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Aiming at reducing trauma and morbidity associated with large incisions in open surgery, 

minimally invasive surgery (MIS) has been widely acquired in clinical practice as a pow-

erful tool enabling patients with less pain, shorter hospital stay, and fewer complications. 

However, MIS narrows the surgeon’s field of view which confines visual information when 

implementing MIS. Therefore, a stereoscope or monocular scope is an essential tool for 

capturing and transmitting 2D images during the procedure.

Although numbers of special sensors including laser, structured light, time-of-flight cam-

eras have been applied or investigated in MIS, RGB scope is still widely applied in the 

intro-operative system because it is non-invasive and cheap to be installed. Thus it is an 

important topic to rebuild and visualize the latest deformed shape of soft-tissue surfaces to 

mitigate tissue damages from stereo or monocular scopes. This research aims at proposing 

innovative robocentric simultaneous localization and mapping (SLAM) algorithm for de-

formable dense reconstruction of soft-tissue surfaces using a sequence of images obtained 

from a stereoscope or monocular camera. In this paper, we try to solve the problem by 

introducing a warping field based on the embedded deformation (ED) nodes which makes 

full use of the 3D shapes recovered from consecutive pairs of stereo images by deforming 

the last updated model to the current live model. Our robocentric SLAM system (off-line 

and tested on stereo videos) can: (1) Incrementally build a live model by progressively 

fusing new observations with vivid accurate texture. (2) Estimate the deformed shape of
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the unobserved region with the principle As-Rigid-As-Possible. (3) Perform the dynamic

model shape deformation. (4) Estimate the current relative pose between the soft-tissue

and the scope.

We further improve and optimize the proposed robocentric deformable SLAM algorithm to

MIS-SLAM: a complete real-time large scale robocentric dense deformable SLAM system

with stereoscope in MIS based on heterogeneous computing by making full use of CPU

and GPU. Idled CPU is used to perform ORB-SLAM for providing robust global pose.

Strategies are taken to integrate modules from CPU and GPU. We solve the key problem

raised in previous work, that is, fast movement of scope and blurry images make the

scope tracking fail. Benefiting from improved localization, MIS-SLAM can achieve large

scale scope localizing and dense mapping in real-time. It transforms and deforms the

current model and incrementally fuses new observation while keeping the vivid texture.

In-vivo experiments conducted on publicly available datasets presented in the form of

videos demonstrate the feasibility and practicality of MIS-SLAM for potential clinical

purpose.

In MIS-SLAM, however, it remains challenging to keep constant speed in deformation

nodes parameter estimation when the model grows larger. In practice, the processing time

grows rapidly in accordance with the expansion of the maps. Therefore, we propose an ap-

proach to decouple nodes of deformation graph in large scale robocentric dense deformable

SLAM and keep the estimation time to be constant. We discover that only partial de-

formable nodes in the graph are connected to visible points. Based on this principle, the

sparsity of the original Hessian matrix is utilized to split parameter estimation into two

independent steps. With this new formulation, we achieve faster parameter estimation

with amortized computation complexity reduced from O(n2) to closing O(1). As a result,

the computation cost barely increases as the map keeps growing. By our strategy, the bot-

tleneck of limited computation in estimating deformation field in large scale environment

has been overcome. The effectiveness is validated by experiments, featuring large scale

deformation scenarios.

In addition to robocentric SLAM, this thesis also aims at developing a general SLAM which

estimates the scope poses correctly. An elaborate observability analysis is conducted on
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the ED graph. We demonstrate and prove that the ED graph widely used in such sce-

narios is unobservable and leads to multiple solutions unless suitable priors are provided.

Example, as well as theoretical prove, are provided to show the ambiguity of ED graph

and scope pose. Different from robocentric SLAM, in modeling non-rigid scenario with ED

graph, motion priors of the deforming environment is essential to separate robot pose and

deforming environment. The conclusion can be extrapolated to any free form deformation

formulation. In guaranteeing the observability, this research proposes a preliminary de-

formable SLAM approach to estimate robot pose in complex environments that exhibits

regular motion. A strategy that approximates deformed shape using a linear combination

of several previous shapes is proposed to avoid the ambiguity in robot movement and rigid

and non-rigid motions of the environment. Fisher information matrix rank analysis is

performed to prove the effectiveness. Moreover, the proposed algorithm is validated using

Monte Carlo simulations and real experiments. It is demonstrated that the new algorithm

significantly outperforms conventional SLAM and ED based SLAM especially in scenarios

where there is large deformation.
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p Pixel of the projected point on left image.

p′ Pixel of the projected point on right image.

u First coordinate of 2D pixel.

v Second coordinate of 2D pixel.

K Camera intrinsic matrix.

α(u, v) Surface albedo.

Î(u, v) The measured pixel intensity at pixel (u, v).

O(·) Computational complexity.

Ω Linear elastic solid parameter.

λ and G Lam’e parameters that define the material elastic properties.

U Poisson’s ratio.

E Young’s modulus.

ai,jj and aj,ij Displacement vectors share the same edge.

gj Position of node j.

Aj Affine matrix of node j.

v Position of a point.

ṽ Target deformed vertex of v.

Rc Global rotation of the scope.

Tc Global translation of the scope.
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Nomenclature xviii

w(v) The quantified weight for transforming v exerted by each related ED

node.

dmax The maximum distance of the vertex to k + 1 nearest ED node.

m The number of ED nodes.

c1, c2 and c3 The column vectors of A.

Erot The affine matrix close to SO(3).

Ereg The sum the transformation errors from each ED node.

αjk The overlap influence of the two ED nodes.

N(j) The set of neighboring node to node gj .

F(·) A general function defining a point to target distance.

D(·) The corresponding voxel value recorded in DFF.

Edata The sum distance error.

L The set for all the visible points.

D Depth scan.

Γ(·) Lift 2D depth pixel up to 3D point.

H(·) Lift 2D normal pixel up to 3D normal.

P (v) The projective function projecting 3D vertex to 2D pixel.

εd Threshold for the distance.

εn Threshold for the angle.

Ṽi The 3D points of current frame from last frame of ORB features.

Vi The 3D points of the deformed points from last frame of ORB fea-

tures.

ω(vi) Weight of model point vi.

Ci Color of model point.

dmin(ṽi) The minimum distance of model point.

ṽi to its corresponding nodes.

ε The average grid size of nodes.

ṽi|z The value of point ṽi on the z direction.

ti The time stamp of vertex vi.

ni The normal of vertex vi.

si The boolean variable stability of vertex vi.



Nomenclature xix

Ecorr Sum errors of distances between deformed key points and target key

points.

Er The SO(3) distance between estimated orientation and intilial ori-

entation.

Ep The Euclidean distance between estimated position and intilial posi-

tion.

εdv The threshold for extracting visible points based on distance.

εnv The threshold for extracting visible points based on angle.

Rn
c Estimated rotation in step n.

Tn
c Estimated translation in step n.

R̃n
c Rotation in step n from ORB-SLAM.

T̃n
c Translation in step n from ORB-SLAM.

Vn Set of visible points in step n.

Dn Observed depth in step n.

Pn Fused point set.

εdf The threshold for fusing points based on distance.

εnf The threshold for fusing visible points based on angle.

ṽni |z The value of deformed point ṽni in the z direction.

ñni The deformed normal of nni .

ωmax The maximum weight for each model point.

P A group of predefined key source points.

P̃ Deformed key points set of P.

⊗ The Kronecker product.

|| · ||2F The Frobenius norm.

Xi The state vector is denoted as .

skew(·) The skew symmetric operator.

I A 3 by 3 identity matrix.

� The Hadamard product.

Hed Hessian matrix of ED formulation.

H1 One submatrix of Hed.

H2 One submatrix of Hed.



Nomenclature xx

fn A feature position in step n.

N The number of features.

F The number of steps.

B The combination of all valid features.

Eobs The sum error of robot to feature observations.

mj
i The observation from robot to location of feature i in step j.

F(·) The estimated observation from robot pose to feature position.

Ef The error between current feature and its estimation from historical

locations.

Eini The initial robot pose keeps static in the period size t.

	 Inverse retraction defining SO(3) distance.

c The coefficient matrix .



Chapter 1

Introduction

Minimally Invasive Surgery (MIS), which is an indispensable tool for modern surgery,

greatly benefits the patients with reduced incisions, trauma and less hospitalization time

[2]. A typical MIS setup is made up of one scope and one surgical instrument manip-

ulated by the surgeons or robots. Normally, the surgeons work through a set of holes

approximately 1 cm in diameter. Long handled instruments cut and grip tissue within the

body with a video camera providing a view of the internal operating field. In the field

of computer assisted surgery, advanced surgical robots even develop “hand in hand ”with

MIS.

Although being an indispensable tool for modern surgery for the ability to mitigate postop-

erative infections, MIS also narrows the surgeons’ field of view and limit their perception.

Thus, MIS introduces significant challenges to surgeons as they are required to perform the

procedures in a narrow space with elongated tools without direct 3D vision [3]. Therefore,

it is helpful if a dynamic 3D morphology could be generated and rendered for the surgeons

intra-operatively. However, the small field of view of the scopes and the deformation of

the soft-tissue limit the feasibility of using traditional structure-from-motion and image

mosaic methods. Even worse, the rigid and non-rigid movement caused by the motion of

camera pose, breathing, heartbeat and instrument interaction increases difficulty in soft-

tissue reconstruction and visualization. Therefore, this thesis focuses on incrementally

1
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recovering the morphology and motion of soft-tissues with a stereoscope and monocular

scope intra-operatively.

The first MIS case is believed to be conducted by Dr. J. Barry McKernan in 1988. He made

only a 10mm incision and inserted a laparoscope (or miniature camera) into a patient’s

abdomen and removed a gall bladder. Thanks to small invasions, the patient recovered in

days rather than weeks or months. This is the first laparoscopic cholecystectomy performed

in the U.S. and the beginning of the minimally invasive movement in surgery. From that

time onward, MIS is widely applied in modern surgeries and plays an important role in

substituting traditional open surgeries.

Recently, MIS is combined with state-of-the-art technologies like robotics and automation

intending to minimize trauma and incisions in the process. For example, Fig. 1.1 is a

comparison of open Transforaminal lumbar interbody fusion (TLIF) and MIS-TLIF [4].

TLIF is a surgical procedure that removes a painful lumbar disc and replaces it with either

a block of bone or a fusion device to allow the bone to grow across the disc space creating

a fusion. The left figure shows the “open” surgery which is done by making a large incision

in the middle of the back and operate the process. Or it can be implemented in the right

figure with smaller incisions (several inches) made on each side against the back and insert

two tubes. A miniature camera (usually a laparoscope or endoscope) is placed through

one of the trocars so the surgical team can view the procedure as a magnified image on

video monitors in the operating room. After that, the specialized instruments are placed

through another tube to perform the procedure.

One important issue in the MIS process is knowing the position and direction of the minia-

ture camera instrument while map the inner environment. And this can be formulated as

a visual simultaneous localization and mapping (SLAM) problem.

Many research activities have been devoted to deal with 3D soft-tissues shape reconstruc-

tion, camera navigation or both. A structure from motion (SfM) pipeline [5] is proposed

to partial 3D surgical scene reconstruction and localization. And in the work of Stoyanov

[6], stereo images were used to extract sparse 3D point cloud. Haouchine et al. [7] and

Malti et al. [8] extract whole tissue surface of organs from stereo or monocular images.

Contrary to feature extraction based methods, Du et al. [9] employ an optical flow based
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Figure 1.1: The difference between open surgery and MIS.
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approach namely deformable Lucas-Kanade for tracking tissue surface. All the methods

described above contribute greatly to enable implementing augmented reality or virtual re-

ality in computer assisted interventions which greatly promote the accuracy and efficiency

of MIS. Yet, these works mainly focus on tracking key feature points for localization and

no work has been devoted to geometry based registration and dynamic soft-tissue surface

reconstruction and dynamic deformation visualization.

1.1 Motivation

This research is inspired by the current development of RGB-D SLAM in the computer

vision community. With the development of consumer-based RGB-D cameras like Mi-

crosoft Kinect and Intel Realsense, volume based template free reconstruction method

has been proposed in reconstructing deformable objects and mainly part or whole hu-

man body. All related works follow the basic ideas presented in KinectFusion [10] which

makes use of truncated signed distance function (TSDF) for fusing and smoothing rigid

objects in real-time. Inspired by this idea, research efforts are devoted to transferring the

TSDF fusion approach into modeling non-rigid objects. By dynamically warping TSDF

volumes, Zollhöfer et al. [11], Newcombe et al. [12] and Innmann et al. [13] achieved real-

time non-rigid model deformation and incremental reconstruction. These template-free

techniques can process slow motion without occlusions because the sensor used is a sin-

gle depth camera. Meanwhile, Dou et al. [14] proposed a multi-view RGB-D camera set

as a substitution so that a real-time colored, fast moving and close-loop model can be

built. This work is mainly integrated into the Holoportation system whose robustness in

handling fast movement benefits from multi-view cameras with fixed positions. Although

promising results can be achieved, these depth sensors are seldom applied in MIS which

makes RGB-D based approaches impossible to be directly applied to the surgical scenario.

And all the works mentioned above are a fixed volume based data management approach

that requires spatial limits of the scenario. Thus, none of these methods can be directly

applied to the computer-assisted interventions in MIS.

Since point cloud can be acquired from the disparity of stereo images [15], the goal of

this thesis is to propose a new framework for implementing SLAM using a stereoscope.
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There are two major requirements in the clinical application which limits applying Dy-

namicFusion like pipeline into surgical vision. First, due to the spatial and computational

limitations, the DynamicFusion pipeline requires a predefined volume and only allows the

target object to move within this boundary. While in the MIS scenario, due to the limited

field of view of the scope, the surgeons always require the scope moves freely in the space

to observe more areas of the tissue during interventions. Volume deforming approach used

in [12], [13] and [14] makes computation and unnecessary data storage increases exponen-

tially as the volume size increases and there is a trade-off between model details depended

on the grid size and computational cost in volume based data management. Second, differ-

ent from obvious topologies in dynamic human body modeling, the smoothness of organs

makes the algorithm easily converges to a local minimum. Considering the small field

of view of the scope, the drifts of reconstruction caused by mismatching can seldom be

corrected. This is different from the scenario of a large field of view since they can fre-

quently re-observe the target as loop closure [12] or even reset the model [14] if multiple

cameras are provided (8 sets of depth cameras were used in [14]). Even a slight drift leads

to misalignment in textures especially on vascular.

1.2 Research aims

After analyzing the differences between our scenario (MIS) and similar works in the com-

puter vision community, this thesis aims at proposing an innovative robocentric SLAM

framework to recover the deformed 3D structure of the soft tissues.

We aim at solving major challenges in applying SLAM in the MIS scenario. The first

and the most important challenge is the fast movement of the scope. The state-of-art

methods do not address the tracking when the camera is moving fast. Similar to the

traditional SLAM approaches [16] [17], serious consequences of fast motion are the blurry

images and relevant disorder of depths. These phenomenon happen especially when current

constructed model deforms to match the depth with false edges suffering from image

blurring. That’s why the proposed pipeline visualizes periodic deformation like respiration

and heartbeat clearly on central regions but shows obvious drifts on the edges. Fast motion

is a challenging issue as the only data source is the blurry images. Another issue is the
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accuracy of texture. A laparoscope with a narrow field of view results in obvious drifts

and gaps on texture, especially in blurry images. In this thesis, we aim at integrating some

image enhancement techniques to increase the robustness and accuracy of our pipeline.

In addition to robustness, another key issue in the embedded deformation (ED) graph, a

widely applied deformation modelling method, is that when a new observation is incorpo-

rated, the number of nodes increases dramatically, posing a heavy computational burden.

The estimation state space keeps expanding quadratically upon the increase of ED nodes.

This thesis tries to propose a strategy to decrease the scale of the problem and convert

computational complexity from O(n2) to O(1).

Aside from building a technical framework enabling a real-time sequential robocentric

SLAM system in MIS, this thesis also aims to theoretically testing the ambiguity in robot

movement and the rigid and non-rigid motions of the environment. In the SLAM problem,

pose estimation is crucial and we, therefore, focus on how to accurately estimate the robot

pose. Particularly, the question is ‘Is global pose of robot observable in a deformable en-

vironment unique?’. If the answer is no, then ‘How can we enable observability of pose in

a deformable environment?’. In this thesis, we extensively discuss the observability in the

popular ED based SLAM algorithm. A counterexample is provided when analyzing the

ED graph based visual SLAM system in the deformable environment. We clearly demon-

strate that the global pose of the robot can be embedded into environment deformation

formulation which is not separable. To solve this, we introduce a priori that theoretically

deformation is a mixture of base shapes. Typical deformations we try to process include

heartbeat, breath, periodic body movement. The rest can also be approximated by several

historical basis shapes with rigid movement. Based on this priori, we propose an innovative

back-end SLAM system that can efficiently calculate accurate pose as well as the deform-

ing environment. The proposed time series basis formulation explicitly enforces correct

observability constraints to overcome rigid pose mixing with the non-rigid deformation

field. The result is compared with conventional rigid SLAM and ED formulation.
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1.3 The structure of the thesis

The major contributions of this thesis are as follows:

• We introduce a warping field based on the ED nodes with 3D shapes recovered from

consecutive pairs of stereo images. The warping field is estimated by deforming the

last updated model to the current live model. Our robocentric SLAM system can:

(1) Incrementally build a live model by progressively fusing new observations with

vivid accurate texture. (2) Estimate the deformed shape of the unobserved region

with the principle of As-rigid-as-possible. (3) Show the consecutive shape of models.

(4) Estimate the current relative pose between the soft-tissue and the scope.

• On the basis of the deformable system, We propose a minimally invasive surgery

simultaneous localization and mapping (MIS-SLAM) system: a complete real-time

large scale dense deformable robocentric SLAM system with stereoscope in MIS

based on heterogeneous computing by making full use of central processing unit

(CPU) and graphical processing unit (GPU). Idled CPU is used to perform ORB-

SLAM for providing initial rigid target transformation. Strategies are taken to in-

tegrate modules from CPU and GPU. We solve the key problem raised in previous

work, that is, fast movement of scope and blurry images make the reconstruction

fail. Benefiting from the improved rigid transformation, MIS-SLAM can achieve

large scale scope to soft-tissue localizing and dense mapping in real-time. It trans-

forms and deforms the current model and incrementally fuses new observation while

keeping the vivid texture.

• Aiming at solving rapid growing time consumption in deformation nodes parameter

estimation of ED formulation in deformable geometry and graphical problems, we

propose an approach to decouple node of deformation graph in large scale dense

deformable SLAM and keep the estimation time to be constant. Our approach fully

exploits the fact that only a limited number of deformable nodes are related to visi-

ble points. We theoretically prove that the computation complexity is reduced from



Chapter 1. Introduction 8

O(n2) to closing O(1) meaning the computation cost barely increases as the envi-

ronment gets larger. Based on our strategy, the bottleneck of limited computation

in estimating the deformation field in a large scale environment has been solved.

• To address the unobservability issue hindering the deformable SLAM approach, we

also theoretically analyze the problem of general worldcentric SLAM in the de-

formable environment, where robots localize themselves and track multiple deforming

features using their onboard sensor measurements. The main contribution is a novel

deformable SLAM approach to estimate robot pose in complex environments that

exhibit periodic motion. This thesis demonstrates that the widely used ED based

formulation is unobservable and leads to multiple solutions unless suitable priors are

available. A strategy that approximates deformed shape using a linear combination

of several previous shapes is proposed to avoid the ambiguity of rigid and non-rigid

motions of the robot and the environment.

