

Isogeometric topology optimization for auxetic metamaterials and structures

by JIE GAO

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Zhen Luo, Liya Zhao, Liang Gao

University of Technology Sydney Faculty of Engineering and Information Technology

09/2019

Title of the thesis:

Isogeometric topology optimization for auxetic metamaterials and structures

Ph.D. student:

Jie Gao

E-mail: jie.gao-7@student.uts.edu.au

Supervisor:

A/Prof. Zhen Luo

E-mail: <u>zhen.luo@uts.edu.au</u>

Co-Supervisor and joint-supervisor:

Dr. Liya Zhao

E-mail: Liya.Zhao@uts.edu.au

Prof. Liang Gao

E-mail: gaoliang@mail.hust.edu.cn

Address:

School of Mechanical and Mechatronic Engineering

The University of Technology Sydney, Sydney, NSW 2007, Australia

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This thesis is the result of a research candidature conducted jointly with Huazhong University of Science and Technology as part of a collaborative degree.

Signature of Student:

Production Note: Signature removed prior to publication.

JIE GAO

Date: 12/12/2019

Acknowledgments

I would like to take this opportunity to express my deep gratitude to all those who helped me throughout my candidature.

First and foremost, I would like to extend my sincere gratitude to my principal supervisor, A/Prof. Z Luo. During the studying of the course and the writing of the thesis, he had contributed greatly by giving useful suggestions and constructive criticism. He devoted a considerable portion of his time to reading my manuscripts and making suggestions for further revisions. Moreover, he gave me many encouragements and other help in my study and life. Also, I would like to express my heartfelt gratitude to my joint supervisor Prof. L Gao and co-supervisor Liya Zhao for their support and guidance. Their outstanding knowledge, intelligence and wisdom have a profound influence on me.

I also wish to express my gratitude to Dr. Hao Li and Dr Yiqiang Wang. They offered me great help and gave me many valuable suggestions. My sincere thanks should also go to my colleagues Huipeng Xue, Jing Zheng, Shuhao Wu and Xianfeng Man for their support.

My last and special thanks would go to my beloved family for their loving considerations and great confidence in me all through these years.

Jie Gao

Sydney, 2019

Publications and Conference Contributions

International scientific journal publications

- [1] J Gao, HP Xue, L Gao & Z Luo. Topology optimization for auxetic metamaterials based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 2019, 352: 211-236.
- [2] J Gao, Z Luo, H Li & L Gao. Topology optimization for multiscale design of porous composites with multi-domain microstructures. Computer Methods in Applied Mechanics and Engineering. 2019, 334: 451-476.
- [3] J Gao, L Gao, Z Luo & PG Li. Isogeometric topology optimization for continuum structures using density distribution function. International Journal for Numerical Methods in Engineering. 2019, 119: 991-1017
- [4] J Gao, Z Luo, H Li, PG Li & L Gao. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites. Composite structures. 2019, 211: 401-417.
- [5] J Gao, Z Luo, L Xia & Gao L. Concurrent topology optimization of multiscale composite structures in Matlab. Structural and Multidisciplinary Optimization. 2019, Doi:10.1007/s00158-019-02323-6.
- [6] <u>J Gao</u>, H Li, Z Luo, L Gao & PG Li. Topology optimization of micro-structured materials featured with the specific mechanical properties. International Journal of

Computational Methods. 2019, 15 (8): 1850144.

- [7] JGao, H Li, L Gao & M Xiao. Topological shape optimization of 3D micro-structured materials using energy-based homogenization method. Advances in Engineering Software. 2018, 116: 89-102.
- [8] J Zheng, Z Luo, C Jiang & <u>J Gao</u>. Robust topology optimization for concurrent design of dynamic structures under hybrid uncertainties. Mechanical Systems and Signal Processing. 2019, 120: 540-559.
- [9] H Li, Z Luo, M Xiao, L Gao & <u>J Gao</u>. A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets. Computer Methods in Applied Mechanics and Engineering. 2019, 356: 116-144

International conference publications

- [10] J Gao, Z Luo & L Gao. An Isogeometric Topology Optimization Method for Materials and Structures. In: The World Congress of Structural and Multidisciplinary Optimization, (WCSMO2019) Beijing, China
- [11] J Gao, Z Luo, H Li & Gao L. Multiscale Topology Optimization for Integrated Design of the Structure and Materials. In: 13th World Congress on Computational Mechanics (WCCM 2018), New York.

