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ABSTRACT

Modeling and Analysis of Advanced Persistent Threats in Cyber Space

by

Xu Wang

Advanced Persistent Threat (APT), a professional cyber threat as indicated by

its name, has become a type of significant risk in modern society. APT attackers

employ various advanced attack technologies to carry out attacks in multiple stages

over a long period of time. Due to its complexity, APT research is challenging and

incomplete. This thesis proposes a series of models to analyze key processes of APT,

i.e., social attack, propagation, and remote control. To be specific, game theoretic

models are proposed to describe social network attacks, and epidemic models based

on the susceptible-infected-susceptible process are developed to capture the propa-

gation process; machine learning methods are adopted to detect the remote control

traffic.

The main contributions of this thesis can be summarized as follows.

• This thesis proposes infinitely repeated games to capture the interactions be-

tween a message publisher and the administrator to suppress social attack mes-

sages. Critical conditions, under which the publisher can be disincentivized to

send any attack messages, are identified. Closed-form expressions are estab-

lished to give the maximum number of attack messages from an attacker in

the absence or presence of misclassification on genuine messages.

• This thesis proposes a new approach to model the propagation of APT across

non-trivial networks. A discrete-time absorbing Markov process of epidemic

model is first developed based on the adjacency matrix of the network. Asymp-

totically accurate bounds of the virus extinction rate are derived. We propose



a practical approach for the estimation of the extinction rate in large networks.

Our proposal has been proved theoretically and validated via simulations.

• This thesis proposes a group-based propagation model to analyze the prop-

agation process of APT in large-scale networks. The proposed model is ef-

ficient and accurate. The network nodes are divided into groups accord-

ing to their connectivity. A continuous-time Markov susceptible-infectious-

susceptible model is developed. The propagation threshold, under which the

propagation will eventually stop, is derived based on the spectral radius of the

collapsed adjacency matrix. Simulation results validate the model accuracy

and the analytical epidemic threshold.

• This thesis proposes a method of traffic feature analysis to detect the remote

control traffic of APT. Based on the independent access feature of APT net-

work traffic, concurrent domains in the domain name service are selected to

detect APT domains from domain name system records. The proposed traffic

features and detection process are then validated using public datasets.
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Chapter 1

Introduction

The rapidly developing network technology and computer technology are reshaping

society. While improving efficiency, these technologies enable cyber attacks to a

whole new level. Cyber attacks can be more targeted, professional and persistent

than ever before. A new type of cyber attack, i.e., Advanced Persistent Threat

(APT), has been proposed and become popular. New theories and models need to be

developed to analyze the complex interaction in APT attacks. However, this can be a

challenging topic. This is first because APT attacks can be across multiple networks,

e.g., social networks and computer networks, and behave in completely different

ways. A single model cannot capture complex interactions of APT in different

networks. Another challenge is the long-time range and large-scale of APT attacks.

Developed models should be able to solve this challenge, typically by simplifying

attacks and reducing model complexity.

This thesis models and analyzes key social attack stages, propagation stages,

and remote control stages during APT attack process. Based on unique behaviors

of different stages, this thesis proposes a series of models to capture the interaction

between APT attackers and defenders by employing game theory, Markov theory,

virus propagation model, stability analysis, machine learning, etc. Numerical and

simulation results are carried out in the proposed models, which help to recover

APT attack scenario, evaluate defense effect, and allocate defense resources.

This chapter first introduces the background of network security, including the

definition of APT, features of APT, typical APT attack cases and stages of APT.
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This chapter then illustrates research topics and key research points, followed by

the overview of this thesis.

1.1 Background

The rapid development of information technology enables massive devices and

users to be connected [2, 3]. In 2018, more than 4 billion individuals and 17 billion

devices can interact with one another in real-time via the Internet. In addition to

the traditional computer network, new networks, e.g., mobile network [4], Internet

of Things (IoT) network [3], vehicular network [5], industrial network [6] and smart

city [7], have been realized to connect various objects and extend the network. The

cybersecurity, meanwhile, has become a critical issue. Attacks can damage the

Confidentiality, Integrity, and Availability (CIA) of network assets. For example,

the Domain Name Systems (DNS) service provider Dyn was under a large-scale

Distributed Deny-of-Service (DDoS) attack, where many web services were stopped,

e.g., Twitter and Airbnb [8]. The attackers can also launch attacks on physical

equipment over the computer network. For example, in 2009, Iran’s nuclear facilities

were damaged by the Stuxnet cyber attack [9]. In 2015, Ukraine suffered a large-

scale blackout due to a cyber attack on the power grid [10]. As a result, cybersecurity

has become a part of national defense. To protect cyber space, many countries have

set up specific agencies and released regulations or law against attacks [11].

It is hard for cyberspace to ensure complete cybersecurity. This is first because

security vulnerabilities can be found in various modules in cyberspaces, e.g., hard-

ware, software, and protocols. According to the National Vulnerability Database

(NVD), more than 100,000 vulnerabilities have been found until 2018 [12]. Besides

applying existed vulnerabilities, attackers can also perform vulnerability mining to

find unpublished vulnerabilities, with which attackers can efficiently break into tar-

get networks and avoid detection. On the other hand, due to the fact that indi-
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viduals and devices have been connected by different networks, attackers can reach

their targets via the networks and implement attacks. Among the networks, social

networks have drawn much attention from attackers. For example, more than 200

million phishing links are blocked by Trend Micro in 2018 [13].

Recently, a type of cyber attack has become popular and is significantly different

from traditional network attacks, e.g., worm and DDoS, with features of advanced,

targeted and persistent. The terminology Advanced Persistent Threat (APT) was

proposed to describe the advanced and sophisticated cyber attacks. In 2006, the

name of APT was first used by the US Air Force [14], which is responsible for US

national cybersecurity, and then became well known in 2010 because of a popular

article analyzing the attack on Google, namely Aurora [15]. Consisting of five phases,

Aurora is typically an advanced and sophisticated cyber attack. At the initial phase,

attackers collect information of selected employees in targeted companies from online

social networks. After that, attackers create a malicious website and send the link

to the website to the selected employees. At the third phase, attackers can gain

access to the hosts owned by the selected employees. The attackers then build

secret remote control channels to the hosts with the Secure Sockets Layer (SSL)

protocol. At the last phase, attackers search Gmail data using the credential of the

attacked employees and then retrieve the data from the remote control channels.

In 2011, APT was officially defined by the National Institute of Standards and

Technology (NIST) as follows [16]:

An adversary that possesses sophisticated levels of expertise and significant re-

sources which allow it to create opportunities to achieve its objectives by using mul-

tiple attack vectors (e.g., cyber, physical, and deception). These objectives typically

include establishing and extending footholds within the information technology in-

frastructure of the targeted organizations for purposes of exfiltrating information,
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undermining or impeding critical aspects of a mission, program, or organization; or

positioning itself to carry out these objectives in the future. The advanced persis-

tent threat: (i) pursues its objectives repeatedly over an extended period of time; (ii)

adapts to defenders’ efforts to resist it; and (iii) is determined to maintain the level

of interaction needed to execute its objectives.

Compared with traditional network attacks, APT has the following outstanding

features.

• Targeted

Traditional network attacks attack every reachable computer, e.g., worms.

However, only limited devices are under attack in APT. To achieve this, ad-

versaries usually initial attacks through targeted social attacks, where attack

payloads are customized according to the targets’ profile and then only deliv-

ered to the targeted employees. Meanwhile, attackers would carefully control

the range of infected nodes to stay inconspicuous.

• Advanced

APT adversaries can attack their targets through multiple networks, e.g., so-

cial networks and IoT networks. To be specific, the adversaries usually start

cyber intrusions with social attacks. Popular payloads used in social attacks

include fishing links, malicious attachments, and watering hole webpages. The

adversaries can go beyond computer networks and attack the physical devices

via IoT networks. The adversaries can also mine new vulnerabilities according

to the intelligence of targets and then customize attack tools.

• Persistent

APT attacks can hide in targeted systems up to hundreds of days before being

detected [17], benefited from various antidetection technologies in APT at-
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tacks. For example, zero-day exploits, widely used in APT, disable signature-

based Intrusion Detection System (IDS). APT attacks also apply encryption

technologies or the Virtual Private Network (VPN) technology on the remote

control traffic to keep the remote control traffic stay imperceptible. Mean-

while, as a kind of targeted cyber attack, patient adversaries in APT attacks

can spend a lot of time to collect intelligence, customize attack plans and

upgrade attacks until fulfilling their attack targets.

APT attacks are often labeled with their attack groups to classify the attacks

and summarize attack strategies of the attack groups. According to the 360 APT

2018 annual report [1], active APT attack groups and the number reports related

their attacks are shown in Figure 1.1.

Figure 1.1 : The number of reports about active APT attack groups in 2018 [1].

Driven by clear attack missions, APT attacks can achieve high success rates

and cause massive damage. According to 360 APT 2018 annual report [1], the

distribution of victim industries is illustrated in Figure 1.2. Large organizations,

e.g., government agencies, financial institutions, and diplomatic services, have gained

much interest of APT adversaries. The key services to national security, such as

military, industry and national defense, have become targets of APT attackers.
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Figure 1.2 : The distribution of victim industries [1].

1.1.1 APT Attack Case Studies

As a kind of targeted attack, every APT attack can be customized according

to victim information, attackers’ skills and attack plan. Thus, APT attacks can

be various on attack details, e.g., attack payloads and targets. Three famous APT

attacks are introduced where their common features are summarized, and their

unique behaviors are identified.

Stuxnet [9]

In 2009, Iran’s nuclear facilities suffered from a complex and targeted attack,

namely, the Stuxnet attack, during which Iran’s nuclear development was seriously

delayed. As a professional cyber attack, Stuxnet applied two zero-day vulnerabili-

ties, spread through physical devices, and attacked Supervisory Control and Data

Acquisition (SCADA) systems via computers. As a novel cyber attack, Stuxnet

realized the attack on physical devices beyond the limitation of computer networks.

To be specific, attackers in Stuxnet sent control commands to the key equipment of

the Iranian nuclear factory through a Programmable Logical Controller (PLC) to
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overload the equipment and damage them. In this attack, the attackers deployed two

remote control centers in two countries [18]. The remote control centers can control

infected systems or update the attack program. Once a computer was infected (or

attacked), it returned its internal Internet Protocol (IP) address, public IP address,

operating system information and other information to the remote control centers.

In the later stage of the attack, the Stuxnet virus propagated in the Middle East

and resulted in large-scale infection. By 2010, more than 60 thousand computers

were infected in Iran [19].

Flame [20]

In 2012, the Flame virus, designed for intelligence gathering, was discovered in

countries in the Middle East [21]. Flame attack monitored various communication

channels between computer networks and the physical world, typically by using key

loggers, screenshots, microphones, and cameras, to collect various intelligence. In

the Flame attack, more than 80 remote control centers were found, where most of

them realized remote control over HyperText Transfer Protocol (HTTP), HyperText

Transfer Protocol Secure (HTTPS) and Secure Shell (SSH). The Flame virus could

directly upload the collected information to the remote control centers if the network

is available. If the infected hosts lost connection, the Flame Virus could save the

collected information in removable storages and then infect other hosts and upload

the collected information through the newly infected hosts.

RSA SecurID Attack [22]

In 2011, RSA’s SecurID token was hacked by APT attackers. As a result, the

companies using SecurID as credentials were compromised and suffered from infor-

mation leakage. In the initial phase of the APT attack, two phishing emails were

sent to RSA’s employees. After one of the employees had opened the attachment,

a zero-day exploit was triggered resulting that the employee’s computer was com-
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promised and establish an initial remote control channel [23]. APT adversaries then

attacked other hosts in the RSA network and stole a large amount of confidential

information including the RSA SecurID token.

1.1.2 APT Attack Stages

It can be concluded from the APT cases and a series of APT reports [24, 9, 25]

that APT attacks employ remote control and lateral movement. Besides these

two processes, APT attacks also have other common behaviors. According to re-

search [24, 18], the lifecycle of APT attacks can be divided into five stages, namely

reconnaissance, initial attack, remote control, lateral movement, and attack. The

attack stages and attack behaviors in different stages are shown in Figure 1.3.

Figure 1.3 : Lifecycle of APT Attacks.

a) Reconnaissance
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APT attackers first collect intelligence of their attack targets through multiple

channels and then set up profiles for the targets. Attacks can achieve high attack

success rates with rich intelligence. The first part of intelligence is about employees

including their social activities, life habits, and favorite websites. Employee-related

intelligence can be collected from social networks [26]. The intelligence also includes

software and hardware in target networks. The hardware information includes net-

work devices, computers, servers, and security devices. The hardware information

can be collected by analyzing the supply chain and leaked documents. The soft-

ware information, e.g., operating systems, network information, network services,

and database services, can be detected by various network attacks, such as porting

scanning, server scanning and computer viruses [27, 20].

b) Initial Attack

At this stage, APT attackers create attack plan based on the collected intelli-

gence, break through the protection of the target network and invade a small number

of nodes in the target network. Vulnerability exploits, including known vulnerabil-

ity or zero-day vulnerability [28], are popular initial attach technologies, such as the

initial attack stage of the Equifax’s APT attack in 2017. Social engineering attack,

e.g., spearfishing attacks or waterhole attacks [29, 30], is another type of popular

attack technology at initial attack stage, such as the initial attacks in the Aurora

attack [15] and RSA SecurID leak attacks [23].

c) Remote Control

APT attacks leave backdoors on victims in order to remotely control victims.

The remote control can be used to transmit collected intelligence. For example,

the Flame attack collects various intelligence and returns it to the attacker for other

intrusions through remote control channels [21]. The remote control channel can also

be used to control attacks. For example, in the Stuxnet attack, malware on infected
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nodes can remain silent or be activated under the control of remote attackers [31].

Remote control traffic is often encrypted and compressed to stay inconspicuous and

avoid detection [24].

d) Lateral Propagation

After APT attacks break into target networks, they will spread and attack other

nodes in the internal target networks to collect more information and elevate privi-

lege. Popular attack techniques include stealing users’ credentials and vulnerability

exploits. Some professional APT attacks can develop specific propagation technol-

ogy to achieve lateral propagation while avoiding detection. For example, the Flame

attack can spread itself by hijacking Windows system update process [32]. In tar-

get networks, attacks use encryption techniques, zero-day vulnerabilities and other

hidden technologies to cover attacks and extend the duration of attacks [30].

e) Attack

APT attacks complete attack missions at this stage. A popular attack target is

intelligence property, such as in the Flame attack and RSA SecurID leakage attack.

In this type of attack, attackers utilize the remote control channels to collect stolen

intelligence properties. APT attacks are also designed to damage target networks

and reachable services, e.g., the Stuxnet attack and the APT attack on Ukrainian

power grid [9, 33].

1.2 Research Objectives

As a type of cyber threat with complex behavior, long-term harassment, and

multidimensional attacks, APT has not been fully studied. This thesis intends to

decouple APT attacks and then analyze APT stages. Based on the lifecycle of APT,

i.e., reconnaissance, initial attack, remote control, lateral propagation, and attack, a

series of models are set up to capture the complicated interactions between attackers
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and defenders. The proposed models can help defenders to understand the attack

process, evaluate defense strategies, and reduce attack loss. The research targets,

key research points and the structure of this thesis are illustrated in Figure 1.4.

Figure 1.4 : Research targets, key research point and chapters.

At the first stage, APT attackers carry out intelligence gathering [26] and deploy

initial intrusion [34] in social networks. The first research target of this thesis is

the attack-defense model in online social networks (OSNs). One challenge is that

APT attack is a long-term and customized threat where attackers and defenders can

update their strategies over an infinite-time horizon according to historical actions.

As a result, interactions between attackers and defenders can be sophisticated. An-

other challenge is that different types of participators may coexist in online social

networks, including followers, fans, and bots, reacting distinctly to message pub-
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lisher’s behaviors. For example, the existence of fans and bots may mislead other

nodes in the social network, causing attack messages to be judged as legitimate

messages or a reverse misjudgment. The third chapter of this thesis builds infinitely

repeated games for the attack-defense process in online social networks. The games

can capture behaviors of various participators in the absence and presence of mis-

classification. Based on the constructed models, numerical results are presented to

compare different defense strategies.

APT attacks can perform reconnaissance by employing large-scale malware, such

as the Flame attack [20], where the malware can monitor network traffic and steal

key data. During this process, malware constantly infects new nodes to collect more

information. Another case of propagation in APT occurs in internal networks of

victims at the lateral propagation stage. After APT attack has gained an initial

foothold in the target’s internal network, it keeps on spreading in the internal net-

work and infecting other nodes to gather internal information, elevate its privilege,

and prepare for succeeding attacks. The second topic of this thesis is to establish

propagation models to capture large-scale infections of APT. In this part, the first

research point is to evaluate the impact of network structure on the propagation

process. This is because a computer network is with a fixed topology, which has

a great impact on the propagation process as indicated by previous studies [35].

Secondly, the proposed model should be able to analyze large-scale and long-term

propagation processes. This is because APT can infect massive nodes at the recon-

naissance stage. Meanwhile, APT usually targets at large organizations with many

hosts. On the other hand, it is difficult to totally remove APT attacks from internal

networks because of APT’s professional attack skills and long-term dynamic feature.

The fourth and fifth chapters of this thesis analyze the propagation process of APT

based on virus propagation models and Markov theory. The models can evaluate

the propagation process by deducing key indicators, e.g., propagation threshold and



13

survival time, combining the impact of network topology. The two chapters also

propose methods to extend the models to large-scale networks. Numerical results

are given to validate the proposed models and extension methods.

APT attackers need to establish remote control channels on the victim nodes

in order to maintain long-term and controllable attacks. In popular information

leakage attacks, the collected information is also transmitted to remote control cen-

ters to complete attack missions. The final research topic is to analyze the remote

control traffic in APT attacks and then detect APT by identifying the remote con-

trol traffic. The first research point of this topic is to analyze the remote control

traffic and identify its unique characteristics which are able to distinguish APT at-

tacks from traditional network attacks such as botnets. This thesis then proposes to

study the data processing algorithms to classify the remote control traffic for APT

detection. The sixth chapter of this thesis studies the remote control traffic in APT

and proposes a DNS traffic vectorization method for APT detection. Finally, the

proposed detection method is validated in a public dataset and discussed.

1.3 Thesis Organization

This thesis is based on the research results of 3 journal papers and 1 conference

paper. The thesis is organized as follows.

Chapter 1: This chapter gives an overview of this research. It first presents

the research background of this thesis, followed by the main motivations and key

research points for APT modeling and analysis. This chapter also illustrates the

structure of this thesis.

Chapter 2: This chapter presents a comprehensive literature review of the

theories related to APT modeling and previous works. Following the lifecycle of

APT, the literature review starts with general APT modeling followed by social
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attack modeling. This chapter also reviews the propagation theories and models

for remote control. This chapter summarizes current research progress and lays the

foundation of the reset chapters.

Chapter 3: This chapter proposes a model to analyze the social attack in APT.

To be specific, this chapter carries out the analysis by taking a game theoretic ap-

proach, where infinitely repeated games are constructed to capture the interactions

between a publisher and a network administrator and suppress forged messages in

OSNs. Critical conditions, under which the publisher is disincentivized to publish

any forged messages, are identified in the absence and presence of misclassification

on genuine messages. Closed-form expressions are established for the maximum

number of forged messages that a malicious publisher could publish. Confirmed by

the numerical results, the proposed infinitely repeated games reveal that forged mes-

sages can be suppressed by improving the payoffs for genuine messages, increasing

the cost of bots, and/or reducing the payoffs for forged messages. The increasing

detection probability of forged messages or decreasing misclassification probability

of genuine messages also has a strong impact on the suppression of forged messages.

Chapter 4: This chapter proposes a discrete-time Markov model based on the

epidemic model to accurately capture the lateral propagation of APT. To be spe-

cific, this chapter proposes a discrete-time absorbing Markov process to precisely

characterize virus propagations. Conducting eigenvalue analysis and Jordan decom-

position to the process, we prove that the virus extinction rate, i.e., the rate at

which the Markov process converges to a virus-free absorbing state, is bounded.

The bounds, depending on the infection and curing probabilities, and the minimum

degree of the network topology, have closed forms. We also reveal that the mini-

mum curing probability for a given extinction rate requirement, specified through

the upper bound, is independent of the explicit size of the network. As a result, we

can interpret the extinction rate requirement of a large network with that of a much
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smaller one, evaluate its minimum curing requirement, and achieve simplifications

with negligible loss of accuracy. Simulation results corroborate the effectiveness of

the interpretation, as well as its analytical accuracy in large networks.

Chapter 5: This chapter further studies the lateral propagation process based

on the research in Chapter 4. To be specific, this chapter proposes to group vertices

in directed graphs based on connectivity and carries out epidemic spread analysis on

the group basis, thereby substantially reducing the modeling complexity while pre-

serving the modeling accuracy. A group-based continuous-time Markov SIS model

is developed. The adjacency matrix of the network is also collapsed according to

the grouping, to evaluate the Jacobian matrix of the group-based continuous- time

Markov model. By adopting the mean-field approximation on the groups of nodes

and links, the model complexity is significantly reduced as compared with previous

topological epidemic models. An epidemic threshold is deduced based on the spec-

tral radius of the collapsed adjacency matrix. The epidemic threshold is proved to

be dependent on network structure and interdependent of the network scale. Simula-

tion results validate the analytical epidemic threshold and confirm the asymptotical

accuracy of the proposed epidemic model.

Chapter 6: This chapter analyzes the remote control traffic in APT and pro-

poses a novel method to vectorize the network traffic for APT detection. To be

specific, this chapter analyzes the features of remote control in APT and find that

the HTTP-based remote control is widely used. Based on the analysis results, this

chapter proposes a new feature of remote control traffic, i.e., independent access,

to characterize the difference between remote control communications and normal

HTTP requests. By applying the independent access feature into DNS records,

we implement a novel remote control detection method and validate it on a public

dataset. As a new feature of remote control traffic, its advantages and drawbacks

are also analyzed.
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Chapter 7: This chapter discusses future works, including propagation models,

cyber-attack detection and Blockchain-based security.

Chapter 8: This chapter summarizes the research of this thesis and highlights

the contributions of this thesis.
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Chapter 2

Literature Review

Based on the lifecycle of APT and identified key research points in the first chapter,

this chapter summarizes recent research breakthroughs on APT attack models, social

network attack and defense models, propagation models and remote control models.

General APT models, used to describe the sophisticated and long-term APT

behaviors, are firstly studied in Section 2.1. Such models can be used to integrate

APT-related security alarms and events, summarize attack features and predict

potential loss caused by APT attack.