1.4 Publications

The work on the introducing ED graph to present deformation of template based soft-

tissue was presented first in 2016 Australasian Conference on Robotics and Automation

Song et al. [18]. Then it was developed into the real-time template free 3D reconstruction

framework published in 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems [19]. A complete 3D robust heterogeneous 3D reconstruction method, named

MIS-SLAM, was proposed and published in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems [20]. The list of publications is as follows:

• Song, J., Wang, J., Zhao, L., Huang, S. and Dissanayake, G. (2016). 3D Shape

Recovery of Deformable Soft-tissue with Computed Tomography and Depth Scan.

In Australasian Conference on Robotics and Automation (ACRA2016).

• Song, J., Wang, J., Zhao, L., Huang, S. and Dissanayake, G. Deformable Soft-

tissue Reconstruction using Stereo Scope for Minimally Invasive Surgery. Computer

Assisted Radiology and Surgery (CARS2017).
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• Song, J., Wang, J., Zhao, L., Huang, S. and Dissanayake, G. Robust Shape Recovery

of Deformable Soft-tissue Based on Information from Stereo Scope for Minimally

Invasive Surgery. Hamlyn Symposium on Medical Robotics 2017

• Zhang, T., Wu, K., Song, J., Huang, S. and Dissanayake, G. (2017). Convergence and

consistency analysis for a 3-d invariant-ekf slam. IEEE Robotics and Automation

Letters, 2(2), 733-740.

• Song, J., Wang, J., Zhao, L., Huang, S., and Dissanayake, G. (2017). Dynamic

reconstruction of deformable soft-tissue with stereo scope in minimal invasive surgery.

IEEE Robotics and Automation Letters, 3(1), 155-162.

• Song, J., Wang, J., Zhao, L., Huang, S., and Dissanayake, G. (2018). MIS-SLAM:

Real-Time Large-Scale Dense Deformable SLAM System in Minimal Invasive Surgery

Based on Heterogeneous Computing. IEEE Robotics and Automation Letters, 3(4),

4068-4075.

• Wang, J., Song, J., Zhao, L. and Huang, S. A submap joining based RGB-D SLAM

algorithm using planes as features[C] Field and Service Robotics. Springer, Cham,

2018: 367-382.

• Wang, J., Song, J., Zhao, L., Huang, S. and Xiong, R. A submap joining algorithm

for 3D reconstruction using an RGB-D camera based on point and plane features[J].

Robotics and Autonomous Systems, 2019, 118: 93-111.

• Song, J., Bai, F., Zhao, L., Huang, S. and Xiong, R. Efficient two step optimization

for large embedded deformation graph based SLAM. (In preparation)

• Song, J., Zhao, L. and Huang, S. An observable time series based SLAM algorithm

for deforming environment. (In preparation)

• Song, J., Zhao, L., Huang, S., Moreno-Noguer, F., and Agudo, A. Non-rigid structure

from motion with isometric constraint. (In preparation)
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Related works

This section covers the state-of-art single frame shape recovery approaches, rigid and

non-rigid SLAM in deformable system, template based SLAM system, pose graph system

acceleration and non-rigid SLAM with prior.

2.1 Sensors and single frame shape recovery approaches

In the past, various sensors for recovering 3D surface structures of surgical spaces have

been proposed including stereo miniature scope, monocular miniature scope, laser, struc-

tured light, and time-of-flight cameras. But the active sensors including laser, structured

light, and time-of-flight cameras are seldom applied in clinical applications due to sensor

size, effectiveness or popularity [5]. Till now, the most widely used sensors are still the

passive monocular scopes and stereoscopes. Monocular scopes are widely applied in con-

ventional surgery in the form of laparoscope or endoscope, which provide surgeons with

2D images and is in the lowest cost among all the potential sensors. With respect to single

monocular scope 3D shape recovery, a well-studied 3D reconstruction method in computer

vision named shape from shading (SFS) provides researchers a possible solution. SFS is

based on the assumption of a single source light reflectance model to estimate the shape.

In recent decades, accompanied with the development of computer assisted intervention,

stereo cameras have also gained popularity in robot-assisted surgeries, among them is the

10
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da Vinci system [21][22]. For stereo visions, a simple but practical application is to feed

left and right images to each eye separately, while surgeons send two separate images to

the brain for creating an imaginary 3D shape. However, this imaginary 3D model is not

enough for automatic scope pose estimation and computer assisted surgery. Numerous

single frame 3D shape recovery algorithms have been proposed and applied in estimat-

ing shape from stereo images. This section reviews and analyses state-of-art stereo shape

estimation and monocular SFS shape recovery.

2.1.1 Stereo shape recovery

Stereo shape recovery is a typical stereoscopic vision problem aiming at extracting 3D

information from digital images. Fig. 2.1 is an illustration of the basic principle of how

stereo vision works. O and O′ are the centers of the left and right camera coordinates

and p and p′ are corresponding pixels of the projected 3D point on both images. In order

to obtain the desired depth information, a noticeable disparity between the two images

needs to be calculated. That is the different image coordinate p and p′ of the projected

3D point resulted from a different observing angle. If we can obtain the relative disparity

between points in a scene across the two different images, a depth map can be generated.

Given a set of point correspondences between the left and right images, the depth map of

the scene is determined.

Practically, the 3D stereo vision system requires neither additional hardware like active

sensors nor slow and complicated depth generation approaches in monocular vision. This

makes stereo vision popular in modern MIS and computer assisted intervention. Lau

et al. [23] proposes the first template based soft-tissue tracking and recovery with the

B-spline based method. Following general stereo vision development in the computer

vision community, Stoyanov [6] proposes a method robust to specular reflections and sur-

gical instrument occlusion. The basic idea of this approach is to extract a set of sparse

salient feature points and then propagate the registration to the nearby features. Utilizing

recent development in parallel computing called general-purpose computing on graphics

processing units (GPGPU), Kowalczuk et al. [24] implements a traditional stereo vision

algorithm on GPU and achieves real-time 3D shape recovery. Similarly, Totz et al. [25]



Chapter 2. Related works 12

Figure 2.1: Depth estimation from stereo images.

also proposes a real-time GPU based semi-dense stereo reconstruction method for liver

surface reconstruction, where a coarse-to-fine pyramidal strategy is adopted.

At the time of writing this thesis, the widely used open source stereo 3D shape recovery

code is ELAS [26], which is similar to [6] by building a sparse triangular mesh and extending

the triangulation to the rest of depth. Researches in MIS scenario [27][28] adopt this

approach as the 3D depth generator.

2.1.2 Shape from shading

Even though stereo vision is the most practical way of 3D shape recovery, efforts are

devoted to analyzing monocular scopes due to its broad applicability. Researchers try

to enhance the monocular scope to a full imaging device to provide better quantitative

and qualitative data. As one of the well-studied 3D reconstruction methods in computer

vision, SFS is widely test in this domain.

SFS is a method aiming at reconstructing the 3D structure of a scene from the lighting

of the object based on some assumption. It is based on the principal that the surface of
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Figure 2.2: Illustration of Lambertian reflectance model.

the scene exhibits Lambertian reflectance (see Fig. 2.2) which means that the intensity

reflected by a surface to the observer is the same regardless of the observing angle. SFS

approach tries to find the optimal depth to minimize the following object function to

obtain best depth function [29]:

d∗(u, v) = arg min
d(u,v)

∫
Ω

(α(u, v)L(f(u, v)) · n(u, v)− g(Î(u, v)))2dudv. (2.1)

where f(u, v) = d(u, v)K−1(u, v, 1)T is the 3D mapping function for converting the 2D

pixel to 3D point in camera coordinate (K is the camera intrinsic matrix). d(u, v) is the

pixel-wise depth function and d∗(u, v) is the optimized depth. α(u, v) denotes the surface

albedo and n(u, v) stands for the surface normal. The illumination vector L(f(u, v)) is a

direction vector describing the direction of the light source. g(·) is the camera response

function which converts image intensity to irradiance with the Lambertian reflectance

model. Î(u, v) denotes the measured pixel intensity at pixel (u, v).

2.1.3 Electromagnetic tracking device for navigation

Although approaches like visual odometry [30] can generate camera pose free of extra

equipment, it should be addressed that the global navigation devices with better accuracy



Chapter 2. Related works 14

Figure 2.3: NDI Aurora R©EM tracking system [1]

and unaffected by the image quality, fast movement, and non-rigid environment is more

suitable for MIS system. Among them, electromagnetic sensor (EM sensor) is the most

widely used and researched device for position tracking of camera, instrument or other

equipments in MIS [31][32][33]. According to a previous surveys and experiments, the

EM sensor provides the global pose with higher accuracy and more steady output than

other devices. Take the equipment ‘NDI Aurora (Fig.2.3) R©EM tracking, 5 DoF’ for

example, the accuracy (2-sigma confidence interval) is 1.40 mm (position) and 0.35◦. It is

so accurate that can even be treated as ground truth in a deformable environment.

Before applying the EM sensor, a hand-eye calibration is necessary to estimate the transfor-

mation from the EM sensor coordinate to camera coordinate. Fig. 2.4 shows the workflow

for implementing the hand-eye calibration between the camera and the EM sensor. The

experimenter measures all the corners of the checkerboard and estimates an optimal po-

sition of the checkerboard by taking advantage of the know squares size. After that, the

objective function illustrated in Fig. 2.4 is applied to find the best transformation from

EM sensor to camera.
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Figure 2.4: The framework of Handeye Calibration.

2.2 Rigid SLAM in non-rigid environment.

While 3D shape estimation algorithms provide basic ingredients for mapping the intra-

operative space, visual odometry technique or EM sensor are widely adopted to provide

the global pose of the scope. With the achievement of tracking technique in surgical

navigation, consecutive 3D shapes may be merged or mosaic for the whole soft-tissue

reconstruction. To solve the problem of camera pose navigation and 3D reconstruction,

SLAM has been widely used. However, the major difference between the non-rigid SLAM

and the general rigid SLAM in the scenery with the deformable object is that in surgical

vision all the environment is prone to deform and visual odometry cannot be directly

applied to estimate the global pose of the camera. Conventionally, moving/deforming

object are masked from the static background and global camera pose is estimated only

with static objects [34].

2.2.1 Sparse rigid SLAM in MIS

Hu et al. [35] applies a probabilistic principal component analysis based non-rigid SfM

technique to estimate the monocular camera pose and reconstruct the beating heart. To

avoid the complexity of deformation, the image sequence is deliberately arranged and the

framework is run offline. Grasa et al. [16] proposes an extended Kalman filter (EKF) based
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SLAM with the modified 1-Point Random sample consensus (1-Point RANSAC) algorithm

for spurious points detection and rejection. This method is based on the assumption that

large parts of the scenery are static and the camera moves steadily. With the efficiency of

the EKF-SLAM formulation, this framework runs in real-time and achieves a good result

on slight deformation and slow camera movement. Collins et al. [36] proposes a sliding

window based rigid SfM approach to reconstruct 3D shapes off-line. Strictly speaking,

just as Lin et al. [5] pointed out, [37] is the first research on non-rigid SLAM of soft-tissue

in MIS because the motion of the liver is estimated with a periodic respiration model and

current state of the model is estimated by temporally tracking the 3D points on the liver

surface with stereo cameras. But this work is a template based approach for it is based on

prior knowledge of the 3D model and deformation patterns. Thus this approach is limited

to be applied for general use. Lin et al. [17] extends monocular PTAM [38] to stereoscope

and proposes to RANSAC to detect the deforming points based on the fact that only rigid

points satisfy a global Euclidean transformation. The removal of those deforming points

resulted in a more accurate and stable camera pose estimation. Mahmoud et al. [39],

Mahmoud et al. [40], Turan et al. [41], Chen et al. [42] and Marmol et al. [43] exploit and

tune a complete and widely used large scale SLAM system named ORB-SLAM [44]. They

analyze and prove that ORB-SLAM is also suitable for scope localization in MIS. In [40],

a quasi-dense map is generated off-line based on pose imported from ORB-SLAM. Similar

to the work of Grasa et al. [16], these approaches are also based on separating static and

deforming points for better camera pose estimation.

Moreover, special purposes like visual servoing, pick-up or operation, 2D or 3D image

fusion without focusing on camera pose estimation has also been analyzed. Efforts like

[45] and [28] concentrate on generating a 2D mosaic image, then fuse these images into 3D

shape and perform visualization.

2.2.2 Dense rigid SLAM in MIS

With the evolution of computational power of GPU, rendering high-definition graphics

scenes with tremendous inherent parallelism becomes possible. Furthermore, parallel
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stream processing ability is fully exploited in numerous fields demanding heavy paral-

lel computation ability. The numerical computation power is named GPGPU including

bioinformatics, medical imaging, machine learning, statistics, physics, etc. [46]. In the

SLAM and computer vision community, multiple processing unit integrated on GPU can

process simple but heavy point cloud management in an efficient manner; a normal scenario

consists more than 100000 vertices for manipulation. Efficient point cloud management in

such a scale is a mission impossible for conventional sequential CPU processor.

Dense rigid SLAM can be classified as point cloud based and volumetric mesh presentation

in terms of mapping. Occupancy map [47] is introduced in the 3D SLAM system to ensure

expressing 3D space in volumetric occupancy map. Later, KinectFusion [10] is introduced

to simultaneously localize camera as well as build a high quality 3D map [10]. The point

cloud method, or defined as surfel, is a straight forward way to model the environment

because the input is in the form of the point cloud (RGB-D or stereo sensors). The model

point is defined with 3D location and associated weight, activeness property, etc. Henry

et al. [48], Keller et al. [49] and Whelan et al. [50] have demonstrated that the reconstructed

surface and texture is vivid and accurate while keeps memory consumption in reasonable

scale. Fig. 2.5 shows an example of 3D reconstruction of ElasticFusion. McCormac et al.

[51] further improves ElasticFusion [50] with a semantic mapping technology.

2.3 3D non-rigid SLAM

2.3.1 Non-rigid RGB-D SLAM

Much progress has been reported on the incremental 3D model reconstruction of de-

formable objects or moving human bodies. After the pioneering work of KinectFusion

[10] which makes use of RGB-D, efforts have been devoted on making full use of the real-

time RGB-D information for obtaining the current shape and the pose of the model. With

reference to KinectFusion in the static and rigid scenario, Zollhöfer et al. [11] first attempts

to transfer KinectFusion’s idea in non-rigid body construction and simulation. Later on,

DynamicFusion [12] and VolumeDeform [13] are proposed for more accurate 3D object re-

construction and simulation. Their template free work has achieved great success in both
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reference model construction and model deformation prediction. A compelling Fusion4D

method is demonstrated in [14], where the topology changes are considered comparing

to DynamicFusion. While different from previous work, multi-view RGB-D cameras are

used instead of a single RGB-D camera. These DynamicFusion like techniques may be

applied to a new way of sports broadcasting or immersive telepresence in other geographic

locations in the future.

Despite the amazing result, these works cannot be directly applied in surgical vision due to

the limitations of sensors and the high accuracy standard in surgery. There are two major

requirements in clinical applications limiting applying DynamicFusion [12] like pipeline

into surgical vision. First, due to the spatial and computational limitations, the TSDF

pipeline requires a predefined volume and only allows the target object to move within

this boundary. While in the MIS scenario, due to the limited field of view of the scope,

the surgeons always require the scope to move freely in the space in order to observe more

areas of the tissue in the interventions. Volume deforming approach used in [12], [13]

and [14] makes computation and unnecessary data storage increases exponentially as the

volume size increases, and there is a trade-off between model details (depending on the grid

size) and computational cost in volume based data management. Second, different from

obvious topologies in dynamic human body modeling, the smoothness of organs makes

the algorithm easily converges to a local minimum. Considering the small field of view

of the scope, the drifts of reconstruction caused by mismatching remains difficult to be

corrected. This is different from the scenario of the large field of view since they can

frequently re-observe the target as loop closure [12] or even reset the model [14] if multiple

cameras are provided (8 sets of depth cameras are used in [14]). Even a slight drift leads

to misalignment in textures especially on vascular. Thus, none of these methods are used

in the application of computer-assisted interventions in MIS.

The basic framework for [10], [13] and [14] consists of RGB-D image preprocessing, defor-

mation graph estimation and map fusion. The model is initialized with the depth from the

first frame. Then, each time when new depth is acquired, potential visible points from the

model are extracted and projected onto the 2D RGB images. Some approaches [52] may

apply keypoint matching algorithms like scale-invariant feature transform (SIFT) to ex-

tract a set of key points for running an initial rigid point cloud transformation estimation.
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It transforms the model to a good initial position for better warping field estimation. The

optimal warping field is estimated by minimizing the energy function in the form of a sum

of squared distance between sparse key points and dense visible points. After the estima-

tion of the warping field, the last updated model is deformed to fit the new observation,

predicted to deform the unobserved tissues by the ‘As-rigid-as-possible’ principle [53] and

fused with new observation to the target scan. Through this pipeline, a live model with

deformation can be aligned with new observations and built incrementally.

2.3.2 Implementing ED graph SLAM in large scale SLAM

Overall, ED graph based formulation is the most applicable and widely used approach

for modeling deformations. This formulation can be optimized and updated in batch,

enabling fast sequential or parallel implementation. However, ED graph formulation also

comes with disadvantages and limitations. One major issue is that when a new observation

is incorporated, the number of nodes increases dramatically, posing a heavy computational

burden. Little attention has been paid in the field of truncated signed distance function

based 3D human reconstruction because the target size, as well as the map extent, are

predefined. State estimation and map updating are all confined within a volume. In

more general cases, however, as reported by [19], when reconstructing geometry without

a predefined volume, the size is unbounded due to the non-stop growth of the graph

and an amortized O(n2) complexity with respect to the number of nodes in the graph.

Equivalently, optimizing an expanding ED graph in an unconstrained space significantly

limits the performance of the system.

Even though little is known in fastening ED based system performance, numerous re-

searches are devoted to optimizing rigid pose graph, similar to the undirected graph with

a different physical meaning. Pose graph defines nodes as robot poses (and landmark posi-

tions in the case of feature-based SLAM), while edges as measurements between nodes [54].

Parameters of nodes (robot poses or feature poses) are the states to be estimated. Pose

graph sparsification is the most widely applied technique to marginalize subsets of nodes

[55] [56] [57]. The key process in this topic is the sparsification of edges and marginaliza-

tion of nodes based on some indicators like Kullback–Liebler divergence [57]. Identically,
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conclusions from numerous nodes marginalization method are of great value to enable effi-

ciency in ED based SLAM. This research tries to solve the problem raised by [19] that the

computation complexity in an expanding environment is O(n2). We analyze the spatial

relationship between ED graph and observation and discover the inherent sparsity of the

Hessian matrix. Based on this discovery, we classify ED nodes into points relevant (PR)

nodes and points irrelevant (PI) nodes and propose a decoupled optimization strategy.

2.3.3 Template based non-rigid SLAM

In the meantime, a different deformation formulation named monocular finite element

method (FEM) is proposed by discretizing a geometry into elements presented with 3D

locations. Fig. 2.6 shows one example of curved shape representation in the form of FEM.

