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ABSTRACT

Modeling and Analysis of Advanced Persistent Threats in Cyber Space

by

Xu Wang

Advanced Persistent Threat (APT), a professional cyber threat as indicated by

its name, has become a type of significant risk in modern society. APT attackers

employ various advanced attack technologies to carry out attacks in multiple stages

over a long period of time. Due to its complexity, APT research is challenging and

incomplete. This thesis proposes a series of models to analyze key processes of APT,

i.e., social attack, propagation, and remote control. To be specific, game theoretic

models are proposed to describe social network attacks, and epidemic models based

on the susceptible-infected-susceptible process are developed to capture the propa-

gation process; machine learning methods are adopted to detect the remote control

traffic.

The main contributions of this thesis can be summarized as follows.

• This thesis proposes infinitely repeated games to capture the interactions be-

tween a message publisher and the administrator to suppress social attack mes-

sages. Critical conditions, under which the publisher can be disincentivized to

send any attack messages, are identified. Closed-form expressions are estab-

lished to give the maximum number of attack messages from an attacker in

the absence or presence of misclassification on genuine messages.

• This thesis proposes a new approach to model the propagation of APT across

non-trivial networks. A discrete-time absorbing Markov process of epidemic

model is first developed based on the adjacency matrix of the network. Asymp-

totically accurate bounds of the virus extinction rate are derived. We propose



a practical approach for the estimation of the extinction rate in large networks.

Our proposal has been proved theoretically and validated via simulations.

• This thesis proposes a group-based propagation model to analyze the prop-

agation process of APT in large-scale networks. The proposed model is ef-

ficient and accurate. The network nodes are divided into groups accord-

ing to their connectivity. A continuous-time Markov susceptible-infectious-

susceptible model is developed. The propagation threshold, under which the

propagation will eventually stop, is derived based on the spectral radius of the

collapsed adjacency matrix. Simulation results validate the model accuracy

and the analytical epidemic threshold.

• This thesis proposes a method of traffic feature analysis to detect the remote

control traffic of APT. Based on the independent access feature of APT net-

work traffic, concurrent domains in the domain name service are selected to

detect APT domains from domain name system records. The proposed traffic

features and detection process are then validated using public datasets.
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