Social attack and defense models, used to detect attacks and analyze the inter-

action between attackers and defenders in APT, are reviewed in Section 2.3. This

section studies the latest algorithms to detect attack messages, trustworthiness and

game models in social networks.

Propagation models, used to model the long-term interaction between attackers

and defenders in APT attacks, are reviewed in Section 2.4. This section studies

various epidemic processes, Markov models and mean-field based epidemic models.

Studies in terms of remote control models and detection are reviewed in Sec-

tion 2.4. Remote control stage can be analyzed to detect APT due to the fact that

the stable control link between attackers and victims are essential to APT attacks

to upload intelligence and update attacks. This section studies the remote con-

trol technology used in APT and beyond. Remote control detection methods and

projects are reviewed.
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2.1 General APT Models

Multi-stage attack modes were extended to reconstruct APT attack scenarios

from various attack events across different networks. The attack tree [36] was ex-

tended into an attack pyramid where every plane of the pyramid indicates an attack

network, such as a social network and a physical network [37]. The top vertex of

the pyramid, corresponding to the root node of an attack tree, represents an attack

target. Nodes on different planes collect attack events and are connected by log-

ical operations. Another tool to manage security events is the attack graph [38],

which can collect and fully analyze various intelligence, e.g., network topology, vul-

nerabilities, and host information. Therefore, attack graphs can be used to analyze

long-term and multi-stage network intrusion and restore attack scenarios. In [39],

the Petri net, developed to describe discrete dynamic systems, was customized from

the original triple to a six-tuple. The model defined the elemental components in

APT and their connections for the purpose of rebuilding APT attack scenarios.

Aiming at building fine APT attack scenarios, these models have to capture mas-

sive security events in large-scale networks and store them for a long time. The

models are with the challenges of massive states across various networks and high

complexity, and therefore can hardly be applied in practical analyses.

Researches were also carried out to analyze interactions between APT attackers

and defenders, typically by employing the game theory [40, 41, 42]. In an APT

game model, named “FLIPIT”, attackers and defenders could take their strategies

and obtain the control of the public resource at any time [40]. Both of their targets

were achieving the maximum of resource control while limiting the total action cost.

The research evaluated the payoff of attackers and defenders where the players’

movements follow the same independent uniform distribution. Numerical results

indicated that a more radical party is more likely to suppress the other one, although
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pay a lot of costs. The FLIPIT model helps defenders to deploy effective defense

strategies. In [41], APT attackers and defenders were able to perform attack and

detection scan at customized intervals. The Nash equilibrium of the game showed

that the attacker is more aggressive for a longer detection period, and conservative

otherwise. The paper proposed a policy hill-climbing (PHC) based detection scheme

to randomize the overall detection and a “hotbooting” algorithm to accelerate the

training of PHC detection. Simulation results confirmed that the proposed strategies

can achieve better data protection compared with the standard Q-learning strategy.

A Colonel Blotto game was proposed to capture the process of APT attackers and

defenders competing for storage resources, where the attackers and defenders had

limited central processing unit (CPU) time [42]. The Nash equilibrium of the game

revealed the numerical impact of the amount of data in storage devices, the number

of storage devices, and the number of CPU resources on the game outcome. With the

goal of improving data protection level, the paper analyzed the optimization problem

of computing resource allocation based on a hill-climbing strategy and Q-learning

method. In addition to the game theory, virus propagation models were also used

for the APT’s attack-defense interaction modeling and the defense evaluation [43].

Similar to the virus propagation model, each node in the network can be secure or

under attack. The dynamic network state was interpreted into a loss function for

optimal analysis.

2.2 Social Attack and Defense Models

Techniques have been developed to detect attack/forged messages in social net-

works, typically by defining features. The techniques can be used by individual

users or network operators to classify messages. Egele et al. [44] detected malicious

accounts in OSNs based on the finding that malicious accounts exhibit consistent be-

haviors over time, e.g., time of day, source, text, topic, links in messages, direct user
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interaction, and proximity. Ruan et al. [45] used extroversive behavioral features

(i.e., first activity, activity preference, activity sequence, and action latency) and

introversive behavioral features (i.e., browsing preference, visit duration, request

latency, and browsing sequences) to profile malicious accounts. Chen et al. [46]

proposed an evolutionary classification algorithm to detect time-varying statistical

features of spams, e.g., the number of retweets, by learning detected and manu-

ally labeled spams. Yang et al. [47] analyzed twitter spammers from the viewpoint

of topology and found that spammers have small local clustering coefficients, high

betweenness centrality, and small bidirectional link ratios. Neighbor features, such

as neighbors’ followers, average neighbors’ tweets, and followings to median neigh-

bors’ followers, were employed to improve the detection of malicious accounts [47].

Review-based features, such as early time frame, rate deviation, the number of

first-person pronouns, and the ratio of exclamation sentences, were proposed by

Shehnepoor et al. [48] in addition to user-based features, to analyze reviews in OSNs

(e.g., feedback on a topic or a product). Other review-based features, such as the

numbers of views and comments received, ratings, and favorite times, were also used

to identify spammers [49]. Linguistic features, such as the structure of sentences and

modifiers, were also proposed to analyze reviews [50]. Based on a finding that the

majority of collected spams are generated with underlying templates, Tangram [51]

divided spams into segments and extracted templates for accurate and fast spam

detections.

Interactions among users have been exploited to improve the accuracy of iden-

tifying forged messages and misbehaved publishers and penalize the publishers to

inhibit forged messages. A subjective trustworthiness model and an objective model

were proposed in [52], where trustworthiness was evaluated based on local knowl-

edge and global information, respectively. The trustworthiness of nodes can be

judged by network administrators. For example, a trusted user was defined as the
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one which has never posted any spam tweet and has posted at least five confident

ham tweets [53]. Priority can be given to the trusted publishers [52, 54, 55]. Siriv-

ianos et al. [56] proposed a collaborative spam filtering system, where feedback from

different reporters was jointly assessed based on the trustworthiness of the reporters.

Apart from manual complaints, the feedback can be automated reports, e.g., from

honeypots [57].

A popular yet harsh technique of regulating misbehaved publishers was to block

any forged messages and their publishers [58, 59, 60]. The solution would be too

harsh and less effective in the case where genuine messages can be misclassified due

to biased reviews [56] or unintentional mistakes can be made at the publishers, such

as granting permission to malicious applications [53]. Another increasingly popular,

soft technique of regulating the publishers’ behaviors is to have service providers (or

administrators) send risk alerts on forged messages without blocking the contents

and their publishers, as done in Facebook [61]. Given the alerts, all subscribers

can by their own decision to distrust and reject the messages, thereby reducing

the payoff to the publisher of the messages and disincentivizing the publisher from

misbehaving. However, the technique has yet to be appropriately analyzed in the

literature, due to sophisticated interactions between the publisher, administrator,

and subscribers, as well as potentially different types of coexisting subscribers.

Game theory has been employed to model the interactions in OSNs [62, 63, 64].

In a game between publishers and administrators [62], the publishers can send more

spam messages to gain higher payoff, which increases conversely the successful detec-

tion of the spam messages at the administrators. The detected malicious publishers

can be added into blacklists and quarantined. In [63], a Stackelberg-type game

was set up to capture viral product design and customer satisfaction and optimize

product adoption in OSNs. Abbass et al. [64] applied game theory to analyze the

trustworthiness of N players in an OSN, revealing that the society with no untrust-
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worthy individuals would yield the maximum wealth. However, game theory has not

been used to model and analyze a more sophisticated scenario, as the one discussed

in this thesis, where there can be multiple types of users with different views on

(forged) messages and messages can even be misclassified by mistake.

To the best of our knowledge, none of the existing game-theoretic analyses are

able to capture the increasingly popular risk alert technique in OSNs [61]. An

understanding of the long-term effect of this technique on the regulation of the

publisher’s behaviors is important to the design and configuration of the technique

though.

2.3 Propagation Models

In APTs, attackers first launch initial attacks aiming at targeted nodes and

gain footholds. The attackers then attack/infect other nodes in target networks

to collect more intelligence and deliver succeeding attacks. Attack techniques used

in the propagation stage include network scanning, exploit exploitation and other

attacks. As a kind of professional attack, APTs can be difficult to be completely

removed from the targeted network [28]. The nodes in the targeted network will be

in the transition of being attacked and repaired for a long time.

The virus propagation model in computer networks can be used to characterize

the lateral propagation process in APT [65]. Some classic virus propagation models

only support one-way state transition, such as the Susceptible-Infected (SI) model

and Susceptible-Infected-Recovered (SIR) model. Once a node is infected, it cannot

be transferred to the susceptible state anymore. There are also models that allow

looping state transition, such as the Susceptible-Infected-Susceptible (SIS) model,

where nodes can transfer between susceptible and infected states. Thus, the SIS

model can be used to model the long-term interaction in APT. Based on the SIS

model, this thesis interprets the lateral mobility of APTs and the ability of defenders
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into the infection probability and the curing probability in the virus infection model.

The epidemic model, originally developed to characterize the spread of biological

infectious diseases in [66], was first extended to computer networks in [67], where

the network topology was omitted (i.e., which is equivalent to assuming a network

topology of a complete graph). In the model, the infection probability of each

network element solely depends on the infected population. The curing probabilities

of the elements are independent and identically distributed, as those for biological

diseases. Such model was used for mobile Bluetooth networks [68, 69], and wireless

sensor networks [70]. Kephart et al. [71] and Vojnovic et al. [72] proposed a

new “warning” state at every node, apart from the “infected” and “uninfected”

states. The probability of a node switching to the “warning” state depends on the

population of the warned nodes and is independent of the network topology.

Statistic topology models, e.g., the scale-free graph, were later adopted to study

the statistics of computer virus spread. Pastor-Satorras et al. [73] derived the

probability of a node being infected as a function of the expected number of its

infected neighbors. The number was calculated, following the power-law distribution

of the neighbors in scale-free graphs. The probability was used in [74] to derive the

threshold required for a virus to exponentially die out. Zou et al.[75] used the scale-

free graph to model the propagation of Internet email worms. In practice, different

topologies, e.g., star and ring graphs, can have very different virus propagation and

cure properties. Unfortunately, Li et al. [76] showed that analyses on scale-free

graphs are inaccurate for specific topologies.

Markov processes were adopted to model virus propagations in specific net-

work topologies, where every Markov state collects the binary status, “infected”

or “cured”, of every node in the network [35, 77, 78]. Van Mieghem et al. [35] devel-

oped a continuous-time absorbing Markov epidemic model, where the state space is
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2N in an N -node network. The second-largest eigenvalue of the Markov transition

rate matrix, which determines the speed of convergence to the absorbing virus-free

state, was approximated and numerically calculated using curve fitting, due to the

high complexity of eigenvalues decomposition. There were attempts to reduce the

state space for specific topologies, e.g., complete and star graphs, by exploiting graph

isomorphism [77, 78]. However, the complexity of the Markov epidemic model is still

high and prohibitive to large network analyses.

There were efforts to decompose the Markov models to reduce complexity and

improve scalability. In [35], the continuous-time 2N -state Markov epidemic model

was decoupled to N small Markov processes described by N differential equations,

one per node, by taking moment closure approximations. The N small Markov

processes were assumed to be uncorrelated and described by N separate differential

equations. Mean-field approximations were carried out to each differential equation.

Specifically, the probability of a node being infected, which depends on the number of

its infected neighbors, were approximated to depending on the mean number of the

infected neighbors. Chakrabarti et al. [79, 80] applied the independence assumption

and mean-field approximation to discrete-time Markov epidemic models, which were

later extended to analyze the propagations of email malware [81] and social network

worms [82]. The model was extended to multi-layer networks [83], where a network

can be visualized as several independent logical networks (each infected by a different

virus), and later generalized to the case where the logic networks are correlated

due to the competition among the viruses at a node [84], and the case each node

can have different infection and curing rates [85]. Unfortunately, the independence

assumption may not withstand in practice due to the interconnections between the

nodes. As a consequence, the effective infection rate is overestimated [35, Sec. IV-

A]. Moreover, the mean-field approximations can cause inaccuracy in the models,

especially when N is small to medium [35].
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The statistic topology models are generally based on undirected networks. How-

ever, there is an intrinsic directionality in the propagation in specific types of dy-

namics, e.g., infectious disease spreading [86] and information transmission [87].

Directed networks, sets of vertices and a collection of directed edges that connect

pairs of ordered vertices, are useful to represent specific transmissions with intrinsic

directionality in the propagation [88]. Meyers et al. [89] employed the percola-

tion theory to predict disease transmission through semi-directed contact networks,

where edges may be directed or undirected and found that the probability of an

epidemic and the expected fraction of a population infected during an epidemic can

be different in semi-directed networks, in contrast to the routine assumption that

these two quantities are equal. Li et al. [90] defined the directionality ξ as the

percentage of unidirectional links and found that the lower bound of the epidemic

threshold increases with a growing ξ, implying that the directionality hinders the

propagation of epidemic processes. In [91], Khanafer et al. studied the stability of

an SIS N -intertwined Markov model over arbitrary directed network topologies and

showed that when the basic reproduction number is greater than one, the epidemic

state is locally exponentially stable, and when the network is not initialized at the

disease-free state, the epidemic state is globally asymptotically stable.

2.4 Remote Control Models and Detection

Besides APT, the remote control has been widely used in botnets as a funda-

mental technology with two popular remote control structures, i.e., the centralized

structure and the distributed structure [92]. The centralized remote control employs

the master-slave structure where a single control center can send commands to many

under control nodes. The centralized remote control is usually realized over popular

network protocols, e.g., IRC and HTTP. In the distributed command and control

structure, the controlled nodes play the same role and form a peer-to-peer network
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in which the remote commands propagate.

The identification of remote control traffic is key to the detection and control

of botnets. The infected nodes in the distributed command and control system

behave similarly with one another, which can be used to model the control traffic

and detect botnets [93]. On the other hand, the centralized remote control traffic

has outstanding features on domains, information of infected nodes, time to live

(TTL), etc. Anomaly detection algorithms have been widely used in the detection of

remote control traffic. By combining the TCP anomaly detection and IRC anomaly

detection, [94] proposed to detection IRC-based botnets. [95] found that the infected

nodes in botnet share similar group behavior and applied the finding on DNS records

to detect infected nodes. Many botnet detection systems have been developed and

deployed on the public Internet. For example, Botsniffer [96] and BotMiner [97]

revealed that relativity can be found in the remote control traffic from live data

streams. Popular similarities include the same source addresses, same destination

addresses, package sizes, and network speed. The two systems detect botnets by

employing the features.

The remote control (or command and control) can be modeled and then detected

based on time features and spatial features because the attackers need to control

groups of attackers in a long period. The topology between internal hosts and

external domains was used to find out potential victims [98]. Hierarchy clustering

algorithms were developed to detect APT attacks and attacked internal hosts based

on the connection records [99]. Based on the APT attack stages, [100] constructed a

graph from DNS records for the detection of remote control centers in APT. These

APT detection researches focus on the remote control stage of APT because the

remote control lasts the whole APT period is possible to be detected than other

attack stages.
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However, the remote control in APT is different from the command and control

in botnets due to the fact that APT attacks stay undercover and do not gener-

ate enormous traffic like botnets. As a result, new detection methods need to be

developed based on the control behavior of the remote control in APT.

2.5 Chapter Conclusion

This chapter reviewed literature related to this thesis and laid a solid foundation

for the following chapters. To be specific, this chapter summarized and compared

the latest research progress about APT models, i.e., general APT models, attack-

defense models in social networks, lateral propagation models and remote control

models and detection. This chapter also identified the gap between research targets

and existing researches and pointed out key research points of this thesis.
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Chapter 3

Social Attacks Modeling and Analysis

APT attacks often start with information gathering, especially on social networks.

Once an APT target is identified, a malicious payload can be constructed and then

delivered to the target through social networks in order to break into the target

network. Popular social network attacks include fishing attack [101], spearfishing

attack [29], and waterhole attack [30]. Users in social networks are sensitive to attack

messages at different levels. By collecting enough information of targeted users on

social networks, attackers can build specific attack messages within the interest of

attack targets to trap the targeted users. Attackers can also hire bots or collaborate

with other collusive attackers [102, 103] to further improve success attack rates and

evade detection and punishment. Under this background, this chapter proposes

game theory based models to analyze attack-defense interactions in social networks.

3.1 Introduction

Online social network (OSN), enabling users to interact with each other through

the Internet, dramatically reshapes the way people are connected and has a strong

impact on the public decision-making [104]. OSNs, e.g., Facebook and Twitter, have

been playing important roles even in politics and commerce [105]. Other OSNs,

such as Yelp and TripAdvisor, collect reviews from consumers and can have a direct

influence on product sales [106].

With no verification on user-generated content, OSNs are vulnerable to forged

messages that intentionally mislead or deceive the recipients. There are a variety of
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forged messages, such as email spams [107], fake views, e.g., in Amazon [108, 48],

and diffusing rumors [109, 110]. The publishers of forged messages can use social

bots [102] or employ water army [103] to propagate forged messages and avoid

sanction. Users in OSNs are susceptible to forged messages to different extents [111]

and can be sensitive to the content of the messages [112].

Behavioral and linguistic features have been used by individual subscribers to

judge the genuineness and forgery of a message [44, 50, 113]. Many subscribers

can feed back their judgments to help correctly classify the message, penalize the

publication of forged messages, and inhibit forgery of messages. For instance, Yelp

filters reviews and encourages users to report inappropriate reviews [114]. Facebook

enables users to provide feedback on any posts which are potentially forged, in

addition to independent third-party verification [61]. Once identified, forged posts

and/or their publishers can be blocked, which could be too harsh and inadequate

in the case where there is misclassification of genuine messages or unintentional

mistakes of publishers [56, 53].

An increasingly popular approach to regulating the publisher’s behaviors is

to have service providers (or administrators) send risk alerts to all users on dis-

putable contents without blocking the contents and their publishers, as done in

Facebook [61]. However, the effect of risk alerts on the inhibition of forged messages

has yet to be properly analyzed and understood. One challenge is that the pub-

lisher can interact with the subscribers over an infinite time horizon, and change its

strategies over time to potentially mislead the subscribers. The interactions can be

sophisticated. Another challenge is that different types of subscribers may coexist

in OSNs, including followers, fans and bots, reacting distinctly to the publisher’s

behaviors.

The motivation of this chapter is to provide new quantitative understanding on
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the effect of risk alerts on the inhibition of forged messages in the presence of multiple

types of subscribers and possible miss-detection and false alarm of forged messages.

We propose a new game theoretic approach for modeling and analyzing the pro-

liferation of forged messages in OSNs, where there are a network administrator,

a message publisher, and message subscribers (including followers, fans and bots).

Infinitely repeated games are constructed to characterize the interactions between

the publisher, administrator, and subscribers; and quantify the payoffs of the pub-

lisher, first in the absence of misclassification on genuine messages and then in the

presence of misclassification. This chapter also identifies critical conditions, under

which the broadcast of forged messages can be disincentivized and forged messages

can be suppressed in OSNs. The contributions of the chapter can be summarized

as follows.

• We propose infinitely repeated games to capture the interactions between a

publisher and the administrator to suppress forged messages in OSNs;

• Critical conditions, under which the publisher can be disincentivized to send

any forged messages, are identified in the absence and presence of misclassifi-

cation on genuine messages;

• Closed-form expressions are established for the maximum number of forged

messages of a malicious publisher in the absence and presence of misclassifica-

tion on genuine messages.

Validated by numerical results, our analysis indicates that forged messages can be

suppressed by improving the payoffs for genuine messages, increasing the cost of

bots, and/or reducing the payoffs for forged messages. The increasing detection

probability of forged messages or decreasing misclassification probability of genuine

messages can also benefit the game theoretic suppression of forged messages.
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The rest of this chapter is organized as follows. The proposed social network

model and infinitely repeated games of forged messages are presented in Section 3.2.

Sufficient conditions, under which the publisher is disincentivized from publishing

forged messages, are established, and closed-form expressions for the maximum num-

ber of forged messages which can be published before the publisher is disincentivized

are derived in Section 3.3. The proposed model, as well as the policies to suppress

forged messages, are numerically validated in Section 3.4, followed by conclusions in

Section 3.5.

Notations used in the chapter are as listed in Table 3.1.

Table 3.1 : Notations Used in Chapter 3

Notation Description

P A message publisher

A The network administrator

Nr The number of followers

Nn The number of fans

Nt The number of hired bots

p1 The miss-detection probability on a forged message

p2 The POD on a genuine message

q1 The probability on which a forged message is misjudged

q1 The probability on which a genuine message is correctly deduced

C1 The unit payoff from a genuine message

C2 The unit payoff from a forged message

C3 The cost of a bot

3.2 Network Model
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We consider subscription services of OSNs, as shown in Fig. 3.1, where a pub-

lisher, denoted by P , publishes messages to its subscribers. P can either publish

genuine messages, referred to as the benign strategy; or forged messages, referred

to as the malicious strategy. Genuine messages can benefit the OSN overall, while

forged messages can potentially increase P ’s payoff. Typical forged messages include

rumor, commercial advertisement, and biased reviews. We consider the case that

P can publish an infinite number of messages. At every round (one message per

round), P takes either the benign or malicious strategy.

The subscribers consist of Nr followers which feed back objective judgements of

P ’s messages to an administrator A, and Nn fans which provide subjective (persis-

tently positive) feedback in favor of P . Let p1 denote the miss-detection probability

at which a follower incorrectly gives positive feedback on a forged message; and p2

denote the probability of detection (POD) at which a follower correctly gives posi-

tive feedback on a genuine message. (1− p2) is the probability of false alarm. The

followers and fans feed back independently to A. Moreover, P can also hire Nt bots

which always give positive feedback to mislead A at a cost of P .

Based on the feedback received, the administrator A can take either a trust

or distrust strategy to encourage P to publish genuine messages or disincentivize

P from sending forged messages, respectively. When taking the trust strategy, A

confirms the genuineness of a message and advises all the subscribers to accept

the message. When taking the distrust strategy, A sends risk alerts to notify the

subscribers of a potentially forged message. The followers follow A’s advices, while

the fans always trust P (at no cost of P , as opposed to the bots). The distrust

strategy reduces P ’s payoff, and can penalize and suppress forged messages.

The payoff that P can receive per message is reasonably assumed to be linear

to the number of subscribers who trust the message. The payoff is contributed by
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Figure 3.1 : An illustration on the subscription services in OSNs, where there are 

a network administrator A, publisher P, and subscribers (including followers, fans 

and bots). P can publish either genuine or forged messages. The subscribers check 

the messages and give their feedback to A. The bots are hired by P to always give 

positive feedback to A. Based on the feedback from the subscribers, A can take 

either a trust or distrust strategy against P. 