FEM is composed of the grid with nodes and the connecting edges. Node displacements

define the deformation of the grid. Stiffness is exerted by the parameters controlling

behaviors of nodes sharing the same edge. Obviously, space within the grid is interpolated

to simulate dense deformable surfaces. A linear elastic solid (Ω) with the steady state

Navier’s equations with Eq. 2.2 and the boundary conditions Eq. 2.3 model the solid

deformation are presented here. Both are shown in Einstein’s index notation [58], where

ai,jj and aj,ij are displacement vectors share the same edge j. Ω is the solid boundary

and Γ is the boundary. λ and G are the Lam’e parameters that define the material elastic

properties, both of them are defined in terms of the Young’s modulus, E and the Poisson’s

ratio, U , being λ = νE
(1+ν)(1−2ν) and G = E

2(1+ν) .

(λ+G)aj,ij +Gai,jj + fi = 0 in Ω (2.2)

ai = ai in Γ (2.3)

Several works have reported adopting FEM as a way to formulate deformation in SLAM

problem [59] [60].

Similar to FEM, structure from template (SfT) [61][18][62][63][64] is also proposed to

simulate deformation. Like grid based FEM, they directly adopt the triangular mesh
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template to describe the soft-tissue. These templates are generated from other methods

like SfM or computed tomography (CT). However, to the best of our knowledge, it is hard

to apply these methods when the map is incrementally built, and no complete real-time

implementation has demonstrated how it will effectively be applied in large scenarios.

In the MIS community, due to sensors and application requirements, CT scanning is a

standard process before surgery. Thus, the pre-operative CT data provides an ideal de-

tailed prior model for recovering the deformation. The template based methods overtake

traditional non-rigid SLAM in terms of the localization error. In SLAM systems, the

error in the propagation step accumulates, making the deformation parameter sets more

unreliable. These template based methods, however, successfully avoid mapping errors.

However, to the best of our knowledge, all template based methods are difficult to incre-

mentally build the map and no complete implementations have demonstrated how it will

effectively be applied in large scenarios.

2.4 Ambiguity in deformable surface 3D motions

Recovering pose and dynamic three dimensional (3D) shape of a soft and deforming object

from multiple images is one of the central research topics in the computer vision commu-

nity. Time-varying 3D deformable structure recovery enables the virtual 3D model for

CAD modeling, virtual reality, mixed reality, and robot motion planning. In addition to

an on-line non-rigid formulation like ED graph, FEM and template based methods, non

rigid structure from motion (NRSfM) is also a heavily researched tool aiming at recovering

3D deforming points from 2D tracked pixels on series monocular images. Early researches

like Bregler et al. [65] solve the NRSfM scenario with a factorization framework that is

widely used in SfM. Later researches discover that different from SfM with strong rigidity

constraint, NRSfM suffers greatly from a high degree of freedom and ambiguous solvabil-

ity [66]. Since these works, researchers realize that NRSfM is an ill-posed problem that

multiple different deformation and shape generate the same 2D observations. Therefore,

different priori are introduced to constrain the problem into a low-rank space in order to

achieve solving the problem with a unique solution. A very important theoretical break-

through [67] proves that a unique shape structure can be achieved with orthonormality
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constraint with given base shapes. However, the only orthonormality constraint is not

enough for recovering unique base shapes and combinations.

Throughout all these state-of-art deformation formulations, when modeling deformation

and global motion of a soft surface, the pose can be mixed with deformation formulation,

making the rigid and non-rigid motions non-separable. Fig. 2.7 shows a toy scenario

demonstrating typical ambiguity between rigid motion non-rigid deformation. In both

examples, the camera observes exactly the same images because the relative movement

between the camera and the soft-tissue remains the same. Apparently, the large rotation

within two models is simultaneously caused by rotation of camera and the same rotation of

heart. Since all methods describe rotation as the movement of model points, the rotation

can both be rigid and non-rigid. Thus, there is an inner-connection within the global

camera pose and the local deformation formulations. Theoretically, their interaction makes

them not separable and cannot be uniquely determined in conventional formulations. Rigid

rotation and transformation are embedded in local deformation. To overcome ambiguity

and to reduce difficulty in the monocular dataset, researchers in NRSfM turn to add priori

in NRSfM problems.

Base shape priori is a well-studied area. The basic idea is that all 3D deformed shape

can be expressed with a linear transformation of base shapes. Therefore, the shape with

a high degree of freedom is constrained in low-rank subspace ensuring smooth surface as

well as motions. Bregler et al. [65], Xiao et al. [68] and Dai et al. [69] adopt this idea

with different innovations. Torresani et al. [70] extends base shape decomposition with

probabilistic principal component analysis for enforcing low rank on space. Bartoli et al.

[71] introduces ‘coarse-to-fine’ for reducing high ambiguity and automatically choose the

best number of base shapes. Lee et al. [72] enforces two consecutive shapes are aligned

with generalized procrustean analysis. As a duality formulation to base shape presentation,

base trajectory analysis is also proposed by Akhter et al. [73] and Valmadre and Lucey

[74]. Later, more complex form shape-trajectory bases [75] enters the vernacular of NRSfM

researches.

Instead of the implicit low rank formulation as bases shape, trajectories or shape-trajectory,
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Fragkiadaki et al. [76] and Dai et al. [69] explicitly impose low rank constraint for spatial-

temporal smoothness of shape. Further works extend this idea by spanning the model

with a union of low dimensional shape subspace [77] [78] [79].

After observing deformation is a result of forces in the physical world, numerous researches

turn to physical priori for more technical sound methods. Agudo et al. [80] and Wuhrer

et al. [81] use finite element for modeling the dynamic motions of soft tissues. These meth-

ods use inextensibility based or linear elastics to model the whole soft surface deformation

based on the observation. Agudo and Moreno-Noguer [82] even model the relationship

between the force and its corresponding deformation. This method proves to be a great

success in understanding the mechanics between force and deformation.
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(a)

(b)

Figure 2.5: A demonstration of 3D reconstruction of ElasticFusion.
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Figure 2.6: An example of FEM based curve surface representation.

Figure 2.7: A toy model demonstrating ambiguity between camera and soft-tissue. Red
dots constitute the heart and blue dots are the observation from camera.



Chapter 3

Modeling soft-tissue deformation

with ED graph

The purpose of this chapter is to propose a formulation to describe the deformation of

the soft-tissue in MIS. Clinically, MIS narrows surgeons’ field of view when they conduct

operation with elongated equipment [3]. To solve this problem, 3D laparoscopy is ap-

plied to provide two images to create an ‘imagined 3D model’ for surgeons. Inspired by

the fact that stereo vision can generate shapes for qualitative and quantitative purposes,

stitching all the 3D shape by taking account deformation will make better use of 3D in-

formation. Moreover, it is helpful if a dynamic 3D morphology is incrementally generated

and rendered for the intra-operative surgery, future autonomous surgical robots (known

as computer assisted intervention), implementing surgical operation and navigation. How-

ever, the small field of view of the scopes and the deformation of the soft-tissue limit the

feasibility of using traditional SfM and image mosaicking methods. Even worse, rigid and

non-rigid movement, scope rotation and translation, breathing, heartbeat and instrument

interaction increase the difficulty in soft-tissue reconstruction and visualization. Therefore,

a robocentric deformable SLAM system involving incrementally recovering the morphol-

ogy and motion of soft-tissues with intra-operative stereoscope manipulation is necessary.

This chapter focuses on theoretically solving the key issue, modeling soft-tissue

deformation, to enable a complete robocentric MIS SLAM system. Specifically,

26
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instead of the monoscope, this research is based on the stereoscope since point cloud can

be directly recovered from the disparity of stereo image pairs [15].

Utilizing valuable insights from previous researches [83][12][14], this work introduces ED

graph as a tool to model deformation of soft-tissue. To validate the effectiveness of model-

ing deformation, we apply ED graph deformation formulation on two scenarios: robocentric

template based SLAM and template free SLAM.

In robocentric template based SLAM, this work makes use of the morphology information

of the soft-tissues from X-ray or CT and deforms it with the ED graph deformation. Here,

the key is to build a distance field function of the scan from the depth sensor, which can be

used to perform accurate model-to-scan deformation together with robust non-rigid shape

registration in the same go.

In robocentric template free SLAM, point cloud based method is proposed to substitute

the volume based model management, which not only avoids the blurring surface but

also manages the texture/color information including model rendering, feature points ex-

traction and fusing new observation. This research also applies dense speeded up robust

feature (SURF) descriptors for providing a mass number of pair-wise registering key points,

which can greatly overcome the texture gaps caused by the error of the reconstruction of

the deformable tissue. In all, this is the first research in the MIS community that can

dynamically reconstruct the deformable dense RGB model.

3.1 Revisit ED deformation graph

Before embarking on this endeavor, let’s first revisit structure of ED graph invented by

Sumner et al. [83] and see how to deform the model to fit the target shape. Fig. 3.1

illustrates an example of ED graph. Nodes and their shared edges compose the ED graph.

The ED graph is made up of a set of uniformly scattered sparse ED nodes accompanied

by an affine matrix in R3×3 and a translation vector in R3. Each source vertex on the

original model is transformed to the target position by several nearest ED nodes and the

influence from the node depends on the distance to the ED nodes.
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Figure 3.1: A toy example of an ED graph. The red circles are ED nodes, say node j,
encoding a geometric position gj , and an affine transformation given by Aj and tj . The
blue triangle is a vertex, that can be deformed from vi to ṽi, through the impact of its

neighboring ED nodes.

The jth ED node is described by a position gj ∈ R3, a corresponding quasi rotation (affine)

matrix Aj ∈ R3×3 and a translation vector tj ∈ R3. The minimal form is a given point v

deformed with one ED node gj , v is mapped to a new locally deformed vertex ṽ by one

ED nodegj in following form:

ṽ = Aj(v − gj) + gj + tj . (3.1)

In practice, this minimal non-rigid transformation can be extended to any vertex mapped

by k neighboring nodes, in a mixture of deformation and rigid transformation:

ṽi = Rc

k∑
j=1

ωj(vi)[Aj(vi − gj) + gj + tj ] + Tc, (3.2)

where Rc and Tc are global rotation and translation relating to camera motion. wj(vi)

is quantified weight for transforming vi exerted by each related ED node. The number of

nearest nodes is confined by defining the weight in Eq. (3.3). Deformation of each vertex

in the space is limited locally by setting the weight as:

wj(vi) = 1− ||vi − gj ||/dmax, (3.3)

where dmax is the maximum distance of the vertex to k + 1 nearest ED node.
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Eq. (3.2) formulates rigid transformation and deformation in the form of source and target

vertex pairs. Given these arbitrary vertex pairs, in turn, the parameters of the ED graph

can be estimated. To estimate the optimal ED graph, the problem is formulated with

three terms: rotation constraint, regularization, and the point to plane distances between

the visible points:

argmin
A1,t1...Am,tm,Rc,Tc

wrotErot + wregEreg + wdataEdata, (3.4)

where m is the number of ED nodes. Here, all the variables in the state vector for this

energy function are the [Aj , tj ] from each ED node.

To prevent the optimization converging to an unreasonable deformation, this research

follows the method proposed in the ED graph [83] which constrains the model with rotation

and regularization.

Rotation Erot enforces the affine matrix close to SO(3) by minimizing the following

function of the column vectors c1, c2 and c3 of A:

Erot =
m∑
j=1

Rot(Aj), (3.5)

Rot(A) = (c1 · c2)2 + (c1 · c3)2 + (c2 · c3)2+

(c1 · c1 − 1)2 + (c2 · c2 − 1)2 + (c3 · c3 − 1)2
(3.6)

Regularization. The basic idea for this term is to prevent divergence of the neighboring

nodes exerts on the overlapping space. It corresponds to the widely accepted idea ‘As-rigid-

as-possible’ in the computer vision community [84]. The quantity for this term represents

the difference of deformation exerted by the neighboring node and itself should be close.

Otherwise, the deformed surface is not smooth. Therefore, Sumner et al. [83] introduces

the term Ereg to sum the transformation errors from each ED node.

Ereg =

m∑
j=1

∑
k∈N(j)

αjk||Aj(gk − gj) + gj + tj − (gk + tk)||2, (3.7)
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Similar to the ED graph [83], αjk is defined as the overlap influence of the two ED nodes

but in practice is set to 1. N(j) is the set of the neighboring node to node gj .

Data Term. Data term defines the arbitrary errors from the deformed shape to the target

shape. In the original ED graph [83], it is the Euclidean distance between the deformed key

points and the target key points. Other researchers Newcombe et al. [12], Innmann et al.

[13] and Dou et al. [14] define the model to frame with average point to plane distance,

and the pairing alignment is defined with ‘back-projection’. There are various data term

formulations measuring the deformed shape and the targets. The general form is:

Edata =
m∑
i=1

F(vi), (3.8)

where F(·) is a general function defining a point to target distance.

3.2 Template based SLAM with ED deformation graph

Figure 3.2: The framework of the proposed template based deformable soft-tissue re-
construction based on DFF and pre-operative CT model.
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3.2.1 The framework of template based structure

3D mesh models of the soft-tissue can be segmented from the pre-operative CT scans [85].

In this section, a synthetic experiment is conducted to simulate the robocentric template

based SLAM with the ED deformation graph. This test is based on 3D segmented CT

scanning and RGB-D scope. Several researches have adopted structure light [86] or time

of flight sensors [87] for 3D intra-operative imaging. Therefore, in this test, we simulate a

3D mesh model generated from the pre-operative CT scan. This research also simulates

the sequence of the model deformation and the partial observations from a perspective

RGB-D scope. The aim is to deform the model with regard to the RGB-D scan observed.

The proposed framework for recovering the deformation of the soft-tissue consists of three

steps (Fig. 3.2):

(I) Compute the distance field function (DFF) for the new scan.

(II) Predict visible points from the latest update of the deformed model.

(III) Deform the current model to fit the new scan. Both the deformation of the model

and the non-rigid registration between the model and the new scan are accomplished

simultaneously. The model is initialized using the reference model segmented from

the pre-operative CT scan at the very beginning.

Step I is an on-line pre-process. As shown in Fig. 3.3, the DFF is a volume, with each voxel

recording the distance to its nearest point on a new scan. DFF is not only employed in the

model-to-scan deformation and registration processes (Step III), but also in the selection of

the visible points in Step II. As DFF is only built on the latest scan, dynamically building

DFF does not require a heavy computational cost. Different from most existing approaches

which traverse all the point to plane distances and use a threshold to decide visible points

[14], this research uses regularized DFF volume directly by looking up the value of each

vertex in DFF and the derivative functions generated from DFF, and compare it with

the threshold for determining point visibility. This strategy reduces the computational

cost of the visible points selection process significantly. After selecting the visible points,

a cost function is formulated adjusting the ED graph parameters, to deform the visible
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(a) (b)

Figure 3.3: (A) is the DFF volume recording distance field values. (B) is a section of
the volume. The black line is an example planar and each voxel records its distance to

the planar.

points close to the target scan. As described in DynamicFusion [12], a spatial ED graph

deformation, as well as a source to target correspondence, is built. Based on the optimized

ED graph, this research deforms the latest updated model to the current scan, not only

considers current observation but also obeys ‘As-rigid-as-possible’ principle proposed by

Sorkine and Alexa [53] in surface deformation. ‘As-rigid-as-possible’ principle enables that

invisible part of the model can be inferred from current observation.

3.2.2 Technical details

Following the general ED graph estimation energy described in Section 3.1, the main for-

mulation of the template based method consists of three terms: Rotation, Regularization,

and Data. Specifically, Data is defined by the distances between the model and the target

scan. Rotation and Regularization are defined in Eq. (3.5) and Eq. (3.7).

Distance to the target scan. This work modifies the general data term Eq. (3.8). After

determining the rotation matrix and transformation vector of ED nodes, all vertices in the

mesh are transformed to their new positions, and the distances between these vertices

on the deformed model to the target scan are minimized. These distance values can be
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easily looked up from a predefined loss function DFF. The lower the value is, the closer

the deformed vertices to the target surface. Note that the deformed vertices are not

necessarily to the correct correspondences but at least close to the surface. The positions

of vertices are transformed and compared in Eq. (3.9). Minimizing this term is equivalent

to deforming the transformed model close to the target surface of the scan:

Edata =
∑
i∈L
||D(ṽi)||2, (3.9)

D(·) is the corresponding voxel value recorded in DFF. L defines the set for all the visible

points for calculating sum distance error Edata.

This section modifies the directional distance function proposed by [88] as a DFF by

ignoring the directions. Unified volume based distance function provides a robust and

efficient target loss function for surface matching. This template based research records

at each voxel its distance D(·) to the closest point on the surface of the target scan.

3.3 Robocentric template free SLAM with ED deformation

graph

3.3.1 The robocentric template free SLAM framework

Different from the template based SLAM, the goal of the proposed template free SLAM

framework is to recover and fuse the deformation of the soft-tissue consists of depth esti-

mation from stereo images without prior shapes. The process includes sparse key points

extraction and matching, ED graph estimation and new data fusion (see Fig. 3.4). In

the proposed framework, first, depth is estimated from the stereo RGB images captured

from the scope intra-operatively. And the model is initialized with the colored point cloud

from the first frame. Then, each time when new stereo images are acquired, the system

extracts potential visible points from the model and projects them onto 2D RGB images.

Dense SURF algorithm is applied to extract a massive number of key points for running an

initial rigid point cloud transformation estimation. This sets the model to a good initial
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Figure 3.4: The framework of the robocentric template free SLAM with ED deformation
graph.

position for better ED graph estimation. The optimal ED graph is estimated by minimiz-

ing energy function in the form of a sum of squared distance between sparse key points

and dense visible points. After the estimation of the ED graph, this research deforms the

last updated model to fit with new observation, predicts the unobserved tissues by the

‘As-rigid-as-possible’ principle [53] and fuses new observation in the model. Through this

pipeline, a live model with deformation can be kept track with new observations and built

incrementally.

In comparison with conventional scenarios in [12] [13] [14], there are three major challenges

in surgical vision: First, scope has very narrow field of view which makes the observed

information in each frame limited. Second, most of the soft-tissues have a smooth surface

and do not have many distinct geometric features that can be applied in the registration
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process. In practice, the registration without key points results in great drifts. Last,

since scope has a small field of view, the proposed method encounter blurry images in the

process of key points extraction.

3.3.2 Technical details

Efficient large-scale stereo (ELAS) algorithm [89] is adopted as the depth estimation

method. This research also applies similar strategies as in VolumeDeform [13] by adding

control anchor points to enhance the robustness. Dense SURF is used to yield dense fea-

ture points descriptors [90] for the model to frame registration. The basic idea of the dense

SURF is to directly set dense grid of locations on a fixed scale and orientation instead of

detecting spatially invariant corner points. In this way, dense SURF provides much denser

key points than conventional scale-invariant feature transform (SIFT) or SURF image

descriptor extractors. Dense SURF is more robust in handling low-quality images and

provides more points to enhance robustness. Another difference from DynamicFusion [12]

is that for stability this research projects the colored point cloud to RGB and depth map

in the last scope coordinate and run dense SURF between projected RGB map and new

left RGB scope image. Visible points from point cloud map with RGB colors are projected

onto a ‘model RGB image’ and matched with new RGB image observation.

After acquiring key feature point correspondences from dense SURF, this work launches an

iterative rigid global transformation estimation based on RANSAC. The massive amount of

key points not only provide information for rigid translation and rotation which will be used

as the initial guess in the optimization to estimate the ED graph, but also filter the outliers

to enhance the accuracy. After the first estimation and outliers filtering, rigid global

transformation is estimated again to gain more accurate initial global transformation.

The global transformation provides a good initial input for later ED graph parameter

estimation.