List of Figures

Figure 2-1 Three subfields of structural optimization [1]	7
Figure 2-2 An engineering case using structural optimization [6]	8
Figure 2-3 the basic principle of the homogenization method [2]	11
Figure 2-4 The flowchart of the SIMP method [11]	13
Figure 2-5 The level set function to represent the structural topology [83]	19
Figure 2-6 Estimation of time costs of each component for engineering structure [89]	21
Figure 2-7 Comparisons between FEA and IGA [89]	22
Figure 2- 8 Some results of the IGA-based material description models	26
Figure 2-9 Some results of the IGA-based boundary description models	27
Figure 2-10 Applications of ITO methods	30
Figure 2-11 The NPR behavior of auxetic metamaterials [127]	31
Figure 2-12 Several 2D and 3D auxetic metamaterials	32
Figure 2-13 The framework of the current work with the logical relationship	36
Figure 3-1 NURBS-based IGA for 3D Bridge-type structure	40
Figure 3-2 Cross-sectional view of the IGA mesh for the 3D Bridge-type structure	47
Figure 3-3 The flowchart of the ITO method	53
Figure 3-4 The details of the Cantilever beam	54
Figure 3-5 The initial design of cantilever beam	55
Figure 3-6 The optimized results of cantilever beam	55
Figure 3-7 The intermediate DDFs	55
Figure 3-8 Convergent histories	58
Figure 3-9 The optimized results in three cases	59
Figure 3-10 Intermediate topologies	61
Figure 3-11 Nodal densities at control points in three cases	62
Figure 3-12 The optimized designs in three cases	63
Figure 3-13 Quarter annulus	63
Figure 3-14 The initial design of quarter annulus	64
Figure 3-15 The optimized results of quarter annulus	64
Figure 3-16 The intermediate DDFs	65
Figure 3-17 Convergent histories	65
Figure 3-18 The optimized designs in three cases	67
Figure 3-19 The details of the complex structure	67
Figure 3-20 The optimized designs	68

Figure 3-21 Convergent histories	68
Figure 3-22 The details of 3D Michell structure	69
Figure 3-23 Convergent histories	70
Figure 3-24 The intermediate topologies	71
Figure 3-25 3D printing prototype of the 3D Michell structure	71
Figure 4-1 The construction of the DVF	76
Figure 4-2 Multi-material topology description in the N-MMI model	79
Figure 4-3 The expression and evolving mechanisms of design variables and topology	
variables	79
Figure 4-4 The details of MBB beam	87
Figure 4-5 Initial design of the MBB beam	88
Figure 4-6 The optimized design of the MBB beam	88
Figure 4-7 Convergent histories	91
Figure 4-8 Initial design of the MBB beam	92
Figure 4-9 The optimized design of the MBB beam	94
Figure 4-10 Convergent histories	95
Figure 4-11 The details of Cantilever beam	95
Figure 4-12 Convergent histories	96
Figure 4-13 Convergent histories	. 100
Figure 4-14 Convergent histories	. 101
Figure 4-15 The details of quarter annulus	. 105
Figure 4-16 The details of 3D Michell structure	. 107
Figure 5-1 The bulk material composed of a kind of material microstructure	112
Figure 5-2 Nodal densities assigned to control points	116
Figure 5-3 The flowchart of the ITO formulation for auxetic metamaterials	. 122
Figure 5-4 The initial design of material microstructure	. 124
Figure 5-5 The optimized designs of material microstructure	. 125
Figure 5-6 Intermediate density response surfaces of the DDF	. 125
Figure 5-7 Rotating mechanisms in the optimized 2D auxetic metamaterial	. 127
Figure 5-8 Iterative curves of 2D auxetic metamaterial	. 127
Figure 5-9 Numerical results of the former twelve cases	. 128
Figure 5-10 Auxetic microstructures in twelve cases	. 130
Figure 5-11 3D material microstructure	. 131
Figure 5-12 Four initial designs for 3D material microstructure	. 131
Figure 5-13 3D auxetic microstructure No. 1	. 132
Figure 5-14 3D auxetic microstructure No. 2	. 133
Figure 5-15 3D auxetic microstructure No. 3	. 133

