority, honest users have to spend more time counting unnecessary messages
from the dishonest users and waiting for vote messages from honest users to validate a
proposal. Although the dishonest users manage to delay agreement for a few seconds, it
does not have a significant effect on the safety of the consensus. Neither empty blocks nor
forks of the chain are observed within the simulated rounds. However, the experiments can
only reflect the stability of the consensus with the assumption that dishonest users can only
perform attacks leveraging their advantages of sortition probability, and honest users are
all active in the network. This raises the concern as to how Algorand ensures security if
the weighted proportion of active users cannot reaches at a certain level. This issue will be
discussed in the next section.

52 Analysis & Findings

Fig. 4.4 Completion Time of Varying Proportions of Dishonest Users

4.3 Sortition

Different from proof-of-work based blockchain, Algorand does not rely on a group of miners
to solve computational puzzles to construct new blocks. It utilizes a sortition algorithm that
randomly selects a fraction of users weighted by their tokens to propose blocks and agree on
one of them through multiple rounds of voting. The safety of the consensus relies on the fact
that stakeholders investing significant amounts of money will not misbehave intentionally
and pose potential threats to their assets.

It is undeniable that combining the randomness of VRF[34] and binomial probability is
an excellent solution to select a subset of representatives according to their monetary weights
in the system. Every user attempts sortition with the same success rate based on binomial
probability while the number of trials is equivalent to their tokens. The cryptographic sortition
generates continuous intervals starting from 0 to 1 based on the binomial probabilities of
different successes, which is shown in equation 4.1. Then, it divides the pseudo-random hash
value produced by VRF by the maximum value of its hash length. The interval into which it
falls will determine the number of votes of that user. As long as the VRF is secure against
Sybil attacks, malicious users cannot ensure that a user will become a committee member in

4.3 Sortition 53

a particular step unless it knows the secret key to obtain the hash value revealed in the vote
message in advance.

[j

∑
k=0

B(j;w, p),
j+1

∑
k=0

B(j;w, p)
)
, j ∈ 0,1, ...w (4.1)

However, biased probability might generate some potential issues. The first is that users
who own a small number of tokens might find it challenging to succeed in the sortition, while
stakeholders who own a significantly large number of tokens could dominate the process
with overwhelming probability. In the case of close to evenly distributed tokens, users share
similar consecutive intervals as calculated by equation 4.1. The pseudo-random hash value
determines the result of the sortition. In contrast to simulation, it is not feasible to distribute
tokens evenly after deploying the application online. Furthermore, proof-of-stake-based
blockchain commonly requires the Initial Coin Offer to spread coins into the system. Users
who purchased coins earlier for a lower price might generate a massive gap between the rich
and the poor in the system.

100 1000 10000 100000 1000000 10000000

Block Proposer 0.999 0.999 0.999 0.997 0.974 0.771
Committee 0.999 0.998 0.98 0.818 0.135 2.06e^-9
Final Committee 0.999 0.99 0.904 0.367 4.53e^-5 3.71e^-44

Table 4.1 Probability of Failing at Sortition According to Tokens

Although favoring stakeholders with higher weights could theoretically ensure security,
there is an overwhelming probability that this could lead to centralization. Proof-of-stake
often attracts criticism as it shifts the concentration of computing power to a monetary value.
Table 4.1 shows the probability that users with a different number of tokens fail at a selection
of three different roles when the entire system has 1 billion tokens. The failure rate of the
block proposer does not have a significant difference until the number of tokens surpasses 1
million because the expected number of the proposer is only 26. In comparison, when the
number of committee members is set at 2000 and the number of final committee members
is set at 10000, there is a slight improvement until the tokens increase to 10000. But the
probability of failing at becoming a final committee member is still high, approaching 90
percent. From the perspective of probability, users holding less than 10000 tokens only have
a minimal impact on consensus while users owning more than 1 million tokens are almost
guaranteed to succeed in the sortition with a negligible probability of failure.

54 Analysis & Findings

[1,100) [100,1000) [1000,10000) [10000,100000) [1000000,10000000) [10000000,100000000) [100000000,1000000000)

8608244 3890546 1873529 630628 142880 15281 2144

Table 4.2 Number of address according to balance in US dollar[8]

To visualize how the selection performs when the tokens are unevenly distributed among
the users, we run an experiment splitting 5000 users into 6 different intervals of balances,
which are estimated and sampled according to the distributions observed from Bitcoin in
Table 4.2. An individual user is configured to have the minimum tokens in the interval. Due
to the limitations of the simulator and the negligible success rate of selection, the first column
of data in the table is ignored.