Following the general formation defined in Eq. (3.4), we formulate the problem as:

argmin
A1,t1...Am,tm,Rc,Tc

wrotErot + wregEreg + wdataEdata + +wcorrEcorr, (3.10)
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where Erot and Ereg are defined in Eq. (3.5) and Eq. (3.7). Similar to [12], [13] and

[14], this research adopts the back-projection approach as a practical model registration

strategy that penalizes misalignment of the predicted visible points vi and current depth

scan D. Data term denotes the sum of point to plane errors in the form of:

Edata =
N∑
i=1

(H(P (ṽi))
T (ṽi − Γ(P (ṽi))))2 (3.11)

where Γ(·) = Π(P (v)) and H(·) is the corresponding normal to the pixel u in the depth

D(u) (R2 → R3). P (v) is the projective (R3 → R2) function for projecting visible points

to depth image.

This research also adopts the strategy for extracting visible points from last model, by

filtering points with distance and normal to current depth with thresholds. Where εd and

εn are thresholds of the distance and angle.

||vi − Γ(P (vi))|| < εd, H(vi) ·H(P (vi)) < εn. (3.12)

As shown in [14], back-projection, and point to plane strategies make full use of the input

depth image so that the Jacobians can be calculated in 2D which leads to fast convergence

and robustness to outliers. As depth generated from stereo images are not as accurate as

of that from depth sensors like Kinect, the visual hull terms recommended by Dou et al.

[14] is not applied because the empty space and free space are not actually observed due

to the misalignment of disparity maps.

Correspondence term Ecorr is measured by the Euclidean distance between pair-wise sparse

key points generated from dense SURF in the following form:

Ecorr = ||Ṽi −Vi|| (3.13)

where Ṽi and Vi are the 3D points of current frame and deformed points from last frame

of SURF features.
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Model update by new observation. Previous works adopt TSDF volume to store

and fuse models [10] [12] [13] [14]. A fine mesh can be generated in real-time with the

marching cube algorithm. Nevertheless, all these volume based approaches are unable to

work in surgical vision because of the unknown spatial range of the target soft-tissues.

To overcome this restriction, this research proposes a weighted point cloud to represent

the built model. In the proposed algorithm, each point records the exact surface location

with weight showing how certain it believes the record. In this work, each point stores 3

properties: position vi, weight ω(vi) and color Ci.

After acquiring an appropriate ED graph, this research transforms all the points to their

deformed positions and predict visible points again. For each updated point, a truncated

signed distance weight (TSDW) is assigned to each pixel of new depth:

ω(ṽi) =


dmin(ṽi)/(0.5 ∗ ε) if abs(ṽi|z − D(P (ṽi))) < τ

0 otherwise,

(3.14)

where dmin(ṽi) is the minimum distance of model point ṽi to its corresponding nodes and

ε is the average grid size of nodes. ṽi|z is the value of point ṽi on the z direction. The

vertex ṽi is ignored if the z directional difference is too large because of inaccurate ED

graph estimation. Depth generated from current model is fused with new depth by:

Dn+1(P (ṽi)) =
ṽi|zω(ṽi−1) + Dn(P (ṽi))

ω(ṽi−1) + 1
(3.15)

ω(ṽi) = min(ω(ṽi−1) + 1, ωmax), (3.16)

Different from rigid transformation where uncertainty of all the points in 3D space are

considered as equal, in the case of non-rigid fusion, if a point is further away to the nodes

of ED graph, it has small chance to be registered to the depth [12]. Therefore, this research

practically measures this certainty by using the minimum distance from point to nodes

and regularize it with half of the unified node distance. The upper bound of weight ωmax

is set to 10.
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3.4 Results and discussion

We thoroughly validate the proposed framework qualitatively and quantitatively. The

quantitative comparison is achieved by comparing the dense recovered shape and texture,

while the quantitative comparison is carried out by comparing the average Euclidean

distance error between estimated points and the target depth

e =
1

N

∑
i∈Θ

||Θ(vi)− vi||2 (3.17)

where Θ(·) is an abstract function defining the corresponding registered point on the

target surface (defined as the ground truth), Θ is the domain of valid output from Θ(·)

and N is the number of the valid points. In template based approach, Θ(·) is the F(·)

defined by DFF while in template free approach, it is the Γ(P (·)) in back-projection

registration. Please note that it is difficult to align the recovered map to the ground truth

with point-wise registration, thus we relax the comparison by registering all points with

DFF or back-projection function. It is feasible because visual comparison validates the

spectral difference based on texture while Eq. (3.17) validates the accuracy in geometric

perspective.

3.4.1 Template based approach

Synthetic datasets are generated from the different real soft-tissue models to demonstrate

the effectiveness of the deformation recovery algorithm proposed in this research. Three

different soft-tissue models (heart, liver and right kidney) are downloaded from OpenHELP

[85], which are segmented from a CT scan of a healthy, young male undergoing shock room

diagnostics. In the simulation, models are randomly deformed as the ground truth by

using the ED deformation graph [83]. The deformation of the soft-tissue is simulated by

randomly exerting a 2-3 mm movement on a random vertex on the model with respect to

the shape of the deformed model from the last frame. Then, scope poses with trajectories

looped around the model are simulated to generate the point cloud scan from the randomly

deformed model. Gaussian noises are added to the scope poses to simulate the data from

the EM tracking system. The distance from the scope center to the model is around
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200mm. Pinhole model is used to simulate the RGB-D, and the simulation scope has the

intrinsic parameters:


520 0 640

0 520 320

0 0 1


Fig. 3.5 is an example observation of a liver model. In each frame, which the recovery of

the soft-tissue challenging because the scope only observes part of the deformed model.

In the model-to-scan deformation and registration process, the size of the downsampled

grid is set to 20 mm to obtain the ED nodes, and the number of neighboring points is set

to 4. We follow the default parameter settings of the ED [83]. The weights used in the

optimization proposed in Eq. (3.4) are set to 1, 20000 and 100 for Erot, Ereg and Edata

respectively, which is proposed in [12] as the hyperparameter.

Fig. 3.6 illustrates the visible points-to-scan registration error map which is generated by

taking corresponding value in the voxel of DFF. Results show that most points are correctly

matched to the reference model and the maximum error is about 4 mm. Some significant

errors are due to the deformation that cannot be described with a sparse ED graph. To

solve this problem, the density of ED nodes should be increased which poses a heavy

computational burden. Thus, there is a trade-off between computation and accuracy.

To illustrate the effectiveness of the robocentric template based SLAM system proposed in

this research, as a comparison, the back-projection approach used in DynamicFusion [12]

and Fusion4D [14] is also implemented using the same datasets. Similar to the proposed

algorithm, this research defines the error from the back-projection approach to be the

minimum distance from a transformed point to the closest point from the scan. The mean

errors from Eq. (3.17) are used to compare the effectiveness of the two methods and the

quantitative comparison of the accuracy is shown in Table. 3.1.

Fig. 3.7 presents the comparisons between the models generated from the proposed al-

gorithm and the corresponding ground truth which are used to generate the scans from

the scope. It is clear that the deformed models are close to the ground truth in the area
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(a) a (b) b

(c) c (d) d

(e) e

Figure 3.5: (a) to (e) are the simulations of generating the depth scan observation from
the deformed liver model. The blue points are the simulated depth observations. The

points in red is the deformed model.

where the models are observed. On the contrary, the further the model point is away from

the observation, the larger the error it has. This is due to the lack of information and

the smoothness in the proposed energy function exerting on the unobserved part of the

model. In other words, these unobserved points are predicted through the minimization
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(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

(j) j (k) k (l) l

Figure 3.6: The results of model-to-scan registration colored by the matching error
(mm) which is directly obtained from the DFF. (a)-(d) are selected error map from the
heart model; (e)-(h) are selected error map from the right kidney model; (i)-(l) are selected

error map from the liver model.
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(a) a (b) b (c) c

(d) d (e) e (f) f

(g) g (h) h (i) i

Figure 3.7: The comparison between the deformed models recovered from the robocen-
tric template free SLAM and the ground truth used for generating the depth observations,
by using the heart model (a) - (c), the kidney model (d) - (f) and the liver model (g) -
(i) respectively. The models in green are the ground truth, while the models in white are

the recovered soft-tissues.

of the proposed energy function. Even though the prediction is not as accurate as of the

observed tissues, it is still suitable to help surgeons (refer to the video on youtube 1). Fig.

3.11 shows the last frame of the deformed model which is presented in the form of Axial,

1https://youtu.be/5HHedlXgqTE
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Table 3.1: Accuracy comparison between the proposed DFF approach and the back-
projection approach (mm). Each value is calculated by averaging all the points of all the

frames.

DFF based approach Back-projection based approach

Heart 0.36 0.91
Liver 0.30 0.60

Right Kidney 0.35 0.76

Coronal, and Sagittal map. All the results demonstrate that the deformed models get

significantly close to scan but areas far away to the observation show obvious errors.

In the optimization process of all the experiments, using the DFF makes the optimization,

Levenberg-Marquardt algorithm, converges within 3-8 iterations. There exist no issues

like singularity, divergence or bad fitting.

However, there is a limitation in the robocentric template based SLAM framework pro-

posed in this chapter, that is it needs pre-operative data (typically the CT scan) as the

initial model and EM sensor to provide global transformation of the scope. Different from

DynamicFusion, in the MIS scenario, the scope is very close to the object (it is set to

200-300 mm in simulation) which limits the field of view. If only small parts of the model

are observed (Fig. 3.5), the scan can be easily initialized to a different area, thus fused to

the wrong shape. Considering the easy access to CT and EM sensor, this work makes full

use of them for better accuracy.

3.4.2 Template free approach

Experimental setup. The robocentric template free SLAM framework is validated using

the in-vivo stereo video datasets provided by the Hamlyn Centre for Robotic Surgery [91].

No extra sensing data other than stereo videos from the laparoscope is utilized in the

process. The frame rate and size of in-vivo porcine dataset (model 2 in Fig. 3.10) is 30

frames per second and 640 × 480 while the rest is 25 frames per second and 360 × 288.

The distance of scope to the surface of soft-tissue is between 40 to 70 mm. Due to the

poor quality of obtained images and some extremely fast movement of the scope, this
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research deliberately chooses the videos tested on porcine with relative slow motion and

some deformation caused by respiration and tissue-tool interaction.

Furthermore, to estimate accuracy, the robocentric template free SLAM is tested on two

ex-vivo phantom datasets from Hamlyn [91] with ground truth from CT scan. The phan-

tom dataset shares the same property of other Hamlyn datasets, which is 25 frames per

second and 360 × 288. Moreover, synthetic data are also generated for better validation

of the proposed method. In the simulation validation process, three different soft-tissue

models (heart, liver and right kidney) are downloaded from OpenHELP [85], which are

segmented from a CT scan of a healthy, young male undergoing shock room diagnostics.

The deformation of the soft-tissue is simulated by randomly exerting a 2-3 mm movement

on a random vertex on the model with respect to the status of the deformed model from

the last frame [18]. This research randomly picks up points in the model as the accuracy

is measured by averaging all the distances from the source points to target points. Be-

sides, the human deformation model in VolumeDeform [13] is also employed for qualitative

comparison.

The point cloud density is set to 0.2 mm and node density is set to 4 mm. The point

cloud downsampling process is carried out by setting a fixed box to average points fill

inside each 3-D box. The parameters for optimization are chosen as wrot = 1000, wreg =

10000, wdata = 1, wcorr = 1. The accuracy is measured by subtracting the projected model

image and the observed depth image.

Note that different from kitty datasets [92], the depths generated from the fast-moving

scope are of low quality. Therefore, thresholds are applied to discard some frames when

their average errors are larger.

Dense SURF key points estimation. We employ the key points strategy proposed

by Innmann et al. [13] to overcome the drift caused by a smooth surface and the error

of the ED graph estimation. Dense SURF is applied to extract key points. The reason

this chapter uses dense SURF is to deal with motion blur and low-quality images resulted

from the fast movement of the scope, while the original SIFT or SURF cannot provide

enough key points provided the same data. Dense SURF provides enough key points in

the video of low quality or with a fast moving object. Besides, spatially scattered key
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points greatly enhance the stability of texture in the overlapping region. In some extreme

situations, when fast movements occur in scope, no SIFT key points correspondences can

be detected.

The grid sampling size of dense SURF is set to 3 pixels and a large number of corresponding

points are obtained. In practice, it can be figured out that the extracted dense key points

range from 100 to 1000 while conventional SIFT and SURF generate points from 0 to

200. After the dense SURF process, we refine key points and generate rigid rotation and

translation by RANSAC which is a typical strategy adopted in implementing SLAM in

MIS [16][17]. The threshold for filtering outliers is set as 2 mm similar to [17]. Fig. 3.8

indicates that dense SURF generates enough key points for registration. Fig. 3.9 shows

that registration without key points makes the registration process converges locally which

either results in disorder of texture or squeezes on the soft-tissue.

Accuracy validation. Similar to the template based approach, the accuracy is measured

with the average Euclidean distance of the recovered points and the target depth (Eq.

(3.17)). Fig. 3.10 shows the soft-tissue reconstruction of the proposed SLAM framework

in different frames, using 5 in-vivo laparoscope datasets [91]. Results demonstrate that the

soft-tissues are reconstructed incrementally with texture. The average distance of back-

projection registration of the five scenarios are 0.19 mm (abdomen wall), 0.08mm (Liver),

0.21 mm (Abdomen (1)), 0.15mm (Abdomen (2)) and 0.14 mm (Abdomen (3)).

To further validate the accuracy, the robocentric template free SLAM is further tested on

the synthetic datasets. Since the synthetic dataset do not provide colored 2D image from

texture shape, the formulation Eq. (3.10) is simplified by ignoring the sparse registration

term Ecorr. Fig. 3.11 shows the final result of the simulation presented in the form of

axial, coronal, sagittal and 3D maps (heart). The average error of the three models is: 0.46

mm (heart), 0.68 mm (liver), 0.82 mm (right kidney) respectively. The inferior accuracy

to in-vivo datasets is partially attributed to lacking sparse key points registration.

Moreover, the proposed template free SLAM algorithm is also tested on two ex-vivo phan-

tom based validation dataset from Hamlyn [91] (Fig. 3.12). As the phantom deforms

periodically, this research processes the whole video and compare it with the ground truth

generated from the CT scan. The average accuracies of the proposed method are 0.28 mm
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(a) dense SURF

(b) SIFT

Figure 3.8: The comparison between the dense SURF and SIFT using stereo videos of
abdomen wall. Results imply that dense SURF can generate more key points which are

critical in soft-tissue matching while SIFT produce less or even no correspondences.

and 0.35 mm. The good result is mainly contributed by the abundant textures benefited

both depth estimation and dense SURF key points extraction. The error from SIFT key

points is due to the drift on the smooth surface, which is addressed in case of clothes [13].

The proposed method is also compared with VolumeDeform [13] by implementing a sample

dataset, and the result is presented in Fig. 3.13. The source code of dynamic fusion and

VolumeDeform are not available, one dataset published by [13] is used for the comparison.

VolumeDeform claims less drift than DynamicFusion [12] approach while this research

ensures less drift than VolumeDeform, due to the model-to-frame framework rather than

the frame-to-frame framework in VolumeDeform. Thus, the result from this work has

better texture.
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Figure 3.9: The comparison between pipeline with and without dense SURF constraint
(Left is with constraint while right is without). Significant errors happen either in texture

or in topologies without SURF constraint.

Discussion and limitations. Different from Newcombe et al. [12], Innmann et al. [13]

and Dou et al. [14] which use 3D volume named TSDF as model management tool and

extract mesh (structured 3D surface with vertices and triangle faces) for estimating ED

graph, this research directly acquires dense point cloud as data management. The dif-

ference in data management affects this research pipeline fundamentally. First, previous

approaches apply marching cube to extract mesh from the 3D volume at each frame due to

the requirement of estimating the visible points in the ED graph. While, the point cloud

data management proposed in this research does not require any marching cube points

extraction process, and efficient real-time live model rendering can be easily achieved. Be-

sides, data management in this research pipeline enables the model to move freely without

the predefined range in volume based method. As a matter of fact, clinically it is annoying

or even impossible for surgeons to predefine the volume range. In this way, surgeons can
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Figure 3.10: Non-rigid reconstruction of different soft tissues using in-vivo datasets.
Illustrated are the sequences of 3D reconstructions. The five videos are (from top to

bottom): abdomen (1), abdomen wall, liver, abdomen (2) and abdomen (3).

perform the reconstruction at any time without pre-requisite range and grid size setting

steps. Another important benefit is that with point cloud data management, the estima-

tion of the ED graph at the current frame is directly from the previous frame, instead of

from the initial model to the current frame as in DynamicFusion [12] and VolumeDeform

[13]. A canonical model, or model in the initial frame, is not required at all in the pro-

posed framework. Using the method proposed in this thesis, the latest observation can be
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registered consecutively to the previous model instead of the initial model, which results in

a more accurate estimation of the ED graph. In this way, the proposed method relatively

avoids drift issues in the model-to-frame matching in slow motion. After extracting dense

key points, they are lifted into a 3D coordinate. In fact, Dou et al. [14] periodically resets

the entire volume to handle large misalignments caused by deforming the initial model to

the last state that cannot be recovered from the per-voxel refresh.

All results demonstrate that, with a correct ED graph, the proposed method can perform

almost the same fusion process as TSDF, but do not require a predetermined volume.

Weighted points based method offers a variety of benefits: (1) Points based data man-

agement and fusion free the geometry extent while still maintain the ability to beget a

smooth fused surface. (2) By using the points based management, all the components in

the proposed framework, e.g. visible points prediction, ED graph estimation and model

update are unified in points. The process like conversion between volume and mesh is not

necessary anymore. (3) The proposed approach enables the current live model updated

from the model in the previous step instead of from the reference model which prevents

drifts accumulated in the ED graph.

In the video on youtube 2, there are some illumination differences in the texture and the

rapid fluctuations on the edges of the reconstructed model. The texture difference is due

to the different angle of the light source in different image times. As this work tries to

preserve the latest texture, the texture is updated directly instead of implementing the

weighted average process. The rapid fluctuations on the edges result from the quick wave

of depth generated from ELAS. The proposed pipeline deforms the reconstructed model

to match the depth and fluctuations on the depth’s edge forces model deform accordingly.

This can be solved by developing a more robust depth estimation algorithm or filter the

edges of the depth model.

While this research pipeline works well on the test datasets, the challenges facing re-

construction problems using a stereoscope should also be addressed. The first and most

important challenge is the fast movement of the scope. The proposed algorithm fails to

track motion when the scope moving fast. Similar to traditional SLAM approaches [16]

2https://youtu.be/QL1uUHJDZ1E



Chapter 3. Dynamic Reconstruction of Deformable Soft-tissue 50

Figure 3.11: The Axial, Coronal, Sagittal and 3D views of the deformed model and
ground truth at the last frame (heart). The red points denote the scan of the last frame.

[17], serious consequences of fast motion are the blurry images and relevant disorder of

depths. These phenomenons happen especially when the latest constructed model de-

forms to match the depth with false edges suffering from image blurring. That’s why this

research visualizes periodic deformation like respiration and heartbeat clearly on central

regions but shows obvious drifts on the edges. Fast motion is a challenging issue as the only

data source is the blurry images. Another issue is the accuracy of texture. The laparo-

scope with a narrow field of view results in obvious drifts and gaps on texture especially

in blurry images.
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Figure 3.12: Ex-vivo validation with the two Hamlyn validation datasets: Silicon heart
phantoms deforming with cardiac motion and associated CT scans. The upper figure is
the time series of average error. The lower figures are the reconstructed geometry and

corresponding error maps measured by distance to ground truth.