Figure 5-16 3D auxetic microstructure No. 4	4
Figure 5-17 The 2D-views for four auxetic microstructures	4
Figure 5-18 Convergent histories of Cases 1 and 2	6
Figure 5-19 Intermediate results of Case 1	6
Figure 5-20 Intermediate results of Case 2	7
Figure 5-21 3D auxetic microstructures No. 5 and No.6	7
Figure 5-22 3D auxetic microstructure No. 1	8
Figure 5-23 Auxetic metamaterial and its finite element mesh	9
Figure 5-24 Boundary conditions imposed on the auxetic metamaterial 13	9
Figure 5-25 Displacement responses of auxetic metamaterial 13	9
Figure 5-26 Mechanical responses of auxetic metamaterial 14	0
Figure 5-27 3D printing samples for six auxetic microstructures 14	1
Figure 6-1 The bulk material composed of a kind of material microstructure 14	4
Figure 6-2 IGA mesh with Gauss quadrature points 14	.7
Figure 6-3 The flowchart of the ITO formulation for auxetic composites	2
Figure 6-4 Initial design of the two-material microstructure	5
Figure 6-5 The optimized designs	6
Figure 6-6 The optimized auxetic composite with two materials 15	8
Figure 6-7 Intermediate results of the combined distributions	9
Figure 6-8 Convergent histories of the objective function and volume fractions	0
Figure 6-9 The optimized designs	1
Figure 6-10 The optimized auxetic composite with three materials 16	3
Figure 6-11 Iterative curves of objective function and volume fractions 16	3
Figure 6-12 Intermediate results of the combined distributions 16	4
Figure 6-13 The 3D material microstructure	5
Figure 6-14 The optimized topology of 3D auxetic composite 1 with two materials 16	6
Figure 6-15 The details of the 3D auxetic composite No.1 with 3×3×3 microstructures 16	7
Figure 6-16 Iterative curves of the objective function and volume fractions of two materials	3
	7
Figure 6-17 The optimized topology of 3D auxetic composite 2 with two materials 16	9
Figure 6-18 The details of the 3D auxetic composite No.2 with 3×3×3 microstructures 17	0
Figure 6-19 The optimized topology of 3D auxetic composite No.3 with two materials 17	0
Figure 6-20 The details of the 3D auxetic composite No.3 with 3×3×3 microstructures 17	1
Figure 6-21 The optimized topology of 3D auxetic composite No.4 with two materials 17	1
Figure 6-22 The details of the 3D auxetic composite No.4 with 3×3×3 microstructures 17	2
Figure 6-23 The deformation mechanisms of four auxetic composites 17	3
Figure 6-24 The details of the 2D auxetic composite 17	5
Figure 6-25 Boundary conditions imposed on the 2D auxetic composite 17	6

Figure 6-26 Displacement responses of the 2D auxetic composite 1	176
Figure 6-27 3D auxetic composite microstructure No.1 1	177
Figure 6-28 Auxetic composite No.1 and its finite element mesh with an enlarged view 1	178
Figure 6-29 Boundary conditions imposed on the 3D auxetic composite No.1 1	178
Figure 6-30 Displacement responses of the 3D auxetic composite No.1 1	179

List of Tables

Table 3-1 The optimized results of the cantilever beam
Table 3-2 Knot vectors in three cases 58
Table 3-3 The numerical results in three cases 59
Table 3-4 The optimized results in two cases
Table 3-5 The numerical results in three cases 63
Table 3-6 Knot vectors in three cases 66
Table 3-7 The numerical results in three cases
Table 3-8 The optimized results of 3D Michell structure 70
Table 4-1 Four "virtual" isotropic solid materials
Table 4-2 The optimized results of the MBB beam with two materials
Table 4-3 The optimized results of the MBB beam with three materials
Table 4-4 The optimized results of cantilever beam with two materials
Table 4-5 The optimized results of cantilever beam with two materials
Table 4-6 The optimized results of cantilever beam with three materials 103
Table 4-7 The optimized results of quarter annulus with M2 and M3 materials 105
Table 4-8 The optimized results of quarter annulus with M2, M3 and M4 materials 106
Table 4-9 The optimized results of 3D Michell structure with M2 and M3 materials 108
Table 4-10 The optimized results of 3D Michell structure with M2, M3 and M4 materials
Table 5-1 The optimized 2D auxetic metamaterial 126
Table 5-2 Numerical results of three cases 130
Table 5-3 The homogenized elastic tensors of four 3D auxetic microstructures 134
Table 5-4 Homogenized elastic tensors of 3D auxetic microstructures No. 5 and 6 137
Table 6-1 Three "virtual" isotropic solid materials 153
Table 6-2 The optimized 2D auxetic composite microstructure 158
Table 6-3 The optimized 2D auxetic composite with three materials 163
Table 6-4 Homogenized elastic tensors of four auxetic composites 172