Figure 4.5 shows the average selected sub-users of each group becoming committee
members per round. The blue color indicates the results of committee sortition with an
expected size of 2000, and the orange indicates the results of selecting the final committee
members with an expected size of 10000. The first observation is that users with 100 tokens
barely succeed in being selected and the selected sub-users only contribute to a minimal
fraction of committee members. In contrast, groups of users with 10000 tokens display a
dramatic increment of votes while the number of users in the group decreases at the same time,
as shown in Figure 4.6. This indicates that the weight of the votes of these individuals is much
higher, especially the top three groups. Although these groups control the majority of votes,
an individual user in these groups cannot push a candidate’s vote to surpass the threshold.
Because consensus requires at least 68.5 percent and 74 percent of the total votes from the
committee and final committee respectively to validate a candidate in the corresponding step,
a single user can not change the result from the majority unless his weighted fraction is more
than the specified 20%[23]. Even though a user holds more than 20% of the total tokens, he
has to obtain enough votes from the sortition to cause the honest majority to fail to validate
the candidate in a particular step. This only results in final agreement on the empty hash
without causing significant damage to the system.

Mainstream blockchain applications, such as Bitcoin and Ethereum, maintain liveness
because of the high reward coins generated from mining. Miners participate in the network
as long as they can cover the cost of mining and make profits from selling their coins
when market prices are high. In contrast, proof-of-stake-based Algorand consensus depends
on the selection algorithm to randomly select representatives to propose and validate new
blocks. The only profits for active users in the current proposal are the transaction fees
from generating a new block. Without incentives for being committee members, it relies
on the willingness of users to participate in the network. Although the computation cost is
minimum, users running active nodes have to pay for the communication cost and massive

4.3 Sortition 55

Fig. 4.5 Average Selected Sub-users per round

Fig. 4.6 Number of Users per Group

storage space for fast-growing chains. There is no encouragement for users to deposit a
considerable amount of money into the system while paying for the cost of maintaining the
node. Even if there is an incentive scheme to reward honest behaviors, the minimum number
of tokens that would enable a user to succeed in sortition and participate in the voting might
be too high. From the probability shown in Table 4.1, a user has to spend at least US $8000
to obtain 10,000 tokens, whose exchange rate is US $0.8 per Algorand token at the time
of this research. This would barely give him success in one sortition with probabilities of
2% and 0.096%. Because the input string of the VRF differs when the step and the role
changes, the sortition might allow him to succeed in one of the steps. However, there is
nothing he can do to improve his sortition result unless he exchanges more tokens. Expensive
investments and the low probability of winning selection might frustrate some users and
cause them to remain passive participants who only broadcast transactions when necessary.
Furthermore, the market price of cryptocurrencies is incredibly volatile. The high risk of

56 Analysis & Findings

losing monetary value by exchanging them to Algorand tokens might discourage users from
further investments. Even worse, some current users might leave the network to prevent
further loss caused by devalued tokens.

As a consequence, the low probability of success and the lack of incentives might lead to
two possible scenarios, where users passively or inactively participate in the network or small
stakeholders might cooperate with each other to create a pool to increase the probability of
success and share the profits. In the first scenario, users holding fewer tokens occasionally
participate in the network when making transactions. This will not have a negative impact
on the progress of consensus until the weighted proportion of inactive users reaches the
threshold of 20%. This also raises concerns as to how consensus ensures safety if the total
number of tokens of the active users is less than 80% when malicious users attempt to attack
the system. The result is that consensus will eventually stop in a tentative state and require
recovery. Similarly, in-activeness also applies to stakeholders with a large number of tokens,
which can create uncertainty in the consensus protocol. A stall in consensus caused by a
sudden loss of a node holding a significant number of tokens has been reported in the released
testnet[24]. The most critical factor is that the probability of selection is not dynamic in the
current proposal. However, it is difficult to measure or estimate the number of users who
may participate in the distributed system, because there are no constraints or penalties to
force users to execute sortitions in a particular round continuously. If there is no transaction
paid to or from a user, he can choose to stay inactive and allow consensus to stall without
losing anything.

Without adequate regulation and penalties, a biased sortition might generate the strategy
of pool mining where stakeholders holding a significant number of coins gather to dominate
the block generation or small stakeholders cooperate to have a higher probability of a
successful sortition.