Nn fans and/or Nr followers. Let C1 > 0 (or C2 > 0) denote the unit payoff (per 

message per subscriber) for P to publish a genuine (or forged) message. If C1 � C2

(i.e., the payoff from a genuine message is higher than that from a forged message), 

P has no incentive to publish forged messages. We are particularly interested in 

the case where C1 < C2 and P has incentive to publish forged messages, as will be 

analyzed in this chapter. Let C3 > 0 denote the cost of a bot to P. The bots increase 
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the cost of P , but may help increase P ’s payoff by misleading A and reducing the

probability of P ’s misbehaviors being detected.

We take a Facebook group for an example [115]. The group manager plays the

role of the administrator A which can verify every post of a publisher P and alert

the group members of disputable posts by using a Pin To Top announcement. As

the fans (or friends) of P , some group members choose to ignore A’s advices and

always trust and accept the posts. As the followers of P , other group members

accept A’s advices, i.e., distrust and reject disputable posts.

By default, A takes the trust strategy, and updates the strategy on each of P ’s

messages based on the detection results. We set the probability that A classifies a

message to be genuine is equal to the ratio of positive feedback. Once a forged mes-

sage is detected, A takes the distrust strategy against P and alerts the subscribers

for a period of time (or in other words, P is placed on a “good behavior bond” and

can still publish messages during the period). The duration of the alerting period

can vary under different punishment policies. For example, P can be declared to

be untrusted for a single round, permanently, or with exponentially increasing alert

durations [116, 117]. Our analysis focuses on the exponentially increasing durations

which double, every time a forged message is detected at A. Thus, the alert duration

in response to the k-th detected forged message of P is 2k−1 (rounds), during which

P may still choose to publish another forged message at the potential consequence

of a further doubled alert duration following the current one [117]. A takes the

trust strategy after the duration completes. P can become aware of the strategy

that A takes, and adjust its own behavior accordingly within and after the duration

to maximize its payoff. However, our analysis can be readily applied to the other

aforementioned punishment policies, i.e., distrust for a single round or permanently.
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3.3 Games of Forged Messages

In this section, we identify the critical conditions to suppress forged messages,

where the interaction between P and A is modeled as an infinitely repeated game.

We first consider a misclassification-free repeated game where genuine messages can

be always correctly deduced. Sufficient conditions are established under which P

only publishes forged messages, or is disincentivized from publishing any forged

messages. Then, we extend to more sophisticated infinitely repeated games with

possible misclassification on genuine messages. The conditions, under which forged

messages are disincentivized, are dependent on the cost of messages, as well as the

classification results.

3.3.1 Misclassification-free Infinitely Repeated Game

We first consider a misclassification-free game, where genuine messages are al-

ways correctly classified, i.e., p2 = 1. P hires bots only when publishing forged

messages. The payoff matrix of every message can be given by Table 3.2, where

the payoffs for P are listed under the specific strategy combinations. Bots are hired

with the cost of C3Nt, only when forged messages are published.

Table 3.2 : The payoff matrix to P per round in the case of misclassification-free

game/situations

A

Trust Distrust

P

Benign C1(Nr +Nn) C1Nn

Malicious C2(Nr +Nn)− C3Nt C2Nn − C3Nt

In the case of a forged message, A can collect (Nr +Nn +Nt) pieces of feedback

in total, p1Nr +Nn +Nt of which are positive. As a result, a forged message can be
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misjudged to be genuine with probability q1 = p1Nr+Nn+Nt

Nr+Nn+Nt
, and correctly detected

to be forged with probability (1− q1).

Theorem 1. In the misclassification-free infinitely repeated game, under the condi-

tion of

C2Nn − C3Nt − C1(Nr +Nn) > 0, (3.1)

P always publishes forged messages for a higher payoff than it publishes genuine

messages. A cannot suppress forged messages by taking the distrust punishment.

(3.1) is a sufficient condition of P only publishing forged messages.

Under the condition of

(Nr +Nn)C2 − ((2− q1)Nr +Nn)C1 − C3Nt < 0, (3.2)

P has no incentive to publish forged messages; (3.2) is a sufficient condition of P

not publishing forged messages.

Proof. The condition (3.1) can be proved by letting the minimum payoff from a

forged message be greater than the maximum payoff from a genuine message. If P

always takes the malicious strategy, it can at least get the payoff of (C2Nn −C3Nt)

per round. On the other hand, if P always takes the benign strategy, it can get at

most C1(Nr+Nn) payoff per round. As a result, if C2Nn−C3Nt−C1(Nr+Nn) > 0,

the better strategy is malicious for P although it can be punished. In this case, A

cannot suppress forged messages by taking the distrust punishment.

The condition (3.2) can be proved by comparing the cumulative payoffs of a

malicious publisher and a benign punisher over a sufficiently long period of time.

Let τ1 denote the cumulative rounds of punishment on the malicious publisher that
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publishes f forged messages. τ1 can be given by

τ1 =
f∑

k=0

(2k − 1)

(
f

k

)
(1− q1)

k
q
f−k
1 (3.3a)

=
f∑

k=0

(
f

k

)
(2− 2q1)

k(q1)
f−k

−

f∑

k=0

(
f

k

)
(1− q1)

k
q
f−k
1 (3.3b)

=(2− 2q1 + q1)
f
− (1− q1 + q1)

f (3.3c)

=(2− q1)
f
− 1, (3.3d)

where (3.3a) is because k forged messages are detected with probability
(
f
k

)
(1 −

q1)kq
f−k
1 in the total f forged messages. P is to be punished for

∑k
l=1 2

l−1 = (2k−1)

rounds in total when its forged messages are detected k times. (3.3c) is obtained

based on the Binomial theorem [118].

Let t denote the instant when the publication of f forged messages and the

τ1 corresponding punishments have ended. Here, t ≥ (f + τ1). Note that P can

publish either forged or genuine messages during the distrust period, resulting in

different cumulative payoffs. If P publishes genuine messages during the period

and publishes forged messages only when the punishments are over, the cumulative

payoff in t rounds, denoted by πa1, can be given by

πa1 =f(C2(Nr +Nn)− C3Nt) + τ1C1Nn + (t− τ1 − f)C1(Nr +Nn), (3.4)

where the payoff of each round is based on the payoffmatrix in Table 3.2. The payoffs

from f forged messages are f(C2(Nr + Nn) − C3Nt). P with f forged messages is

punished for τ1 rounds on average, as given in (3.3), and can gain the payoff of

τ1C1Nn during the punishment. The payoff of the remaining (t− f − τ1) rounds is

(t− f − τ1)C1(Nr+Nn) where P publishes genuine messages and A uses the default

trust strategy.

If the malicious P publishes δ, δ > 0, forged messages during the punishment

and (f − δ) forged messages when it is not punished, the cumulative payoff, denoted
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by π
′
a1, can be given by

π
′
a1 =(f − δ)(C2(Nr +Nn)− C3Nt) + δ(C2Nn − C3Nt) + (τ1 − δ)C1Nn

+ (t− τ1 − f + δ)C1(Nr +Nn).
(3.5)

We have πa1 − π
′
a1 = δ(C2 − C1)Nr > 0. As a result, the best strategy for P is

to publish genuine messages in the punishments and publish forged messages only

when the punishments are over. The maximum payoff is given as πa1 in (3.4).

In the case that P always publishes genuine messages, A takes trust in return.

The cumulative payoff of a benign P in t rounds, denoted by πb1, can be given by

πb1 = tC1(Nr +Nn), (3.6)

where C1(Nr +Nn) is the payoff per round in Table 3.2.

Let g1 (f) denote the gap of payoff (referred to as “extra payoff”) between a

malicious behavior of P with f forged messages and a benign behavior, i.e.,

g1 (f) =πa1 − πb1

=f(C2(Nr +Nn)− C3Nt) + τ1C1Nn − (τ1 + f)C1(Nr +Nn)

=f((C2 − C1)(Nr +Nn)− C3Nt)− C1Nr

(
(2− q1)

f
− 1

)
.

(3.7)

Here, t is suppressed. In other words, the payoff gap is dependent of the number of

forged messages and unaffected by the order of forged and genuine messages.

In the case that g1 (1) < 0, P cannot get a higher payoff even if it publishes a

single forged message. This is because g1(0) = 0 and g1(f) firstly increases and then

decreases, as will be proved in Theorem 2; see (3.10). The sufficient condition of P

not publishing forged messages can be obtained.

Theorem 2. P gains the maximum extra payoff by publishing $xm1% or &xm1' forged

messages. The malicious P has incentive to publish less than &xu1' forged messages.



39

xm1 and xu1 can be given by

xm1 =− log2−q1(λ1 ln(2− q1));

xu1 =−
W−1

(
−λ1(2− q1)−λ1 ln(2− q1)

)

ln(2− q1)
− λ1;

λ1 =
C1Nr

(C2 − C1)(Nr +Nn)− C3Nt
,

(3.8)

where $·% stands for flooring, and &·' stands for ceiling.

Proof. This theorem can be proved by relaxing the discrete function g1(f) in (3.7)

to be a continuous function, denoted by g̃1(x), as given by

g̃1 (x) =((C2 − C1)(Nr +Nn)− C3Nt)x− C1Nr ((2− q1)
x
− 1) , x ≥ 0. (3.9)

The derivative of g̃1(x) can be given by

dg̃1(x)

dx
=(C2 − C1)(Nr +Nn)− C3Nt − (C1Nr ln(2− q1)) (2− q1)

x
. (3.10)

As a result, g̃1(x) is a monotonically increasing function when x < xm1 and a

monotonically decreasing function when x > xm1 , where xm1 can be given by

xm1 = − log2−q1(λ1 ln(2− q1));

λ1 =
C1Nr

(C2 − C1)(Nr +Nn)− C3Nt
.

(3.11)

This is achieved by letting dg̃1(x)
dx = 0. Only an integer number of messages can be

published. The malicious P gains the maximum extra payoff, i.e., max (g1($xm1%), g1(&xm1')),

by publishing forged messages.

The publisher P has incentive to publish less than &xu1' forged messages, where

xu1 = −
W−1

(
−λ1(2− q1)−λ1 ln(2− q1)

)

ln(2− q1)
− λ1. (3.12)

This is achieved by applying the Lambert’s W Function [119] i.e., W (·), to g̃1(x) = 0,

where −
1
e ≤ −λ1(2 − q1)−λ1 ln(2 − q1) ≤ 0 is within the domain of Lambert W
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function. By letting h(λ1) = λ1(2− q1)−λ1 ln(2− q1), λ1 > 0, we have

0 ≤ h(λ1) ≤ h

(
1

ln(2− q1)

)
=

1

e
. (3.13)

Here, h(λ1) ≥ 0 because every item is no less than 0. The maximum value of h(λ1) is

achieved when λ1 =
1

ln(2−q1)
. This can be obtained by letting d ln(h(λ1))

dλ1
= 0. ln(h(λ1))

is given by

ln(h(λ1)) = ln(λ1(2− q1)
−λ1 ln(2− q1))

= ln(λ1)− λ1 ln(2− q1) + ln(ln(2− q1)).
(3.14)

Therefore, its derivative is given by

d ln(h(λ1))

dλ1
=

1

λ1
− ln(2− q1). (3.15)

By letting h(λ1) = λ1(2− q1)−λ1 ln(2− q1), λ1 > 0, we have

0 ≤ h(λ1) ≤ h

(
1

ln(2− q1)

)
=

1

e
. (3.16)

Here, h(λ1) ≥ 0 because every item is no less than 0. The maximum value of h(λ1) is

achieved when λ1 =
1

ln(2−q1)
. This can be obtained by letting d ln(h(λ1))

dλ1
= 0. ln(h(λ1))

is given by

ln(h(λ1)) = ln(λ1(2− q1)
−λ1 ln(2− q1))

= ln(λ1)− λ1 ln(2− q1) + ln(ln(2− q1)).
(3.17)

Therefore, its derivative is given by

d ln(h(λ1))

dλ1
=

1

λ1
− ln(2− q1). (3.18)

The payoff of a malicious P is no more than the payoff of a benign P in the

case that f ≥ &xu1' forged messages are published, i.e., g1(f) = g̃1(f) ≤ 0, and

f ≥ &xu1'.
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3.3.2 Infinitely Repeated Game with Message Misclassification

In a more general case that the OSN subscribers may provide incorrect feedback

or comments on a genuine message due to personal opinions, the administrator can

be misled and misjudge a genuine message to be a forged one. To avoid misclassi-

fication of genuine messages and reduce the detection of forged messages, P hires

bots for positive feedback and pays the cost of C3Nt when publishing genuine and

forged messages. As a result, the payoff matrix of a single message can be given by

Table 3.3.

Table 3.3 : The payoff matrix of P per round in the game/situations with misclas-

sification

A

Trust Distrust

P

Benign C1(Nr +Nn)− C3Nt C1Nn − C3Nt

Malicious C2(Nr +Nn)− C3Nt C2Nn − C3Nt

In the infinitely repeated game, every genuine message is classified as a genuine

message with probability q2 = p2Nr+Nn+Nt

Nr+Nn+Nt
. The detection probability of a forged

message is (1 − q1) as given in Section 3.3.1. The confusion matrix, showing the

detection and misclassification probabilities, is given by Table 3.4.

Table 3.4 : The confusion matrix for detection results

Classification result

Genuine Forged

Message
Genuine q2 1− q2

Forged q1 1− q1
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We assume that P can become aware of incorrect punishments after one round,

and complain to A. A rectifies the misclassifications in response to the complaints

by stopping the punishment. Meanwhile, A keeps the current punishment/alert

duration for the next punishment instead of doubling it. In this way, the incorrect

punishments due to misclassifications remain a single round and do not change the

punishment duration of the coming forged messages. As a result, the duration of

punishments on detected forged messages only depends on the number of detected

forged messages and is independent of the number of genuine messages no matter

whether they are misclassified or not. The malicious P does not complain about the

correct punishments for its publication of forged messages.

Theorem 3. Under the condition of

(1− p2)N2
rNt

(Nr +Nn +Nt)(Nr +Nn)
C1 − C3Nt > 0, (3.19)

P hires bots for a higher payoff than it does not. (3.19) is a sufficient condition of

P hiring bots.

Under the condition of

C2Nn − C1(q2Nr +Nn) > 0, (3.20)

P always publishes forged messages for a higher payoff than it publishes genuine

messages. A cannot suppress forged messages by taking the distrust punishment.

(3.20) is a sufficient condition of P only publishing forged messages.

Under the condition of

C2(Nr +Nn)− C1((q1 + q2 − 1)Nr +Nn) < 0, (3.21)

P has no incentive to publish forged messages; (3.21) is the sufficient condition of

P not publishing forged messages.
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Proof. The condition (3.19) can be proved by comparing the payoffs from genuine

messages with and without bots. In the case that a benign P does not hire bots

and always publishes genuine messages, A can collect (Nr +Nn) pieces of feedback,

p2Nr+Nn of which are positive. Thus, a genuine message is correctly classified with

probability q3 = p2Nr+Nn

Nr+Nn
and misclassified with probability (1 − q3). On the other

hand, the punishment due to misclassification can be rectified in one round. As a

result, the benign P is punished with probability (1− q3) per round. Its payoff per

round, denoted by βb1, can be given by

βb1 =q3C1(Nr +Nn) + (1− q3)C1Nn

=C1(q3Nr +Nn).
(3.22)

Likewise, P can be punished with probability (1− q2) per round, even if it hires

Nt bots and persistently publishes genuine messages, due to the misclassification of

genuine messages. Its payoff per round, denoted by βb2, can be given by

βb2 =q2(C1(Nr +Nn)− C3Nt) + (1− q2)(C1Nn − C3Nt)

=C1(q2Nr +Nn)− C3Nt.

(3.23)

By letting βb2 > βb1, the condition under which P does not hire any bot is proved.

Likewise, the condition (3.20) can be proved by letting C2Nn−C3Nt > βb2, where

C2Nn − C3Nt is the minimum payoff from a forged message of P , as given in Table

3.3.

The condition (3.21) can be proved by comparing the cumulative payoffs of a ma-

licious publisher and a benign punisher over the same period of time. If a malicious

P publishes f forged messages, it is first punished for τ1 =
(
(2− q1)f − 1

)
rounds,

as proved by (3.3). Note that during the punishment, P can publish τ1 number of

genuine messages and be punished (1− q2)τ1 rounds again due to misclassifications.

As a result, P is able to publish τ2 number of genuine messages during punishment
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in total, where τ2 =
∑∞

i=0 τ1(1 − q2)i = τ1
q2
. Thus, the payoff of the malicious P

publishing f forged messages in f + τ2 rounds, denoted by πa2, can be given by

πa2 =(C2(Nr +Nn)− C3Nt) f + (C1Nn − C3Nt)
(2− q1)f − 1

q2
. (3.24)

In the case that P always publishes genuine messages, its cumulative payoff of

(f + τ2) rounds, denoted by πb2, can be given by

πb2 = βb2(f + τ2). (3.25)

Let g2 (f) denote the gap between the payoffs (extra payoff) of a malicious be-

havior of P with f forged messages and a benign behavior, i.e.,

g2 (f) =πa2 − πb2

=(C2(Nr +Nn)− C3Nt) f + (C1Nn − C3Nt)
(2− q1)f − 1

q2

− (C1(q2Nr +Nn)− C3Nt)(f + τ2)

=f(C2(Nr +Nn)− C1(q2Nr +Nn))− C1Nr(2− q1)
f + C1Nr.

(3.26)

The condition (3.21) can be proved by letting g2(1) < 0.

Theorem 4. The publisher P gains the maximum extra payoff by publishing $xm2%

or &xm2' forged messages. The malicious P has incentive to publish less than &xu2'

forged messages. xm2 and xu2 can be given by

xm2 =− log2−q1(λ2 ln(2− q1));

xu2 =−
W−1

(
−λ2(2− q1)−λ2 ln(2− q1)

)

ln(2− q1)
− λ2;

λ2 =
C1Nr

C2(Nr +Nn)− C1(q2Nr +Nn)
.

(3.27)

Proof. This theorem can be proved in the same way as Theorem 2 by replacing g1(f)

with g2(f). Therefore, the proof is suppressed for brevity.
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3.4 Numerical results

Fig. 3.2 demonstrates 50 rounds of the proposed infinitely repeated games in the

misclassification-free case, where p1 = 0.03, q1 =
p1Nr+Nn+Nt

Nr+Nn+Nt
= 0.2, C3 = 10 and C2

is set to be 10, 50 and 120. The upper part of the figure plots the cumulative payoffs

of P , where the solid line provides the payoff of a benign P for reference purpose.

In the case of C2 = 120, the solid line with marker “+” shows the payoff of P when

A and P always take the distrust and malicious strategies, respectively. We can see

that the malicious P can receive a higher payoff than a benign one, even after being

declared publicly to be distrusted. A cannot suppress forged messages, as stated

in Theorem 1. In the case of C2 = 10, P has no incentive to publish any forged

messages at all. In the case of C2 = 50, the payoffs of P are compared between two

cases: (a) Case 1: P continues to publish forged message once an alert duration

ends; and (b) Case 2: P publishes forged messages only in the very beginning. In

both cases, 6 forged messages are published, and the rest 44 messages are genuine.

We can see that P can gain a higher payoff if it sends forged messages when A takes

the default trust strategy, as stated in Theorem 1.

The lower part of Fig. 3.2 shows the corresponding number of published forged

messages of P with the increase of rounds, where the two aforementioned cases

of P ’s behaviors, i.e., Cases 1 and 2, are plotted. We can see that P can obtain

the maximum payoff gap when it publishes the fifth forged messages at the 13th

round. The number of forged messages is achieved by first identifying the largest

payoff gap between the malicious and benign strategies of P in the upper part of

Fig. 3.2, then mapping the corresponding round number onto the lower part of the

figure (as illustrated by the dashed line), and finally checking the number of forged

messages. We also see that the exponentially increasing alert durations are effective

to suppress forged messages, and P is disincentivized from further publishing any
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×

Figure 3.2 : The cumulative payoff and the number of forged messages of P , where

p1 = 0.03, Nr = 90, Nn = 10, Nt = 10, C1 = 10, and C3 = 10. C2 =10, 50 and

120. The payoff is the average of 5,000 independent simulations.

forged messages beyond the five forged messages. The payoff from the misbehaviors

of P in Case 1 with six forged messages and 38 genuine messages, is equal to the

payoff of 44 genuine messages, as highlighted by a circle. The payoff from the

misbehaviours can be outrun by that from genuine messages, when the number of

published messages is more than 44.

Figs. 3.3(a) and 3.3(b) demonstrate Theorems 1 and 3, respectively. In the case

that C2 is between the two surfaces in each of the figures, P has incentive to publish

forged messages for extra payoff, but can be disincentivized by the distrust strategy

from A. Above the upper surface, P is expected to always publish forged messages

for high payoffs, as stated in Theorems 1 and 3. Below the lower surface, P has

no incentive to publish any forged messages at all, as stated in Theorems 1 and 3.

From both figures, we can see that C1 has a stronger impact on P ’s selection of its
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(a) C2 with the growth of C1 and C3, where the upper and lower

surfaces are obtained with (3.1) and (3.2) in Theorem 1, respectively.

Nr = 90, Nn = Nt = 10 and q1 = 0.2.
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faces are obtained with (3.20) and (3.21) in Theorem 3, respectively.

Nt = 10, p1 = 0.1, p2 = 0.9, C1 = 10, and C3 = 0.

Figure 3.3 : The visualization of Theorems 1 and 3.
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strategies than C3, in the case of Nt ) Nr +Nn. We also see there is a peak on the

upper surface where Nr = 100 and Nn = 0. In other words, P would not infinitely

publish forged messages when it does not have fans.
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Figure 3.4 : The auxiliary continuous functions g̃i(x), indicating the extra payoffs

from forged messages with the growth of x, where Nr = 90, Nn = 10, Nt = 10, C1 =

10, C3 = 5, p1 = 0.1, and p2 = 0.5. Two C2, i.e., 50 and 80, are considered. Every

dot is the average extra payoff of 1,000 independent simulations.

