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ABSTRACT

The future wireless communication network (5G and beyond) is expected

to provide many advantages, such as an extremely high peak rate, ultralow

latency and less energy consumption. However, since an extremely large

number of connecting devices will be deployed, the demand for the spec-

trum will also be growing exponentially, causing a problem of spectrum

shortage. To effectively address the spectrum crunch, dynamic spectrum

access (DSA), including both sensing-based and database-driven DSA, has

been proposed.

In this thesis, we investigate critical challenges in DSA, including the

efficiency in sensing-based techniques and privacy in database-driven tech-

niques. First, to improve the sensing performance of the sensing-based DSA

in half-duplex (HD) systems, we propose two sensing approaches leveraging

the property of deep learning networks. Our solutions are significantly

superior in terms of the robustness to noise uncertainty, timing delay, and

carrier frequency offset (CFO), compared to conventional sensing methods.

Moreover, our work does not require any prior information of signals, which

however is essential for the traditional sensing methods. Second, to improve

the sensing performance of sensing-based DSA in full-duplex (FD) systems,

we develop two novel sensing methods using the features of orthogonal

frequency division multiplexing (OFDM) signals. The developed sensing

approaches are robust to not only residual SI but also timing delay or CFO.

We also obtain the closed-form expressions of the probability of detection

and false alarm for our approaches. Third, to protect the users’ privacy in





the database-driven DSA, we develop two schemes to protect the operational

privacy of Incumbent Users (IUs) and honest/dishonest Secondary Users

(SUs). To implement our proposed work, we introduce an interference

calculation scheme that allows users to calculate an interference budget

without revealing operational information. It also reduces the computing

overhead of our developed approaches. Additionally, we propose a “pun-

ishment and forgiveness mechanism to encourage dishonest SUs to provide

truthful information. Theoretical analysis and extensive simulations show

that our proposed schemes can better protect all users’ operational privacy

under various privacy attacks, yielding higher spectrum utilization with less

online overhead, compared with state of the art approaches.
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