UNIVERSITY OF TECHNOLOGY SYDNEY School of Electrical and Data Engineering

Modeling, Analysis and Application of Big Traffic Data for Intelligent Transportation Systems

by

Peibo Duan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019

Certificate of Authorship/Originality

I, Peibo Duan declare that this thesis, is submitted in fulfillment of the requirements for the award of doctorate, in the School of Electrical and Data Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 12th, January, 2020

© Copyright 2019 Peibo Duan

ABSTRACT

Modeling, Analysis and Application of Big Traffic Data for Intelligent Transportation Systems

by

Peibo Duan

Intelligent Transportation System (ITS), an integrated system of people, roads, and vehicles by utilizing information and communications technology, has emerged as an efficient way of improving the performance of transportation systems, enhancing travel security, and providing more choice to travelers. Recently, it has been seen that the big data era for ITS is coming due to the wide use of traffic detectors like traffic cameras and GPSs. These traffic detectors can collect various types of traffic data that significantly contribute to the development of ITS, which has the benefit of the public with convenient and safe travel.

With big traffic data, data-driven methods provide powerful and theoretical support for data modeling, analysis, and applications. However, existing methods still suffer from some shortcomings. First, traffic predictors usually use black-box methods to capture the spatiotemporal correlation between traffic. As a result, it reduces the flexibility of predictors due to the time-varying spatial-temporal correlation caused by frequent variation of road conditions. Second, it is impossible to cover all urban areas with traffic detectors. Thus, data absence and data sparsity have an essential impact on the reliability of travel state monitoring in a large road network. Lastly, most big data applications are based on the centralized method for processing and analyzing data, which consume more time and computational resources, optimal decision making. These make research on big traffic data in ITS become both exciting and essential.

In this thesis, a physically intuitive approach is developed for short-term traffic

flow prediction that captures the time-varying spatiotemporal correlation between traffic, mainly attributed to the road network topology, travel speed, and trip distribution. Experimental results demonstrate its superior accuracy and lower computational complexity compared with its counterparts. After that, a novel methodology is presented to estimate link travel time distributions (TTDs) using end-to-end (E2E) measurements detected by the limited traffic detectors. The experimental results show that the estimated results are in excellent agreement with the empirical distributions. Lastly, a distributed scheme is proposed for taxi cruising route recommendations based on taxi demands predicted by the proposed Graph Convolutional Network (GCN) based method. Experiment and simulation are both implemented. Experimental results validate the accuracy of the proposed taxi demand predictor. Simulation results indicate that our proposed taxi recommendation scheme is better than its counterparts in the aspects of minimizing the number of vacant taxis and maximizing the global revenue of taxi drivers.

Dissertation directed by Professor Guoqiang Mao School of Electrical and Data Engineering

Acknowledgements

The completion of this dissertation has been possible with the inspiration and encouragement from many people, to whom I am greatly indebted.

First of all, I overwhelmingly pay my immeasurable appreciation and deepest gratitude to my supervisor, Professor Guoqiang Mao, for his persistent guidance, valuable recommendations, generous advice never-ending patience and ongoing support. I feel extremely fortunate to be mentored by him during my Ph.D. candidature.

I am also grateful to other members in the research team of Prof. Guoqiang, for their making a friendly working environment, and for their support, great assistance, and valuable advice to my research.

I sincerely acknowledge the deepest love and ongoing support from my beloved families during my studies. I am grateful to my mother, my grandparents, and my father in heaven, for their encouragement and blessing.

Finally, but mostly, I wish to express my deepest gratitude to my friends, Mencheng Gao, Haoqi Zhou, Yiyang Jiang, Ying Wang, Ying He, and Yang Yang, who were always standing by me in my hard times during this work, especially in the innumerable days and nights fulfilled with anxiety, self-denial and hopelessness. Thanks for all the joy and beautiful memories they brought to my life. Although for some of them, we may never see each other again, I consider my self extremely fortunate to have all of them in the journal of my life.

> Peibo Duan Sydney, Australia July 2019

List of Publications

The following is a list of publications in refereed journals and conference proceedings produced during my Ph.D. candidature. In some cases, the journal papers contain material overlapping with the conference publications.