Fig. 3.4 validates Theorems 2 and 4 by plotting the auxiliary continuous func-

tions, i.e., g̃1(x) and g̃2(x). We find that the extra payoff of P , which is the payoff

gap at the end of an alert duration between malicious and benign strategies that

P takes (as defined in Section 3.3), first grows and then decreases rapidly. The

extra payoff is upper-bounded, e.g., max(g̃1(x)) = 8, 584 when xm1 = 3.8, as shown

in the figure. As revealed in Theorem 2, P only has incentive to broadcast a lim-

ited number of forged messages, e.g., xu1 = 6, for extra payoff. In the case with

message misclassification, max(g̃2(x)) = 10, 194 when xm2 = 3.9, and xu2 = 6.3,

and Theorem 4 is validated. We can also see that the maximum extra payoff and
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the maximum forged messages of P increase with C2. Moreover, P can gain higher

payoffs in the case where the genuine messages can be misclassified, as shown by the

dash curves.

We proceed to evaluate the impact of different parameters on the suppression

of forged messages. Particularly, we will show that reducing the misclassification

probability of genuine messages, i.e., decreasing (1−p2), is helpful to suppress forged

messages, and to incentivize the publication of genuine messages, as will be shown

in Fig. 3.5. Alternatively, A can encourage P to publish genuine messages by

improving the detection rate of forged messages, i.e., (1 − p1), as will be shown in

Fig. 3.6; or increasing the reward for genuine messages, i.e., C1, as will be shown in

Fig. 3.7.
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Figure 3.5 : The maximum number of forged messages of a malicious P with the

growth of C1, where Nr = 90, Nn = 10, C2 = 80, C3 = 5, p1 = 0.1, and p2 = 0.5.

Two values of Nt, i.e., 0 and 30, are considered.

Fig. 3.5 shows the maximum number of forged messages with the growth of C1.

Two values of Nt, i.e., 0 and 30, are considered. From the figure, we can see that
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the maximum number of forged messages decreases with the increasing value of C1.

The maximum number of forged messages can be less than 1, indicating that P has

no incentive to publish forged messages. In other words, the increasing value of C1

can effectively suppress forged messages. We also see that the misclassification of

genuine messages gives malicious P chances to publish more forged messages, i.e.,

the dash curves are above the solid curves, especially for large C1. For small reward

of genuine messages, e.g., C1 = 15 in the figure, hiring bots helps P publish more

forged messages without being detected.
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Figure 3.6 : The maximum number of forged messages of P , i.e., xu1 and xu2 , by

publishing forged messages, where Nr = 90, Nn = 10, C1 = 30, C2 = 50, C3 =

5, and p2 = 0.5. Nt = 0 and 100, are considered.

Fig. 3.6 plots the maximum number of forged messages, i.e., xu1 and xu2 , with

the growth of the detection rate of forged messages, i.e., 1− p1. Nt = 0 and 100 are

considered. The y-axis is in a logarithmic scale. We can see that the improvement

of the detection rate can effectively suppress forged messages when the detection

rate is low, e.g., 1− p1 = 0.1. We also see that that the maximum number of forged
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messages can be more than one even in the case where 1− p1 = 1, especially where

many bots are hired, i.e., Nt = 100. As a result, the improvement of the detection

rate cannot stop P from publishing forged messages. Based on Figs. 3.5 and 3.6, A

can suppress forged messages by improving the detection rate in the beginning, and

by increasing the reward for genuine messages.
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Figure 3.7 : The maximum extra payoff of P in the misclassification-free game with

the growth of Nt, where Nr = 90, Nn = 10, C2 = 50, p1 = 0.5. Every dot is an

average result of 2,000 independent runs.

Fig. 3.7 plots the maximum extra payoff of P with the growing number of bots

in misclassification-free games. We can see that bots can increase the maximum

extra payoff from the start, but decrease the maximum extra payoff later. Thus,

there exists the best number of bots for the highest extra payoff. This is because the

bots benefit the extra payoff by reducing the detection rate of forged messages. The

detection rate is non-negative. As a result, the benefit of bots is upper bounded.

However, the cost of bots increases linearly with the number of bots. In extreme

cases, the benefit from the decreased detection rate cannot counteract the cost of
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bots, e.g., Nt = 500 in the case of C1 = 10 and C3 = 7. It can be found that the bots

are more effective in the case where genuine messages provide lower payoffs, as can

be seen by comparing the curves of C1 = 10 and C1 = 20 under the same unit payoff

of forged messages (i.e., C2 = 50). We also see that low-cost bots, e.g., C3 = 5 vs

C3 = 7, can bring higher extra payoff. As a result, the malicious P has incentive to

hire bots if the bots are low-cost and forged messages bring high payoffs.

Figure 3.8 : The maximum number of forged messages with the growth of the ratio

of fans, i.e., Nn
Nr+Nn

, where Nr +Nn = 100, Nt = 10, C1 = 30, C3 = 5, C2 = 50 and

p1 = 0.1.

Fig. 3.8 shows the maximum number of forged messages with the growing ratio

of fans, i.e., Nn
Nr+Nn

. We can see that P can publish more forged messages with

more fans, because fans persistently trust the messages from P . We note that the

increasing probability of misclassification, i.e., from p2 = 0.9 to p2 = 0.1, also offers

chances for P to publish more forged messages, especially in the case of a low ratio

of fans. This is because the misclassification enlarges the payoff gap between forged

and genuine messages by reducing rewards for genuine messages.
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3.5 Conclusion

In this chapter, infinitely repeated games were developed to capture the inter-

actions between a message publisher and the network administrator in OSNs for

the suppression of forged messages. In the absence and presence of misclassification

on genuine messages, sufficient conditions under which the publisher is disincen-

tivized from publishing forged messages were identified. Closed-form expressions

were derived for the maximum number of forged messages of a malicious publisher.

Confirmed by simulations, our analysis indicates that forged messages can be sup-

pressed by improving the payoffs for genuine messages, increasing the cost of bots,

and/or reducing the payoffs for forged messages. The increasing detection probabil-

ity of forged messages or decreasing misclassification probability of genuine messages

can also have a strong impact on the suppression of forged messages.
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Chapter 4

Markov-based Accurate Propagation Model

Like biological viruses, attacks in computer networks also need to propagate, so

as APT attacks [18]. For example, attackers can use victim nodes as tunnels to

attack their adjacent nodes in the lateral propagation stage. APT attacks can infect

as many nodes inside of the internal networks as possible to move towards final

targeted nodes. This is first because the targets’ internal networks are unknown to

attackers. Attackers need to continuously attack new nodes to collect more internal

information, especially at the information leakage (attack) stage. Moreover, more

attacked nodes can bring more opportunities for succeeding attacks. Note that it

is difficult for defenders to completed remove ATP from internal networks due to

the persistent feature of APT attack [28]. On the other hand, the victim nodes

in APT would not be totally destroyed by the attackers, which gives the defenders

chances to repair the nodes. As a result, there will be long-term infection and

repairing transitions in the propagation of APT. The state transition of SIS epidemic

model can be used to describe this process. For example, [43] uses the SIS virus

propagation model to analyze the attack-defender interactions in APT. Under the

above background, this chapter proposes a Markov model to capture and analyze

the propagation process of APT by adopting the SIS epidemic process.

4.1 Introduction

The APT attack has become a serious risk of the present society. A model cap-

turing impact of network topology on the complex infect-recovery interactions can

be the key to predict the propagation process, evaluate defense strategies, prevent
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and combat attacks.

Epidemic models, originally developed for biological infectious diseases [66], have

been extensively used to provide a better understanding of computer virus propa-

gations [67]. An element in such models can be infected with a probability β by an

infected neighbor. An infected element can be cured with probability δ, typically

triggered by curing actions. However, the extensions of the epidemic models to com-

puter networks are not trivial, because the network topologies, which connect the

computers (but do not exist in biological scenarios), can have a strong impact on

computer virus propagations [120]. Earlier epidemic models for computer viruses

were based on fully connected networks [67, 71] or statistic topologies with the de-

grees of individual nodes yielding a power law [73, 74]. Despite providing insights on

the infection statistics, the models cannot capture specific networks. Later, Markov

models were developed to accurately characterize the infection processes between

connected nodes [120, 79, 35]. However, the models have exponential complexity,

and subsequently, limited scalability to large networks. Recently in [79, Sec. III][35,

Sec. IV], Markov models were decoupled to a set of differential equations, one per

node, to linearize the complexity, where instant infection probabilities of connected

nodes were uncorrelated by taking moment closure approximations. Unfortunately,

the accuracy of the models degrades due to the approximation [35, Fig. 11].

4.1.1 Problem Statement

A key challenge to be addressed for modelingg virus propagations is the trade-off

between the modelingg accuracy and complexity, which limits the extension of the

models to large networks with thousands of nodes and non-trivial topologies.

The existing models either simplify analysis by implicitly assuming a complete

graph or using statistically characterized topologies, limiting the practical appli-

cations of the models [66], [73]; or use Markov techniques to characterize detailed
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virus spread in specific topologies, resulting in prohibitive complexity and limited

scalability [35, 77, 78]. Some of the Markov models were simplified to tackle the

complexity issue, using mean-field approximations, which again incurred significant

losses of modelingg accuracy [121, 35].

A widely approved result from the existing virus propagation models indicates

that a virus dies out quickly, i.e., the mean virus lifetime is no longer than log(N)+1

1−β
δ ρ(A)

,

if β
δ <

1
ρ(A) [120, 121, 79, 35]. N is the number of nodes in the network, A is the

adjacency matrix, and ρ(A) is the largest eigenvalue of A. However, the result only

provides a sufficient condition for the exponential extinction of a virus. In the case

that β
δ >

1
ρ(A) , there are still possibilities that infection dies out exponentially over

time, but this has not been addressed in the existing models. In addition, the result

has limited applications to large networks, as it can only accommodate β → 0. Take

a 5000-node network with a topology of 4000-regular graph (i.e., ρ(A) = 4000) for

an example. the extinction condition requires β < 0.00025.

4.1.2 Our Contributions

In this chapter, we propose a new approach to modelingg the virus propagation

across non-trivial topologies, which is able to leverage the modelingg accuracy and

complexity, hence enhancing modelingg scalability to large networks. Our approach

starts by modelingg the virus infection of each individual node using the classical

SIS model and the virus propagation among the nodes using Markov model (to be

more specific, a discrete-time absorbing Markov process which is developed based

on the adjacency matrix A). As a result, our model, being a non-trivial extension

of the SIS model, can characterize the SIS behavior of individual nodes in networks

with explicit topologies. Matrix analysis techniques and Jordan decompositions are

employed to study the transition matrix and the absorption rate (i.e., the virus

extinction rate) of the discrete-time absorbing Markov process. By evaluating the
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bounds of the second-largest eigenvalue of the transition matrix, the virus extinction

rate R is proved to be bounded by − ln(1 − δ
N) ≤ R ≤ − ln

(
1− δ(1− β + βδ)d

)
.

N is the network size and d is the minimum degree of the network.

We also provide a practical means to scale the bounds, to design and evaluate

the lifetime and extinction of a virus in large networks with non-trivial topologies.

This is based on our finding that, given any required virus extinction rate, the mini-

mum curing probability δmin specified through the new upper bound, can ensure the

gap between the required extinction rate and the actually achieved mean extinction

rate fast converges with the growth of the network size. In light of this, we propose

to interpret the virus extinction requirement of a large network to that of a much

smaller one, and obtain the minimum curing probability of the large network effi-

ciently through the upper bound of its smaller counterpart. Simplifications can be

achieved with a negligible loss of accuracy.

Confirmed by simulations, our bounds can evaluate the virus extinction rate and

lifetime across a broad spectrum of β and δ. They can also readily analyze networks

with thousands of nodes in a few hours, with modelingg accuracy preserved. In

contrast, the Monte-Carlo simulations of such large networks would run for months

and are impractical given current computing capabilities. In this sense, our analysis

is of practical value.

4.1.3 Organization and Notations

The rest of this chapter is organized as follows. In Section 4.2, a new discrete-

time absorbing Markov epidemic model is developed, followed by the analysis and

derivations on the virus extinction rate and its bounds in Section 4.3. Numerical

results are provided in Section 4.4, followed by conclusions in Section 4.5.

Notations used in the chapter are as listed in Table 4.1.
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Table 4.1 : Notations Used in Chapter 4

Notation Description

G a network topology graph

N network size

A the adjacency matrix of the network topology graph

ai,j the (i, j)-th element of A

d the minimum degree of the network topology

si the i -th network state

si(l) the status of the l -th node in state si

δ the curing probability of an infected node

β the infection probability of a node

d
i
l the no. of edges between node l and the infected nodes in si

P 2N × 2N Markov transition matrix

pi,j the (i, j)-th element of P

Pin the transition matrix of infection

Pcu the transition matrix of curing

t(k) 1× 2N−1 state probability vector

Q the 2N−1
× 2N−1 bottom-right submatrix of P

λi the i-th largest eigenvalue of P

R virus extinction rate

4.2 Discrete-time Markov model for Virus Propagation in

Computer Networks

We consider a general network topology presented by a constant, undirected,

connected graph G(N , E), where N is the set of vertices and E is the set of edges.
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The size of N is N , i.e. |N | = N , where | · | denotes cardinality. Let A denote the

adjacency matrix of the graph, where the (i, j)-th element ai,j = 1 if vertices i and

j are connected by an edge; or ai,j = 0, otherwise. Fig. 4.1 provides an example

with N = 8, where a Barabási-Albert graph∗ with minimum degree 2 is considered.

Its adjacency matrix can be given by (4.1).

Figure 4.1 : An example of the BA-2 graph.

Every vertex in the graph can be in one of two statuses, i.e. susceptible/uninfected

and infected. Recall that β is the infection probability of each edge in a single step.

A susceptible node which is connected with k infected neighbors can be infected

with the probability of (1− (1−β)k), or remains susceptible with the probability of

∗The steps of generating a BA-d graph (d is the minimum degree) are as follows. 1. Initializa-

tion: set up d nodes; 2. Growth: add (N − d) nodes in serial as such that, for every new node, d

edges are added to connect it and d existing nodes; 3. Preferential attachment: The probability

that a new node is connected to node i is proportional to the degree of node i; 4. Degree check: If

the degree of node j is smaller than d, edges are added to connect node j until its degree is equal

to d. The first three steps are the original BA algorithm [122] and the fourth step is newly added

to ensure that the minimum degree of the generated graph.
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(1− β)k. On the other hand, an infected node can be cured with the probability of

δ in a single step, or remains infected with the probability of (1− δ).

ABA−2 =





0 1 1 1 1 0 1 1

1 0 0 0 0 1 0 1

1 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0

0 1 0 1 0 0 1 0

1 0 1 0 1 1 0 1

1 1 0 0 0 0 1 0





. (4.1)

Let a binary vector, s, be the state of the entire network, collecting the infected

or susceptible status of every node in the network. There are totally 2N such states,

labelled by si(i = 0, 1, · · · , 2N − 1), i =
∑N

k=1

(
2k−1si(k)

)
, where si(k) is the k-th

element of si (k = 1, 2, · · ·N). If node k is infected, si(k) = 1; otherwise, if the node

is susceptible, si(k) = 0.

In practice, the security servers of a network can disseminate patches after virus

outbreaks. The infected nodes that receive the patch can cure the virus infection,

and return to an uninfected state, with the probability of δ. The servers can also

update the patches in response to the evolution/development of viruses, and dissem-

inate the updated patches. For modelingg convenience, we assume that the patches

are disseminated throughout the network at an interval of a time step. During a

time step, infections can take place only between directly linked neighbors, and a

newly infected node does not infect others during the time step. This assumption is

suitable for many epidemic scenarios where viruses hibernate before spreading [123].

Later, we will discuss the extension of our model to general cases, where infections

can propagate instantly within a time step.
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A 2N-dimensional discrete-time absorbing Markov process can be constructed to 

characterize the virus propagation with the states si, where the absorbing state is s0 . 

This is because the virus propagation retains the Markov property that the future 

state only depends on the current state, and is independent of the past states. A flow 

chart to obtain the transition matrix is given by Fig. 4.2. The 2N x 2N transition 

matrix of the discrete-time, absorbing Markov process can be written as 

(4.2) 

where Pin and P cu are the transition matrices of infection and curing, respectively. 

Start 

Calculate the state transition probability 

of the node due to infection 

Update the probability of the infection 
transition matrix 

N 

Next state as From state 

Next state as To state 

Next node 

Calculate the state transition probability 
of the node due to curing 

Update the probability of the curing 
transition matrix 

Calculate the 

transition matrix 

per slot 

End 

Figure 4.2 : Flow chart to construct the transition matrix of the Discrete-time 

Markov model 

The (i,j)-th element of P in can be given by 

Pin (i,j) = IJPr{sj (l)lsi (l),infection}, 
l:N 

where si ( l) and Sj ( l) denote the status of node l in state si and Sj before and after 

the infection, respectively; Pr{sj (l)lsi (l),infection} is the transition probability of 
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node l before curing takes place at the node, and can be given by

Pr{sj(l)|si(l), infection} =






(1− β)d
(i)
l if sj(l) = 0, si(l) = 0;

1− (1− β)d
(i)
l if sj(l) = 1, si(l) = 0;

0 if sj(l) = 0, si(l) = 1;

1 if sj(l) = 1, si(l) = 1,

(4.3)

where d(i)l =
∑N

k=1

(
si(k)×ak,l

)
is the number of physical connections between node

l and the infected nodes in si.

Note that, during the infection stage (i.e., before curing takes place at any nodes,

a susceptible node can remain susceptible with the probability of (1 − β)d
(i)
l , or

become infected with the probability of (1−(1−β)d
(i)
l ). In other words, sj(l) ≥ si(l)

∀l = 1, · · · , N for a valid state transition with a non-zero transition probability from

state si(l) to sj(l). The state index j =
∑N

k=1

(
2k−1sj(k)

)
≥ i =

∑N
k=1

(
2k−1si(k)

)

for such transitions, as defined earlier. A state can only transit to other states with

larger indices. As a result, Pin is an upper triangular matrix.

The (i, j)-th element of Pcu can be given by

Pcu(i, j) =
∏

l:N

Pr{sj(l)|si(l), curing},

where si and sj denote the network status before and after curing takes place at the

node, and si(l) and sj(l) denote the status of node l in state si and sj, respectively.

The probability Pr{sj(l)|si(l), curing} is the transition probability of the l-th node

after curing takes place at the node, and is given by

Pr{sj(l)|si(l), curing} =






1 if sj(l) = 0, si(l) = 0;

0 if sj(l) = 1, si(l) = 0;

δ if sj(l) = 0, si(l) = 1;

1− δ if sj(l) = 1, si(l) = 1.

(4.4)
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Note that, every instant curing takes place, an infected node can remain infected

with the probability of (1− δ), or become susceptible with the probability of δ. In

other words, sj(l) ≤ si(l) ∀l = 1, · · · , N for a valid state transition with a non-zero

transition probability from state si(l) before the instant to sj(l) after the instant.

The state index j =
∑N

k=1

(
2k−1sj(k)

)
≤ i =

∑N
k=1

(
2k−1si(k)

)
for such transitions.

A state can only transit to other states with smaller indices. As a result, Pcu is a

lower triangular matrix.

As a result, the (i, j)-th element of P, denoted by pi,j, can be given by

pi,j =
2N−1∑

k=0

(
Pin(i, k)×Pcu(k, j)

)

=
2N−1∑

k=0

(∏

l:N

Pr{sk(l)|si(l), infection}×
∏

l:N

Pr{sj(l)|sk(l), curing}
)
.

We have that Pin(0, 0) = 1 and Pin(0, k) = 0, k -= 0; Pcu(0, 0) = 1 and

Pcu(0, k) = 0, k -= 0. Thus we have P(0, 0) = 1, i.e., the virus-free state s0 is

an absorbing state. When δ > 0 and β > 0, this condition only holds for s0, i.e., s0

is the only absorbing state for δ > 0 and β > 0. As a result, P has the following

form

P =





1 0 · · · 0

p1,0 p1,1 · · · p1,2N−1

p2,0 p2,1 · · · p2,2N−1

...
...

. . .
...

p2N−1,0 p2N−1,1 · · · p2N−1,2N−1





,

which, for illustration convenience, is rewritten as block submatrices, as given by

P =




1 0

R Q



 .

Let t(k) = [t(k)1 , · · · , t
(k)
2N−1] be the vector collecting the probabilities of s1 to s2N−1

in the k-th time step since the virus starts spreading, where t
(k)
i is the probability
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that the Markov process is in state si. t(0) is the initial state.

Clearly, t(k) can be written as

t(k) = t(k−1)Q = · · · = t(0)Qk
. (4.5)

Let c = [c1, c2, · · · , c2N−1] where ci denotes the infected population of state si. The

expected infected population after k time steps can be given by

E{population|t(0), k} = c
(
t(k)

)T
= c(t(0)Qk)T. (4.6)

We can also obtain the infection probability; which refers to the probability that

the virus remains active, and can be calculated as the sum of t(k), i.e.

Pr{infection|t(0), k} = 1
(
t(k)

)T
= 1(t(0)Qk)T. (4.7)

This discrete-time absorbing Markov model can be readily generalized to the

case where infection can propagate instantly within a time step. Suppose that the

infection can propagate h times within a time step, the infection process can be

described as a time-homogeneous Markov chain and the transition matrix during

the time step, i.e., (4.2), can be replaced by

P = Ph
inPcu.

In this case, the calculations of the expected infected population and the infection

probabilities still follow (4.6) and (4.7).

4.3 Extrapolation of Markov Epidemic Modeling to Large

Networks

In this section, we propose a new approach to reducing the complexity of Markov

epidemic modeling. Different from the existing curve-fitting eigenvalue approxima-

tion [35] and the mean-field approximation[35, 79], the approach that we take is to
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conduct eigenvalue analysis and Jordan decomposition on the transition matrix of

the Markov process developed in Section 4.2. It enables us to present the absorption

rate of the discrete-time absorbing Markov process, i.e., the extinction rate of the

virus, in form of the eigenvalues, and to derive the closed-form bounds for the rate.

The closed-form bounds can be computed efficiently without requirements of explicit

matrix operations, e.g., matrix decompositions, and the independence assumptions

or approximations.

4.3.1 Virus Extinction Rate

Given the 2N -dimensional discrete-time absorbing Markov process developed in

Section 4.2, the rate of the Markov process converging to the virus-free absorbing

state s0, or in other words, the virus extinction rate, approaches to [124]

R = lim
k→∞

(− ln

∥∥t(k)
∥∥

‖t(k−1)‖
),

where ‖ · ‖ denotes vector norm, and ln(·) denotes the natural logarithm operation.

In other words, the virus diminishes in the N -node computer network at the rate of

R.