Figure 3.13: Comparison with VolumeDeform approach. Left is the result of the robo-
centric template free SLAM. The right is VolumeDeform’s result. Note the difference in

texture (letters on the T-shirt).
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3.5 Chapter summary

In this chapter, aiming at describing deformation in SLAM of non-rigid environments, the

ED deformation graph is introduced and tested on two cases: robocentric template based

SLAM and robocentric template free SLAM. In the template based SLAM scenario, a

deformation recovery framework for the 3D reconstruction of the deformable soft-tissue

is proposed in the scenario of MIS based on the pre-operative CT data and real-time

depth sensing. The DFF is proposed for robust, efficient and accurate optimization and

the model-to-scan registration and model deformation can be solved simultaneously in the

proposed framework. Simulation results using three public available soft-tissue models

show that the deformations are recovered accurately using the proposed algorithm with

very good convergence, which is promising for real-time implementation. Accuracy anal-

ysis shows that soft-tissue shape in the previous step can be efficiently deformed to fit the

partially observed scan in the current step by using the proposed formulation. And the re-

sults from the simulated sequential deformation of three different soft-tissues demonstrate

the potential clinical value for MIS. However, there are hardly any publicly commercialized

direct medical apparatus like time of flight sensor or structured light sensor, which greatly

limits the direct application of the template based SLAM approach. Stereoscope can be a

solution to these direct 3D scopes.

The template free approach proposes a dynamic deformation recovery SLAM framework

for reconstructing the 3D shape of deformable soft-tissues in the scenario of MIS based

stereoscope. In contrast to conventional non-rigid scene reconstruction, the template free

SLAM replaces the current volume based approach with point cloud and adjusts the fu-

sion process for the purpose of the relatively large spatial requirement. Simulation and

in-vivo experiments validate the feasibility of this research dynamic SLAM framework.

Next chapter will focuses on exploring a more robust key points extraction algorithm for

enhancing robustness in a situation when scope moves fast.



Chapter 4

MIS-SLAM: A complete

robocentric SLAM system for MIS

scenario

Based on ED deformation graph, this chapter aims at enabling large scale robocentric

SLAM system in MIS. It solves the problem of system failure of scope fast movement as

well as large scale system performance efficiency. Comparing with conventional SLAM,

MIS brings shortcomings such as lack of field of view, poor localization of scope, fewer

surrounding information and fast scope motion with regard to the surface. As mentioned

in Chapter 3, the first and most important challenge to the pipeline is the fast movement

of the scope. Fast motion not only makes visual odometry unstable but also causes blurry

images and worse registrations. This issue has also been reported in [16] and [17].

Therefore, even Section 3.3 proposes a robocentric template free SLAM, a dynamic recon-

struction system of deformable soft-tissue with the stereoscope with a warping field based

on the ED graph, the robustness problem is still a big issue to be solved. Besides, more

strategies need to be carried out with the help of GPGPU for real-time implementation.

Inspired by the researches Mahmoud et al. [39], Mahmoud et al. [40] and Turan et al. [41]

who demonstrate the robustness of scope pose estimation from ORB-SLAM, ORB-SLAM

may have the potential to be improved and coupled with dense deformable SLAM. This

53
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Figure 4.1: The framework of MIS-SLAM. CPU is responsible for ORB-SLAM, upload-
ing features, rigid and start a visualization module. GPU processes depth estimation,

registration, fusion and visualization.

chapter proposes MIS-SLAM based on the preliminary template free SLAM proposed in

Section 3.3 with the following major improvements: (1) Propose a heterogeneous frame-

work to make full use of both GPU (dense robocentric deformable SLAM) and CPU (ORB-

SLAM) to recover the dense deformed 3D structure of the soft-tissues in MIS scenario.

The computational power of the CPU is fully exploited to run an improved ORB-SLAM

to provide complementary information to GPU modules. (2) Modules from GPU and

CPU are deeply integrated to boost performance and enhance the efficiency. Sparse ORB

features, as well as rigid transformation, are uploaded to GPU. (3) Upgrade former model

point storage system and fusion management strategy to enhance large scale soft-tissue re-

constructing. Comparing with TSDF widely used in computer vision community [12] [13]

and [14], point cloud management in MIS-SLAM notably reduces memory as well as boosts

the performance. (4) Real-time visualization is achieved on the GPU end. MIS-SLAM

can process large scale surface reconstruction in just one desktop in real-time. Associate

videos 1 are on youtube to fully appreciate the live capabilities of the system.

4.1 Overview of MIS-SLAM

The architecture can be divided as initial tracking and deformable tracking and

dense mapping. The initial tracking is achieved with an improved ORB-SLAM algorithm

on the CPU end. Deformable tracking and dense mapping is implemented on GPU end.

1MIS-SLAM: https://youtu.be/2pXokldQBWM
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In the initial tracking step, ORB-SLAM is first launched on CPU; ORB features and global

rigid transformation are uploaded from CPU to GPU global memory. This initial global

rigid transformation significantly increases the robustness of the system.

In the deformable tracking and dense mapping step, after receiving initial rigid transfor-

mation from CPU end, it first initializes the model with the first estimated depth. Each

time when a new observation is acquired, the matched ORB features are uploaded to GPU.

Potential visible points are extracted from the model and projected on 2D depth images.

A registration process is performed to estimate optimal rigid transformation as well as the

non-rigid warping field. The live model is then deformed to current shape according to

this transformation and fused with the new observation. This research makes use of the

feature called ‘Graphic Interoperability’ in Compute Unified Device Architecture (CUDA)

to directly visualize model on GPU end. Fig. 4.1 demonstrates the pipeline of these

processes.

Realizing the point cloud generated from stereo images are much less reliable than depth

perception sensors, this research modifies and update the robocentric template free SLAM

(Section 3.3) with more properties. Each point stores six domains: coordinate vi, normal

ni, weight ωi, color Ci, time stamp ti and a boolean variable stability si. Visible points

selection approach is updated to have better model to depth registration (Algorithm 1).

This research adds ti, ni and si and introduces model filtering technique to have smooth

model with less noisy points (Algorithm 2 and 3).

4.2 Depth estimation, sparse key correspondences and global

rigid transformation

Similar to Section 3.3.2, this work adopts ELAS [89] as the depth estimation method.

Originally designed to map large scale scenario in near real time, ELAS has also been

proved to achieve a good result in surgical vision [28]. Therefore, this research applies

ELAS as the module for providing initial colored depth for soft-tissues from stereo images.

Fig. 4.2 shows the example of the original depth and smoothed depth.
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The main issue in Section 3.3 is the inaccuracy of relative scope to soft-tissue pose leading

to instability of the pipeline. The deformation graph based approach is a typical model-to-

frame visual odometry process lacking additional mechanics to ensure global pose tracking

robustness. Without initialization, dense mapping inevitably suffers from drift or lose

track. To improve the robustness of the system, the idled CPU is fully exploited to run

ORB-SLAM for providing good initial pose (equivalent to rigid soft-tissue transformation)

for enhancing robustness. ORB-SLAM module provides the ORB features which are fully

exploited on GPU. Comparing to SLAM system proposed in Section 3.3, this strategy

saves computational powers on GPU: (1) Dense SURF extraction and matching step in

original approach [19] is therefore not needed as matched ORB features are uploaded.

(2) Visual Odometry and Random sample consensus (RANSAC) on GPU end in [19] is

replaced with rigid transformation and ORB features from ORB-SLAM on CPU end.

Original depth Smoothed depth

Figure 4.2: Examples of depth and smoothed depth.

4.3 Deformation field estimation

This chapter follows and extends the general ED deformation graph formulation described

in Section 3.1. The first two constraints Erot and Ereg follow strictly Eq. (3.5) and Eq.

(3.7). Edata and Ecorr follow the Eq. (3.11) and Eq. (3.13) with point to plane distances.
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Two new terms, Er and Ep, are added to ensure robustness of global rigid transformation.

Overall, the objective function formulated is composed of six terms: Rotation, regulariza-

tion, the point to plane distances between the visible points and the target scan, sparse

key points correspondence and global rigid transformation (new terms) as:

argmin
Rc,Tc,A1,t1...Am,tm

wrotErot + wregEreg + wdataEdata + wcorrEcorr + wrEr + wpEp, (4.1)

Similar to Section 3.1, this research follows ED graph [83] to constrain deformation graph

from unreasonable deformation with two constraints Rotation and Regularization. All

m nodes follow the two constraints.

Data Term. This research follows Algorithm 1 to find registrations of model points and

minimize point to plane distance of all the registered points. For each model point vi, if

it is registered to depth, it is assumed to be a visible point. In Algorithm 1, εdv and εnv

are thresholds for extracting visible points based on distance and angle.

Similar to Section 3.3.2, after extracting registered visible points, this work adopts back-

projection approach as a model-to-scan registration strategy that penalizes misalignment

of the predicted visible points vi (i ∈ {1, ..., N}) and current depth scan D. As described

in Fusion4D [14], back-projection and point to plane strategies make full use of the input

depth image, so that the Jacobians can be calculated in regularized 2D space which leads

to fast convergence and robustness to outliers.

Correspondence. Similar to Section 3.3, this work also utilizes RGB information for

enhancing robustness. It first tracks frame-to-frame feature points and minimizes the

Euclidean distance between pair-wise sparse key points generated from features described

in Section 3.3.2 in the following form. In this chapter, Dense SURF (Section 3.3.2) is

substituted with ORB features uploaded from ORB-SLAM.

Global rigid transformation. The new term is added with regard to previous formu-

lation [19]. It is measured by the variations of rotation and transformation. First frame

is fixed as the coordinate origin. This work uses Euclidean distance and Euler angles

to define the difference between optimized global rigid transformation (rotation Rn
c and

translation Tn
c ) and global rigid transformation (rotation R̃n

c and translation T̃n
c ) provided
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from ORB-SLAM. It is presented in the following form:

Er = ||R̃n
c −Rn

c || Ep = ||T̃n
c −Tn

c || (4.2)

Algorithm 1 is adopted to find visible point set V for optimization. This chapter follows

previous strategy (Section 3.3.2) using Levenberg-Marquardt to solve the nonlinear opti-

mization problem. The efficiency is almost the same as Section 3.3.2 because only 6 more

variables (Global rotation and translation) are added.

Algorithm 1: Model points to depth image registration

Input: Model Pn−1 in last frame
Latest observed depth Dn
Distance threshold of two points εdv
Normal angle threshold of two normals εnv

Output: Visible points set Vn regarding to depth Dn
foreach Model point vi do

if D(P (vi)) 6= null then
if (‖vi − Γ(P (vi))‖ < εdv and ni ·H(P (vi)) > cos(εnv))
then

Add vi to Vn
end

end

end

4.4 Model update with new observation

Inspired by Keller et al. [49], new properties (normal, time step and stability) are intro-

duced to point management. Model is fused with depth following Algorithm 2. Then

Algorithm 3 is used to remove noisy model points.

The basic idea of Algorithm 2 is building three different groups of the point cloud. The

original model is classified into registered (Group 1) and unregistered (Group 2) with

regard to the depth image. Points in Group 1 are fused with depth image. After which

pixel from the depth image that’s not registered with model points are lifted and initialized

as new observations (Group 3). All three groups are merged to compose the new model.
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In Algorithm 3, ‘stability si’ is applied to filter model points influenced by noisy depth.

Unstable model point is defined as a point with low weight (only seen in few times) which

has not been observed for several recent frames. This point is likely a noisy point resulting

from inaccurate depth estimation. Algorithm 3 shows how to filter the noisy points.

Algorithm 2: Fusion of Point cloud with depth image

Input: Model Pn−1 in last frame and current depth Dn
Distance and normal thresholds εdf and εnf

Output: Fused model set Pn
Step 1: Register and fuse model with depth (Group 1), the rest model are
unregistered points (Group 2)

foreach vi ∈ Pn−1 do
Deform vi to ṽi
if D(P (ṽi)) 6= null and
‖ṽi − Γ(P (ṽi))‖ < εdf and
ni ·H(P (ṽi)) > cos(εnf ) then
Fuse ṽi following Eq. (4.3, 4.4, 4.5) and Eq. (4.6).
Push fused ṽi Group 1

else
Push ṽi to Group 2

end

end
Step 2: Add newly observed points (Group 3)
foreach uk ∈ Dn do

if uk is not fused in Step 1 then
Lift uk into 3D space (position (vi), normal(ni), color Ci

Initialize color, ωi = 1, time stamp ti = i+ 1, stability si= False. and pushed
into Group 3

end

end
Step 3: Fuse different types of points
Merge Group 1 Group 2 Group 3 to new model Pn.

For a single point vni in nth step, fusion with new depth is achieved by:

ṽn+1
i |z =

ṽni |z ∗ ωni + Dn+1(P (ṽni ))

ωni + 1
(4.3)

Cn+1
i =

Cn
i ∗ ωni + Cn+1(P (ṽni ))

ωni + 1
(4.4)
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Algorithm 3: Removing noisy unstable model points

Input: Fused model set Pn
Time and weight thresholds τtime and τweight

Output: Filtered model set P′n

New node positions g
foreach vi ∈ Pn do

if ti < (i− τtime) and ωi < τweight and si= False then
Delete vi

else
Stamp ti = i+ 1
if ti ≥ (i− τtime) and ωi ≥ τweight then

si= True
end

end

end
Regenerate new nodes g and initialize rotation A as identity matrix and translation t
as zero vector.

ñn+1
i =

ñni ω
n
i + Nn+1(P (ṽni ))

ωni + 1
(4.5)

ωn+1
i = min(ωni + 1, ωmax) (4.6)

where ṽni |z is the value of deformed point ṽni in the z direction. ñni is the deformed normal

of nni . Dn, Cn and Nn are depth map, color map and normal map in step n respectively.

ωmax is the maximum weight for each point. Different from rigid transformation where

uncertainty of all the points in 3D space are considered as equal, in the case of non-rigid

fusion, if a point is further away to the nodes of warping field, it is less likely to be the

registered depth [12]. Therefore, this research practically measures this certainty by using

the minimum distance from point to nodes and regularizes it with half of the unified node

distance. Algorithm 2 and Eq. (4.3,4.4,4.5) and Eq. (4.6) show the details for point fusion.

The improved weighted points based method brings many benefits: Point based data

management is free of extent limitation; with fusion based Algorithm 2 and noise point

filter approach Algorithm 3, fused geometry can still keep its shape smooth while avoiding

noisy input; the reconstructed geometry preserves more vivid texture and details.
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Figure 4.3: MIS-SLAM processes 3 in-vivo datasets. Figures present the whole con-
structed model at different frames. The three videos are (from top to bottom): Abdomen

wall (1), abdomen (2) and abdomen example (3).
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4.5 Results and discussion

This research first validates MIS-SLAM on publicly available in-vivo stereo video datasets

provided by the Hamlyn Centre for Robotic Surgery [91]; deformations are caused by res-

piration and tissue-tool interactions. MIS-SLAM is also validated on ex-vivo phantoms

and some simulations, and compared with ground truth. When testing on in-vivo valida-

tion, three videos with deformation and rigid scope movement are utilized. Other videos

either have no deformation or no scope motion. Please note that no extra sensing data

other than stereo videos from the scope is used in the proposed algorithm. The frame

rate and image size of the in-vivo porcine dataset (model 1 in Fig. 4.3) are 30 frames per

second and 640 × 480 while other two datasets are 25 frames per second and 720 × 288.

Distance from scope to the surface of soft-tissue is between 40 to 70 mm. In last chapter

(Section 3.3.2), due to poor quality of obtained images and some extremely fast movement

of scope, videos tested on porcine with fast or abrupt motion cannot generate good results.

In this chapter, however, the proposed MIS-SLAM can process large scale environment

with much better robustness.

The open source ORB-SLAM is executed on desktop PC with Intel Core i7-4770K CPU @

3.5 GHz and 8GB RAM. This chapter follows Mahmoud et al. [39] to tune the parameters

and structures. The average tracking time is 15ms with 640x480 image resolution and 12

ms with 720x288 image resolution. As the frame rate of the three datasets is 25 or 30

frames per second, ORB-SLAM can achieve real-time tracking and sparse mapping. By

parallelizing the proposed methods for GPGPU, MIS-SLAM algorithm is implemented in

CUDA with the hardware ‘Nvidia GeForce GTX TITAN X’.

For model 1, the point cloud density is set to 0.2 mm and node density is set to 4 mm. For

model 2 and 3, the point cloud density is set to 1 mm and node density is set to 10 mm.

Point cloud downsampling process is achieved by setting a fixed box to average points fill

inside each 3D box. The parameters for optimization are chosen as wrot = 1000, wreg =

10000, wdata = 1, wcorr = 10, wcorr = 1, wr = 1000000, wp = 1000. Thresholds are set to

extract predicted visible points with a point to plane distance εdv as 15 mm and angle

threshold εnv as 10◦. The accuracy is measured by subtracting projected model image and

the observed depth image. The maximum weight is set to 20 and time stamp threshold is
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Figure 4.4: Comparisons between Section 3.3.2 (First row) and the proposed MIS-SLAM
(Second row).

set to 10. Thresholds εnf and εdf for point to depth registration is set as 10 degrees and

10 mm (20 mm for model 2/3). Truncated distance is set as 40 mm (60 mm for model

2/3). All the quantitative accuracy comparison is carried out with Eq. (3.17).

4.5.1 Robustness enhancement

The robustness of MIS-SLAM is significantly improved when global rigid transformation

from ORB-SLAM is uploaded to GPU and employed as initial scope rigid transformation.

Fig. 4.4 shows the comparison between previous work (Section 3.3) and the proposed

method.

One challenge facing reconstruction using stereoscope is the fast movement of scope [19].

Configuration without global rigid transformation initialization fails to track motion when

scope moves fast. Like traditional SLAM approaches, severe consequences of fast motion

are the blurry images and relevant disorder of depths. These phenomenons happen es-

pecially when the latest constructed model deforms to match the depth with false edges

suffering from image blurring. Localizing in fast motion is very challenging because the
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Figure 4.5: The Axial, Coronal, Sagittal and 3D views of the deformed model and
ground truth at the last frame (liver). The red points denote the scan of the last frame.

only information for positioning is the blurry images. ORB-SLAM, however, is a robust

feature based system even works in deformable surgery scenario [39] [40] [41]. Though

based on prior to a stationary environment, it still relatively keeps the global pose. The

supplementary video 2 clearly shows how initialization of global rigid transformation pre-

vents the system from failing to track scope rigid transformation.

2MIS-SLAM: https://youtu.be/2pXokldQBWM
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4.5.2 Deforming the model and fusing new depth

A threshold is employed to discard some frames which have a large error due to low-

quality depth generated from blurry images. Different from previous research, with good

initialization of depth image, MIS-SLAM is robust against losing track. Fig. 4.3 shows

the results of soft-tissue reconstruction of MIS-SLAM in different frames, using 3 in-vivo

laparoscope datasets [91]. The results demonstrate that the soft-tissues are reconstructed

incrementally with texture.

We test the difference with average Euclidean distance of the recovered shape with the

target dpeht defined in Eq. (3.17). The average distances of back-projection registration

of the three simulation scenarios are 0.18 mm (1), 0.13 mm (2) and 0.12 mm (3). The

test on datasets with ground truth (Hamlyn dataset 10/11) achieves 0.08 mm, 0.21 mm

(Average errors).

