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Aiming at reducing trauma and morbidity associated with large incisions in open surgery, 

minimally invasive surgery (MIS) has been widely acquired in clinical practice as a pow-

erful tool enabling patients with less pain, shorter hospital stay, and fewer complications. 

However, MIS narrows the surgeon’s field of view which confines visual information when 

implementing MIS. Therefore, a stereoscope or monocular scope is an essential tool for 

capturing and transmitting 2D images during the procedure.

Although numbers of special sensors including laser, structured light, time-of-flight cam-

eras have been applied or investigated in MIS, RGB scope is still widely applied in the 

intro-operative system because it is non-invasive and cheap to be installed. Thus it is an 

important topic to rebuild and visualize the latest deformed shape of soft-tissue surfaces to 

mitigate tissue damages from stereo or monocular scopes. This research aims at proposing 

innovative robocentric simultaneous localization and mapping (SLAM) algorithm for de-

formable dense reconstruction of soft-tissue surfaces using a sequence of images obtained 

from a stereoscope or monocular camera. In this paper, we try to solve the problem by 

introducing a warping field based on the embedded deformation (ED) nodes which makes 

full use of the 3D shapes recovered from consecutive pairs of stereo images by deforming 

the last updated model to the current live model. Our robocentric SLAM system (off-line 

and tested on stereo videos) can: (1) Incrementally build a live model by progressively 

fusing new observations with vivid accurate texture. (2) Estimate the deformed shape of
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the unobserved region with the principle As-Rigid-As-Possible. (3) Perform the dynamic

model shape deformation. (4) Estimate the current relative pose between the soft-tissue

and the scope.

We further improve and optimize the proposed robocentric deformable SLAM algorithm to

MIS-SLAM: a complete real-time large scale robocentric dense deformable SLAM system

with stereoscope in MIS based on heterogeneous computing by making full use of CPU

and GPU. Idled CPU is used to perform ORB-SLAM for providing robust global pose.

Strategies are taken to integrate modules from CPU and GPU. We solve the key problem

raised in previous work, that is, fast movement of scope and blurry images make the

scope tracking fail. Benefiting from improved localization, MIS-SLAM can achieve large

scale scope localizing and dense mapping in real-time. It transforms and deforms the

current model and incrementally fuses new observation while keeping the vivid texture.

In-vivo experiments conducted on publicly available datasets presented in the form of

videos demonstrate the feasibility and practicality of MIS-SLAM for potential clinical

purpose.

In MIS-SLAM, however, it remains challenging to keep constant speed in deformation

nodes parameter estimation when the model grows larger. In practice, the processing time

grows rapidly in accordance with the expansion of the maps. Therefore, we propose an ap-

proach to decouple nodes of deformation graph in large scale robocentric dense deformable

SLAM and keep the estimation time to be constant. We discover that only partial de-

formable nodes in the graph are connected to visible points. Based on this principle, the

sparsity of the original Hessian matrix is utilized to split parameter estimation into two

independent steps. With this new formulation, we achieve faster parameter estimation

with amortized computation complexity reduced from O(n2) to closing O(1). As a result,

the computation cost barely increases as the map keeps growing. By our strategy, the bot-

tleneck of limited computation in estimating deformation field in large scale environment

has been overcome. The effectiveness is validated by experiments, featuring large scale

deformation scenarios.

In addition to robocentric SLAM, this thesis also aims at developing a general SLAM which

estimates the scope poses correctly. An elaborate observability analysis is conducted on
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the ED graph. We demonstrate and prove that the ED graph widely used in such sce-

narios is unobservable and leads to multiple solutions unless suitable priors are provided.

Example, as well as theoretical prove, are provided to show the ambiguity of ED graph

and scope pose. Different from robocentric SLAM, in modeling non-rigid scenario with ED

graph, motion priors of the deforming environment is essential to separate robot pose and

deforming environment. The conclusion can be extrapolated to any free form deformation

formulation. In guaranteeing the observability, this research proposes a preliminary de-

formable SLAM approach to estimate robot pose in complex environments that exhibits

regular motion. A strategy that approximates deformed shape using a linear combination

of several previous shapes is proposed to avoid the ambiguity in robot movement and rigid

and non-rigid motions of the environment. Fisher information matrix rank analysis is

performed to prove the effectiveness. Moreover, the proposed algorithm is validated using

Monte Carlo simulations and real experiments. It is demonstrated that the new algorithm

significantly outperforms conventional SLAM and ED based SLAM especially in scenarios

where there is large deformation.
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p Pixel of the projected point on left image.

p′ Pixel of the projected point on right image.

u First coordinate of 2D pixel.

v Second coordinate of 2D pixel.