Here, we focus on the case that δ > 0 and β > 0, because it corresponds to the

practical and complex scenario where both the virus propagation and curing exist at

the same time. In the case that the virus is undetected or eliminated completely, i.e.,

δ = 0 or β = 0, P recedes to Pin or Pcu. In other words, P becomes a triangular

matrix. The eigenvalues of P can be easily obtained. The analysis on the virus

extinction rate can be conducted in the same way as what follows.

To evaluate the virus extinction rate, we put forward the following theorem.

Theorem 5. Given the 2N -dimensional discrete-time absorbing Markov process of

virus propagation, when δ > 0 and β > 0, the eigenvalues of the transition matrix
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P, denoted by λi (i = 0, 1, · · · , 2N − 1), satisfy

1 = λ0 > λ1 > |λ2| ≥ · · · ≥ |λ2N−1| > 0,

where the eigenvalues are arranged in the descent order of their absolute values.

Proof. We first prove that λ0 = 1, where λ0 is the largest eigenvalue of P. We note

that P is a block triangular matrix and 1 and Q are its diagonal blocks. According

to [125], the eigenvalues of P and Q satisfy the following condition

λ(P) = 1 ∪ λ(Q), (4.8)

where λ(P) and λ(Q) denote the sets of the eigenvalues of P and Q, respectively.

According to [124, Sec 7.1.4], the largest eigenvalue of Q is no larger than any

matrix norm of Q. We have max
{
λ(Q)

}
≤ ‖Q‖∞, where ‖·‖∞ denotes infinity

matrix norm, i.e., the maximum absolute row sum of the matrix.

We also have pi,j ≥ 0 and
∑2N−1

j=0 pi,j = 1. On the other hand, all the elements

of R are greater than 0, since every state has non-zero probability to transfer to the

virus-free absorbing state within one time step. We have

max
{
λ(Q)

}
≤ ‖Q‖∞ = max

{ 2N−1∑

j=1

|qij|
}

= 1−min{pi,0} < 1,

where qi,j is the(i, j)-th element of Q. As a result, λ0 = max
{
λ(P)

}
= 1.

Next, we prove the uniqueness of λ1, which is the maximal eigenvalue of Q. In

the case that β, δ > 0, Q is irreducible and primitive. This is because any transient

state (s1 · · · s2N−1) is able to transfer to s2N−1, since G is connected meanwhile s2N−1

can transfer to any state (including itself) with non-zero probabilities. Therefore,

Qm
> 0 for some m > 0, where Qm

> 0 means that every element of Qm is greater

than 0.
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Therefore, Q satisfies the Perron Frobenius theorem[124], and we have that λ1

is real and

λ1 > |λk|, k = 2, 3, · · · .

Then we proceed to prove that 0 -∈ λ(P). Both of |Pin| and |Pcu| are larger

than 0, where | · | denotes determinant. This is because Pin and Pcu are an upper

and lower triangular matrices, respectively, and their diagonal elements are positive,

which are self-transition probabilities. Given that P = PinPcu, the determinant of

P satisfies

|P| = |Pin|× |Pcu| > 0.

In other words, P is full rank with 2N non-zero eigenvalues.

As a result, 1 = λ0 > λ1 > |λ2| ≥ · · · ≥ |λ2N−1| > 0.

Using basic results of discrete-time linear systems, the absorption rate of the

2N–dimensional discrete-time absorbing Markov virus propagation process, i.e., the

virus extinction rate, can be given by

R = − ln(λ1), (4.9)

where λ1 is the second largest eigenvalue of the transition matrix of the Markov

process. The proof of (4.9) is based on Jordan decompositions.

Proof. By Theorem 5, the largest eigenvalue of Q is less than 1, thus limk→∞ Qk = 0

and limk→∞ t(k) = limk→∞ t(0)Qk = 0. In other words, the proposed discrete-time

absorbing Markov process converges to the virus-free absorbing state s0 = (0, · · · , 0)

with t(k) approaching to 0.

The convergence rate relies on the structure of Q. We decompose Q to analyze

the state transition. Specifically, we propose to decompose Q by using Jordan
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form [124], when Q has m (2 ≤ m ≤ 2N − 1) different eigenvalues, as given by

Q = H
(
Jλ1 ⊕ Jλ2 ⊕ · · ·⊕ Jλm

)
H−1

, (4.10)

where Jλi is the Jordan segment associated with λi of Q. The diagonal elements

of Jλi are l Jordan blocks J∗(λi), i.e., Jλi = ⊕
l
k=1Jk(λi), where l is the geometric

multiplicity of λi; J∗(λi) is an upper triangular matrix with all diagonal elements

equal to λi, the elements immediately above the main diagonal equal to 1, and all

the other elements equal to 0. The numerical results of Jordan blocks J∗(λ) and H

are generated along with the Jordan decomposition.

Therefore, the transition matrix of k consecutive time steps is given by

Qk = H
(
Jk
λ1

⊕ Jk
λ2

⊕ · · ·⊕ Jk
λm

)
H−1

. (4.11)

It is proved in [124] that limk→∞ J∗(λ) = 0 if and only if |λ| < 1. Therefore, the

Jordan block associated with λ1 converges to zero slowest, i.e., the convergence rate

of Q is governed by the largest eigenvalue λ1, because limk→∞ J∗(
|λ|
λ1
) = 0 except for

J∗(λ1). Therefore, for a large k, we have

t(k) = t(0)G1 ≈ λ
k
1t

(0)G1. (4.12)

Since λ1 > λi (i = 2, · · · , 2N − 1) according to Theorem 5, G1 is given by G1 =

xy∗
/y∗x according to the Jordan decomposition, where x and y∗ are respectively

the right and left eigenvectors of Q, associated with λ1.

When the virus propagation stabilizes, t(k) converges to a zero vector exponen-

tially, and at the rate λ1, i.e.

lim
k→∞

∥∥t(k)
∥∥

‖t(k−1)‖
= λ1. (4.13)

As a result, the extinction rate is R = − ln(λ1).
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4.3.2 Closed-form Bounds of R

The virus extinction rate R, given by (4.9), still requires the calculation of the

largest eigenvalue of Q. In the case of large computer networks, Q is large and

the Jordan decomposition would be computationally expensive, or even practically

prohibitive. To analyze the larger networks, we proceed to derive the upper and

lower bounds of R, which can be dictated in the following theorem.

Theorem 6. The extinction rate, R, of a virus in an N-node computer network is

bounded by

− ln(1− δ
N) ≤ R ≤ − ln(1− δ(1− β + βδ)d),

where d is the minimum degree of the network topology.

Proof. Based on Perron Frobenius theorem [124], λ1 satisfies

min
{∑

j

qi,j

}
≤ λ1 ≤ max

{∑

j

qi,j

}
.

In other words,

1−max{pi,0} ≤ λ1 ≤ 1−min{pi,0},

i ∈ [1, 2, · · · , 2N − 1],

where pi,0 is the probability from the transient state si to the virus-free absorbing

state.

Note that Pcu(i, 0) decreases with the growth of the infected population. Con-

sidering the minimum pi,0, we have

pi,0 =
2N−1∑

k=0

(
Pin(i, k)Pcu(k, 0)

)

≥

2N−1∑

k=0

(
Pin(i, k)Pcu(2

N
− 1, 0)

)
= δ

N
,

i ∈ [1, 2, · · · , 2N − 1],

(4.14)
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where the equality holds if and only if i = 2N - 1. Therefore, the upper bound of 

>-. 1 can be given by 

( 4.15) 

On the other hand, Pi,O reaches its maximum when only the node with the 

minimum degree is infected. For a given pair of 6 and (3, Pi,O is determined by the 

number of the infected nodes, and the degree between the infected and susceptible 

nodes where they are respectively denoted by ci and di, in the state si. Obviously, 

Pi,O declines with the increase of ci and/or di. We are now to prove that p9,0 is the

maximum value among Pi,O ( i > 0). s
9 

corresponds to the case where only the node 

with the minimum degreed?: 1 is infected. 

\ 

--- --

---- --

"'-<h

Figure 4.3 : A graph demonstrates the problem that which state has a larger Pi,O· 

State s
9 

contains 1 infected node with 3 susceptible neighbors. On the contrary, 

state sh contains 4 infected nodes with 1 susceptible neighbor. Which one is larger, 

Pg ,O or Ph,O? 

We first prove that p9,0 is the maximum value among Ph,o when eh= l, i.e., only

one infected node in sh. We have, 
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Given the same number of the infected nodes, pi,0 declines with the increase of di.

As a result, pg,0 is the maximum among ph,0, i.e., ph,0 ≤ pg,0.

Next, we show that pg,0 is the maximum among ph,0 when ch > 1; in other words,

there are more than one infected node in sh. Specifically, when ch > 1, dh satisfies

dh ≥ d× ch − 2

(
ch

2

)
= d× ch − ch(ch − 1).

Under this condition, there are two cases as follows.

(a) The number of the infected nodes in sh is less than d+1, i.e., 1 < ch < d+1.

Then, we have

dh ≥ d× ch − ch(ch − 1) ≥ d = dg

ch > 1 = cg.

In other words, state sh has more infected nodes and higher degrees between the

infected nodes and the susceptible/uninfected nodes, than sg. As a result, pg,0 > ph,0.

(b) The number of the infected nodes in state sh is no less than d + 1, i.e.,

ch ≥ d+ 1. Then, we have

ph,0 =
2N−1∑

k=0

(
Pin(h, k)Pcu(k, 0)

)
≤

2N−1∑

k=0

(
Pin(h, k)× δ

d+1
)
= δ

d+1
,

where the equality holds if and only if ch = d+ 1 and dh = 0. We also have

pg,0 =
2N−1∑

k=0

(
Pin(g, k)Pcu(k, 0)

)
>

2N−1∑

k=0

(
Pin(g, k)× δ

d+1
)
= δ

d+1
.

As a result, pg,0 > δ
d+1

≥ ph,0.

To sum up, pi,0 reaches its maximum when only the node with the minimum

degree is infected, as given by

max{pi,0} =pg,0

=
d∑

k=0

(
d

k

)
β
k
δ
k+1(1− β)(d−k)

=δ(1− β + βδ)d.
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The maximum pi,0 is

max{pi,0} = δ(1− β + βδ)d.

Therefore, the lower bound of λ1 can be written as

1− δ(1− β + βδ)d ≤ λ1 (4.16)

Combining (4.15) and (4.16), we have

1− δ(1− β + βδ)d ≤ λ1 ≤ 1− δ
N
. (4.17)

Substituting (4.17) into (4.9), Theorem 6 is proved.

From the theorem, we see that (a) the upper bound is determined by β, δ and d

(or in other words, the upper bound is independent of the network size but affected

by the network structure); and (b) the lower bound is determined by δ and N (or in

other words, the lower bound relies on the network size).

We note that the lower bound corresponds to the case where only the node with

the minimum degree d is infected across the entire network. δ is the probability that

the node is cured, and (1−β+βδ)d is the probability that the d one-hop neighbors of

the node are either not infected, or infected but soon cured before further spreading

the virus. In the case of large heterogeneous networks, β can be very small and

β ) δ. (4.16) can be further simplified as

1− δ ≤ λ1 (4.18)

This corresponds to an extreme case where the virus becomes non-infectious after

the node with the minimum degree d is infected. As a result, the lower bound can

be simplified as the probability that the infected node stays infected.

We also note that our proposed model is discrete-time, and the bounds developed

depend on δ and β, both of which are defined on per time-step. However, it can be
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explicitly proved that the bounds depend on the actual temporal characteristics of

the infection and cure, rather than the selection of the time-step size. The detailed

proof is provided in the following.

Proof. We can define the time-step size to be the minimum time interval, denoted

by τmin (in seconds), between any two consecutive infections and between any two

consecutive curing instants. We use τmin to evenly discretize the time, and evaluate

the probability β that an infection occurs within any interval and the probability δ

that an infection is cured within the interval.

The resultant bounds for λ1 per time step can be rewritten as per second, by

taking the 1
τmin

-th power of both the upper and lower bounds, as given by

(1− δ(1− β + βδ)d)
1

τmin ≤ λ1 (/sec) ≤ (1− δ
N)

1
τmin (4.19)

Further decreasing the time-step size, i.e., to τmin
T (T is a positive integer), may

result in different values of the bounds of λ1 per second, as given by

(1−
δ

T
(1−

β

T
+

βδ

T 2
)d)

T
τmin ≤ λ1 (/sec) ≤ (1−

δ
N

TN
)

T
τmin (4.20)

The resultant upper bound is looser, as (1− δ
N)

1
τmin ≤ (1− δN

T )
T

τmin ≤ (1− δN

TN )
T

τmin

based on Bernoulli’s inequality (i.e., (1 + x)r ≥ 1 + rx for −1 ≤ x < 0 and r > 0).

We still use (1 − δ
N)

1
τmin from (4.19) as the upper bound, which is independent of

the selection of time-step size (i.e., T ).

The resultant lower bound in (4.20) can be evaluated by taking the limit of

T → ∞, as given by

lim
T→∞

(
1−

δ

T
(1−

β

T
+

βδ

T 2
)d
) T

τmin
≤ lim

T→∞

(
1−

δ

T
(1− β + βδ)d

) T
τmin

(4.21a)

= e
− δ(1−β+βδ)d

τmin , (4.21b)

where (4.21a) is due to the fact that, when T is large enough, δ ≤
T

T+1 =
1− 1

T

1− 1
T2

=

β− β
T

β− β
T2

, and in turn, 1− β
T + βδ

T 2 ≥ 1−β+βδ; (4.21b) is due to that lim
x→∞

(1− 1
x)

x = 1
e .
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We are particularly interested in large networks with thousands of nodes and

strong network connectivity (i.e., d is large), where both analysis and simulation

on virus propagations in such networks are prohibitively computationally expensive

and time-consuming. In this case,

e
− δ(1−β+βδ)d

τmin !
(
1− δ(1− β + βδ)d

) 1
τmin (4.22)

In other words, the lower bound in (4.19) does not change with the increase of T .

As a result, it is proved that the upper and lower bounds in (4.19) are still

valid, especially in large networks with thousands of nodes and strong network

connectivity. Both of the bounds depend on the actual temporal characteristics of

the infection and cure (i.e., τmin), rather than the selection of the time-step size.

4.3.3 Epidemic Lifetime

Given the virus extinction rate R, the virus lifetime can be measured by 1
R [126].

We give an upper bound of the lifetime in the following lemma.

Lemma 1. The mean virus lifetime in an N-node network with the curing probability

δ, denoted by En{τ}, is bounded:

EN{τ} ≤
1

δN
,

which is independent of the initial infection status and the explicit topology of the

network.

Proof. The expected lifetime of an epidemic is the expected steps to the virus-free

absorbing state in the Markov process, which is equal to the expected times that

the Markov chain remains at transient states. With a given initial state t(0) and
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matrix Q, the expected virus lifetime can be given by

EN{τ |t
(0)
,Q} =

∞∑

k=0

(1(t(k))T) =
∞∑

k=0

(
1(t(0)Qk)T

)

(a)

≤

∞∑

k=0

||(t(0)Qk)T||1

(b)

≤

∞∑

k=0

||(Qk)T||1||(t
(0))T||1

(c)

≤

∞∑

k=0

||QT
||
k
1

(d)
=

1

δN

(4.23)

where || · ||1 denotes 1-norm. In the case of vector, the 1-norm is the absolute

sum of the vector. In the case of matrices, the 1-norm is the maximum absolute

column sum of the matrix. The inequality (a) is due to the fact that ‖(t(0)Qk)T‖1 =

1|(t(0)Qk)T| ≥ 1(t(0)Qk)T. The inequality (b) is because ||Av||1 ≤ ||A||1||v||1, where

A is a matrix and v is a vector [124]. The inequality (c) is because ||(t(0))T||1 =

1(t(0))T = 1, and ||(Qk)T||1 = ||(QT)k||1 ≤ ||(QT)||k1. The equality (d) is due to

the definition of 1-norm that ||QT
||1 is the maximum absolute column sum of QT;

or in other words, ||QT
||1 is the maximum absolute row sum of Q, i.e. ||QT

||1 =

max
{∑

j qi,j

}
. From (4.14), we have max

{∑
j qi,j

}
= 1−δ

N . As a result, ||QT
||1 =

1− δ
N .

4.3.4 Approximate Infected Population and Infection Probability

It is also interesting to evaluate the infected population and the infection prob-

ability at every time step of the epidemic lifetime. This helps understand the inter-

actions between the infection and healing processes.

By substituting (4.12) into (4.6), the expected infected population can be ap-

proximated, as given by

E{population|t(0), k} ≈ λ
k
1

(
c(t(0)G1)

T
)
. (4.24)

By substituting (4.12) into (4.7), the expected infection probability can be ap-
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proximated, as given by

Pr{infection|t(0), k} ≈ λ
k
1

(
1(t(0)G1)

T
)
. (4.25)

From (4.24) and (4.25), we can see that the infected population and the infection

probability both decline away exponentially.

4.4 Simulation and Numerical results

In this section, simulations are conducted to validate our proposed model. The

simulations are built on the modified NepidemiX 0.2[127] in a Python environment

where curing takes place periodically with a time step of 10 ms and there is no

consecutive infection during a time step. Our model is general, and can be applicable

to other time step durations. Topologies simulated include complete graphs, denoted

by KN , Barabási-Albert scale-free graphs, denoted by BA-d, ring graphs, and regular

graphs, where d is the minimum degree of a BA graph.

For comparison purpose, we also plot the typical results of three existing models.

The first existing model that we consider is based on the mean-field approximation,

discretized from [35, eq. 10] and [121] to adapt to our discrete system setting. For

an N -node network, the infection probabilities of the N nodes at any time step t

can be recursively given by

Vt =
(
Vt−1 + β(1−Vt−1)diag(Vt−1A)

)
(1− δ), (4.26)

where Vt is an N -dimensional vector collecting the infection probability of each

node at the time step t; diag(·) indicates a diagonal matrix. The average number of

infected nodes in this model can be given as the column sum of Vt.

The second existing model that we consider is the one which further linearises

the existing model for mathematical tractability, as suggested in [121, eq. 11] and
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[35]. As a result, (4.26) can be approximated as

Vt = (1− δ)
(
I+ βA

)
Vt−1, (4.27)

where I is the identity matrix.

The linearisation of (4.27) is important to analyze virus extinctions in our system

setting where infection and curing take place in alternating time steps. The existing

extinction condition β
δ <

1
ρ(A) , proved in [121, 35], was based on a different system

setting, where infection and curing can take place in any time steps, and hence, the

evolution of the infection probability was given by [121, 35]

Vt =
(
(1− δ)I+ βA

)
Vt−1.

To this end, the existing extinction condition is not directly applicable to our system

setting.

Following the exactly same way the existing extinction condition was derived in

[121, 35], we write the largest eigenvalue of (4.27) as λ1 = (1 − δ)
(
1 + βρ(A)

)
, set

λ1 < 1 to ensure the convergence of (4.27), and subsequently, derive the equivalent

of the existing extinction condition under our system setting, as given by

β(1− δ)

δ
<

1

ρ(A)
.

In turn, the equivalent upper bound of the mean virus lifetime, when the existing

condition is satisfied, can be given by

E{τ} ≤
log(N) + 1

1− β(1−δ)
δ ρ(A)

.

We also evaluate the classical SIS model [66], in which the number of infected

nodes at any time step t can be recursively written, as given by

It = (It−1 + βIt−1(N − It−1))(1− δ), (4.28)

where It is the number of infected nodes at time step t.
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4.4.1 Model Validation

Fig. 4.4 validates the proposed discrete-time absorbing Markov modelingg of

virus propagations, using Monte-Carlo simulations. Essentially, our Markov model

provides basic discrete linear system analysis and requires computations of 2N by 2N

networks. The purpose of plotting Fig. 4.4 is to validate the model and compare it

with the typical existing modeling methods, in terms of accuracy. The validation is

important for our development of the bounds for the extinction rate. Also, based on

the validated linear system analysis and bounds, we further explore the possibility

of finding the extinction rate for large networks by using the results on much smaller

sizes, as will be discussed in Section 4.4.2.

Fig. 4.4(a) validates the analytic exact results on the infected population from

(4.6) with Monte-Carlo simulations, where there are up to 40 time steps (i.e., 40

incidents of virus propagations). The topology simulated is an 8-node BA-4 graph.

The initial states of the Markov processes are the same that three nodes with the

degrees of 7, 4 and 4 are initially infected. Different combinations of β and δ are

considered. Fig. 4.4(b) validates the analytic results of Pr(infection|t(0),k)
Pr(infection|t(0),k−1)

based

on (4.7) and λ1 = lim
k→∞

Pr(infection|t(0),k)
Pr(infection|t(0),k−1)

from (4.25) with Monte-Carlo simulations,

where two representative topologies, 8-node complete graph and 8-node ring graph,

are simulated. For the complete graph, the initial state of the Markov processes

includes one infected node randomly picked up, since the complete graph is homo-

geneous and each node in the graph is identical. For the ring graphs, there are two

cases. In one case, the initial state is a randomly chosen infected node, due to the

homogeneity of the graph. In the other case, the initial state consists of four infected

nodes arranged with the susceptible nodes in an alternating manner on the ring.

Both Figs. 4.4(a) and 4.4(b) confirm that the analytical results of (4.6) and

(4.7) consistently coincide the simulation results, indicating the accuracy of the
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β=0.2,δ=0.2

β=0.02,δ=0.2

β=0.0433,δ=0.2

(a) Infected population where each of the simulation results is the

average of 10000 independent runs.
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model. Figs. 4.4(a) and 4.4(b) also show that the analytic and simulated results

indistinguishably approach to the results of (4.25), validating the extinction rate of

− ln(λ1), i.e., (4.9), under a variety of topologies and β and δ values. In contrast, the

results of the existing SIS model and the mean-field approximation based models

increasingly deviate from the simulation results, as β rises. Specifically, when β

is small (i.e., 0.02) and satisfies the equivalent existing extinction condition under

our system setting β(1−δ)
δ <

1
ρ(A) , the existing models exhibit relatively accurate

exponential extinction tendency. When β increases (i.e., 0.0433) and the extinction

condition becomes unsatisfied, the virus still dies out exponentially over time, as

shown by simulations. However, the existing models start to fail in capturing the

virus propagation. The existing extinction condition is also revealed to be a sufficient

condition, but not the necessary condition, to the quick extinction of a virus. When

β is large (i.e., 0.2), big gaps can be observed between the existing models and the

simulation results, while our model can still provide satisfactory modelingg accuracy.