Journal Papers

- J-1. Peibo Duan, Changsheng Zhang, Guoqiang Mao, and Bin Zhang, "Applying distributed constraint optimization approach to the user association problem in heterogeneous networks," *IEEE Transactions on Cybernetics*, vol. 48, no. 6, pp. 16961707, 2018.
- J-2. Peibo Duan, Guoqiang Mao, Weifa Liang, Degan Zhang, "A Unified Spatiotemporal Model for Short-term Traffic Flow Prediction," Accepted by IEEE Transactions on Intelligent Transportation System, NOv. 2018.
- J-3. Peibo Duan, Guoqiang Mao, Baoqi Huang, Jun Kang, "Estimation of Link Travel Times Distribution with Limited Traffic Detectors," Accepted by IEEE Transactions on Intelligent Transportation System, 2019.

Conference Papers

- C-1. Peibo Duan, Guoqiang Mao, Shangbo Wang, Changsheng Zhang and Bin Zhang, "STARIMA-based Traffic Prediction with Time-varying Lags," *IEEE* 19th Int. Conf. on Intelligent Transportation Systems, pp. 1610-1615, 2016.
- C-2. Peibo Duan, Guoqiang Mao, Wenwei Yue, and Shangbo Wang, "A Trade-off between Accuracy and Complexity: Short-term Traffic Flow Prediction with Spatio-temporal Correlations," *IEEE 21th Int. Conf. on Intelligent Transportation Systems*, pp. 1658-1663, 2018.

- C-3. Peibo Duan, Guoqiang Mao, Changsheng Zhang, and Jun Kang, "A Unified STARIMA based Model for Short-term Traffic Flow Prediction," *IEEE 21th Int. Conf. on Intelligent Transportation Systems*, pp. 1652-1657, 2018.
- C-4. Peibo Duan, Guoqiang Mao, Baoqi Huang, and Jun Kang, "Estimating Link Travel Time Distribution Using Network Tomography Technique," Accepted by IEEE 22th Int. Conf. on Intelligent Transportation Systems, Jun. 2019.

Contents

	Cer	tificate		ii
	Abs	stract		iii
	Acl	knowledg	gments	v
	List	t of Pub	olications	vi
	List	t of Figu	ures	xii
	Ab	breviatio	on	xiv
1	Int	troduo	ction	1
	1.1	Resear	ch Background	 1
		1.1.1	Methods of Traffic Data Collection	 2
		1.1.2	Advanced Techniques of Big Traffic Data Analytics	 5
		1.1.3	Application of Big Traffic Data	 6
	1.2	Resear	ch Motivation	 8
		1.2.1	Traffic Flow Prediction	 8
		1.2.2	Travel Time Distribution	 9
		1.2.3	Taxi Recommendation System	 10
	1.3	Resear	ch Objectives and Contributions	 11
	1.4	Thesis	Organization	 14
2	Lit	teratu	ire Survey	15
	2.1	Short-t	term Traffic Flow Prediction	 15

	2.2	Link T	ravel Time Estimation	19
	2.3	Taxi R	ecommendation System	23
		2.3.1	Taxi Route Recommendataion	23
		2.3.2	Taxi Demand and Destination Prediction	25
	2.4	Summa	ury	27
3	Ur	nified	Spatio-temporal Model for Short-term Traffic	,
	Flo	ow Pre	ediction	28
	3.1	Unified	Spatio-temporal Model	29
		3.1.1	STARIMA Model	29
		3.1.2	System Model	29
	3.2	Method	lology for Parameter Estimation	35
		3.2.1	Time-varying Lags τ	36
		3.2.2	Turning Rate Estimation	37
		3.2.3	Spatial Order λ_1 and Parameters Estimation Algorithm	39
	3.3	Simula	tion and Discussion	42
		3.3.1	Experimental Setup	42
		3.3.2	Experimental Results for One-dimensional Freeway	45
		3.3.3	Experimental Results for Two-dimensional Network	48
	3.4	Summa	ury	53
4	\mathbf{Es}	timati	on of Link Travel Time Distribution With Lim-	
	ite	d Tra	ffic Detectors	54
	4.1	System	Model	55
		4.1.1	Network Tomography	55
		4.1.2	Kernel Density Estimator	56