K Camera intrinsic matrix.

α(u, v) Surface albedo.

Î(u, v) The measured pixel intensity at pixel (u, v).

O(·) Computational complexity.

Ω Linear elastic solid parameter.

λ and G Lam’e parameters that define the material elastic properties.

U Poisson’s ratio.

E Young’s modulus.

ai,jj and aj,ij Displacement vectors share the same edge.

gj Position of node j.

Aj Affine matrix of node j.

v Position of a point.

ṽ Target deformed vertex of v.

Rc Global rotation of the scope.

Tc Global translation of the scope.

xvii



Nomenclature xviii

w(v) The quantified weight for transforming v exerted by each related ED

node.

dmax The maximum distance of the vertex to k + 1 nearest ED node.

m The number of ED nodes.

c1, c2 and c3 The column vectors of A.

Erot The affine matrix close to SO(3).

Ereg The sum the transformation errors from each ED node.

αjk The overlap influence of the two ED nodes.

N(j) The set of neighboring node to node gj .

F(·) A general function defining a point to target distance.

D(·) The corresponding voxel value recorded in DFF.

Edata The sum distance error.

L The set for all the visible points.

D Depth scan.

Γ(·) Lift 2D depth pixel up to 3D point.

H(·) Lift 2D normal pixel up to 3D normal.

P (v) The projective function projecting 3D vertex to 2D pixel.

εd Threshold for the distance.

εn Threshold for the angle.

Ṽi The 3D points of current frame from last frame of ORB features.

Vi The 3D points of the deformed points from last frame of ORB fea-

tures.

ω(vi) Weight of model point vi.

Ci Color of model point.

dmin(ṽi) The minimum distance of model point.

ṽi to its corresponding nodes.

ε The average grid size of nodes.

ṽi|z The value of point ṽi on the z direction.

ti The time stamp of vertex vi.

ni The normal of vertex vi.

si The boolean variable stability of vertex vi.



Nomenclature xix

Ecorr Sum errors of distances between deformed key points and target key

points.

Er The SO(3) distance between estimated orientation and intilial ori-

entation.

Ep The Euclidean distance between estimated position and intilial posi-

tion.

εdv The threshold for extracting visible points based on distance.

εnv The threshold for extracting visible points based on angle.

Rn
c Estimated rotation in step n.

Tn
c Estimated translation in step n.

R̃n
c Rotation in step n from ORB-SLAM.

T̃n
c Translation in step n from ORB-SLAM.

Vn Set of visible points in step n.

Dn Observed depth in step n.

Pn Fused point set.

εdf The threshold for fusing points based on distance.

εnf The threshold for fusing visible points based on angle.

ṽni |z The value of deformed point ṽni in the z direction.

ñni The deformed normal of nni .

ωmax The maximum weight for each model point.

P A group of predefined key source points.

P̃ Deformed key points set of P.

⊗ The Kronecker product.

|| · ||2F The Frobenius norm.

Xi The state vector is denoted as .

skew(·) The skew symmetric operator.

I A 3 by 3 identity matrix.

� The Hadamard product.

Hed Hessian matrix of ED formulation.

H1 One submatrix of Hed.

H2 One submatrix of Hed.



Nomenclature xx

fn A feature position in step n.

N The number of features.

F The number of steps.

B The combination of all valid features.

Eobs The sum error of robot to feature observations.

mj
i The observation from robot to location of feature i in step j.

F(·) The estimated observation from robot pose to feature position.

Ef The error between current feature and its estimation from historical

locations.

Eini The initial robot pose keeps static in the period size t.

	 Inverse retraction defining SO(3) distance.

c The coefficient matrix .
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