We also see the topology has a strong impact on the convergence rate, even

under the same β and δ, as shown in Fig. 4.4(b). Given the initial state of a single

infected node, we see that, the convergence rate of the complete graph is lower than

that of the ring graph. In other words, λ1, plotted as the horizontal dotted lines in

Fig. 4.4(b), increases with the network connectivity. As a result, the extinction rate

R = − ln(λ1) decreases as the network connectivity increases. It is further noticed

that the extinction rate is independent of the initial state of the network. As shown

in Fig. 4.4(b), the ring topologies with different initial infected nodes both converge

to the extinction rate specified by (4.25).

Fig. 4.5(a) validates the upper and lower bounds of the virus extinction rate,

where the extinction rate is obtained from (4.9) and its bounds are obtained from

Theorem 6. β is set to 0.5 and 0 < δ ≤ 1. We consider an 8-node ring graph and

an 8-node BA-2 graph (as illustrated in Fig.4.1), because the two topologies have
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requirement where complete graphs of N nodes are considered (N = 2, 4, 6, 8, 10, 11),

β = 0.5 and δ is adaptively calculated using the upper bound of Theorem 6 under

any given convergence rate requirement.

the same network size and the same minimum degree, so that they have the same

bounds with the benefit of visual clarity. We can see that the difference between

the logarithms of the upper and lower bounds (i.e., ln − ln(1−δ(1−β+βδ)d)
− ln(1−δN ) ) decreases

with the growth of δ. Specifically, the upper bound is 12 orders of magnitude higher

than the lower bound when δ = 0.02, while the bounds converge at δ = 1.0. The

virus extinction rates of the topologies are both within the region specified by the

upper and the lower bounds. We also observe when δ is small, the extinction rate

is close to the lower bound and the ratio of R to the lower bound keeps consistent

across a wide δ region. The ratio decreases as the connectivity of the graphs grows

(i.e., from the ring to the BA-2 graph). When δ is approaching one, the actual virus

extinction rates approach to the upper bound and become indistinguishable close to

the bound.
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Likewise, we also evaluate the bounds with the increase of β and d in Figs. 4.5(b)

and 4.5(c), respectively, where 10-node networks with topologies of regular graph

are considered. We can see that our derived bounds become increasingly tight with

the growth of β and δ, where d = 8, as shown in Fig. 4.5(b). We also see that the

bounds also become increasingly tight, as the network connectivity, i.e., network

degree, grows, as corroborated in Fig. 4.5(c).

We proceed to evaluate the effectiveness of the bounds, presented by Theorem

6, in characterizing the extinction rate. Specifically, for any given rate requirement

Rreq, we first calculate the minimum δ, denoted by δmin, required to meet Rreq using

the upper bound. This is done by setting Rreq to be equal to the upper bound, i.e.,

Rreq = − ln(1− δmin(1− β + βδmin)
d), (4.29)

and solve δmin by using a bisection method. We then substitute δmin into (4.2) and

(4.9) to obtain the actually achievable convergence rate Rach under the minimum

curing probability δmin. In this sense, Rach provides the lower bound to the extinction

rate requirement Rreq.

Fig. 4.6 plots the actually achievable convergence rate Rach with the increase of

the convergence rate requirement Rreq, where the auxiliary dash line, Rach = Rreq,

sets up the reference for the actually achievable rate Rach. A key finding from

Fig. 4.6 is that, for a given network the gap between Rach and the corresponding

requirement Rreq, i.e., the reference dash line, first increases, and it soon decreases

and diminishes asymptotically as Rreq grows. The asymptotic convergence of Rach

to the dash line indicates the effectiveness of δmin and subsequently the tightness

of the upper bound provided in Theorem 6. Another important finding is that the

gap between Rach and Rreq also enlarges along with the number of nodes, while

the increase of the gap, resulting from the enlarged network, diminishes when the

network becomes large, with δmin adjusted by using the upper bound of Theorem



84

6. Note here that δmin needs to be adjusted, since the minimum degree of the

network d can change with the growth of the network. As shown in Fig. 4.6, the

difference between a 10-node complete graph and an 11-node complete graph is

indistinguishable. As a matter of fact, extensive simulations we carried out with

larger N values show that the curves for N ≥ 11 overlap.

4.4.2 Large Network Analysis

Our above findings from Fig. 4.6 provide a practical means to analyze virus

propagations in large computer networks, where other methods become either com-

putationally prohibitive or incur accuracy degradations. As observed in Fig. 4.6, the

Rach–Rreq curves become indistinguishably close for networks with N ≥ 11. In other

words, the gap between the desired extinction rate Rreq and the actual achieved rate

Rach converges with the growth of the network, given δmin adjusted for the size and

topology of individual networks through the upper bound of the extinction rate. In

light of this, we propose to use the Rach–Rreq curve for N = 11 to present those for

N 4 11, and convert the target mean achievable extinction rate of a large network

Rach to the requirement Rreq by mapping onto the curve. Substituting Rreq into

(4.29), we can obtain δmin for the large network to actually achieve Rach.

This process is magnified in Fig. 4.6, where a target achievable mean extinction

rate is Rach = 0.08 for a 5000-node network with topology of complete graph (i.e.,

d = 4999). As described above, we use the curve for an 11-node network to convert

the target mean achievable extinction rate Rach = 0.08 to the corresponding require-

ment Rreq. The corresponding requirement is Rreq = 0.19, as shown in Fig. 4.6.

We then substitute Rreq = 0.19 into (4.29) to calculate δmin under N = 5000. The

resultant δmin can hence achieve the mean extinction rate of 0.08 in the 5000-node

network.

Fig. 4.7 evaluates the effectiveness of using the process to design and analyze
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virus propagations in large computer networks, where the x-axis indicates the target

mean achievable extinction rate Rach and the y-axis indicates the actually achieved

extinction rate. The network scale is N = 5000. β = 0.5. Every mark in Fig.

4.7 is a simulation result, obtained by first converting Rach indicated by the x-

coordinate of the mark to Rreq (as demonstrated in Fig. 4.6), adjusting δmin, and

then emulating the virus propagation in the network with the resultant δmin and the

given β. The dash auxiliary line plots Rach to provide a reference. Fig. 4.7 shows

that the simulation results of the actually achieved individual extinction rates are

consistently distributed around the target mean extinction rate Rach. The deviations

of the simulation results from Rach yield a Gaussian-type distribution.
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Figure 4.7 : The actually achieved extinction rate versus the target mean extinction

rate, where a 5000-node network with topology of complete graph K5000 is consid-

ered, and β = 0.5.

We note that the value of δmin ranges from 0.9986 to 0.9994 in Fig. 4.7, given the

target Rach ranges from 0.001 to 0.16 and β = 0.5. The reason for such large δmin

values is because of the fairly high target mean extinction rate of Rach ≥ 0.001 in

the large network with 5000 nodes. Reducing the target mean extinction rate would
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Figure 4.8 : The actually achieved virus lifetime versus the target mean virus life-

time, where a 5000-node network with topology of K5000 is considered and β = 0.5.

of course reduce δmin. The accuracy and complexity of our large-network analysis

would not be much affected by the reduced rate. However, reducing the rate would

increase the virus lifetime, and in turn, substantially increase the running time of

Monte-Carlo simulations to get reliable and conclusive results. Even in the case that

Rach = 0.001 and δmin = 0.9986, our simulations for the 5000-node network took

a few days. Let alone smaller target extinction rates or δmin. For demonstration

purpose, we consider large δmin to speed up simulations.

Fig. 4.8 plots the results of the virus lifetime in the 5000-node complete graph,

where the x-axis is the average number of steps (i.e., 1
Rach

) that we plan to achieve,

and y-axis is the number of steps actually achieved. As done in Fig. 4.7, we first map

Rach to Rreq to calculate δmin; and then emulate virus propagations using δmin, until

the extinction of the virus. The simulation results of individual virus propagations

are given in marks. We see that the simulation results are consistently distributed

around the target mean virus lifetime denoted by dash line. The deviations of the

simulation results from the design target also yield a Gaussian-type distribution.
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Figure 4.9 : Virus lifetime versus network connectivity, where a 5000-node network

with topology of regular graph is considered, the degree of the regular graph increases

from 20% to 100% of the remaining nodes (e.g., d ranges from 1000 to 4999 for 5000-

node networks).

The above analysis of large networks can also be readily applied under non-trivial

topologies (other than complete graphs). In Fig. 4.9, we show the effectiveness of

the analysis in a 5000-node network (N = 5000) with topology of regular graph,

where the x-axis provides the increasing degree of the network from d = 20%N

to d = N − 1 (i.e., complete graph), β = 0.3, and δ = 0.9978. The reason for

choosing regular graphs is because the regular structure of the graphs can support

the consistent growth of degrees without bringing in irregularity, and in turn, provide

consistent results to reveal useful insights. The reason for considering such a large

δ value here is the same as that for Fig. 4.7.

The marks in Fig. 4.9 provide the lifetime simulations of individual independent

virus propagations given β and δ, with their averages plotted in the dash curve.

Using the averaged lifetimes, we set the target mean extinction rates Rach for our

analysis under different degrees of the regular graph. We map the target mean
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extinction rates Rach onto the Rach–Rreq curves corresponding to smaller networks

with N = 10, 20, 50, and 100; see Fig. 4.6. Rreq can be obtained and substituted in

(4.29) to evaluate δmin. The actually mean achievable extinction rates of the smaller

networks with δmin, denoted by R
′
ach to avoid confusion, are plotted in solid curves.

We can see the solid curves get increasingly close to the simulation results of the

average virus lifetime (i.e., the design target of the solid curves), as N increases. A

clear tendency is exhibited that the curves with N ranging from 50 to 100 start to

converge to the simulation results of 5000-node networks. In other words, we can

use the analytical results of a network with up to 100 nodes to evaluate the virus

lifetime in large networks with thousands of nodes and non-trivial topologies.

In Fig. 4.9, we also plot the equivalent upper bound of the mean virus lifetime

for our system setting log(N)+1

1−β(1−δ)
δ ρ(A)

, under the extinction condition β(1−δ)
δ <

1
ρ(A) =

1
d , by referring to [120]. We see that the typical extinction condition has limited

applicability, and is only suitable for topologies with low connectivity (i.e., the

degree percentage is less than 30%). Even for the topologies, to which the extinction

condition is applicable, the existing upper bound of the mean virus lifetime is loose,

and becomes increasingly looser as the network connectivity improves.

It is worth mentioning that some new arrangements have been implemented to

facilitate plotting Fig. 4.9, under the current limitation of hardware and computing

capability. As described earlier, an important step of the large-network analysis is to

obtain the convergent achievable mean extinction rate Rach for networks of small to

medium sizes (or in Fig. 4.9, plotting R
′
ach). The size of the network, when the gap

between the required mean extinction rate Rreq and the achievable mean extinction

rate Rach converges, depends on β, δ, and the topology of the network.

For complete graphs, the network size of 11 nodes sees the convergence, as shown

in Fig. 4.6, and Rach can be achieved by analytically evaluating the second largest
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Table 4.2 : The average running time of simulating a single virus propagation process

(in seconds), corresponding to Fig. 4.9

Degree d 0.3N 0.6N 0.9N

N = 10 0.0003 0.00392 0.13417

N = 20 0.00068 0.01531 0.54328

N = 50 0.00107 0.02406 0.85372

N = 100 0.00213 0.08243 1.9125

N = 5000 1.6770 78.8060 1505.1299

eigenvalue of the transition matrix of the discrete-time absorbing Markov virus prop-

agation process, as done in Figs. 4.7 and 4.8.

For other non-trivial topologies, such as regular graphs, the network size can

be tens to hundreds. The transition matrices for the networks are too large and

the eigenvalue decomposition of the matrices is intractable under current computing

capability. In this case, we resort to Monte-Carlo simulations to evaluate the average

extinction rates of networks with from tens to hundreds of nodes. We first identify

the average extinction rate which stops growing with the network size, and then use

this rate as Rach in our analysis on the large networks with non-trivial topologies

in the same way as in Fig. 4.8. The Monte-Carlo simulations involved for networks

with up to a hundred nodes are fast and can complete within a few hours (e.g.,

N = 100, d = 90, and 5000 runs), as opposed to directly simulate for months a large

network with thousands of nodes (e.g., N = 5000, d = 4500, and 5000 runs if not

more), as evident from Table 4.2.
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4.5 Summary

In this chapter, we designed a discrete-time absorbing Markov process to char-

acterize virus propagations in computer networks. Eigenvalue analysis and Jordan

decompositions were carried out on the transition matrix of the Markov process to

derive the bounds of the virus extinction rate. Based on the bounds, we also de-

veloped a computationally efficient approach to evaluating virus lifetimes in large

networks. Specifically, we proposed to interpret the required extinction rate of a

large network to that of a much smaller network, and obtain the required minimum

curing rate of the large network efficiently through the upper bound of its smaller

counterpart. Simulation results corroborated the effectiveness of the interpretation,

as well as analytical accuracy in large computer networks.
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Chapter 5

Group-based Fast Propagation Model

An accurate Markov-based propagation model was proposed in the last chapter.

Although an extension method has been proposed and evaluated, the model still

needs hours of evaluation time and can be improved. This chapter proposes a fast

propagation model by adopting the group feature of network topology. By dividing

network nodes into groups and averaging them with the mean-field approximation,

the model is greatly simplified and therefore can support the propagation analysis

in large-scale networks.

5.1 Introduction

Epidemic models trade the modeling accuracy for complexity reduction. Markov-

chain based epidemic models are able to precisely analyze the epidemic propagation

process, but require 2N Markov states to capture the S/I states of N nodes and

therefore can hardly be applied to large-scale networks [110, 35]. A number of

topological epidemic models [121, 128, 35, 120, 129], decompose the 2N -state Markov

process into N small Markov processes. This is achieved by using the expected

infection probability of every node instead of the actual node state. A significant

result from the models is that the epidemic threshold, under which the epidemic

will eventually die out, is given by 1
λ1(A) , where λ1(A) is the largest eigenvalue of

the adjacency matrix of the network topology [121].

Network features, e.g., the degree distribution of scale-free networks [130], can

be employed to simplify epidemic models by adopting the degree-based mean-field
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approach [88]. Specifically, nodes with the same degree are assumed to be infected

with the same probabilities. An interesting result of the epidemic in scale-free net-

works is the absence of an epidemic threshold [73]. The degree-based mean-field

approach has extended the SIS process, e.g., the epidemic propagation with incuba-

tion and the epidemic with a recovery state [131, 132]. However, the degree-based

epidemic model cannot capture epidemic propagations in specific networks.

This chapter presents a group-based continuous-time Markov model to quan-

titatively analyze the SIS process in large-scale directed networks. We start with

the network modeling, where nodes are categorized into groups according to their

connectivity. A collapsed adjacency matrix is proposed to describe the network

topology. Based on the node groups, a continuous-time Markov model is proposed

to capture the SIS-type propagation, where the state of a group is estimated by tak-

ing the mean-field approximation. Focusing on the problem of epidemic threshold,

the proposed nonlinear model is linearized via omitting high-order terms around the

disease-free point. The epidemic threshold is derived by performing matrix analysis

on the Jacobian matrix of the linearized model and then validated by simulations.

The key contributions of this chapter can be summarized as follows,

• We propose a new modeling method, which groups nodes with the same con-

nectivity in directed networks and models the epidemic propagation of the

groups by using continuous-time Markov SIS models.

• By taking the mean-field approximation, the proposed SIS model is asymptot-

ically accurate with the decrease of effective spreading rate and/or the increase

of node groups.

• Linearization and stability analysis are carried out on the proposed SIS model

to deduce the epidemic threshold, under which the epidemic eventually be-

comes extinct.
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• The epidemic threshold is proved to be dependent on network structure, and

interdependent of the network scale.

Comprehensive simulations confirm the validity of the proposed mean-field epi-

demic model and the deduced epidemic threshold in large-scale networks.

The rest of this chapter is organized as follows. In Section 5.2, the directed

network model is presented, followed by the proposed mean-field SIS model in Sec-

tion 5.3. In Section 5.4, numerical and simulation results are provided, followed by

conclusions in Section 5.5.

Notations used in the chapter are as listed in Table 5.1.

5.2 The Directed Network Model

We consider the SIS epidemic process in a strongly connected network with N

nodes connected by directed edges. Each node in the network can be in either a

susceptible (S) or an infected (I) state. An infected node can infect its susceptible

neighbors along the directed edges at the rate of β per edge. Infected nodes can

independently recover to be susceptible at the rate of δ.

We suppose that the N nodes in a network G can be categorized into n groups,

denoted by G1, G2, · · · , Gn, where the nodes in the same group have the same out-

degrees and the same number of edges to the nodes in the same destination group.

The number of Gi-nodes can be denoted by Ni (here,
∑

i Ni = N). Given the

node groups, we define a collapsed adjacency matrix, denoted by A, to describe the

topology of G. The (i, j)-th entry of the matrix, denoted by aij, describes the number

of edges from a Gi-node pointing to Gj-nodes. As a result, G can be described by

the node number vector N = [N1, N2, · · · , Nn] and the collapsed adjacency matrix

A. Fig. 5.1 provides an example of node categorization, where N = 7 nodes are

categorized into n = 3 groups, i.e., N = [2, 3, 2]. Its collapsed adjacency matrix
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Table 5.1 : Notations Used in Chapter 5

Notation Description

N The number of nodes in the network

n The number of groups in the network

Gi The i-th goup

Ni The number of nodes in Gi

A The collapsed adjacency matrix

aij The number of edges from a Gi-node pointing to Gj-nodes

[A]i The number of Gi-nodes in state A

[AB]ij The number of ABij edges

[ABC]ijk The number of edge pairs consisting of ABij and BCjk

[ABC]′ijk The number of edge pairs consisting of ABij and BCjk

β The infection rate per edge

δ The curing rate of an infected node

J The Jacobian matrix of the linearization

λ1(·) The largest eigenvalue of the operator

τ
∗ the epidemic threshold

can be given by (5.1).

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33




=





0 3 0

0 1 2

1 0 0




(5.1)

Other notations are defined as follows: [A]i (A ∈ {S, I}) denotes the number of

Gi-nodes in state A. ABij denotes an edge starting from a Gi-node and ending at

a Gj-node, where the Gi-node and the Gj-node are in states A and B, respectively.
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Figure 5.1 : An example of networks we considered where 7 nodes are categorized 

into three groups according to the connection between them. 

[AB] ij denotes the number of ABij edges. Let [ABC] ijk ([ABCt
jk) denote the 

number of edge pairs consisting of ABij and BCjk (ABij and CBkj), as illustrated 

by Fig. 5.2. Numerical relationships between states of nodes and states of edges 

satisfy 

aijNi =[SS] ij + [SI] ij + [I S] ij + [I I] ij ; 

aij[S] i =[SS] ij + [SI] ij ; 

aij[I] i =[IS] ij + [II] ij ; 

1 
[S]i =Ni - [I]i = Ni - -([IS] ij + [II] ij)-

aij 

(5.2a) 

(5.2b) 

(5.2c) 

(5.2d) 

(5.2e) 

Here, (5.2a) is because any node is in either an S or I state. (5.2b) is because 

any edge is in one of the four states given in the right-hand side (RHS) of (5.2b). 

Meanwhile, edges can be classified according to the state of the starting point, as 

given by (5.2c) and (5.2d). (5.2e) is deduced from (5.2a), (5.2b) and (5.2d). 
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Figure 5.2 : An example of [ABC]ijk and [ABC]′ijk.

5.3 Group-based Mean-field SIS Model

We propose to analyze the SIS process in directed networks by employing the

mean-field approximation which uses a single average effect to approximate the effect

of all the other individuals on any given individual. Thus, the same group of nodes

in our model are evaluated by the same average estimation. The state transitions

of nodes and edges in the SIS process can be given by

d[S]i
dt

(5.3a)

d[I]i
dt

j

= δ[I]i −
∑

β[IS]ji;
j

= −δ[I]i +
∑

β[IS]ji; (5.3b)

d[SS]ij
dt

= δ[SI]ij + δ[IS]ij −
∑

k

β[ISS]kij −
∑

β[SSI]′ijk; (5.3c)

d[SI]ij
dt

= −δ[SI]ij + δ[II]ij +
∑

k k

k

β[SSI]′ijk −
∑

β[ISI]kij; (5.3d)

d[IS]ij
dt

= −δ[IS]ij + δ[II]ij − β[IS]ij +
∑

k

β[ISS]kij −
∑

k

β[ISI]′ijk; (5.3e)

d[II]ij
dt

= −2δ[II]ij + β[IS]ij +
∑

k

β[ISI]kij +
∑

k

β[ISI]′ijk. (5.3f)

Here, (5.3a) and (5.3b) give the changing rate of susceptible and infected Gi-nodes.

The RHS is because an infected Gi-node can be cured with the rate δ; a susceptible

Gi-node can be infected with the rate β per edge by an infected Gj neighbor. In

the continuous-time model, the time slot is infinitesimal that the infection rate can
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be summed together, i.e.,
∑

j β[IS]ji.

Eqs. (5.3c)-(5.3f) capture the time-varying number of links. The first two terms

on the RHS of (5.3c) are because an SSij edge can transfer from an SIij or ISij

edge when the infected node is cured. The last two terms on the RHS of (5.3c)

capture the cases where the starting Gi-node or the ending Gj-node is infected by

its infected neighbors. (5.3d) is because an SIij edge can transfer to an SSij edge

in the case that the infected Gj-node is cured at the rate δ; and to IIij in the case

that the susceptible Gi-node is infected by its infected neighbors. SIij can transfer

from IIij in the case that the infected Gi-node is cured with the rate δ or from

SSij in the case that the susceptible Gj-node is infected by its infected neighbors.

Different from previous SIS models in undirected networks, e.g., [73], SIij cannot

transfer to IIij, as the epidemic can only propagate along directed edges. (5.3e)

can be similarly obtained attaching the infection process, i.e., −β[IS]ij. (5.3f) is

self-explanatory.

Known as the disease-free equilibrium point, the equilibrium point of interest

is ([SI]ij, [IS]ij, [II]ij) = (0,0,0), i.e., all nodes are susceptible. The condition

of the disease-free equilibrium point can be deduced by linearizing the SIS model

given by (5.3). This is because the stability of the original nonlinear system can be

determined by the eigenvalues of the linearized model as stated in Lyapunov’s First

Method [133].