4.5.3 GPU implementation and computational cost

The MIS-SLAM system is implemented with heterogeneous computing. The ORB-SLAM

runs on CPU. The rest is executed on GPU. Initial global rigid transformation and ORB

features are transferred to GPU for further optimization. This CPU to GPU data trans-

ferring does not require much bandwidth as the amount of data is small. CPU initial-

izes OpenGL for visualization, but the proposed system utilizes the interoperability from

Nvidia’s CUDA to directly visualize the model in GPU end which saves a huge amount of

data transferring. Because normally our GPU end is slower than CPU end, this research

utilizes the first-in-last-out feature in the ‘stack’ data structure to ensure GPU always

processes the latest data. Processing rate for each sample dataset is around 0.07s per

frame. ORB-SLAM does feature matching on CPU end, saved computation is spent on

visualization. Computation increases as the model grow and the number of nodes rises.

4.5.4 Validation using simulation and ex-vivo experiments

This work also validates the MIS-SLAM on simulation and ex-vivo experiment. In simu-

lation validation process, three different soft-tissue models (heart, liver and right kidney)
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are downloaded from OpenHELP [85], which are segmented from a CT scan of a healthy,

young male undergoing shock room diagnostics. The deformation of the soft-tissue is sim-

ulated by randomly exerting 2-3 mm movement on a point with respect to the status of

the deformed model from the last frame [18]. This research randomly picks up points

in the model as the accuracy is measured by averaging all the distances from the source

points to target points. Fig. 4.5 shows the final result of the simulation presented in

axial, coronal, sagittal and 3D maps figures. By initializing with rigid transformation, the

overall accuracies are improved from 0.46 mm, 0.68 mm, 0.82 mm to 0.41 mm, 0.66 mm,

0.62 mm regarding to heart, liver and right kidney.

This research also tests MIS-SLAM on two ex-vivo phantom dataset from Hamlyn [91]. As

the phantom deforms periodically, this research manages the whole process and compares

it with the ground truth generated from CT scan. The average accuracies are 0.28 mm

and 0.35 mm.

4.5.5 Limitations and discussions

One of the biggest problem in MIS-SLAM is texture blending. Results (Fig. 4.3 and video

on youtube 3) indicate that when scope moves, the brightness of visible region shows signif-

icant illumination differences from other invisible regions. Some tissues even show blurry

textures. The texture blending procedure involves pixel selection and blending described

in Fig. 1. If in perfect registration and identically fused, the reconstruction will only

suffer from illuminations from different angles of light. This illumination problem causes

a systematic difference between the two images. In MIS-SLAM, creating a clean, pleas-

ing looking texture map in the non-rigid scenario is more difficult than a static scenario.

There are many other challenges in MIS-SLAM: The number of nodes increases leading to

slow optimization; the scope is very close to the tissue and the exposure differs much as it

moves, resulting in visible seams in final model; image motion blurring is another problem

due to the scope moves fast.

3MIS-SLAM: https://youtu.be/2pXokldQBWM



Chapter 4. MIS-SLAM: A complete SLAM system for MIS scenario 67

4.6 Chapter summary

This chapter proposes MIS-SLAM: a complete real-time large scale robocentric dense de-

formable SLAM system with stereoscope in MIS based on heterogeneous computing. It

significantly improves the robustness by solving unstableness caused by the fast movement

of scope and blurry images. Benefiting from robustness, MIS-SLAM is the first robocen-

tric SLAM system achieving large scale scope localization and dense mapping in real-time.

MIS-SLAM can potentially be useful for clinical augmented reality or virtual reality ap-

plications when the scope is moving relatively fast. Next chapter will focus on reducing

the computational complexity when models grow and exploring an approach to balance

textures from different illumination.



Chapter 5

Efficient two step optimization in

ED based SLAM

The last chapter proposes MIS-SLAM, a real-time large scale robocentric dense deformable

SLAM system in MIS based on heterogeneous computing. MIS-SLAM achieves large scale

scope localizing and dense mapping in real-time, enabling localization and mapping in

the medical scenario. What’s more, MIS-SLAM proves that ED graph based deformation

formulation is applicable in simulating the deformation of a soft-tissue. However, one

major issue in ED graph is that when more geometry is observed, the number of nodes

increases dramatically demanding heavy computations. This issue has not been addressed

in the field of 3D human reconstruction because the target size and moving extend are

predefined. In more general cases, however, as reported in Chapter 4, ED nodes opti-

mization computation is close to O(n2). This chapter aims at solving the problem

the computation complexity in larger scale environment. Taking ED nodes and

visible vertices relations in optimization step into consideration, this chapter classifies the

nodes into point relevant (PR) nodes and point irrelevant (PI) nodes and propose a two-

level optimization strategy. Overall, this chapter extends ED graph research by converting

the formulation into matrix form and reveal inherent sparsity in Jacobian of ED graph.

The constant computation complexity of the lossy strategy should have great potential for

applications in ED graph based large scale SLAM.

68
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5.1 Efficient two step optimization

5.1.1 Matrix form of ED graph deformation

M
3m×n

=



...
...

...
...

...

ωi=N(1,1) ∗ (v1 − gi=N(1,1)) · · · · · · · · · · · ·
...

...
...

... ωi=N(n,1) ∗ (vn − gi=N(n,1))

ωi=N(1,2) ∗ (v1 − gi=N(1,2)) · · · · · · · · · ωi=N(n,2) ∗ (vn − gi=N(n,2))
...

...
...

... ωi=N(n,3) ∗ (vn − gi=N(n,3))

ωi=N(1,3) ∗ (v1 − gi=N(1,3)) · · · · · · · · · · · ·
...

...
...

...
...

ωi=N(1,4) ∗ (v1 − gi=N(1,4)) · · · · · · · · · ωi=N(n,4) ∗ (vn − gi=N(n,4))
...

...
...

...
...



(5.1)

To fully exploit the structure, we rewrite point transformation in Eq. (3.2) into matrix

form for the convenience of sparsity analysis. Let’s consider a group of predefined key

source points defined as P = [v1...vn] and P̃ = [ṽ1...ṽn] to be the key target points in the

vector form. According to Eq. (3.2), each point vi is deformed by its 4 neighboring nodes.

Thus this chapter defines two matrix M (Eq. (5.1)) and C (Eq. (5.2)):

C
m×n

=



...

ωi=N(1,1) · · · · · · · · · · · ·
... · · · · · · · · · ωi=N(n,1)

ωi=N(1,2) · · · · · · · · · ωi=N(n,2)
... · · · · · · · · · ωi=N(n,3)

ωi=N(1,3) · · · · · · · · · · · ·
... · · · · · · · · · · · ·

ωi=N(1,4) · · · · · · · · · ωi=N(n,4)
... · · · · · · · · · · · ·



. (5.2)

In matrices M and C, note that non-zero elements are not aligned. Each column only has

4 non-zero elements (neighboring nodes). The sum of each column in matrix C is 1 due to

the location of each element is dependent on the topology of points to nodes. In Eq. (3.2),
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a source point vi is transformed by its 4 neighboring nodes making 4 non-zero elements

every column in M and C. The sum of all weight ωj(vi) is 1. Note that different source

points have different topology, thus the location of non-zero elements are not aligned well

in each column. The parameters of ED nodes Ai and ti are arranged in the following

form:

Λ =
(

A1 · · · Am

)
(5.3)

T =
(

t1 + g1 · · · tm + gm

)
. (5.4)

With regard to general data term Edata defined in Eq. (3.8), to solve geometrical model to

frame registration, ‘back-projection’ formulation is proposed as a substitution to iterative

closest point (ICP). They make full use of 2D depth image for fast convergence. Readers

may refer to [14] [12] [83] [20]. For simplicity, this work introduces the basic source and

target key point pairs described by Sumner et al. [83]. Let vi and ṽi be the arbitrary key

source point and key target points. Normally predefined in interactive phase, these key

points define how model is to be deformed like bending the head or stretching the arm.

The goal is to minimize the distance of deformed point set to target point set:

Edata =

n∑
i=1

||Rc

∑
j∈N(j)

ωj(vi)[Aj(vi − gj) + gj + tj ] + Tc − ṽi||2. (5.5)

Then Eq. (5.5) takes the following form:

Edata = ||Rc · [Λ ·M + T ·C] + Tc ⊗ 1− P̃||2F . (5.6)

where ⊗ is the kronecker product. 1 is 1× n vector of ones. And || · ||2F is the Frobenius

norm. Eq. (5.6) can be written compactly in the following form according to conclusions

drawn from last section:

Edata = ||Rc ·
(

Λ T
)
·

 M

C

+ Tc ⊗ 1− P̃||2F . (5.7)
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This work defines Π = [MT CT ] and Φ = [Λ T]T . Therefore, Eq. (5.7) can be transformed

to following formulation:

Edata = ||Rc[ΠΦ]T + Tc ⊗ 1− P̃||2F . (5.8)

The property of Jacobian of Edata is determined by Π.

5.1.2 Sparsity in ED graph formulation

It is natural to solve Eq. (5.8) in a batch. As the number of vertices increases, the Jacobian

relating to state Φ increase dramatically. Luckily, this work explores the structure of Π

because only part of nodes are related to model points matching to observation. Fig. 5.1

indicates that the size of the depth image (blue points) is constant due to the limited field

of view of the camera. The model keeps expanding while the target depth remains in small

size. A typical ED node and target depth relationship is illustrated in Fig. 5.1(d); 2/3

of the nodes are not within range of target depth resulting no contribution to Edata. Fig.

5.2 shows a typical Jacobian of the cost function. In Edata block, shadow region indicates

nodes connected to points (PR nodes) while zero block shows the nodes (PI nodes) free

of any connected points. In this chapter, we make full use of the sparsity of nodes in zero

blocks.

The same sparsity also applies to Eq. (5.1) and Eq. (5.2). By rearranging matrix Π from

Fig. 5.2(a) to Fig. 5.2(b), this research achieves a new Jacobian with zero block. Using

this new matrix, Eq. (5.8) is rewritten to following form:

Edata = ||Rc[ΠΦ]T + Tc ⊗ 1− P̃||2F

= ||Rc[
(

Π
′ O

) Φ1

Φ2

]T + Tc ⊗ 1− P̃||2F ,
(5.9)

where Φ1 is the Aj and tj of PR node set and Φ2 is the Aj and tj of PI node set. Π
′

is

the subset of Π relating to PR nodes (shadow region in Fig. 5.1).
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a b

c d

Figure 5.1: Illustrated are the spatial relations of the visible points and the node graph.
(a) is the latest reconstruction. (b) shows both the model (red) and the target depth
(blue). (c) is the ED nodes and their edges. (d) presents the ED nodes and the target

depth.

5.1.3 Lossy two-level optimization

Explained in Section 5.1.2, the size of the PR nodes is almost constant due to the limited

size of depth image in a scenario where the map keeps expanding. For instance, the point

cloud generated from Hamlyn dataset [91] (grabbed from monitor) is only 320 × 240 =

76800 at most. As the model grows, the total number of nodes in the ED graph

is increasing but the number of PR nodes is almost constant. Taking advantage
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Figure 5.2: (a) is an example of Jacobian. Empty block means the element in this block
are zero. (b) is re-ordered Jacobian.

of Eq. (5.9), the optimization can be divided into two levels: the optimization of PR nodes

Φ1 and the optimization of the rest PI nodes Φ2.

Therefore, this work first optimizes (Φ1, Rc and Tc) by fixing Φ2 in (Level I) optimiza-

tion, to obtain an estimation of the three parameters Φ1, Rc and Tc. Then the value of

the parameters obtained from level I, will be fixed in Level II, together with the two soft

constraints Erot and Ereg to optimize the parameter Φ2. This chapter explicitly enforces

the idea with the following formulation:

argmin
Rc,Tc,Φ1

ωrotẼrot + ωregẼreg + ωdataEdata (5.10)
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argmin
Φ2

ωrotErot + ωregEreg (5.11)

Eq. (5.10) and Eq. (5.11) are the Level I and Level II energy functions, where Ẽrot and

Ẽreg are the subsets of energy function of Erot and Ereg containing Φ1. In other words,

the size of Eq. (5.10) is only related to the size of PR nodes. Therefore, the computational

complexity in optimizing Level I is reduced from O(n2) to constant O(1) thanks to the

constant size of Φ1. Undoubtedly, optimizing Level II is still O(n2), but considering the

scale of data term Edata is far larger than the rest, the computational cost in Level II is

much smaller. Note that the new strategy keeps time consuming step Level I constant

while Level II still O(n2). But the size of Level II is almost negligible comparing

to Level I.

5.1.4 Connection with marginalization and information loss

This section draws the connection of the proposed two-level optimization method with

an exact marginalization based method. The analysis will show that the information loss

is very low, illustrating the feasibility of the decoupled optimization Eq. (5.10) and Eq.

(5.11).

When generating Eq. (5.9), the Jacobian shown in Fig. 5.2 is re-ordered by classifying

[A1, t1...Am, tm] into PR nodes set Φ1 and PI nodes set Φ2. The state in cost function

[Rc,Tc,A1, t1...Am, tm] are classified as PR nodes with global pose xc = (Rc,Tc,A1, t1...Ak, tk)

and PI nodes xf = (Ak+1, tk+1...Am, tm). Fig. 5.2 shows the Jacobian in the new order.

The first two term are combined due to their sparsity because Erot and Ereg are node-wise

and are unrelated to source points. The only full block in Fig. 5.2 is Edata with regard to

Φ1 (shadow region), specifically ∂J2
∂xc

. Let us write down the Jacobian and Hessian as,

J =

∂J1
∂xc

∂J1
∂xf

∂J2
∂xc

O

 def
=

J1c J1f

J2c O

 (5.12)
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H =

JT1cJ1c + JT2cJ2c JT1cJ1f

JT1fJ1c JT1fJ1f

 def
=

Λcc Λcf

ΛT
cf Λff

 (5.13)

Obviously, the density of ∂J 2
∂xc

makes Λcc the only dense block among Hessian H. Taking

this advantage we use marginalization technique [54] from classic rigid SLAM and separate

the optimization in following form:

Λcc Λcf

ΛT
cf Λff

xc

xf

 =

JT1cF + JT2cF

JT1fF

 def
=

yc

yf

 (5.14)

Λcc −ΛcfΛ
−1
ff ΛT

cf O

ΛT
cf Λff

xc

xf

 =

yc −ΛcfΛ
−1
ff yf

yf

 (5.15)

After enforcing Schur complement, this work successfully achieves only solving xc inde-

pendent of xf . The computation of xc (including Rc, Tc and Φ1) is constant (explained

in Section 5.1.3). After solving xc, the optimization of xf is in tiny computation as the

Λff = ( J1
∂xf

)T ( J1
∂xf

) and is only related to Erot and Ereg. The sparsity of Hessian and

small number of nodes (n� m) makes the time of solving xf much less.

Fig. 5.3 is the Jacobian of Erot and Ereg relating to all nodes. The first term Erot is

the sum error of affine transformation (Eq. (3.5)) making the Jacobian strictly diagonal.

The second term Ereg defines the transformation error within node and its neighbors (Eq.

(3.7)). The major part Aj(gk − gj) + gj + tj is also within one node j except the very

last −(gk + tk). The last variable tk makes the Jacobian not strictly diagonal (refer to

Fig. 5.3(b)). This works comes up with an idea that by ignoring Jacobian of tk, Level

I and Level II energy function are separable. Therefore, after reordering two diagonal

Jacobians, the combination [∂J 1
∂xc

∂J 1
∂xf

] is diagonal and (∂J 1
∂xc

)T (∂J 1
∂xf

) = 0. Eq. (5.14) is

transformed to Eq. (5.15) solved directly without strict marginalization.
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Figure 5.3: (a) is Jacobian of Erot with regard to all nodes. (b) is Jacobian of Ereg

with regard to all nodes.

Fig. 5.4 visualizes the feasibility of the lossy decoupled optimization approach in geometry.

PR nodes (green) are the only nodes that are connected to visible points and contribute

to Edata. All PI nodes (purple) merely share edges with PR nodes and are passively

deformed according to the behaviors of PR nodes. Equivalently, the inter-nodes relations

in the Jacobian of Ereg (Fig. 5.3(b)) shows these connections (Fig. 5.3(b)). In view of

this, the proposed lossy decoupled optimization approach first optimizes PR nodes and

then estimates PI nodes.

In conclusion, solving energy function Eq. (3.4) by first ignoring Jacobian of

tk is equivalent to the proposed decoupled optimization in Eq. (5.10) and Eq.

(5.11).

The information loss of the proposed approach is relatively low. Fig. 5.4 illustrates

the connection between PR nodes and PI nodes is weak on the boundary, in contrast

with the dense connections among PR nodes. Fig. 5.5 demonstrates how the connection

between PR and PI nodes are removed in Level I optimization. Correspondingly, the

connection between ∂J1
∂xc

and ∂J1
∂xf

are removed resulting in Λcf = (∂J1
∂xc

)T ( ∂J1
∂xf

) = O. The
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Figure 5.4: Two types of nodes and edges. Green nodes are the PR nodes and purple
nodes are PI nodes.

Figure 5.5: Connections of PI (purple) and PR (green) nodes. Left is the full connection
while the PI and PR connections are cut in Level I optimization
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information between two PR nodes is strong while that among the PI nodes is weak. The

weak information is neglected in Level I, attributing to relatively low information loss in

optimization process.

5.2 Results and discussion

The goal is to have both qualitative assessments as well as quantitative comparisons be-

tween the original ED graph optimization and the proposed 2 level optimization method.

For qualitative comparison, this chapter shows the sacrificed accuracy has few impacts on

the final reconstructed map. A dolphin model is downloaded from Turbosquid (https:

//www.turbosquid.com) for qualitative comparison. With regard to quantitative test in

SLAM, both methods are compared on a tiny synthetic dataset and datasets from the Ham-

lyn Centre for Robotic Surgery [91], where this work chooses three in-vivo stereo videos

with deformation and rigid scope movement. Other videos either have no deformation or

scope motion. The frame rate and size of the in-vivo porcine dataset (model 1) are 30

frames per second and 640×480 while the other two is 25 frames per second and 720×288.

Distance from camera to surface of soft-tissue is between 40 to 70 mm. The experiments

are conducted on the same hardware and software environment of MIS-SLAM (Chapter

4). The module of state estimation in MIS-SLAM is modified to Level I optimization

described in this thesis. Note that an iterative solver, i.e. the preconditioned conjugate

gradient method, is employed to solve the resulting linear systems, as it provides a way

of parallel computing on GPU. Section 5.2.1 shows the qualitative comparisons while the

rest shows time complexity as well as the accuracy.

5.2.1 Qualitative ED deformation comparisons

Fig. 5.6 demonstrates the comparisons of ED graph deformed dolphin (middle) and the

result with the proposed approach (right). This comparison is not aiming as proof of the

superiority of the proposed method over the original ED graph method. Sumner et al. [83]

has already claimed real-time implementation on CPU as well as very nice results. Aiming

at speeding up deformable SLAM application, the qualitative result of the proposed lossy

https://www.turbosquid.com
https://www.turbosquid.com
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Figure 5.6: Qualitative comparisons of the proposed strategy and original ED based
deformation. The first shape is the original dolphin mesh. It shows the result of deformed

shape (the last) along with the result of classical ED deformation (middle).

decoupled approach is not comparable to the batch estimation of ED. However, this chapter

aims at illustrating that the proposed method can achieve a similar result as ED graph and

the difference is not visible to the naked eye or difficult to make out. Fig. 5.6 confirms that

the deformed shapes performed by the proposed approach do actually have a similar result.