In an ideal Algorand scenario, users would vote for the block proposal from the selected
proposer whose priority is the highest in one round according to their received messages
within the waiting windows. If the transactions recorded in the block proposal are valid, it
should receive enough votes from committee members and be finalized as the newest block.
However, Algorand propagates messages using the gossip protocol which requires users
to spread messages to their randomly connected neighbors. There is no guarantee that an
individual node can receive all the priority messages and blocks. Therefore, individual users
start the consensus by voting for prioritized blocks, which is based on the received messages.
To reduce the divergence caused by latency, the Reduction algorithm reduces candidates
into only one non-empty block which receives more than the threshold number of votes. If
the highest priority messages do not manage to reach the majority of users, they will also

4.3 Sortition 57

be filtered out by the Reduction. In other words, only the block proposal which receives
enough votes in the Reduction step can be finalized into the blockchain. If there is a group
of users with a dominating number of tokens reach agreement to work together, the most
secure and effective way is to vote for their blocks at the reduction step without the risk
of stopping the consensus and placing it in a tentative state. As long as the block is valid,
the other small stakeholders have to passively compromise and accept the result to push the
consensus into the next round. Similarly, users with a small number of tokens can create a
pool to cooperate with others to have a better probability of being proposers and committee
members. Joining the pool reduces not only the cost of their maintenance but also enlarges
their impact on the voting process. Such agreements among stakeholders do not pose a threat
to the system and may result in a shorter agreement time, but it definitely will gradually
transfer the decentralized network towards centralization.

Chapter 5

Conclusion

With the rapid developments in the field of blockchain technology and the enormous prosper-
ity it can bring, people nowadays are more aware of the benefits of a decentralized system.
Simulta- neously, issues and limitations are becoming increasingly apparent. In particular,
the inefficient confirmation of transactions is the most critical aspect as this does little to
convince the world that blockchain can achieve at least the same performance as centralized
services. The blockchain applications are seeking a breakthrough in scalability to signifi-
cantly ameliorate the efficiency of processing and confirming transactions. Although there
have been many approaches to solving the problems, inevitably, they cannot overcome the
blockchain trilemma without weakening aspects of it.

Algorand has been proposed as an impressive consensus protocol combining the proof-
of-stake and the practical Byzantine Fault Tolerance, which confirms transactions with a
constant speed as the network expands. It also removes the security flaw of double-spending
caused by chain forks by reducing the probability to be negligible. Based on the simulated
results, the consensus algorithm demonstrates its ability to efficiently handle transactions
and defend the ledger against weighted fractions of dishonesty. However, it is challenging to
achieve an excellent balance between the three critical properties of the blockchain trilemma.
As discussed in the analysis, the sortition scheme without the support and regulation from
incentive and penalty schemes might lead to issues of liveness and centralization. Since the
system relies on a minimum weighted fraction to maintain security, an incentive scheme is
necessary to encourage the activeness of users and maintain the liveness at a certain weighted
percentage to secure the ledger.

From a technological viewpoint, Algorand delivers an innovative solution to overcome
the current struggles of blockchain applications. It demonstrates the tremendous potential
that a blockchain application can securely and efficiently achieve in large-scale adoption. On

60 Conclusion

the other hand, from the perspective of an individual user, the current framework might not
be convincing enough to participate in Algorand with the risk of losing monetary value

References

[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al. (2018). Hyperledger fabric:
a distributed operating system for permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, page 30. ACM.

[2] Antonopoulos, A. M. (2014). Mastering Bitcoin: unlocking digital cryptocurrencies. "
O’Reilly Media, Inc.".

[3] Back, A. et al. (2002). Hashcash-a denial of service counter-measure.

[4] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. (2014). Proof of activity: Extending
bitcoin’s proof of work via proof of stake. IACR Cryptology ePrint Archive, 2014:452.

[5] Bitcoin Fibre (2014). Public highly-optimized fibre network. http://bitcoinfibre.org/.
[Online; accessed 20-August-2019].

[6] BitcoinVisuals (2019). bitcoin visual. https://bitcoinvisuals.com/. [Online; accessed
10-July-2019].

[7] BitInfoCharts (2019a). Bitcoin, bitcoin cash difficulty historical chart. https://
bitinfocharts.com/comparison/difficulty-btc-bch.html#log&2y. Accessed: 2019-07-08.