ix

		4.1.3	KDE Based Model	56
	4.2	Param	eter Estimation	66
		4.2.1	The Estimation of \mathbb{R}	66
		4.2.2	The Estimation of $\mathbf{P}_{T \mathbb{R}}$	69
		4.2.3	The Estimation of $\Theta_{\mathbb{R}}$	70
		4.2.4	Q-opt and X -means Based Sampling Algorithm	74
	4.3	Experi	mental Results	76
		4.3.1	Experiment Setup	76
		4.3.2	Ground Truth	77
		4.3.3	Results	79
		Summa	ary	88
	4.4			
5	\mathbf{Gr}	raph N	Neural Network And Distributed Lagrange Dual	L
5	Gr De	aph N ecomp	Neural Network And Distributed Lagrange Dual Position Based Method For Taxi Cruising Route	ļ
5	Gr De Re	caph N ecomp ecomn	Neural Network And Distributed Lagrange Dual Position Based Method For Taxi Cruising Route mendation	l 9 89
5	Gr De Re	caph N ecomp ecomn Proble:	Veural Network And Distributed Lagrange Dual position Based Method For Taxi Cruising Route nendation m Formulation	l 89 90
5	Gr De Re	caph N ecomp ecomn Proble: Solutio	Neural Network And Distributed Lagrange Dual Position Based Method For Taxi Cruising Route nendation m Formulation m	89 90
5	Gr De Re	ecomp ecomp Probles Solutio 5.2.1	Neural Network And Distributed Lagrange Dual Position Based Method For Taxi Cruising Route nendation m Formulation on The Estimation of H and Z	l 89 90 97 97
5	Gr De Re	ecomp ecomp Proble: Solutio 5.2.1 5.2.2	Neural Network And Distributed Lagrange Dual Position Based Method For Taxi Cruising Route hendation m Formulation m The Estimation of H and Z The Prediction of $y_{t+\tau}$	l 90 97 97 101
5	Gr De Re	ecomp ecomp Proble Solutio 5.2.1 5.2.2 5.2.3	Neural Network And Distributed Lagrange Dual cosition Based Method For Taxi Cruising Route hendation m Formulation m Formulation m The Estimation of H and Z The Prediction of $y_{t+\tau}$ The Estimation of $P(Z H, t+\tau)$	89 90 97 97 101
5	Gr De 5.1 5.2	ecomp ecomp Proble: Solutio 5.2.1 5.2.2 5.2.3 5.2.4	Neural Network And Distributed Lagrange Dual cosition Based Method For Taxi Cruising Route hendation m Formulation m Formulation m The Estimation of H and Z The Prediction of $y_{t+\tau}$ The Estimation of $P(Z H, t+\tau)$ Distributed Algorithm	l 90 97 97 101 107
5	Gr De Re	ecomp ecomp Proble: Solutio 5.2.1 5.2.2 5.2.3 5.2.4 Results	Neural Network And Distributed Lagrange Dual cosition Based Method For Taxi Cruising Route nendation m Formulation m Formulation on The Estimation of H and Z The Prediction of $y_{t+\tau}$ The Estimation of $P(Z H, t+\tau)$ Distributed Algorithm	89 90 97 97 101 107 108 111
5	Gr De 5.1 5.2	caph N ecomp ecomm Proble: Solutio 5.2.1 5.2.2 5.2.3 5.2.4 Results 5.3.1	Neural Network And Distributed Lagrange Dual cosition Based Method For Taxi Cruising Route for the station Immedation Immedation	l 90 97 97 101 107 108 111
5	Gr De 5.1 5.2	ecomp ecomp Proble: Solutio 5.2.1 5.2.2 5.2.3 5.2.4 Results	Neural Network And Distributed Lagrange Dual cosition Based Method For Taxi Cruising Route nendation m Formulation m Formulation on The Estimation of H and Z The Prediction of $y_{t+\tau}$ The Estimation of $P(Z H, t+\tau)$ Distributed Algorithm	l 90 97 97 101 107 108 111 111 112