The result looks very close to the original ED graph partially due to the simple topology of

dolphin. Other complex models like a human will result in a visible but not very apparent

difference. Although the decoupled optimization normally works well, the results can be

much worse than ED when the nodes are too sparse. The deformation is dependent on

PR nodes involved and the insufficiency of PR nodes (or nodes in conventional one-step

ED) causes the wrong deformation that the expected target is not reached.

5.2.2 Time complexity comparisons

Fig. 5.7 and Fig. 5.8 show a tiny one-step toy simulation and the result. The tractable

time consumption remains small because the PR node does not change.

This chapter compares the original MIS-SLAM (Section 4) with the improved version. Fig.

5.9 illustrates the running time for three Hamlyn datasets (model 6, 20 and 21). In all
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Figure 5.7: A toy model. One step optimization step from plain visible surface model
(tiny dots) to warped surface (grid). PI nodes are in blue and PR nodes are in green.

Camera remains static.

Figure 5.8: Test results relating to Fig. 5.7.
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scenarios decoupled optimization yields better efficiency than batch processing especially

in case of long term process (the last dataset in Fig. 5.9). In the first few steps, the robot

is steady and ED graph is not expanding significantly. This attributes to the similar pro-

cessing time in the first few hundred steps. When the robot moves, the ED graph expands

intensively and processing time increases abruptly in state optimization. In view of this,

by limiting the size of the node graph, decoupled optimization keeps time consumption

stable due to the constant PR node scale .

From the demo video on youtube 1, readers will find the range of movement in model 6 is

much smaller than model 20 and 21. That’s the main reason the proposed method does

not contribute greatly to model 6. However, as the environment gets larger, the proposed

approach keeps much lower time consumption.

Fig. 5.10 also shows the number of decoupled nodes. The algorithm significantly keeps the

Level I tractable. Note that this chapter does not present the time for Level I and Level

II separately because the time consumption of Level II is only a few percent of Level

I. Normally the size of energy function for Level I is 15000 to 40000 while there are only

500 to 1500 for Level II optimization. Based on the test on GPU, the time consumption

of a typical Level I is 0.1 second while Level II is around 0.003 second.

5.2.3 Accuracy comparisons

The lossy decoupled optimization strategy inevitably attributes the loss of accuracy. Sec-

tion 5.2.1 shows the quality of the deformed map is well preserved in ED deformation

process. Moreover, this work compares the optimization performance of the lossy formula-

tion and the original one on the same parameters and weights of terms in SLAM application

(MIS-SLAM). Different from arbitrary key points matching in ED deformation formula-

tion (Eq. (5.5)), in SLAM application the Edata term is in the form of model-to-depth

scan matching like point to plane ICP. For quantitative validation, this work measures

the point-to-point distance of deforming map and target scan. For direct validation to

ground truth, three synthetic datasets (heart, right kidney and stomach) are generated by

deliberately deforming models from CT scanned phantom. This work compares the error

1https://youtu.be/7b7giRibvRI
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Figure 5.9: Processing time comparsions of model 6 (a), 20 (b) and 21 (c) in Hamlyn
dataset. Blue lines are the batch optimization and red lines are the nodes decoupled
optimization. Level I and Level II cannot be shown separately due to time consumption

of Level II is extremely low.



Chapter 5. Efficient two step optimization in ED based SLAM 83

Figure 5.10: Optimizing nodes comparisons in first level computation of model 6 (a),
20 (b) and 21 (c) in Hamlyn dataset. The red lines are the result of the decoupled

optimization strategy while the blue lines are the original batch strategy.

from the reconstruction to the ground truth. As a compliment, the three laparoscopy

datasets from Hamlyn are tested, but only the back-projection error in each iteration is

available since there’s no ground truth. In the batch approach, the average distance of

back-projection registration of the three simulation scenarios is 0.18 mm (model 6), 0.13

mm (model 20) and 0.12 mm (model 21). While dataset with ground truth (Hamlyn

dataset 10/11) achieves 0.08mm, 0.21 mm (Average errors). With the proposed decoupled

optimization approach, this chapter achieves 0.31 mm (model 6), 0.26 mm (model 20),

0.22 mm (model 21) and 0.14 mm, 0.29 mm errors. In the video on youtube 2, there is no

big difference in terms of structure and texture.

2https://youtu.be/7b7giRibvRI
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Figure 5.11: Mean average error of 3D reconstruction (mm). From the first to last
are Hamlyn dataset with ground truth, the synthetic heart, synthetic left kidney and

synthetic stomach. Please refer to video for the synthetic data.
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Fig. 5.11 illustrates the average error of model to ground truth. On top of ground truth in

Hamlyn dataset, this work generates several synthetic datasets with ground truth. Please

refer to the video for more details of synthetic data.

5.3 Chapter summary

This chapter proposes a novel two-level deformation node decoupling approach that sup-

ports faster computation and reduces computational complexity from O(n2) to near O(1).

The decoupled optimization structure achieves faster computation in scenario of expand-

ing environment. The proposed strategy sacrifice a small amount of accuracy in exchange

for near-constant processing speed. The constant computation complexity of the lossy

strategy should have great potential for applications in ED graph based SLAM applica-

tions in unbounded map scenario. Nevertheless, chapter 3, 4 and 5 all focus on 3D shape

reconstruction in robocentric scenario. Next chapter will move toward estimating camera

pose in worldcentric scenario.



Chapter 6

A time series SLAM algorithm for

deformable environment

Chapter 3, 4 and 5 discuss ED graph based dense robocentric deformable SLAM, which

measures the accuracy by the shape and texture of reconstructed geometries, and camera

pose estimation is off topic. The reason is that the motion of the camera and an entirely

deforming soft-tissue is intuitively non-separable. While there are numerous robocentric

SLAM implementations in the deformable scenario, no analysis is reported on the sepa-

rability, or defined as observability in classical control theory, of camera motion (trans-

formation) and environment deformation (non-rigid deformation) in deformable SLAM.

To theoretically revealing the relation, in this chapter, we extensively discuss the observ-

ability in the ED graph based SLAM. In the field of control, observability of system is

defined of the ability to fully and uniquely recover the system state, from a finite number

of observations of its outputs and the knowledge of its control inputs [61]. When ED graph

is applied in non-static SLAM, the results of 3D reconstructions are intuitive, and many

works ignore the accuracy of camera pose. Although the reconstructed geometry from ED

graph based mapping is appealing, the motion is a mixed result of pose tracking and envi-

ronment deformation estimating. Thus, our previous robocentric formulation is a bypass

to separation. This chapter focuses on estimating camera pose and deforming environ-

ment. Particularly, the question is ‘Is global pose of camera observable in an environment

unique?’. If the answer is no, then ‘How can we enable observability of pose in a deformable

86
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environment?’. There are four major contributions in this chapter: (1) A counterexample

is provided when analyzing ED graph based visual SLAM system in the deformable en-

vironment. We clearly demonstrate that the global pose of the camera can be embedded

into environment deformation formulation which is not separable. (2) We theoretically

prove the above conclusion by analyzing the rank of the Fisher information matrix (FIM).

(3) We propose an innovative back-end SLAM system with time series assumption which

can efficiently calculate accurate pose as well as the deforming environment. (4) A prove

is also provided to validate that the time series formulation is observable. The proposed

time series method is inspired by a Fourier Transformation. We introduce a priori that

theoretically deformation is a mixture of base shapes. Typical deformations this method

are suitable to handle include heartbeat, breathe, periodic body movement. Other defor-

mation can also, to some extent, be approximated by several historical basis shapes with

rigid movement. The proposed time series method explicitly enforces correct observability

constraints to overcome camera pose mixing with non-rigid deformation field. The result

is compared with conventional static SLAM and ED formulation.

6.1 Observability analysis of ED based SLAM

Last three chapters 3, 4 and 5 as well as previous researches [12–14, 93] demonstrate the

effectiveness of ED graph describing the deformation of environment. The three chapters

only show the robocentric deformable SLAM and focus on the 3D reconstruction of the

soft tissue. The goal of this section is to analyze the observability by presenting the

basic form and the corresponding matrix formulation of ED graph. Based on the matrix

formulation, observability of ED graph formulation is analyzed with an example as well as

theoretical prove. Surprisingly, the rotation and translation of the camera can be precisely

mixed with ED graph. Based on the analysis, we conclude that the global pose and local

deformation cannot be accurately estimated unless prior environment motion information

is available. This chapter is the cornerstone for a new time series based SLAM algorithm for

better localization of the camera assuming that feature behaves in a mixture of historical

trajectory.
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Aiming at proving the ED based formulation is not observable when we turn to ‘world-

centric’ instead of previously discussed ’robocentric’, we follow the classical observability

definition [94] by showing the camera pose with ED graph formulation is not solvable, that

is the existence of multiple optimal solutions for the ED formulation. When there is no

adequate information to uniquely obtain the solution, we call the problem is unobservable

[94]. Intuitively, the definition demonstrates the close connection within two intertwined

variables, showing the underlying reason for unobservability. Moreover, we also follow

another classical way of testing system observability [61][54] by presenting a theoretical

prove based on information matrix analysis.

6.1.1 Qualitative analysis of ED based SLAM formulation

By combining Eq. (5.1), Eq. (7), Eq. (5.3), Eq. (5.4), we upgrade single point transfor-

mation Eq. (3.2) to multiple points (model) transformation matrix formulation:

Edata = Rc · [Λ ·M + T ·C] + Tc ⊗ 1− P̂ (6.1)

In SLAM problem formulation, the state vector is denoted as Xi = [Rci,Tci,Λi,Ti] in

i-th step.

Camera to target measurement model: A typical SLAM observation model is a range

and bearing model. In practice, there are several different measurements due to different

sensors. Back-projection presentation is the most widely adopted observation model in

RGB-D and stereo SLAM [19] [20]. It is a modified version of ICP taking advantage of

regularized 2D depth observation, but in essence it is point to point pairing. For simplicity,

we employ basic observation model, that is feature positions are directly observed by

camera.

We propose a counter-example to illustrate Eq. (3.2 is not observable. According to

the definition [94], if there exists multiple optimal solutions [Rc,Tc,Λ,T] in one step

transitional process (Eq. (6.1)), it is at least partially not observable. Multiple optimal

solutions lead to low-rank of the FIM. The study of parameter observability examines
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whether the information provided by the available measurements is sufficient for estimating

parameters without ambiguity [61]. In other words, multiple solutions to the problem can

be found attributed to insufficient information. Therefore, unobservability can be proved

if multiple solutions to Eq. (6.1) are found, meaning global pose and non-rigid deformation

formulation combined is not observable at the same time.

Here we show there are infinite solutions to Eq. (6.1). For the optimal solution [R̂c T̂c Λ̂

T], we define an arbitrary rotation matrix ∆R. For a set of point cloud transformation

(from P to P̂), Eq. (6.1) with the state vector [R̂c T̂c Λ̂ T] can be reformulated into

following form:

P̂ = R̂c[Λ̂M + TC] + T̂c ⊗ 1

= R̂c∆R∆RT [Λ̂M + T̂C] + T̂c ⊗ 1

= R̂c∆R[∆RT Λ̂M + ∆RT T̂C] + T̂c ⊗ 1

(6.2)

Therefore, there is a new solution [R̂c∆R, T̂c, ∆RT Λ̂, ∆RTT]. Considering ∆R is ar-

bitrary, it’s obvious that the incremental camera rotation Rc can be offset by rotating

the affine transformations matrix Λ in the opposite direction. For the Rotation con-

straint, Λ̂ is transformed by a rotation matrix which means Erot is unchanged. For the

Regularization constraint:

Ereg = ||∆RT [Λ̂M
′
+ TC + T]||2F , (6.3)

where M
′

is similar to M with vi (i = 1, ..., n) substituted by gi (i = 1, ...,m). And || · ||2F
is the Frobenius norm. Ered is a rotation of previous vector and the vector norm remains

unchanged. In all, the new solutions [R̂c∆R, T̂c, ∆RT Λ̂, ∆RTT] are also the optimal

solutions to objective function Eq. (3.4) in addition to [R̂c T̂c Λ̂ T].

Similarly, for any arbitrary ∆T, we can find additional solutions satisfying Eq. (3.4). Note

that ∆T⊗1 = Rc∆T⊗1C due to the fact that the column sum of C is always to 1 (sum



Chapter 6. A time series SLAM algorithm for deformable environment 90

of weight). Thus we rewrite Eq. (6.1) to:

P̂ = R̂c[Λ̂M + TC] + (T̂c + ∆T−∆T)⊗ 1

= R̂c[Λ̂M + TC + ∆T⊗ (1C)] + (T̂c −∆T)⊗ 1

= R̂c[Λ̂M + (T + ∆T⊗ 1)C] + (T̂c −∆T)⊗ 1

(6.4)

Accordingly, we have other solutions [R̂c, T̂c−∆T, Λ̂, T + ∆T⊗ 1] to Eq. (3.4). For the

Rotation constraint, Λ̂ remains independent to ∆T. For the Regularization constraint:

Ereg =

m∑
j=1

∑
k∈N(j)

αjk||Aj(gk − gj) + gj + tj + ∆T−

(gk + tk + ∆T)||2 =

m∑
j=1

∑
k∈N(j)

αjk||Aj(gk − gj) + gj + tj − (gk + tk)||2
(6.5)

Therefore, Ereg remains the same for new solution [R̂c∆R, T̂c, ∆RT Λ̂, ∆RTT].

Remark 6.1. Prove is provided to show there are infinite number of optimal solutions to

the energy function Eq. (3.4). The global rotation matrix Rc or translation matrix Tc

are entangled with ED parameters [Λ,T].

6.1.2 Prove of unobservability in ED based SLAM formulation

After a qualitative analysis, we provide observability analysis based on full FIM analysis.

Based on the discussion above, the unobservable lies in the Edata defined in Eq. (6.1)

with pairs [Rc,Λ] and [Tc,T], and is unrelated to Eq. (3.5) and Eq. (3.7). Since global

transformation parameters Rc and Tc are irrelevant to Erot and Ereg, the observability

of these two terms are not affected. It’s easy to prove that the partial FIM with regard

to Erot and Ereg, is full rank. Therefore, we only focus on the simplified case shown in

Fig. 6.1 with regard to Eq. (6.1) to analyze the observability. The conclusion of this

node and one step camera movement can be generalized to multiple steps with a larger

ED graph. Similarly, we prove that the low rank is located in information matrix with

regard to [Rc,Λ] and [Tc,T]. For simplification, we consider the residual of a single point

p deformed by m nodes to p̂:

E
′
data = Rc[ΛM + TC] + Tc ⊗ 1− p̂ (6.6)



Chapter 6. A time series SLAM algorithm for deformable environment 91

Figure 6.1: One step camera movement. Camera moves from p to p̂. The movement
is a mixture of camera transformation and deformation by ED node g. The red line are

the connecting edge from node g to other nodes.

where the state are [Λm,Tm,Rc,Tc]. We vectorize the Λm and Tm and rewrite them into

current form [Λ,T,Rc,Tc]. Lie algebra is applied to optimize rotation matrix Rc. For

the convenience, we mark following variables:

R̂c
3×9m

=
[

Rc · · · Rc

]
(6.7)

R̃c
3×3m

=
[

Rc · · · Rc

]
(6.8)

Ĉ
3×3m

=


C · · · C
...

...

C · · · C

 (6.9)

M̂
3×9m

=


M · · · M
...

...

M · · · M

 (6.10)

S
3×3

= skew(Λ ·M + T ·C) (6.11)
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where skew(·) is the skew symmetric operator. The Jacobian of Eq. (6.6) with regard to

[Λ,T,Rc,Tc] is:

J =
(

R̂c � M̂ R̃c � M̂ −RcS I
)

(6.12)

where I is a 3 by 3 identity matrix. � represents Hadamard product. Before estimating

information matrix, we first mark the following matrix:

A1
9m×9m

=


1 · · · 1
...

...

1 · · · 1

 (6.13)

A2
9m×3m

=


1 · · · 1
...

...

1 · · · 1

 (6.14)

A3
3m×3m

=


1 · · · 1
...

...

1 · · · 1

 (6.15)

A4
9m×3

=


1
...

1

 (6.16)

A5
3m×3

=


1
...

1

 (6.17)
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Based on all the definitions, the Hessian matrix Hed can be presented in the following

form:

Hed =



H1

H2

H3

H4



def
=



A1 � (M̂TM̂) A2 � (M̂T Ĉ) −M̂T � (A4S) R̂T
c � M̂T

A2 � (ĈTM̂) A3 � (ĈT Ĉ) −A5 � (ĈTS) R̃T
c � M̂T

−(STA4
T )� M̂ −(STA5

T )� Ĉ STS −STRT
c

R̂c � M̂ R̃c � M̂ −RcS I


(6.18)

For the sub matrix H1 and H2 within the Hessian matrix Hed, we split them into the

group of every 3 lines. For example, H1(i) is the group i ranging from line 3 ∗ (i− 1) + 1

to 3i. By analyzing Hessian matrix Hed, we discover the following law:

H1(i) = Ṁ� [−(ST )−1H3] (6.19)

H2(i) = Ċ� [RT
c H4] (6.20)

where Ṁ and Ċ are defined in the following form:

Ṁ
3×18m

=
[
M̂ M̂ M̂

]
(6.21)

Ċ
3×18m

=
[
Ĉ · · · Ĉ

]
(6.22)

Obviously, this one point transformation scenario can be extended to multiple points.

Eq. (6.19) and Eq. (6.20) indicate that the global rotation Rc matrix and translation

vector Tc can be embedded into local affine deformation matrix Λ] and T respectively.

This conclusion also validates the qualitative conclusions (Remark 6.1) we draw in Section

6.1.1.
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6.2 Priori based SLAM formulation

Section 6.1 shows the inner-connection between the relative transformation and the non-

rigid deformation formulations. The two pairs, (Rc,Λ) and (Tc,T), are intertwined. Thus,

with the camera to feature observation only, both global rotation and translation cannot

be uniquely determined in conventional ED formulation on condition that no new infor-

mation is provided. Robocentric SLAM is one efficient way to avoid the unobservability.

Otherwise, there are an infinite number of solutions to the camera poses if camera to fea-

ture observations is the only source of input. This conclusion can be generalized to

other deformation formulation like FEM or structure-from-template because

the degree-of-freedom of deformation enables model motion just with delib-

erately adjusted movement of model vertices. With regard to this, the goal is to

propose a prior to separate and determine the relative transformation from the deform-

ing non-rigid tissue. Noteworthily, static SLAM algorithm with thresholds based feature

classification strategy [39–41] also comes with prior, assuming the static features are sepa-

rable and can be verified with thresholds. In this work, however, we still assume the whole

soft-tissue is deforming. Experiments in Section 6.3 demonstrate that information matrix

is full rank and estimated parameters are unique with the proposed priori.

In the field of nonrigid structure from motion, features are granted more freedom under

the base shape constraints [95] [96]. Instead of one single static position in pose estimation,

features are formulated with 3D locations in each frame. To prevent the irregular move-

ment of the 3D shapes, base shapes [97], base trajectories [74] or base shape-trajectory [75]

strategies are introduced to limit the degree of freedom of the soft shapes. They assume

that the movement is a mixture of predefined bases, although these predefined bases are

also unknown for the observation. After enforcing the bases, the freedom of the deforma-

tion is constrained and the rigidity of deformation can be controlled by the number of all

the bases.