[8] BitInfoCharts (2019b). Bitcoin rich list. https://bitinfocharts.com/
top-100-richest-bitcoin-addresses.html. [Online; accessed 10-July-2019].

[9] BTC.com (2019). Mining pool distribution. https://btc.com/stats/pool?pool_mode=year.
Accessed: 2019-07-08.

[10] Butterfield, A., Ngondi, G. E., and Kerr, A. (2016). A dictionary of computer science.
Oxford University Press.

[11] Castro, M. and Liskov, B. (2002). Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461.

[12] Chen, J. and Micali, S. (2016). Algorand. arXiv preprint arXiv:1607.01341.

[13] CommunityContributors (2019). Bitcoin core:bitcoin. https://bitcoin.org/en/
bitcoin-core/. [Online; accessed 9-July-2019].

[14] Conti, M., Gangwal, A., and Todero, M. (2019). Blockchain trilemma solver algorand
has dilemma over undecidable messages. arXiv preprint arXiv:1901.10019.

http://bitcoinfibre.org/
https://bitcoinvisuals.com/
https://bitinfocharts.com/comparison/difficulty-btc-bch.html#log&2y
https://bitinfocharts.com/comparison/difficulty-btc-bch.html#log&2y
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://btc.com/stats/pool?pool_mode=year
https://bitcoin.org/en/bitcoin-core/
https://bitcoin.org/en/bitcoin-core/

62 References

[15] Dannen, C. (2017). Introducing Ethereum and Solidity. Springer.

[16] Decker, C. and Wattenhofer, R. (2013). Information propagation in the bitcoin network.
In IEEE P2P 2013 Proceedings, pages 1–10. IEEE.

[17] Demers, A., Greene, D., Houser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., and Terry, D. (1988). Epidemic algorithms for replicated database mainte-
nance. ACM SIGOPS Operating Systems Review, 22(1):8–32.

[18] Denis, Frank (2013). The sodium cryptography library. https://download.libsodium.
org/doc/. [Online; accessed 15-July-2019].

[19] DSN Research Group (2019). Dsn bitcoin monitoring. https://dsn.tm.kit.edu/bitcoin/.
[Online; accessed 10-July-2019].

[20] Duong, T., Fan, L., and Zhou, H.-S. (2016). 2-hop blockchain: Combining proof-of-
work and proof-of-stake securely.

[21] Eric Lombrozo, Johnson Lau, P. W. (2015). Segregated witness (consensus layer).
Website.

[22] G.Hummer (2017). Sharding-faq. https://github.com/ethereum/wiki/wiki/
Sharding-FAQ. [Online; accessed 10-July-2019].

[23] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. (2017). Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 51–68. ACM.

[24] Ivica Milosevic (2019). Testnet stalled. https://forum.algorand.org/t/testnet-stalled/88.
[Online; accessed 20-August-2019].

[25] Jakobsson, M. and Juels, A. (1999). Proofs of work and bread pudding protocols. In
Secure Information Networks, pages 258–272. Springer.

[26] Josefsson, S. and Percival, C. (2016). The scrypt password-based key derivation
function.

[27] King, S. (2013). Primecoin: Cryptocurrency with prime number proof-of-work. July
7th, 1:6.

[28] King, S. and Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
self-published paper, August, 19.

[29] Korpela, K., Hallikas, J., and Dahlberg, T. (2017). Digital supply chain transformation
toward blockchain integration. In proceedings of the 50th Hawaii international conference
on system sciences.

[30] Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401.

[31] Larson, S. (2017). Bitcoin split in two, here’s what that means. Website. [online]https:
//money.cnn.com/2017/08/01/technology/business/bitcoin-cash-new-currency/index.
html.

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://dsn.tm.kit.edu/bitcoin/
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://forum.algorand.org/t/testnet-stalled/88
https://money.cnn.com/2017/08/01/technology/business/bitcoin-cash-new-currency/index.html
https://money.cnn.com/2017/08/01/technology/business/bitcoin-cash-new-currency/index.html
https://money.cnn.com/2017/08/01/technology/business/bitcoin-cash-new-currency/index.html

References 63

[32] Lin, I.-C. and Liao, T.-C. (2017). A survey of blockchain security issues and challenges.
IJ Network Security, 19(5):653–659.

[33] Mazieres, D. (2015). The stellar consensus protocol: A federated model for internet-
level consensus. Stellar Development Foundation, page 32.

