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ABSTRACT

Fast and Accurate Estimation of Angle-of-arrival in Millimetre-wave

Large-scale Hybrid Arrays

by

Kai Wu

Hybrid array is able to leverage array gains, transceiver sizes and costs for mas-

sive multiple-input-multiple-output (MIMO) systems in millimetre wave frequencies.

Challenges arise from estimation of angle-of-arrival (AoA) in hybrid arrays, due to

the array structure and the resultant estimation ambiguities and susceptibility to

noises. In this thesis, we study the unambiguous and non-iterative AoA estima-

tion in two types of hybrid arrays — Localized Hybrid Array of Phased SubArrays

(LHA-PSAs) and Lens Antenna Arrays (LAAs). For each type, two AoA estima-

tion approaches are proposed for narrowband and wideband, respectively. The main

innovation of the approaches include:

• The deterministic sign rules and patterns in LHA-PSAs are unprecedentedly

discovered, and exploited to eliminate the estimation ambiguities;

• The optimal trade-off between different error sources is achieved, minimising

the wideband AoA estimation error in LHA-PSAs;

• A new wide beam synthesis method is developed for LAAs, which substantially

improves the AoA estimation efficiency in LAAs;

• New spatial-frequency patterns are unveiled exploiting the spatial-wideband

effect, leading to fast and accurate wideband AoA estimation in LAAs.

Performance analysis is provided for all the approaches with closed-form estimation

(lower) bounds derived. Corroborated by simulations, our approaches are able to

dramatically improve AoA estimation accuracy while reducing complexity and the

number of training symbols, as compared to the state of the art. The estimation

errors of our methods asymptotically approach the (lower) bounds.
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i2 − i1 = 1, 2I
3

and I − 1, respectively, and the three Nu estimations

are used in Algorithm 4 Line 8 to obtained the three u estimations;

(c) the best Nu estimation N̂u
2

is used for generating the three u

estimations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Schematic diagram of the LAA receiver for concurrent WPT and

WIT, or SWIPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Illustration of two adjacent DFT beams including their amplitude

and phase responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Illustration of amplitude gains of DBDs, where four consecutive

DBDs are illustrated with the AoA of u = 2.05 rad to be estimated. . 86

4.4 Illustration of the search of the DBDs for AoA estimation using the

beams synthesized by Theorem 4.2, where N = 64, K = 4 and

u = 4.25 rad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xiv

4.5 The SIR between two equal-power paths and the MSE of the AoA

estimate of one path in the presence of the interference from the

other path vs. (n2 − n1), where n1 = 1 and the AoAs of the two

paths are set as u1 ∼ U
[
π
N
, 3π
N

]
, u2 ∼ U

[
2π(n2−1)

N
+ π

N
, 2π(n2−1)

N
+ 3π

N

]
,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 PDFT
d of ABP [5] and PDBD

d of the proposed method vs. γ = 1
σ2

d
. . . . 97

4.7 MSE of the single-AoA estimates, using ABP [5] and the proposed

algorithm (Algorithm 5), vs. γ = 1
σ2

d
. . . . . . . . . . . . . . . . . . . 97

4.8 Mainlobe comparison of the synthesized beams using WDFT [2],

DFT-DA [6] and the proposed method, where N = 64, K = 8 and 16. 99

4.9 A Detailed comparisons of WDFT [2] and the proposed method by

zooming in the beams in Figs. 4.8(c) and 4.8(d), respectively. . . . . 99

4.10 P{E} of WDFT [2] and the proposed beam synthesis vs. γ = 1
σ2

d
,

where E refers to the case that the beams of interest are identified

correctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 MSEs of the AoA estimates of two paths, where γ = 1
σ2

d
, r = 10−3,

ui ∼ U
[

2πni
N
, 2π(ni+1)

N

]
(i = 1, 2). . . . . . . . . . . . . . . . . . . . . . 101

4.12 MSE of the AoA estimate (vs. γ = 1
σ2

d
) of the third path, u3, in the

presence of two strong and close paths, u1 and u2, where r = 10−3,

the powers of the path are 35 dB, 20 dB and 0 dB, respectively; and

the AoAs of the three paths satisfy u1 ∼ U
[

2π(n1−1)
N

, 2πn1

N

]
,

u2 ∼ U
[

2πn1

N
, 2π(n1+1)

N

]
and u3 ∼ U

[
2πn2

N
, 2π(n2+1)

N

]
, respectively. . . . . 102

4.13 Time-average beamforming gain of an LAA and a DAA receiver

based on the AoA estimates obtain by ABP and the proposed

algorithm, respectively, where γ = 1
σ2

d
, r = 10−2, u ∼ U [0, 2π). . . . . 103

4.14 The rate-energy region of the proposed approach and ABP [5] under

SWIPT, where T = 30. . . . . . . . . . . . . . . . . . . . . . . . . . 104



xv

5.1 The schematic diagram of an LAA receiver, where “1-bit phase

shifter” refers to a phase shifter with the phase shift of either 0 or

180 degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Illustration of the spatial-frequency patterns, where N = 256,

M = 128, and ρm ∈ [0.8, 1]. Fig. 5.2(a) plots [g(u, ρm)]204 in (5.7)

across u ∈ S(0, 255) and sub-carrier m ∈ [0,M − 1]; Fig. 5.2(c) plots

P (u, ρm) in (5.12) by taking l = 0 and L = 164 in Lemma 5.1; and

Figs. 5.2(b) and 5.2(d) plot g̃n(m̃,M) and ğn(m̃,M) constructed
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