Abbreviations

SIMP	Solid Isotropic Material with Penalization
ESO	Evolutionary Structural Optimization
BESO	Bi-directional Evolutionary Structural Optimization
LSM	Level Set Method
PLSM	Parameterized Level Set Method
CSRBF	Compactly Supported Radial Basis Function
HJ-PDE	Hamilton-Jacobian Partial Derivative Equation
OC	Optimality Criteria
MMA	Method of Moving Asymptotes
IGA	Isogeometric Analysis
ITO	Isogeometric Topology Optimization
M-ITO	Multi-material Isogeometric Topology Optimization
DDF	Density Distribution Function
TVF	Field of Topology Variable
DVF	Field of Design Variable
NPR	Negative Poisson's Ratio
NURBS	Non-Uniform Rational B-splines

Abstract

It is known that topology optimization is located at the conceptual design phase, which can effectively determine the numbers, connectivity and existence of holes in the structural design domain and evolve design elements to improve the concerned performance. General speaking, topology optimization works as an important tool to seek for the optimal material distribution, which has been identified as one of the most promising sub-field of structural optimization due to its superior features occurring in the conceptual design stage without prior knowledge of the design domain. In the current work, the main intention is to propose a novel numerical method for the topology optimization with more effectiveness and efficiency for the single-material structures and structures with multiple materials. Meanwhile, the proposed topology optimization method is also applied to implement the rational design of auxetic metamaterials and auxetic composites. In Chapter 1, we provide a brief description for the main intention of the current work. In Chapter 2, the comprehensive review about the developments of topology optimization, isogeometric topology optimization and the rational design of auxetic materials is provided.

In Chapter 3, a more effective and efficient topology optimization method using isogeometric analysis is proposed for continuum structures using an enhanced density distribution function (DDF). The construction of the DDF mainly involves two steps: (1) the smoothness of nodal densities is improved by the Shepard function; (2) the higher-order NURBS basis functions are combined with the smoothed nodal densities to construct the DDF with the continuity. A topology optimization formulation to minimize the structural mean compliance is developed using the DDF and isogeometric analysis (IGA) is applied to solve structural responses. An integration of the geometry parametrization and numerical analysis offer several benefits for the optimization.

The Chapter 4 intends to develop a Multi-material Isogeometric Topology Optimization (M-ITO) method. Firstly, a new Multi-material Interpolation model is established with the use of NURBS (Non-uniform Rational B-splines), termed by the "N-MMI" model, which mainly involves three components: (1) Multiple Fields of Design Variables (DVFs); (2) Multiple Fields of Topology Variables (TVFs); (3) Multi-material interpolation. Two different M-ITO formulations are developed using the N-MMI model to address the problems with multiple volume constraints and the total mass constraint, respectively. The decoupled expression and serial evolving of the DVFs and TVFs can effectively eliminate numerical difficulties in the multi-material problems.

In Chapter 5, the proposed ITO method is applied for the systematic design of both 2D and 3D auxetic metamaterials. An energy-based homogenization method (EBHM) to evaluate the macroscopic effective properties is numerically implemented by IGA, with the imposing of periodic boundary formulation on material microstructure. An ITO formulation for 2D and 3D auxetic metamaterials is developed using the DDF, where the objective function is defined as a combination of the homogenized elastic tensor. A relaxed optimality criteria (OC) method is used to update the design variables, due to the non-monotonic property of the problem.

In Chapter 6, the proposed M-ITO method is applied for the systematic design of both 2D and 3D auxetic composites. The homogenization, that evaluates macroscopic effective properties

of auxetic composites, is numerically implemented by IGA, with the imposing of the periodic boundary formulation on composite microstructures. The developed N-MMI model is applied to describe the multi-material topology and evaluate the multi-material properties. A topology optimization formulation for the design of both two-dimensional (2D) and three-dimensional (3D) auxetic composites is developed. Finite element simulations of auxetic composites are discussed using the ANSYS to show different deformation mechanisms.

Finally, conclusions and prospects are given in Chapter 7.