To linearize the SIS model, the number of edge pairs [ABC]ijk and [ABC]′ijk is

first estimated by using the number of unpaired edges. This is achieved by applying

the moment closure approximation as evaluated in [134, 135]. As a result, we have
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[ISS]kij =
[IS]ki[SS]ij

[S]i
=

[IS]ki[SS]ij

Ni −
[IS]ip+[II]ip

aip

; (5.4a)

[SSI]′ijk =
[IS]kj[SS]ij

[S]j
=

[IS]kj[SS]ij

Nj −
[IS]jq+[II]jq

ajq

; (5.4b)

[ISI]kij =
[IS]ki[SI]ij

[S]i
=

[IS]ki[SI]ij

Ni −
[IS]ip+[II]ip

aip

; (5.4c)

[ISI]′ijk =
[IS]ij[IS]kj

[S]j
=

[IS]ij[IS]kj

Nj −
[IS]jq+[II]jq

ajq

. (5.4d)

In (5.4a), every susceptible Gi-node on average has [SS]ij
[S]i

edges pointing to Gj-nodes.

[S]i is then estimated by employing (5.2e), where p and q are introduced to solve the

equation. Here, p satisfies [IS]ip+[II]ip > 0 and aip > 0; q satisfies [IS]jq+[II]jq > 0

and ajq > 0. (5.4b)-(5.4d) can be similarly obtained.

By substituting (5.4) into (5.3), (5.3c)-(5.3f) can be rewritten as

d[SS]ij
dt

=δ[SI]ij + δ[IS]ij −
∑

k

β
[IS]ki[SS]ij

Ni −
[IS]ip+[II]ip

aip

−

∑

k

β
[IS]kj[SS]ij

[S]j
; (5.5a)

d[SI]ij
dt

=− δ[SI]ij + δ[II]ij +
∑

k

β
[IS]kj[SS]ij

Nj −
[IS]jq+[II]jq

ajq

−

∑

k

β
[IS]ki[SI]ij

Ni −
[IS]ip+[II]ip

aip

; (5.5b)

d[IS]ij
dt

=− δ[IS]ij + δ[II]ij − β[IS]ij

+
∑

k

β
[IS]ki[SS]ij

Ni −
[IS]ip+[II]ip

aip

−

∑

k

β
[IS]ij[IS]kj

Nj −
[IS]jq+[II]jq

ajq

; (5.5c)

d[II]ij
dt

=− 2δ[II]ij + β[IS]ij +
∑

k

β
[IS]ki[SI]ij

Ni −
[IS]ip+[II]ip

aip

+
∑

k

β
[IS]ij[IS]kj

Nj −
[IS]jq+[II]jq

ajq

. (5.5d)

The terms of [SS]ij can be suppressed by substituting (5.2b) into (5.5). As a
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result, we have

d[SI]ij
dt

= −δ[SI]ij + δ[II]ij +
∑

k

β
[IS]kj(aijNi − [SI]ij − [IS]ij − [II]ij)

Nj −
1
ajq

([IS]jq + [II]jq)

−

∑

k

β
[IS]ki[SI]ij

Ni −
1
aip

([IS]ip + [II]ip)
; (5.6a)

d[IS]ij
dt

= −δ[IS]ij + δ[II]ij − βij[IS]ij +
∑

k

β
[IS]ki(aijNi − [SI]ij − [IS]ij − [II]ij)

Ni −
1
aip

([IS]ip + [II]ip)

−

∑

k

β
[IS]ij[IS]kj

Nj −
1
ajq

([IS]jq + [II]jq)
; (5.6b)

d[II]ij
dt

= −2δ[II]ij + β[IS]ij

+
∑

k

β
[IS]ki[SI]ij

Ni −
1
aip

([IS]ip + [II]ip)
+
∑

k

β
[IS]ij[IS]kj

Nj −
1
ajq

([IS]jq + [II]jq)
. (5.6c)

Near the disease-free equilibrium point, (5.6) can be linearized by suppressing

all higher order terms. As a result, we have

d[SI]ij
dt

≈− δ[SI]ij+δ[II]ij+
∑

k

βaijNi[IS]kj
Nj

; (5.7a)

d[IS]ij
dt

≈−(δ + β)[IS]ij+δ[II]ij+
∑

k

βaij[IS]ki; (5.7b)

d[II]ij
dt

≈− 2δ[II]ij + β[IS]ij. (5.7c)

After the model has been linearized, the condition of the disease-free equilibrium

point can be obtained by performing eigenvalue analysis on the Jacobian matrix of

the linearization. The Jacobian matrix is a 3n2
×3n2 matrix and denoted by J. The

nonlinear dynamic system is stable at the equilibrium point if and only if all the

eigenvalues of the Jacobian matrix are negative, as stated by the Hartman-Grobman

Theorem [136]. In other words, the epidemic is certainly extinct if

λ1(J) < 0, (5.8)

where λ1(·) is the largest eigenvalue of the operator. J is the Jacobian matrix of
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(5.7) and can be given by

J =





J11 J12 J13

J21 J22 J23

J31 J32 J33




=




J11 J12 J13

0 J∗



 , (5.9)

where J11 is an n
2
×n

2 diagonal matrix whose diagonal entries are −δ. We note that

J21 and J31 are zero matrices. As a result, J is an upper block triangular matrix,

and

λ(J) = λ(J11) ∪ λ(J∗), (5.10)

where λ(·) is the set of eigenvalues of the operator.

Here, J23, J32 and J33 are n
2
× n

2 diagonal matrices. Their diagonal entries are

δ, β and −2δ, respectively. The entry in the (n(i− 1) + j)-th row, (n(k− 1) + l)-th

column of J22, denoted by J
22
ij,kl, is given by

J
22
ij,kl =






aijβ − (δ + β), if ij = kl, i = l

−(δ + β), if ij = kl, i -= l

aijβ, if ij -= kl, i = l

0, if ij -= kl, i -= l

. (5.11)

By employing the Schur complement, i.e.,



J22 J23

J32 J33








I 0

−(J33)−1J32 I



=




H J23

0 J33



 , (5.12)

we have λ(J∗) = λ(J33) ∪ λ(H), where H = J22
− J23J33−1

J32. The entry in the

(n(i− 1) + j)-th row, (n(k − 1) + l)-th column of H, denoted by Hij,kl, is given by

Hij,kl =






aijβ − (δ + β
2 ), if ij = kl, i = l

−(δ + β
2 ), if ij = kl, i -= l

aijβ, if ij -= kl, i = l

0, if ij -= kl, i -= l

. (5.13)
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We conclude that λ(J) = λ(J11) ∪ λ(J33) ∪ λ(H). Note that J11 and J33 are

diagonal matrices, and all the diagonal entries of them are negative, i.e., all the

eigenvalues of J11 and J33 are negative. As a result, we have

λ1(J) < 0 ⇔ λ1(H) < 0. (5.14)

The matrix H can be written as

H = P+Q, (5.15)

where Q is a diagonal matrix and can be given by Q = diag[−(δ + β
2 )]. The entry

in the (n(i−1)+ j)-th row, (n(k−1)+ l)-th column of P, denoted by Pij,kl, is given

by

Pij,kl =






aijβ, if i = l

0, otherwise

. (5.16)

We have that all the eigenvalues of Q are −(δ + β
2 ) and

λ(H) = λ(P)− (δ +
β

2
). (5.17)

Note that P is a n
2
×n

2 sparse matrix and similar with a block matrix consisting

of βA and zero matrices as given by

P = X−1




βA 0

0 0



X. (5.18)

This is achieved by performing matrix operations on P. Thus, the eigenvalues of P

can be given by

λ(P) = β × λ(A) ∪ 0. (5.19)

Combining (5.8), (5.14), (5.17) and (5.19), the epidemic will become extinct if

βλ1(A) − (δ + β
2 ) < 0. In other words, the epidemic threshold, denoted by τ

∗, is

given by

τ
∗ =

1

λ1(A)− 1
2

. (5.20)

The epidemic dies out, if τ = β
δ < τ

∗.
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5.4 Simulation and Numerical Results

In this section, numerical and simulation results are presented to validate the

proposed group-based SIS model and the deduced epidemic threshold. In every run

of the simulations, the groups and the network topology, i.e., the scale and structure,

are first set up, according to the rules specified in Section 5.2, i.e., aij number of

directed edges are added from a Gi-node to aij number of randomly selected Gj-

nodes. The nodes do not connect themselves despite aii ≥ 0. Then, the infection rate

β and the curing rate δ are configured, based on the analytical epidemic threshold

τ
∗. The simulations are carried out on the NepidemiX [127], which is a Python

library implementing simulations of epidemics. For initialization, randomly selected

10% of the nodes are infected. During a simulation run, the infected nodes can be

cured at the rate of δ. Every infected node can infect its neighbors connected by

edges at the rate of β. Every dot in the figures is the average of 100 independent

runs under the same configurations, including the network topology, the percentage

of initially infected nodes, β and δ.

We first validate our model on a 1000-node network where nodes connect each

other and form a complete graph. The infection and curing rates are set to be

β = 0.0005 and δ = 0.1 per time slot. τ = β
δ = 0.005 is set to be larger than

τ
∗ = 0.001 to evaluate the proposed model. Ten percent of nodes are randomly

chosen to be infected at t = 0. Fig. 5.3 plots the infection density, given by
∑

[I]i
N ,

from t = 0 to 30. The analytical results are numerically evaluated by employing

(5.6) with the nodes evenly divided into 1, 2, 5, 10, 25 and 50 groups, respectively.

From the figure, we can see that the analytical results can asymptotically ap-

proach the simulation results with the increasing number of groups, e.g., from n = 1

to n = 50. The simulation results can outgrow the analytical results when the num-

ber of node groups is small. The analytical results under a single group of nodes,
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Figure 5.3 : The growth of infection density where a complete graph with 1000

nodes is considered. β = 0.0005 and δ = 0.1. The analytical results are obtained

based on (5.6) by evenly dividing the nodes into 1, 2, 5, 10, 25 and 50 groups.

i.e., n = 1, can substantially underestimate the infection density. The analytical

result is only 83.8% (0.670.8 ) of the simulation result, when t = 30. In contrast, the

analytical results under 50 groups of nodes, i.e., when n = 50, match the simula-

tion results indistinguishably. This is because the proposed model is designed to

decouple the state transitions of edges connecting nodes from different groups, and

estimate the number of edges connecting infected nodes and subsequently the pop-

ulation of infected nodes. The mean-field approximation is applied to model the

interplay between the averaged ratios of infectious edges connecting different pairs

of node groups. With an increasing number of node groups, the averaged ratio of

infectious edges connecting a specific pair of node groups can become increasingly

representative with a reducing deviation. In other words, the averaged ratio becomes

increasingly precise for a reducing set of edges. In the special case where every node

forms a group, (i.e., the number of groups is n = 1000), the ratio is exactly the
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probability at which an edge is infectious. The proposed model is able to capture

the state transition of an edge under the averaged effect of all other individual edges,

and can be fairly accurate given the large number of edges. Note that the number of

groups, e.g., n = 50, is far less than the network size, i.e., 1000. This finding allows

us to model the epidemic propagation with a small number of differential equations.

The figure also shows that the analytical results can be accurate at the initial stage

(or low infection densities) even with few node groups. This is because the state

transitions of different edges are loosely coupled if only very few nodes are infected.
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Figure 5.4 : The infection density with the growth of time where a complete graph

with 1000 nodes is considered. The analytical results are obtained based on (5.6)

by evenly dividing the nodes into 5 groups where τ = β
δ = 0.002, 0.0015, 0.0011 and

0.001, respectively.

We note that the proposed model has low complexity, i.e., O(n2) where n is the

number of groups. The complexity is significantly smaller than the model complex-

ity in the last chapter, i.e., O(2N) where N is the number of nodes. The model

complexity is also small than the complexity of existing works, e.g. O(N) of the
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model given in [121] because n << N , e.g., n = 5 and N = 1000 in our experiment.

We proceed to evaluate the model accuracy with different infection densities.

This is done by adjusting the infection rate. A 1000-node network is considered

where nodes connect each other and form a complete graph. The epidemic prop-

agation with four effective spreading rates, i.e., τ = β
δ = 0.002, 0.0015, 0.0011 and

0.001, are simulated and analyzed. The values of τ are larger than, and close to, the

analytical threshold. The infection rates are obtained by adjusting β while setting

δ to 0.1. The analysis is based on (6) by evenly dividing the nodes into 5 groups to

explore the applicability of the model to a small number of groups.

From Fig. 5.4, we can see that the simulation results still overtake the analytical

results when τ = 0.0015 and 0.002. For example, the simulation result is 0.459 in

the case of t = 40 and τ = 0.002, while the analytical result is only 0.418. However,

the gap between simulation results and analytical results decreases with dropping τ ,

i.e., from τ = 0.002 to 0.0015. When τ further declines, i.e., τ = 0.0011 and 0.001,

the analytical results are able to match the simulation results from the beginning to

the end. According to (5.20), the epidemic threshold is given by τ
∗ = 0.001. This

figure reveals that the proposed mean-field model is asymptotically accurate with

a decreasing τ and is able to precisely describe the epidemic propagation when the

effective spreading rate is around the epidemic threshold.

We evaluate the epidemic threshold τ
∗ given by (5.20) in Fig. 5.5. Three net-

works with 500 nodes are considered, where nodes are divided into three groups

(i.e., N = [100, 200, 200]). The impact of the network topology on the threshold is

evaluated by varying the number of edges in the network. Without loss of generality,

their collapsed adjacency matrix A is set to
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Figure 5.5 : The validation of epidemic threshold given by (5.20), where the y-axis

is the infection density at t = 1000. Three networks with 500 nodes are considered.

δ is set to be 0.1. α = 4, 6, 8 is used to adjust the number of edges.

A = α
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, (21)

where α = 4, 6 or 8. The curing rate δ is set to be 0.1. Ten percent of nodes

are randomly selected to be infected at the initial state. The infection density at

t = 1000 is used as the stable infection density, as indicated by the y-axis. Evaluated

with (5.20), the epidemic threshold is τ ∗= 0.005, 0.0033 and 0.0025 when α= 4, 6

and 8, respectively. We can see from the figure that τ
∗ (the solid vertical lines)

can precisely specify the epidemic thresholds. When τ < τ
∗, the epidemic can be

suppressed eventually. When τ > τ
∗, the infection density grows with τ and also

exhibits convexity. We can see that the network topology has a strong impact on the

epidemic threshold and the infection density. Specifically, the threshold decreases



107

with the growth of α. For example, τ halves from 0.005 to 0.0025, when α doubles

from 4 to 8 (the number of edges doubles, as well). The infection density increases

with the growth of α, especially around the threshold. For example, in the case

of α = 8 and τ = 0.005, the infection density is 0.5 as compared to the infection

density of α = 4.

τ
0 0.02 0.04 0.06 0.08 0.1
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Figure 5.6 : The validation of epidemic threshold, where the y-axis is the infected

population at t = 1000. Different scales of networks (N=100, 200 and 300, respec-

tively) are considered. δ is set to be 0.1.

We note that the epidemic threshold, given by (5.20), is determined by the

network structure A, rather than the number of nodes given by N . To illustrate

this, we compare the number of infected populations in different scales of networks,

illustrated by Fig. 5.6. To be specific, N = δ × [10, 20, 20], where δ = 2, 4 and 6,

respectively. Their collapsed adjacency matrices are obtained with (21) by letting

α = 1. As a result, τ ∗ = 0.02. Fig. 5.6 firstly confirms the accuracy of τ ∗ illustrated

by the solid vertical line. The observation that the three networks with the same

structure but different scales share the same epidemic threshold validates that the
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epidemic threshold depends on the network structure rather than the scale. This

finding can significantly reduce the complexity to deduce the epidemic threshold,

i.e., from decomposing an N -dimensional matrix by using 1
λ1(A) , given by [129], to

decomposing an n dimensional matrix (n ) N). For example, N = 1000 and n = 5

in Fig. 5.4, and N = 500 and n = 3 in Fig. 5.5. It is interesting to notice that

the infection densities are the same, e.g., 79.6
100 ≈

158.8
200 ≈

240
300 in the case of τ = 0.1,

although the infected population varies in different scales of networks. This can be

the reason of that the epidemic threshold depends on the network structure rather

than the network scale.

5.5 Summary

In this chapter, we designed a continuous-time SIS model in large-scale networks.

By categorizing nodes into groups, the model complexity was significantly reduced.

The proposed epidemic model was validated to be asymptotically accurate with the

decrease of the effective spreading rate and/or the increase of node groups. The

epidemic threshold can be deduced with the largest eigenvalue of the collapsed adja-

cency matrix whose dimension is much smaller than the network scale. Simulation

results corroborated the effectiveness of the model, as well as the analytical accuracy

of the threshold in large-scale networks.
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Chapter 6

Remote Control Modeling and Detection

The detection of APT is critical to control and defense against APT attacks. How-

ever, the detection of APT is a very challenging problem due to the advanced attack

skills of APT [18]. For example, APT often attack targets with professional zero-day

vulnerabilities [137], which is able to disable popular signature-based detection. The

anomaly detection technology has been used in intrusion detection for a long time,

where the data vectorization is a key step and has a strong impact on detection

results. This chapter analyzes and models the remote control of APT, which is a

distinctive stage. An anomaly detection method used to identify remote control

traffic of APT is proposed and then validated.

6.1 Introduction

As a kind of novel and complicated attack, APT has not been well understood

and effectively prevented. At the beginning, efforts have been put forward to analyze

existing APT cases. After that, various multistage models were extended to describe

APT cases, correlate alerts, rebuild attack scenes and predict attacks. Anomaly

detection technology was also applied to detect APT attacks.

In this chapter, we focus on the essential stage of APT, i.e., the remote control

stage. We find a new feature of remote control communications that the access

of remote control domains tends to be independent, while legal web domains are

accessed correlated. The feature is able to efficiently distinguish remote control

domains and legal domains. To utilize this feature, we introduce a new concept,
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i.e., the concurrent domains in DNS records, denoted by CODD, to measure the

correlations among domains. Based on this feature, we propose a three-dimensional

vector to represent the relationship between an internal host and an external domain,

and apply classification algorithm to detect remote control. The method is validated

on the public dataset provided by Los Alamos National Laboratory.

The rest of this chapter is organized as follows: In Section 6.2, we summarize

key features of remote control in APT and propose a novel remote control detec-

tion method. Section 6.3 shows experimental and numerical results, followed by

discussion and conclusion in Section 6.4.

Notations used in the chapter are as listed in Table 6.1.

Table 6.1 : Notations Used in Chapter 6

Notation Description

r A DNS vector

t The DNS request time

h The host which triggers the request

d The queried domain

K The number internal hosts in DNS records

Hk The k-th host

Dl The l-th connected domain

Vk,l The vectorized the connection between Hk and Dl

M The number of connections between Hk and Dl

Rk,l,m The set of CODDs with Hk and Dl with timestamp Tm

AN The average number of CODDs

HC The highest confidence level of CODDs
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6.2 Remote Control Detection Method

In this section, we carry out analyses of remote control in APT and summarize

three key features. Based on these features, we propose an effective remote control

detection method.

6.2.1 Features of Remote Control in APT

Since APT is designed to evade detection, its remote control communications act

like normal network traffic as possible as they can. In order to distinguish them, we

analyze remote control communications in APT and identify its three key features.

1) Remote control is HTTP-based

In comparison with remote controls employing IRC or P2P, the HTTP-based

remote control has remarkable advantages in penetrability and disguisement and

meets the requirements of APT. P2P and IRC traffic has distinct network features

such as ports, package content. So, it can be easily detected and blocked. By

contrast, the HTTP-based control mode is stealthier than others. Firstly, web traffic

is usually labeled as legal in most enterprises. HTTP-based remote control traffic,

therefore, is able to pass through security services, such as firewalls and intrusion

detection systems. Secondly, remote control traffic can easily hide in the web traffic

even transfers large amounts of data due to the fact that web traffic occupies a large

proportion of the whole network traffic. In practice, more than 90% APT attacks

employ HTTP-based remote control technology [138]. On account of these, we look

for pieces of evidence of remote control in the HTTP related records.

2) Victims connect control center lowly and slowly

The main reason of this feature is the inconspicuous property of APT. To avoid

detection, APT only attacks selected hosts according to the attack plan, which re-

sults in a limited scale of infected hosts compared with botnets. Consequently, the
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remote control domains would not be dramatically connected by massive internal

hosts. Another fact resulting from the detection evasion is slow attack processes.

This is because high frequent connections left obvious evidence in the target system

and increase the risk of being exposed. The slow attack process leads to that the con-

nections between victims and remote control domains maintain low and slow [139].

However, connections between internal compromised hosts and control centers

are necessary to control attack processes. Thus, the connections cannot be extremely

rare.

Above all, the connections between victims and control centers exist and can

be traced. But the connections are low and slow and therefore cannot be easily

detected by applying large-scale group features.

3) Remote control domains are accessed independently

Since APT largely employs HTTP-based remote control, we tend to identify the

difference between remote control communications and benign HTTP requests. We

use concurrent domains to denote the domains that are accessed jointly, and believe

that remote control domains have fewer concurrent domains than normal domains

because of the independent access feature of remote control.

When users surf the Internet, a series of domains, instead of a single domain,

are accessed within a time window. There are two kinds of activities resulting in

this phenomenon, i.e., the loading of inline components and the continuous access.

Due to the fact that a Web page consists of the main body and inline components,

e.g., ads and the multimedia from other domains, the domains providing inline

components are automatically accessed when the Web page is loaded. On other

hand, users access a number of websites during the Web surfing. For example, a user

uses a search engine to search keywords and then opens new pages to check details.

On the contrary, remote control domains, which are only used to upload collected
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data and download subsequent attack commands, are accessed independently and

do not have inline components. As a result, remote control domain does not have

concurrent domains.

DNS, translating domain names to numerical IP addresses, reflects HTTP re-

quests and provides enough information to detect remote control connections. We

use CODD to denote the COncurrent Domain in DNS records and define it by

Definition 1. CODDs are the domains that are quired by the same host and appear

within a given time window in the domain name server records.

Although concurrent domains contribute to the CODDs, CODDs are not limited

to the concurrent domains. For the concurrent domains analyzed before, there exist

hyperlinks connecting them, i.e., they are connected rather than simply appear to-

gether. DNS records do not collect web page content and, therefore, cannot reveal

the connectivity between concurrent domains. However, DNS records are still able

to show the access sequence of concurrent domains. On the other hand, separate do-

mains can become CODDs just because they are accessed together accidentally. For

example, a user opens several favorite pages together, which makes these separate

domains become CODDs. This also works for remote control domains because re-

mote control domains can be connected while the benign domains are queried. This

concurrence increases the number of CODDs of remote control domains and has a

negative impact on the discrimination between remote control domains and benign

domains. The number of CODDs, came from separate domains, can be treated as

random error and reduced by re-observation.