	5.3.4 Simulation \ldots	115
	5.4 Summary	118
6	Conclusion	119
A	ppendices	123
A	M-step in EM Algorithm in Section 4.2.3	124
\mathbf{B}	Estimation of SMS with TMS in Section 3.2.1 and 4.3.21	126

xi

List of Figures

1.1 The three layer architecture of conducting big data analytics i	ın I'J	ΓS .	. 2
---	--------	--------------	-----

3.1	Traffic flow prediction for a vertex (link) in an artificial road	
	network with consideration of the situations that there is (not)	
	enough traffic data	33
3.2	An instance of turning rate estiamtion with incomplete data	39
3.3	The map and the topology of considered segment in I-80 freeway	43
3.4	The map and topology of I-205 NB freeway	45
3.5	The running time of $\text{STARIMA}(\Xi)$, STARIMA^* , ARIMA^* and	
	BPNN	47
3.6	The running time of uSTARIMA, STARIMA*, STARIMA and BPNN	52
4.1	An instance of network tomography	55
4.2	Flowchart of the proposed method	57
4.3	The average travel time on a road in each time interval. The red	
	line is the 80% of all the points. \ldots \ldots \ldots \ldots	62
4.4	CDFs based on empirical data, Opt-KDE, Gaussian and log-normal	
	models under the congestion and free flow respectively $\ldots \ldots \ldots$	63
4.5	The selected area in Xi'an, China and the number of paths in	
	different areas	68
4.6	A travel route between two intersections using \mathbf{B}_W and Google Maps	69

4.7	The instance of calculating link travel time for a vehicle using GPS
	data
4.8	The percentage of intersections that should deploy traffic detectors
	with different configurations of Q and C in different time intervals . 80
4.9	The paths between two endpoints A and F
4.9	The performance of X -means based algorithm based on the instance
	in Fig.4.9
5.1	The way to determine K POIs around a link
5.2	An instance of SLPA algorithm based on the road topology in Fig.
	5.1
5.3	An instance of SLPA based algorithm
5.4	The structure of multiscale LSTM-GCN
5.5	The study site $\ldots \ldots \ldots$
5.6	The number of communities based on SLPA with different iterations . 113
5.7	The number of communities based on SLPA and GN-SLPA 114

Abbreviation

- ARIMA AutoRegressive Integrated Moving Average
- ANN Artificial Neural Network
- ARIMAX ARIMA with EXogenous variables
- **BPNN** Back Propagation Neural Network
- BN Bayesian Network
- BTMS Bluetooth Traffic Monitoring System
- BFS Breadth First Search
- CNN Convolutional Neural Network
- CDF Cumulative Density Function
- DTMC Discrete Time Markov Chains
- DCRNN Diffusion Convolutional Recurrent Neural Network
- EM Expectation Maximization

E2E - End-to-End

- FCL-Net Fusion Cnvolutional Long short-term memory Network
- GNN Graph Neural Network
- GMM Gaussian Mixture Model
- GCN Graph Convolutional Network
- GN GirvanNewman
- HPP Homogeneous Poisson Process
- HW Holt Winters
- ITS Intelligent Transportation System
- KARIMA Kohonen ARIMA
- KNN K Nearest Neighbor

- KDE Kernel Density Estimator
- LSTM Long Short Term Memory
- MAC Media Access Control
- MDP Markov Decision Process
- MIP Mixed Integer Programming
- POI Position of Interest
- PDF Probability Density Function
- RNN Recursive Neural Network
- STARIMA Space-Time ARIMA
- SVR Support Vector Regression
- SARIMA Seasonal ARIMA
- STW-KNN Spatio-Temporal Weighted KNN
- SVD Singular Value Decomposition
- STL Seasonal and Trend decomposition using Loess
- STGCNN Spatial-Temporal Graph Convolutional Neural Network
- STM-GCN Spatio-Temporal multi-GCN
- SACF Spatial AutoCorrelation Function
- SPACF Spatial Partial AutoCorrelation Function
- SMS Space Mean Speed
- TTP Traffic Transition Probability
- TMS Time Mean Speed
- TTD Travel Time Distribution