Key words: Topology optimization; Isogeometric analysis, Auxetic metamaterials; Auxetic composites; Homogenization.

Contents

Certificate of Original Authorship	I
Acknowledgments	II
Publications and Conference Contributions	
List of Figures	V
List of Tables	IX
Abbreviations	X
Abstract	XI
Contents	i
Chapter 1 Introduction	1
1.1 Overview of the project	1
1.2 Research contribution	3
1.3 Outline of the thesis	4
Chapter 2 Background and literature review	6
2.1 Literature review of topology optimization	6
2.1.1 Homogenization method	10
2.1.2 Solid Isotropic Material with Penalization (SIMP) method	11
2.1.3 Evolutionary Structural Optimization (ESO) method	13
2.1.4 Level Set Method (LSM)	15
2.2 Literature review of isogeometric topology optimization	20
2.2.1 Isogeometric analysis (IGA)	
2.2.2 Methods of isogeometric topology optimization (ITO)	23
2.2.3 Applications of isogeometric topology optimization (ITO)	
2.3 Literature review of auxetic metamaterials	
2.4 The framework of the thesis	
Chapter 3 An ITO method using density distribution function (DDF)	
3.1 NURBS-based IGA	
3.1.1 NURBS basis functions	

3.1.2 Geometrical model and spatial discretization	
3.1.3 Galerkin's Formulation for elastostatics	41
3.2 Density distribution function (DDF)	43
3.2.1 Smooth nodal densities using the Shepard function	43
3.2.2 NURBS for the construction of the DDF	45
3.3 Isogeometric topology optimization (ITO)	48
3.3.1 ITO formulation to minimize static compliance	48
3.3.2 Design sensitivity analysis	49
3.4 Numerical implementations	52
3.5 Numerical examples	53
3.5.1 Cantilever beam	54
3.5.2 Quarter annulus	63
3.5.3 Complex structure	67
3.5.4 3D Michell structure	69
3.6 Conclusions	72
Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-	-
Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi- material Interpolation (N-MMI)	- 73
Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi- material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	-
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	-
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75 75 78
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI) 4.1.1 The Field of Design Variables (DVF) 4.1.2 The Field of Topology Variables (TVF) 4.1.3 Multi-material interpolation 4.2 Multi-material Isogeometric topology optimization (M-ITO) 4.2.1 M-ITO formulation to minimize the structural mean compliance 	- 73 75 75 78 80 81
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75 75 78 80 81 81 82
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75 75 75 78 80 81 81 82 85
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI). 4.1 NURBS-based Multi-Material Interpolation (N-MMI)	- 73 75 75 75 78 80 81 81 81 82 85 86
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI)	- 73 75 75 75 78 80 81 81 81 82 85 85 87
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI)	- 73 75 75 75 78 80 81 81 81 81 81 82 85 85 86 87 95
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI)	- 73 75 75 75 78 78
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi-material Interpolation (N-MMI)	- 73 75 75 75 78 78 78
 Chapter 4 A multi-material ITO (M-ITO) method using a NURBS-based Multi- material Interpolation (N-MMI)	- 73 75 75 78 80 81 81 81 82 85 85 86 87 95 104 107 110

Chapter 5 Rational design of auxetic metamaterials using ITO method	111
5.1 IGA-based EBHM	111
5.2 Isogeometric topology optimization (ITO)	114
5.2.1 Density distribution function (DDF)	114
5.2.2 ITO formulation for auxetic metamaterials	116
5.2.3 Design Sensitivity analysis	118
5.3 A relaxed OC method	120
5.4 Numerical Examples	122
5.4.1 2D auxetic metamaterials	123
5.4.2 Discussions of the weight parameter	128
5.4.3 3D auxetic metamaterials	130
5.4.4 Simulating validation based on ANSYS	138
5.5 Conclusions	142
Chapter 6 Rational design of auxetic composites using M-ITO method	143
6.1 IGA-based Homogenization	144
6.2 Isogeometric topology optimization (ITO) for auxetic composites	147
6.2.1 ITO formulation	147
6.2.2 Design Sensitivity analysis	149
6.3 Numerical implementations	152
6.4 Numerical Examples	153
6.4.1 2D auxetic composites	154
6.4.2 3D auxetic composite	164
6.4.3 Simulating validation based on ANSYS	174
6.5 Conclusions	
Chapter 7 Summary and prospects	181
7.1 Summary	181
7.2 Prospects in future works	