Benign domains have a number of CODDs, while remote control domains have

significantly fewer CODDs. Fig. 6.1 illustrates the number of CODDs of some

popular benign domains, where these domains are independent accessed once and

their CODDs are counted; the time window is set as 5s. It confirms that these
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popular benign domains have an amount of CODDs. We also see that the more

complicated (e.g., www.cnn.com) the webpage is the more CODDs it has.

Figure 6.1 : The number of CODDs of some popular domains

6.2.2 Remote Control Detection Details

Based on the independent access feature of remote control, we propose to detect

remote control in APT with the DNS records by the following steps.

Converting DNS records

Raw DNS records are converted into triples to simplify processing.

DNS records generated by internal DNS servers are excluded, since they do

not provide more information for the detection. Then we extract the type-A DNS

records, which translate given URLs into numerical addresses, because remote con-

trol communication in APT appears like normal traffic and mainly uses the type-A

request. Finally, we use a triple, denoted by r, to present a DNS record which is
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given by

r =< t, h, d >, (6.1)

where t denotes the request time; h denotes the host triggering the request and d

denotes the queried domain.

Establishing sets of DNS record

Our remote control detection starts with a given host, which can be selected

from internal important hosts. A set of DNS records for every host-domain pair is

set up.

Suppose there are K internal hosts in the DNS records and the host Hk (k =

1, 2 · · ·K) has connected L domains. The number of connections between internal

host Hk and domain Dl(l = 1, 2 · · ·L) is denoted by M . With a given time window

2 × δ, let Rk,l,m denote the set of CODDs associated with the m-th connection

between host Hk and domain Dl with timestamp Tm. In other words, Rk,l,m is the

set of DNS records where the element r satisfies one of the two limitations in (6.2).

r(h) = Hk, r(d) ∈ D, Tm − δ ≤ r(t) < Tm;

r(h) = Hk, r(d) ∈ D, Tm < r(t) ≤ Tm + δ,

(6.2)

where r(·) is the element of r. We exclude the record whose r(t) is equal to Tm to

filter out the targeted DNS record itself.

Then we set up a set of Rk,l,m, 1 ≤ m ≤ M , which is denoted by Ck,l and used to

present the CODDs of the connection between the internal host Hk and the queried

domain Dl during the observation. The Ck,l is given by

Ck,l = {Rk,l,i}i=1,2,··· ,M . (6.3)

Extracting features

After obtaining Ck,l, we use a 1 × 3 vector Vk,l = [M,AN,HC] to represent

the connection between host Hk and domain Dl, where M is the connection times
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between host Hk and domain Dl; AN is short for the average number of CODDs;

HC is short for the highest confidence level.

AN measures the quantity of CODDs and can be given by

AN =

M∑
i=1

|Rk,l,i|

M
,

(6.4)

where |·| denotes cardinality. As analyzed before, CODDs exist for different reasons.

We use the confidence level to measure the relationship between a given domain and

its concurrent domains. The confidence level is numerically equal to the number of

concurrent times. For a given domain Dw and a set Ck,l, the confidence level of Dw,

denoted by CI(Dw), is given by

CI(Dw) = |Sk,l|, (6.5)

where Sk,l is the subset of Ck,l which contains the DNS record r whose r(d) is the

given domain Dw. Then HC is obtained by choosing the maximum CI(Dw) and

can be given by

HC = max
Dw∈D

(
CI(Dw)

)
. (6.6)

HC is used to measure the correlation between the target domain and its CODDs.

The CODDs generated by the inline components have high confidence levels.

Figure 6.2 illustrates the generation of the feature vector Vk,l. As shown in the

figure, host Hk connects domain Dl four times, so M = 4. AN = 2.5 since domain

Dl has ten CODDs in total, i.e., AN = 10
4 = 2.5. Among the CODDs of Dl, domain

1 appears 4 times, which is the maximum appear times. As a result, HC = 4.

Finding Remote Control domains

After modeling the connections between the internal compromised hosts and

remote control domains, our goal is identifying remote control domains based on

classification. In the experiment, we use RIPPER [140] to perform classification
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Figure 6.2 : Generative process of the feature vector 
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and detect remote control domains. Other classification algorithms can also be used 

in the classification-based detection. Among the variables in V k,l, M is used to 

measure active level and narrow search area. AN and HG reflect the independent 

access feature of the remote control connections and identify whether domain D1 is 

a remote control domain. As analyzed before, the domains with smaller AN and 

HG tend to be remote control domains. 

6.3 Performance Evaluation 

6.3.1 Data Set 

To evaluate the performance of our detection method, we applied our remote 

control detection approach to the dataset of APT infection discovery challenge spon­

sored by Los Alamos National Laboratory (LANL) [141]. Specifically designed for 

the APT detection challenge, the dataset collected 1.25 TB DNS data in 49 days. 

According to LANL, simulated APT was divided into three main stages: ini­

tial compromise, downloading additional malware, and establishing remote control 

communications. They simulated several APT attacks that contain whole or parts 

of the attack and provided two months of anonymized DNS records collected from 

a large site. The data of the first month was used as training data. The data of 
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the second month was mixed with simulated APT traffic and used as test data. In

this data set, real attacks might exist, because the data came from a real site rather

than network traffic generators. A hint file was provided for each day in the second

month, which contains hint hosts and websites used in each phase of APT.

When our experiments were implemented, just part of the data of the second

month was available on their FTP server. As far as we know, this data set was the

only public and widely used dataset created for APT detection. The data set also

provided enough data to test our mechanism. Therefore, we carried out experiments

on this data set.

6.3.2 Experiment Details

We first simplified DNS records as described earlier. Meanwhile, we applied a

whitelist to the DNS records to reduce them, which was set up based on the top

100 second-level domains (SLDs). After done that, the reduced data was about one

percent of the original uncompressed data. In the dataset, we only used the data

containing remote control communications and excluded the data simulating the

initial compromised only. Finally, we used only the DNS records launched by the

hosts given in the hint files and got 27,383 records of ten days in the second month.

We set the time window, δ, to be 5 seconds, which is a proper value to cover

possible situations. We parsed the original dataset and extracted instances of Vk,l

in a Python environment. In the end, we got 6486 instances of Vk,l. There were

15 records labeled as remote control communications and 6471 records labeled as

normal, according to the given hints. Among classification algorithms, we chose

RIPPER for classification.

We carried out the 10-fold cross-validation ten times using Weka’s [142] classify

function with ten different random seeds. During this process, RIPPER would gener-

ate a set of classification rules. Since the real attacks might exist in the background
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traffic, the domains not listed in the hint files might be remote control domains

as well. We also analyzed the generated classification rules and the classification

results.

6.3.3 Experiment results

Table 6.2 : Remote Control Detection Rules

Rule 1 M ≥ 3, AN ≤ 0.4

Rule 2 M ≥ 3, AN ≤ 1, HC ≤ 1

In the experiment, we obtain two rules with RIPPER to filter remote control

domains out, shown in Table 6.2. As we can see, the generated rules corroborate

our analyses in Section 6.2.1 that remote control domains tend to have small AN

and HC. The value of M indicates that the compromised hosts are always under

the control of adversaries. There is a special phenomenon in Rule 1 that HC is not

needed when AN < 0.4. This is because the domains, which only have rare CODDs

and are considered as remote control domains, do not have a CODD with high HC.

On the other hand, normal domains must have a certain amount of CODDs. As

for the Rule 2, though the value of AN is larger than that of Rule 1, it remains a

low level, which reveals that the remote control domains are accessed independently

most of the time but connected along with benign requests accidentally. The value

of HC contributes to the detection in Rule 2, which confirms that remote control

domains barely have concurrent domains.

Table 6.3 illustrates the detection results of the generated rules, where each num-

ber refers to the quantity of host-domain pairs. Based on the rules, our detection

method could find out all the documented 15 remote control domains without miss-

ing but classify 3 documented benign domains as remote control domains. However,
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Table 6.3 : Confusion Matrix of Classification

Classified as Classified as

Remote control Normal

Documented Remote control 15 0

Documented Normal 3 6468

due to the fact that real attacks might exist in the data set, we carry out further

analyses on the misclassified domains.

The numerical V of the three misclassified classified records can be given by

V1 = [172, 0.2558, 6], V2 = [4, 0, 0] and V3 = [9, 0.56, 1], respectively. We examined

these domains based on the periodic connection feature used in [100], which assumes

remote control domains are connected periodically. We found that the domain of V1

is connected every 3 minutes; the domain of V3 is connected almost every 1 hour;

while the domain of V2 is connected irregularly. It indicates that the domains of V1

and V3 can be undocumented remote control domains. V2 is so outstanding with

AN = 0, HC = 0 that we regard it as a non-periodic undocumented remote control

launched by skillful attackers.

Besides of [100], the periodic connection feature was also applied in [143] with

a different evaluation method. In their APT detection mechanisms, the remote

control detection lays a foundation of precursor and successor detections. Our re-

mote control detection results were compared with theirs in the help of hints. In

our ten times 10-fold cross-validation, we are able to find out 89.3% remote control

connections in average. According to the result in [100, Table. I], the number of

undocumented but labeled as remote control domains is larger than the number of

detected real remote control domains, which is an unusual phenomenon even though

there might exist undocumented attacks in the dataset. Based on the result in [143],
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their detection method could find out 79% remote control connections in the case of 

applying the feature of periodic connection only. Although the feature of periodic 

connection can be used to detect remote control domains, it can be easily evaded 

in practice. For example, the adversaries can configure non-periodic connections, 

which do not rely on host states, i.e., does not leave additional pieces of evidence 

and trigger other detection systems. 

We performed further statistical analyses on the dataset to explain the generated 

rules. During the statistics, we removed the domains connected by the same host less 

than three times, i.e., let M � 3, which is the same configuration as [143]. Because 

the communications between the compromised hosts and control centers cannot be 

extremely rare as analyzed and validated before, while legal HTTP requests can. 

Finally, we got 1364 instances of V k,l · 
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Figure 6.3 compares the difference between the distribution of AN of remote 

control domains and normal domains. A noticeable distinction is that all of re-
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mote control domains' AN are no larger than 1 while AN of normal domains are 

distributed throughout a wide range. This suggests that normal domains have a 

number of domains which are concurrent with them, but remote control domains 

are accessed independently and barely have CODDs. 

Figure 6.4 compares the distribution of HG of remote control domains and nor­

mal domains. Similarly, all ofremote control domains' HG are no larger than 1, and 

rare normal domains' HG is less than 1. Near 61% normal domains have CODDs 

whose the highest confidence level ranges from 1 to 5. Combining the statistics 

result that almost the same (59%) normal domains are connected from 3 to 5 times, 

it corroborates that normal domains have fixed concurrent domains. Both of Figure 

6.3 and Figure 6.4 confirm our analyses that remote control domains are accessed in­

dependently, and their CODDs are rare and mainly caused by accidentally together 

access. On the contrary, normal domains have a number of concurrent domains as 

well as CODDs. 
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6.4 Discussions and Summary

Although the proposed detection method is able to find out remote control do-

mains in the LANL dataset, it can be evaded by the following strategies: a) The

compromised hosts issue a series of HTTP requests while connecting remote control

domains; b) The compromised hosts connect remote control domains while users

are surfing the Web. However, these strategies make the remote control connection

anomaly in other aspects. For the first strategy, the compromised hosts may change

the behaviors of web usage, e.g., connecting the users’ unfamiliar domains, which

are anomaly actions and will trigger other anomaly detection services. In the case

of the second strategy, the adversaries have to monitor the users’ internet usage,

which increases the cost of invasion. On the other hand, network monitoring is a

sensitive function and highly regulated by security services. Therefore, this strategy

also makes the adversaries exposed.

The proposed detection method does not rely on the widely used features, such

as traffic content and the correlation between domain names. It provides a new

insight of remote control. Applying the independent access feature, our novel de-

tection method is effective in the context of APT attacks that skillful adversaries

utilize information hiding, targeted attack, and random calling-back to evade ex-

isting detections. The proposed remote control detection method demonstrates the

usage of the independent access feature. In practice, this feature can be applied

with other modeling methods or combined with other detection technologies, such

as traffic-based detection and the group similarity, to improve the performance.

The proposed remote control detection method is able to handle large-scale traf-

fic. First of all, the proposed detection method just uses the DNS traffic which takes

a small ratio of the total network traffic. Secondly, the proposed detection method

analyzes the connections between internal hosts and external domains rather than
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every individual DNS requests, which can significantly reduce the amount of data

to be analyzed. Then, the proposed detection method uses a tuple to represent a

connection between an internal host and an external domain rather than the com-

plex raw DNS data. Lastly, filters, such as the white list used in this chapter, can

effectively reduce data as well.

Cyber security is an endless competition between adversaries and defenders,

especially in APT. The adversaries can continuously update their attack skills and

adjust attack strategies. Thus, there is no permanent solution for the defenders

to ensure information security. The proposed independent access feature helps the

defenders to achieve a leading superiority in the competition with attackers.

In this chapter, we analyzed and concluded the features of remote control in

APT, which were quite different from the remote control in botnets. We proposed a

novel feature of remote control communication in APT named independent access.

Based on the feature, a DNS records analysis and remote control detection method

was implemented, which was validated on public datasets.
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Chapter 7

Future Works

With a series of proposed models, this thesis analyzes key stages of APT cyber-

attacks and deduces meaningful results. In this chapter, possible future research

directions are discussed based on the works in this thesis.

7.1 Future Works on Propagation Models

7.1.1 New Propagation Processes

New propagation processes can be proposed to study the propagation of specific

cyber-attacks. The homogeneous propagation model is studied in this thesis, where

all the nodes share the same infection and curing rate, can be extended to hetero-

geneous propagations where every node has a unique curing rate and infection rate.

This is based on the fact that nodes can be at different risk levels according to their

heterogeneous security settings, functions, and operators. Note that the complex-

ity of heterogeneous models would dramatically higher than that of homogeneous

models. Thus, efficient analysis methods, such as mean-field and linearization, can

be developed to tackle the complexity issue. Another possible research direction

is the modeling of propagation processes with new statuses. Traditional epidemic

models, including the SIS model analyzed in this thesis, can hardly capture the ver-

satile APT attacks. New attack behaviors, such as being scanned and information

collection, can be captured by models with new statuses. The status transition can

be described by a directed graph rather than simply susceptible-infected-susceptible

looping transition in SIS models. As a result, the models can be analyzed from new
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viewpoints beyond the lifetime and extinction threshold as adopted in this thesis.

7.1.2 Propagation in Adaptive Networks

New propagation models can be proposed to study the propagation of cyber-

attacks in adaptive/dynamic networks. This thesis studies the virus propagation

in static networks where both the nodes and edges remain unchanged. Practical

networks, however, can be adaptive where nodes can join and leave and edges can

be broken and rewired according to given rules. For example, programmable in-

frastructure technology can dynamically interpret a single physical network into a

variety of logical networks. The adaptive networks allow administrators to control

propagation by isolating infected nodes and, on the other hand, might accelerate

the propagation because infected nodes have the potential to interact with more

susceptible nodes. As a result, new control strategies can be proposed to suppress

the propagation of viruses by designing adaptive rules. If adaptive rules are given,

new propagation models can be developed to evaluate the propagation of viruses

under the adaptive rules.

7.1.3 Propagation in Multi-layer Networks

New propagation models can be proposed to study the propagation of cyber-

attacks across multi-layer networks. As analyzed in the first two sections, APT can

be across multiple networks, e.g., social network, computer network and industrial

control network, where a single node can have different connections and behave

differently in the networks. This thesis only studies the propagation of attacks in

a single layer network, which can be extended to the propagation in multi-layer

networks. The key research can be the description of multi-layer networks, the

propagation process in every individual network and the interaction among multi-

layer networks.
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7.2 Cyber-Attack Detection

7.2.1 Detection of New Attacks

Detection technology can be developed to identify new attacks. With the devel-

opment of information and communication technology, cyber-attacks have been ex-

tended to various networks, e.g., social network, vehicle network and cyber-physical

network, and a variety of devices, such as mobile phones and autonomous vehicles.

The cyber-attacks can be traced in different logs and hardly be detected with a sin-

gle data source and method. As a result, detection technology can be developed to

address the challenge of advanced attacks. The key research point is the description

of attacks. To be specific, dynamic behavior process and static code samples can be

collected and then abstracted to attack models with graph models, e.g., Petri net,

and vectorization.

7.2.2 Artificial Intelligence-based Detection

The latest artificial intelligence technologies have the potential to improve the

detection performance, such as detection rate, false alarm rate, and efficiency. Tra-

ditional artificial intelligence technologies, e.g., classification algorithms and cluster

algorithms, have been widely adopted in abnormal detection. The artificial intel-

ligence technologies have been greatly developed and have solved many practical

complex issues. For example, the long short-term memory and the convolutional

neural network deep learning technology have been developed for natural language

processing and image processing tasks and achieved significant outcomes, respec-

tively. Such technologies give new viewpoints to analyze security data and can be

adopted in attack detection. For example, the security data in an enterprise network

can be treated as graph signals and then be processed with the image processing

technologies, which is a novel detection method and has the potential to provide

meaningful global results.
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7.3 Blockchain-based Security

7.3.1 Introduction of Blockchain

Being a distributed and tamper-resistant ledger database, Blockchain has become

a hot topic in security research and has the potential to address the critical security

issues, particularly on data integrity and reliability. Blockchain allows software

applications to send and record transactions in a trustworthy and distributed (peer-

to-peer) manner. Blockchain is rapidly gaining popularity and used extensively

for applications including smart contracts, distributed storage, and digital assets.

With the Blockchain technologies, the security requirement can be fulfilled. The

following prominent features of Blockchain can contribute to data integrity and

enhance security:

• Decentralization: Blockchains can record transactions between multiple parties

without central coordination. This can provide flexible network configurations,

and reduce the risks of single-point failures.

• Integrity: Blockchains are able to keep transactions permanently in a verifiable

way. Specifically, the signatures of the senders in transactions can guarantee

the integrity and non-repudiation of the transactions. The hash chain structure

of Blockchains ensures that any recorded data cannot be updated, even partly.

The consensus protocols of Blockchains can guarantee valid and consistent

records. The protocols can also tolerate failures and attacks, e.g., attackers

with less than 1
2 hash power in Proof of Work (PoW), or less than 1

3 of nodes

in Practical Byzantine Fault Tolerance (PBFT) consensus protocol.

• Anonymity: Blockchains can use changeable public keys as users’ identities

to preserve anonymity and privacy. This is attractive to many applications,

especially those which need to keep confidential identities and privacy.
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7.3.2 Blockchain-based Security Service

Blockchain can be employed to provide robust and reliable services against the

damage from cyber-attacks. This is based on the fact that Blockchain runs on

a peer-to-peer network and can resist single-point failure benefited from its con-

sensus protocol. However, Blockchain is dramatically different from centralized

web services and has its unique features, such as the smart contract technology

and token system, which are initially designed for cryptocurrency. It is necessary

to develop the Blockchain technologies for the compatibility with the systems be-

yond cryptocurrency. On the other hand, current Blockchain technologies require

massive storage and heavy computing and can hardly replace the cloud-based ser-

vices. A potential research point is the consensus protocol for flexible and efficient

Blockchains. Business-based consensus protocols can be a research point for next-

generation Blockchains, where the consensus protocols drive practical businesses

besides generating blocks.

Blockchain can be employed to realize trusted and privacy-preserving services

against information leakage attacks in APT. This is based on the fact that Blockchain

is a decentralized system and widely employs cryptography to secure data on it.

However, Blockchain is transparent where all data can be public verified. A key

research is to build a flexible and privacy-preserving data sharing system over the

Blockchain. Recent advanced cryptographic algorithms, e.g., proxy re-encryption,

multiparty computing, and homomorphic encryption, can be developed to tackle the

challenge, where data can be encrypted with the algorithms before being uploaded

to Blockchain.
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Chapter 8

Contributions

In this chapter, we first summarize the research in this thesis, followed by contribu-

tions of chapters.

In this thesis, a series of models were proposed to model and analyze key stages

of APT. The proposed models include game theoretic social attack-defense models,

a Markov theoretic propagation model, a mean-field theoretic propagation model,

and a command and control model. To be specific, the novelty and contributions of

this thesis can be summarized as follows.

Game theoretic social attack-defense models were proposed to capture social at-

tacks in the initial attack stage of APT. The infinitely repeated games evaluated the

effect of risk alerts on the inhibition of attack messages in the presence of multiple

types of subscribers and possible miss-detection and false alarm of forged messages.

The proposed games captured the interactions between a message publisher and the

network administrator in an online social network. In the absence and presence

of misclassification on genuine messages, sufficient conditions under which the pub-

lisher is disincentivized from publishing forged messages were identified. Closed-form

expressions were derived for the maximum number of forged messages of a malicious

publisher. Confirmed by simulations, our analysis indicates that forged messages can

be suppressed by improving the payoffs for genuine messages, increasing the cost of

bots, and/or reducing the payoffs for forged messages. The increasing detection

probability of forged messages or decreasing misclassification probability of genuine

messages can also have a strong impact on the suppression of forged messages.
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A discrete-time absorbing Markov process was designed to characterize SIS-type

propagations in the lateral propagation stage of APT. Eigenvalue analysis and Jor-

dan decompositions were carried out on the transition matrix of the Markov process

to derive the bounds of the virus extinction rate. Based on the bounds, a com-

putationally efficient approach was developed to evaluating virus lifetimes in large

networks. Specifically, the required extinction rate of a large network was inter-

preted to that of a much smaller network to deduce the required minimum curing

rate of the large network efficiently through the upper bound of its smaller counter-

part. Simulation results corroborated the effectiveness of the interpretation, as well

as analytical accuracy in large computer networks.

A continuous-time SIS model was proposed to analyze propagations in large-scale

networks, corresponding to the lateral propagation stage of APT. By categorizing

nodes into groups, the model complexity was significantly reduced. The proposed

epidemic model was validated to be asymptotically accurate with the decrease of the

effective spreading rate and/or the increase of node groups. The epidemic threshold

can be deduced with the largest eigenvalue of the collapsed adjacency matrix whose

dimension is much smaller than the network scale. Simulation results corroborated

the effectiveness of the model, as well as the analytical accuracy of the threshold in

large-scale networks.

The command and control in APT was analyzed in this thesis that keeps a low

and slow communication pattern. The independent access feature was identified to

describe the command and control in APT and distinguish it from that in botnets.

Based on the feature, a tuple was proposed base on DNS records to detect APT-type

command and control. The detection method was validated on a public dataset and

then discussed.
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