[34] Micali, S., Rabin, M., and Vadhan, S. (1999). Verifiable random functions. In 40th
Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
120–130. IEEE.

[35] Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhattacharjee,
B. (2015). Discovering bitcoin’s public topology and influential nodes. et al.

[36] Miller, A., Xia, Y., Croman, K., Shi, E., and Song, D. (2016). The honey badger of
bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42. ACM.

[37] Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer electronic cash system.

[38] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin
and cryptocurrency technologies: a comprehensive introduction. Princeton University
Press.

[39] Nguyen, G.-T. and Kim, K. (2018). A survey about consensus algorithms used in
blockchain. Journal of Information processing systems, 14(1).

[40] Pagh, R. and Bldg, N. (2001). D.-a. c, and ff rodler. Cuckoo Hashing.

[41] Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234.

[42] Peercoin project (2018). peercoin university. https://university.peercoin.net/#/
time-as-an-alternative-scarce-resource. [Online; accessed 10-July-2019].

[43] Popper, N. (2017). Some bitcoin backers are defecting to create a rival currency. The
New York Times.

[44] QuantumMechanic (2011). Proof of stake instead of proof of work.

[45] Tromp, J. (2014). Cuckoo cycle: a memory-hard proof-of-work system. IACR Cryptol-
ogy ePrint Archive, 2014:59.

[46] VISA (2017). [online]https://usa.visa.com/run-your-business/smallbusiness-tools/retail.
html.

[47] Wang, Y. (2019). Another look at ALGORAND. CoRR, abs/1905.04463.

[48] Wiki, N. (2014). Whitepaper:nxt — nxt wiki,. [Online; accessed 08-July-2019].

[49] Wikipedia contributors (2019). Public-key cryptography — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Public-key_cryptography&oldid=
911283666. [Online; accessed 4-September-2019].

https://university.peercoin.net/#/time-as-an-alternative-scarce-resource
https://university.peercoin.net/#/time-as-an-alternative-scarce-resource
https://usa.visa.com/run-your-business/smallbusiness-tools/retail.html
https://usa.visa.com/run-your-business/smallbusiness-tools/retail.html
https://en.wikipedia.org/w/index.php?title=Public-key_cryptography&oldid=911283666
https://en.wikipedia.org/w/index.php?title=Public-key_cryptography&oldid=911283666

64 References

[50] w.Lim (2016). How do i compare the “scalability” capabilities between
ethereum and bitcoin? https://ethereum.stackexchange.com/questions/3308/
how-do-i-compare-the-scalability-capabilities-between-ethereum-and-bitcoin. [Online;
accessed 10-July-2019].

[51] Zheng, Z., Xie, S., Dai, H.-N., Chen, X., and Wang, H. (2018). Blockchain challenges
and opportunities: A survey. International Journal of Web and Grid Services, 14(4):352–
375.

[52] Zohar, A. (2015). Bitcoin: under the hood. Communications of the ACM, 58(9):104–
113.

https://ethereum.stackexchange.com/questions/3308/how-do-i-compare-the-scalability-capabilities-between-ethereum-and-bitcoin
https://ethereum.stackexchange.com/questions/3308/how-do-i-compare-the-scalability-capabilities-between-ethereum-and-bitcoin

	Title page
	Declaration
	Certificate of original authorship
	Acknowledgements
	Abstract
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Consensus
	1.3 Research Questions
	1.4 Aims & Objectives
	1.5 Organization of Thesis

	2 Literature Review
	2.1 Blockchain
	2.1.1 Chain Structure
	2.1.2 Asymmetric Encryption
	2.1.3 Transactions
	2.1.4 Block

	2.2 Consensus Algorithm
	2.2.1 Proof-of-Work
	2.2.2 Proof-of-Stake
	2.2.3 Byzantine Fault Tolerance consensus

	2.3 Blockchain Trilemma
	2.4 Algorand

	3 Investigation of Consensus Algorithm
	3.1 Implementation of Simulator
	3.1.1 Communication Model

	3.2 Implementation of Consensus Algorithms
	3.2.1 Security Assumption
	3.2.2 Blockchain
	3.2.3 Cryptography Sortition
	3.2.4 Byzantine Agreement
	3.2.5 Voting
	3.2.6 Reduction
	3.2.7 Binary Byzantine Agreement

	4 Analysis & Findings
	4.1 Round Completion Time
	4.2 Resistance to Dishonest Voting
	4.3 Sortition

	5 Conclusion
	References

