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ABSTRACT

Modeling, Analysis and Application of Big Traffic Data for Intelligent

Transportation Systems

by

Peibo Duan

Intelligent Transportation System (ITS), an integrated system of people, roads,

and vehicles by utilizing information and communications technology, has emerged

as an efficient way of improving the performance of transportation systems, enhanc-

ing travel security, and providing more choice to travelers. Recently, it has been

seen that the big data era for ITS is coming due to the wide use of traffic detectors

like traffic cameras and GPSs. These traffic detectors can collect various types of

traffic data that significantly contribute to the development of ITS, which has the

benefit of the public with convenient and safe travel.

With big traffic data, data-driven methods provide powerful and theoretical sup-

port for data modeling, analysis, and applications. However, existing methods still

suffer from some shortcomings. First, traffic predictors usually use black-box meth-

ods to capture the spatiotemporal correlation between traffic. As a result, it re-

duces the flexibility of predictors due to the time-varying spatial-temporal corre-

lation caused by frequent variation of road conditions. Second, it is impossible to

cover all urban areas with traffic detectors. Thus, data absence and data sparsity

have an essential impact on the reliability of travel state monitoring in a large road

network. Lastly, most big data applications are based on the centralized method

for processing and analyzing data, which consume more time and computational

resources, optimal decision making. These make research on big traffic data in ITS

become both exciting and essential.

In this thesis, a physically intuitive approach is developed for short-term traffic



flow prediction that captures the time-varying spatiotemporal correlation between

traffic, mainly attributed to the road network topology, travel speed, and trip distri-

bution. Experimental results demonstrate its superior accuracy and lower compu-

tational complexity compared with its counterparts. After that, a novel methodol-

ogy is presented to estimate link travel time distributions (TTDs) using end-to-end

(E2E) measurements detected by the limited traffic detectors. The experimental re-

sults show that the estimated results are in excellent agreement with the empirical

distributions. Lastly, a distributed scheme is proposed for taxi cruising route recom-

mendations based on taxi demands predicted by the proposed Graph Convolutional

Network (GCN) based method. Experiment and simulation are both implemented.

Experimental results validate the accuracy of the proposed taxi demand predictor.

Simulation results indicate that our proposed taxi recommendation scheme is better

than its counterparts in the aspects of minimizing the number of vacant taxis and

maximizing the global revenue of taxi drivers.

Dissertation directed by Professor Guoqiang Mao

School of Electrical and Data Engineering
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