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Abstract

Rank aggregation (RA) refers to the task of recovering the total order over a set of items,
given a collection of preferences over the items. The flexible collection of preferences enables
successful application of RA in various fields, e.g., image rating and bioinformatics. A basic
assumption underlying the vanilla RA is that all preferences are provided by homogeneous
users. However, this assumption is rarely satisfied in real applications, due to the complex
real situation. Therefore, RA usually suffers from model misspecification, namely the
inconsistency between the collected preferences and the homogeneity assumption. Another
challenge associated with RA is the scalability issue. In particular, RA usually involves
ranking over tens of thousands of items, leading to an exponential volume of preferences for
aggregation. Therefore, an inappropriate inference method would limit the application of the
proposed model.

This thesis considered RA under model misspecification in the following three scenarios:

• In a crowdsourcing scenario, sufficient annotations from each user are available,
which enables exploration of user heterogeneity to account for model misspecification.
Therefore, I proposed a reliable CrowdsOUrced Plackett-LucE (COUPLE) model,
which introduces an uncertainty vector to make a fine-grained categorization of users.
Meanwhile, a general Bayesian Moment Matching (OnlineGBMM) was proposed,
to ensure an analytic Bayesian update with an almost twice differentiable likelihood
function.

• In a general setting, typical model augmentation methods would cause overfitting,
because insufficient annotations from each user are available. Inspired by the distribu-
tional robust literature, I proposed CoarsenRank, which performs regular RA over a
neighborhood of preferences. The resultant inference would enjoy robustness against
model misspecification. To this end, I first defined a neighborhood of the rank dataset
using relative entropy. Then, I instantiated CoarsenRank with three popular probability
ranking models and discussed the optimization strategies.
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• RA for mental fatigue monitoring. Common practices for mental fatigue monitoring
refer to predicting the reaction time (RT) by aggregating the EEG signal from multiple
heterogeneous EEG channels. Let us consider the RT as the item score and view each
EEG channel as a user. The mental fatigue monitoring task could be formulated as RA
under model misspecification, particularly in a crowdsourcing scenario. To address this
problem, a Self-Weight Ordinal REgression (SWORE) model with Brain Dynamics
table (BDtable) is proposed. The SWORE model could give a reliable evaluation of
brain dynamics preferences from multiple channels, while the BDtable is employed to
calibrate the SWORE model by utilizing the proposed online generalized Bayesian
moment matching (OGMM) algorithm.
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