Taking advantage of this, we propose that deformation of the feature can be approximated

by base historical shapes and the residuals of base shapes approximation are the camera

movement. Theoretically, if provided with an infinite number of base shapes, deformation

of features, as well as the camera, can be accurately estimated. In practice, comparing
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with traditional static SLAM or ED based SLAM, a limited number of base shapes can

still generate good camera pose due to observability preserved. This is especially true

in complex periodic deformation scenario where deformation is caused by breathing and

heartbeat; the current deformed shape can be inferred from previous shapes.

Based on the proposed prior, a new feature motion formulation is introduced in the con-

ventional back-end static SLAM formulation. In our study, the primary feature motion

measurement is based on the idea that current structure fn+1 can be linearly fitted by

its historical shapes fn ... fn−t where t is the processing window. A coefficient vector

c = [δ1 , ..., δt] is introduced to describe the relations of these feature movements. The

matrix B (3N × F ) is the combination of all valid features. N is the number of features

and F is the number of steps. Note that some elements in B is invalid because the viewing

angle of the camera makes it unable to observe all features at all steps.

B =


f11 f21 · · · · · · fF1
...

...
...

...
...

f1N f2N · · · · · · fFN

 (6.23)

The term ‘validity’ of feature f ji in B refers to (1) feature i is observed by camera in step

j and (2) feature i is observed in the period window t; in other words [f ji ...f + tji ] are all

observed by camera. The validity ensure building correlations in a consecutive movement

of feature.

The proposed formulation is based on conventional back-end static SLAM. We first in-

troduce static SLAM here. In 3D scenario where one camera freely moves with N static

features, the state to be estimated is denoted as:

X = [R p f1 · · · fN ], (6.24)

The general camera motion model from step n to n+ 1 without noise is described as:
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Table 6.1: Pose and feature errors in Monte Carlo simulations.

Deformable
SLAM
(m)

Least
Square
(m)

ED
node
based
VO (m)

Simulation 1

Camera Position
X(m)

0.942 2.538 8.743

Camera Position
Y(m)

0.526 1.012 3.197

Camera Heading
(Rad)

0.005 0.009 0.014

Simulation 2

Camera Position
X(m)

0.119 0.277 2.098

Camera Position
Y(m)

0.138 0.498 3.38

Camera Heading
(Rad)

0.002 0.002 0.009

pn+1 = pn + Rnvn

Rn+1 = Rnωn
(6.25)

where vn is the linear translation of one step movement. ωn ∈ SO(3) is the rotation matrix

describing orientation variation.

The static SLAM formation is modified by applying the time series method. When de-

picting feature motion, we are bereft of an analogy of conventional feature movement, so

our implementation is to build a relationship of a given feature in consecutive movement.

The formulation maneuvers to constrain feature motion to a mixture of historical move-

ment. The constraint of feature motion model is expressed by building linear relations

within a window of feature locations. The main advantage of linearly modeling the fea-

ture locations over historic base shape modeling is that it can initialize feature locations

with the rigid assumption (using conventional visual odometry) and avoids base feature

recognition. In non-rigid structure from motion, base shapes are essential to describe de-

formation. Moreover, base shapes require different window sizes for modeling which poses

a heavy computational burden. The proposed linear constraint, however, is flexible and
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Table 6.2: Pose and feature errors of heart, stomach and lung.

Deformable
SLAM

static
SLAM

ED
node
based
VO

Heart scenario

Camera Position
X(unit)

0.149 2.006 8.743

Camera Position
Y(unit)

0.085 0.951 3.197

Camera Heading
(Rad)

0.001 0.001 0.010

Stomach scenario

Camera Position
X(unit)

2.263 7.004 2.098

Camera Position
Y(unit)

2.566 6.894 3.380

Camera Heading
(Rad)

0.006 0.008 0.009

Lung scenario

Camera Position
X(unit)

2.009 7.596 2.098

Camera Position
Y(unit)

0.706 3.304 3.380

Camera Heading
(Rad)

0.002 0.003 0.009

straightforward to complex mixed deformation. In addition to the camera motion model

Eq. (6.25), the proposed linear feature motion is modeled as:

fn+1
i = δ1 · fni + δ2 · fn−1i + · · ·+ δt · fn−ti

(6.26)

6.2.1 Prediction modelling

We modify the conventional state to [R1,p1, ...,Rn,pn,B, c].

argmin
R1,p1,...,Rn,pn,B,c

Eobs + Ef + Eini (6.27)
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Eq. (6.27) is the energy function for a visual deformable SLAM. Eobs is the sum error of

camera to feature observations:

Eobs =

N∑
i=1

F∑
j=1

[F(Rj ,pj , f ji )−mj
i ]
2, (6.28)

where mj
i is the observation from camera to location of feature i in step j. F(·) encodes

the estimated observation from camera pose to feature position.

Ef denotes the error between current feature and its estimation from historical locations

following Eq. (6.26):

Ef =

N∑
i=1

t∑
j=1

(f j+1
i − δ1 · f ji − δ2 · f

j−1
i − · · · − δt · f j−ti )2 (6.29)

Eini =

t∑
i=1

[pi − p0]2 +

t∑
i=1

[Ri 	R0]2 (6.30)

Eini is to ensure the initial camera pose keeps static in the period size t. The notation 	

is called inverse retraction in differentiable geometry [98] and it is designed as a smooth

mapping such that R = R 	 0. Similar to conventional static SLAM problem where the

first pose need to be fixed [99], in our formulation the first period of poses should be fixed

likewise.

Due to the field of view of the camera, some of them features may not be seen when the

environment deforms. Fig. 6.2 shows one example of features not seen in some steps. Our

approach is capable of processing this situation. If one feature is not fully observed any

sliding window like the example shows, we will ignore this feature.

6.2.2 Observability analysis

In this section, we examine the parameter observability properties the proposed deformable

SLAM formulation, which, for the time being, is considered as a parameter estimation

problem. We will prove that the coefficient matrix c is not observable but the camera

pose, as well as feature motions, are observable. This is a very satisfying result because
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Figure 6.2: A typical feature deforming example. The ellipse deforms periodically
depicted in ‘I, II and III’. The region within arrows are the visible region. The leftmost
feature is not observed in phase ‘II’ and ‘III’. The rightmost feature is not observed in

phase ‘I’.

coefficient matrix c is only an auxiliary variable and is not physically explainable in a real

scenario. Camera pose as well as feature motions, however, are physical processes and

needs to be accurately estimated.

We adduce examples to prove coefficient matrix c is not observable. Taking into account

the flexibility of presenting multiple period motions in Eq. (6.26), it will inevitably result

in multiple solutions of feature motion combination. When features are static, the current

shape of the environment will be passed to the next formulation which means all c =

[1, 0 , ..., 0]. When there’s only one periodic movement, the shape of the environment will

be the same shape in history c = [0, , ...0, 1, 0, ..., 0]. In a more general scenario, multiple

periodic movements will lead to a full c. We would like to emphasize that: The positions

of features are not solvable. A simple example is when period is 2 but window is 4, this

will be presented by c = [0, 1, 0, 0] or c = [0, 0.5, 0, 0.5].

In addition to qualitative analysis of observability, we gain a better understanding of the
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Figure 6.3: A simple example of 2 steps camera movement. Different from SLAM in
rigid scenario, the feature f deforms in the space in position f1, f2 and f3.

formulation by proving with definition of observability. The study of parameter observabil-

ity examines whether the information provided by the available measurements is sufficient

for estimating the parameters without ambiguity; when parameter observability holds,

the FIM is full rank and invertible [61]. From the stated example we have obtained the

idea that the unobservable part lies in mismatch of real period and predefined window

size. Therefore, we first prove this with simple scenario and extended to our conclusion.

Consider the scenario shown in Fig. 6.3, one camera moves in three steps with orientation

R1, R2, R3 and position p1, p2, p3. And it always observe one deforming feature with

position f1, f2, f3. The observation is z1, z2 and z3. Window size t is set to 2. The

residuals should be:
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Fobj =



R1 · (f1 − p1)− z1

R2 · (f2 − p2)− z2

R3 · (f3 − p3)− z3

f3 − δ1 · f1 − δ2 · f2

R1 	 I3

R2 	 I3

p1

p2



(6.31)

Since 	 defines the distance of in the space of SO(3), the first two orientation R1 and

R2 is fixed (close to 3 identity matrix 13). The corresponding Jacobian of the toy model

Eq. (6.31) is shown in Eq. (6.32). S(·) is the skew symmetric formulation. Therefore,

the corresponding FIM matrix is Eq. (6.33). With regard to this scenario, after Gaussian

elimination, Matrix H is full rank if the feature is moving (f1, f2 and f3 are not equivalent).

However, considering the last 5×5 block of the matrix H, when feature is stable, all feature

poses f1, f2 and f3 are equivalent and coefficients δ1 and δ2 are the same. In this case, H

loses one rank thanks to the last two lines of matrix H. Thus, the only contribution to

low rank lies in the last two lines of matrix H corresponding to variable coefficients δ1 and

δ2 and is irrelevant to the number of features and number of steps. On the basis of these

analysis we concluded that in general scenario, the low rank of Hessian is contributed by

coefficients in the case of all features are stable.

J =



Ψ1 −R1 R1

Ψ2 −R2 R2

Ψ3 −R3 R3

−δ1 · I3 −δ2 · I3 I3 −f1 −f2

−R1 I3

−R2 I3


Ψi = −Ri · S(f i − pi)

(6.32)
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H =



2I3 S1 −S1

2I3 S1 −S1

S1 2I3 −I3

2I3 S2 −S2

S2 2I3 −I3

2I3 S3 −S3

S3 2I3 −I3

−S1 −I3 δ1
2I3 δ1δ2I3 −δ1I3 δ1f

1 δ1f
2

−S2 −I3 δ1δ2I3 δ2
2I3 −δ2I3 δ2f

1 δ2f
2

−S3 −I3 −δ1I3 −δ2I3 I3 −f1 −f2

δ1f
1T δ2f

1T −f1
T
I3 f1

T ∗ f1 f1
T ∗ f2

δ1f
2T δ2f

2T −f2
T
I3 f2

T ∗ f1 f2
T ∗ f2


Si = S(f i − pi)

(6.33)

Figure 6.4: The two figures is an example of Monte Carlo simulation. Display area is
illustrated from different directions for visualization.

6.3 Results and discussion

The last three chapters measure the accuracy by texture and shape of the reconstructed

geometry. Pose accuracy is not discussed because they are robocentric formulation. This

chapter enables accuracy comparisons of poses as well as features.
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A deformable heart Trajectory in a de-
formable stomach

Trajectory in a de-
formable liver

Figure 6.5: (a), (b) and (c) shows the camera moves randomly inside a deformable
organ (Heart, stomach and liver). Red curves are the trajectories. Blue dots are the
positions of the features and the attached quiver is the corresponding moving direction of
each feature. Quiver only shows one step. Please refer to our video for the whole process.

Figure 6.6: Estimation errors of static SLAM, FEM, ED graph and the proposed time-
series SLAM. Row 1 to 3 are the tests on scenarios of heart, liver and left lung. Column

1 to 3 are the RMSE of camera position X, camera position Y and camera heading.

6.3.1 Monte Carlo simulations

In order to validate the proposed priori based approach as well as prove the unobservable

camera pose in the deformable scenario, we conduct a series of Monte Carlo simulations

under various conditions like different period of deformation, different movement of robots

and different visibility of camera to feature observations. Fig. 6.4 is the typical 3D camera

movements with 20 deforming features and 60 steps. The observation is defined as a feature

position in camera coordinate which is a very common scenario of either stereoscope, lidar,

RGB-D and stereo camera sensors. We adopt a deformation generator to simulate mixed

kinematic deformations (different period and amplitude) of the features. The simulation

size ranges 500×500 (mm). The camera moves in a predefined trajectory with 20 features

deforming in a randomly mixed periodic way imitating soft-tissue movement. The viewing
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Figure 6.7: Estimation errors of static SLAM, FEM, ED graph and the proposed time-
series SLAM. Row 1 to 3 are the tests on scenarios of heart, liver and left lung. Column

1 to 3 are the RMSE of camera position X, camera position Y and camera heading.

angle is also randomly chosen ranging from 30◦ to 90◦. Noises are imposed on camera to

feature observation ranging from 1 to 5 mm. In this test, we just focus on adverse camera-

feature scenarios with a random motion to demonstrate the localization and tracking

capability of the proposed estimation algorithm and ignore optimal camera path planning.

We conduct 50 Monte Carlo simulations and compare the proposed deformable SLAM,

static SLAM approach and ED node based method. Note that different from the proposed

method and static SLAM, ED graph based method is robocentric formulation estimating

the rigid rotation and translation of the soft-tissue, which in turn can be regarded as the

pose of the camera. Thus it serves as visual odometry making it inherently less accurate

than the other two methods. Table 6.3 shows the comparisons. On the basis of these
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results, we concluded that the proposed deformable formulation outperforms static SLAM

and ED based approach.

The results are compared by root mean squared errors (RMSE) which quantify the estima-

tion accuracy. Fig. 6.6 is a typical Monte Carlo simulation showing the RMSE overtime.

6.3.2 SLAM in deformable soft-tissues

The proposed prior based deformable SLAM is also validated on ex-vivo experiments. In

the simulation validation step, three different soft-tissue models (heart, liver and lung),

which are segmented from a CT scan of a phantom, deform over time. The 3D deforming

data are projected into 2D space and we simulate a camera moving inside each soft-

tissues. The viewing angle of the camera is 60◦. Fig. 6.4 shows the trajectory of the

moving camera as well as the feature positions. The initial state of the feature and camera

pose are estimated with traditional visual odometry. Fig. 6.7 presents the results of the

three trajectories in the form of RMSE.

We also test the dataset on Hamlyn dataset 11 and 12. The camera remains stable (Fig.

6.8) observing two deforming soft-tissues. We track some key points and project them

into 2D features to test if the estimated camera pose is stable. Results demonstrate that

our algorithm achieves better camera pose (Average error 1.352 mm) than conventional

SLAM (Average error 5.473 mm).

These results imply that the proposed priori attributes to outperforming conventional

approaches, which results from the fact that many datasets conform to the mixture of

historical shapes.

6.3.3 Observability test

To gain more insight into observability in the proposed SLAM system, we examine the

parameter observability properties by testing the Hessian matrix of all the tests. The study

of parameter observability is to analyze if a unique solution of the problem can be found;

when parameter observability holds, the FIM is invertible [61]. We can gain insights about
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Figure 6.8: Ground truth dataset from Hamlyn center.

the null space due to the fact that FIM encapsulates all the information available. Section

6.2 shows that the null space of the proposed method lies in the deformable parameters c.

After testing on all datasets, we find that the Hessian (FIM) has a nullspace of the size of

c. We also test that Hessian becomes full rank when c is fixed. Therefore, even though c

is not fully observable, the camera pose and feature positions are still unique. This test

validate our theoretical analysis in Section 6.2.2.

Table 6.3: Feature estimation accuracies (m) in three models. All the simulation noises
(invariances) are set to be 0.1 m.

Heart Stomach Lung

Estimation error 1.242 2.120 3.197

6.4 Chapter summary

In this chapter, on the basis of previous robocentric SLAM scenario, our research extends

the knowledge of observability analysis into deformable SLAM environment. We perform

parameter observability analysis on ED parameterization and prove that in the case of

no prior, the global pose is not separable from ED based deformation parameterization.

Proofs of the existence of multiple solutions are provided for the ED based deformation

formulation. The null space in both ED based formulation and static SLAM formulation

makes the pose estimation not accurate. Based on our discussion, camera pose and the
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deforming environment in SLAM problems are entangled and cannot be estimated without

priors.

To solve this, a new time series priori based algorithm is introduced for localizing camera as

well as estimating the deformable environment, when robots operate in a dynamic scenario.

We prove that the priori is enough to avoid ambiguity of rigid and non-rigid motions of

the camera and the environment. The proposed algorithm is validated extensively on

Monte Carlo simulations and medical datasets. It significantly outperforms conventional

static SLAM formulation as well as ED formulation especially in a scenario with large and

mixture of periodic deformations.



Chapter 7

Conclusions and future work

We study the problem of 3D non-rigid SLAM in MIS. This thesis starts with introducing

ED graph to describe the free form soft surface deformation. For validating the effective-

ness of ED graph, two deformable SLAM systems, robocentric template based SLAM and

robocentric template free SLAM are proposed. Both systems demonstrate ED graph is

capable to fully describe general deformation of soft-tissues. The template free SLAM is

capable of incrementally rebuilding and deforming the soft surfaces in a surgical scenario

with slow-moving stereo scope. Furthermore, to solve the robustness of robocentric tem-

plate free SLAM, this thesis propose MIS-SLAM, the modified version of robocentric tem-

plate free SLAM with modifications on: (1) A heterogeneous framework with GPU (dense

robocentric deformable SLAM) and CPU (ORB-SLAM) (2) Highly integrated CPU and

GPU modules for fast processing (3) An improved model point storage system and fusion

management strategy (4) Real-time visualization. We show MIS-SLAM can process 3D

deformable model reconstruction with relatively fast moving the stereoscope. To solve the

problem in MIS-SLAM that the computational complexity in larger scale environment is

O(n2), we classify the nodes into PR nodes and PI nodes and propose a two-level optimiza-

tion strategy. In sacrifice small amount of accuracy, it successfully keeps the processing

time to close O(n1).

Different from the three chapters (3, 4 and 5) describing dense robocentric deformable

SLAM, the last chapter moves the theoretical works further toward conventional SLAM

108
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without assuming static scope as in robocentric scenario. Theoretical prove of unobserv-

ability of robot pose and ED graph is discussed and proved. This means the global rigid

transformation and local non-rigid deformation of the robot is mixed. Thus prior is needed

for robot pose separation. In this thesis, a prior based time series formulation is proposed

and shows significant improvement than conventional rigid SLAM formulation, ED graph

based SLAM and FEM based SLAM. A prove of observability is also provided on the time

series approach.

There are some future directions that are natural extensions of this work. For the sake of

clarity, we itemize them as follows:

(I) For template free SLAM approach, similar to the proposed stereoscope scenario,

future work will also explore the feasibility of applying this research method on

depth generated from a monocular scope with approaches like SfS [29] or deep neural

network based depth recovery from monocular images [100].

(II) One shortcoming of MIS-SLAM is that it lacks dense loop closure which can close

loop the whole soft-tissue. Future works will be how to design a better close loop

module. ORB-SLAM uses sparse features to relocate camera based on the assump-

tion that no relative motion exists in the environment. In the surgical vision, how-

ever, the deforming scenario makes the assumption invalid. More, hardware like EM

sensors may be integrated for better scope pose initialization.

(III) For two-level ED optimization method, the node marginalization strategy in this

thesis, however, is straightforward and arbitrary which only classify nodes based on

the node-vertex connectivity. It’s reasonable because different from the pose graph,

ED graph is paralleled in GPU and time consumption requirement is more strict.

But it remains to be of great interest to test if more complicated techniques like pose

graph pruning method like Kullback–Liebler divergence minimization outperforms

the proposed work while remains tiny consumption in GPU environment.

(IV) The time series approach proposed in this thesis requires heavy computation because

of the large objective matrix, future work may exploit the structure of time series

connection for reducing time and memory consumption.
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[11] Michael Zollhöfer, Matthias Nießner, et al. Real-time non-rigid reconstruction using

an RGB-D camera. ACM Transactions on Graphics (TOG), 33(4):156, 2014.

[12] Richard A Newcombe, Dieter Fox, and Steven M Seitz. DynamicFusion: Recon-

struction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 343–352, 2015.
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