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ABSTRACT

Fast and Accurate Estimation of Angle-of-arrival in Millimetre-wave

Large-scale Hybrid Arrays

by

Kai Wu

Hybrid array is able to leverage array gains, transceiver sizes and costs for mas-

sive multiple-input-multiple-output (MIMO) systems in millimetre wave frequencies.

Challenges arise from estimation of angle-of-arrival (AoA) in hybrid arrays, due to

the array structure and the resultant estimation ambiguities and susceptibility to

noises. In this thesis, we study the unambiguous and non-iterative AoA estima-

tion in two types of hybrid arrays — Localized Hybrid Array of Phased SubArrays

(LHA-PSAs) and Lens Antenna Arrays (LAAs). For each type, two AoA estima-

tion approaches are proposed for narrowband and wideband, respectively. The main

innovation of the approaches include:

• The deterministic sign rules and patterns in LHA-PSAs are unprecedentedly

discovered, and exploited to eliminate the estimation ambiguities;

• The optimal trade-off between different error sources is achieved, minimising

the wideband AoA estimation error in LHA-PSAs;

• A new wide beam synthesis method is developed for LAAs, which substantially

improves the AoA estimation efficiency in LAAs;

• New spatial-frequency patterns are unveiled exploiting the spatial-wideband

effect, leading to fast and accurate wideband AoA estimation in LAAs.

Performance analysis is provided for all the approaches with closed-form estimation

(lower) bounds derived. Corroborated by simulations, our approaches are able to

dramatically improve AoA estimation accuracy while reducing complexity and the

number of training symbols, as compared to the state of the art. The estimation

errors of our methods asymptotically approach the (lower) bounds.
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Chapter 1

Introduction

1.1 Background

Massive multiple-input-multiple-output (MIMO) has been widely accepted as

an enabling technology for the emerging fifth-generation (5G) and beyond commu-

nication [9–11]. One reason is because the scarcity of communication spectrum

pushes 5G towards millimetre-wave (mmWave) frequencies [12]. Another reason is

that the short wavelength of mmWave allows for integrations of large numbers, i.e.,

up to hundreds, of miniaturized antennas in limited space, exploiting array gain

to compensate for poor radio propagations of mmWave [13]. On the other hand,

the physical sizes of radio frequency (RF) chains, consisting of analog-to-digital

and digital-to-analog converters (ADC/DAC), power amplifiers, and filters, do not

shrink, as the frequency grows higher [14]. To this end, a hybrid antenna array is

of particular interest to massive MIMO [1, 3, 4, 10, 15–22], which consists of an ad-

equate number of analog subarrays with phase controllable antenna elements. The

analog subarrays are typically arranged localized to facilitate wiring and schematic

design [1, 15]. In the localized hybrid arrays, antennas of a subarray are co-located,

which is illustrated in Fig. 1.1. The number of RF chains required is equal to that

of analog subarrays. The most studied hybrid arrays to date are shown in Fig. 1.1,

as will be detailed in Section 1.2.

Massive MIMO is also a promising technique for future wideband multibeam

Terabit satellite communications [23, 24], e.g., for extending network connectivities

to remote or disjoint regional areas, as well as to aircrafts and vessels typically

beyond the coverage of terrestrial wireless networks [25]. This is illustrated in Fig.

1.2. The large number of antennas in massive MIMO can increase substantially

antenna gain-to-noise temperature and frequency reuse. It can also enable spatial
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Figure 1.1 : Schematic diagram of a one-dimensional localized hybrid array, where
the subarrays can be implemented by either generic discrete antenna elements, or
highly integrated antennas such as lens and Butler matrix.

multiplexing, improving spectral efficiency of satellite communications [24]. On the

other hand, massive MIMO is uniquely suited for future Terabit multibeam satellite

communication systems, due to the fact that the communication spectrum becomes

increasingly scarce [26] and future satellite communications are very likely to operate

in higher Q/V band [27]. The short wavelength of Q/V frequency band allows for

integrations of large numbers, i.e., up to hundreds or even thousands, of miniaturized

antennas in a limited space. The high beamforming gains of massive MIMO are also

able to compensate for poor radio propagations [13, 28, 29].

Massive MIMO is also extensively adopted in the studies of wireless information

and power transfer (WIPT), due to the enormous designs-of-freedom (DoF). RF

radiation has been extensively used for wireless communications. Recently, it has

been increasingly considered to provide energy sources to power electronic devices.

Wireless power transfer (WPT) is critical to self-sustained electronic devices and

networks, especially in human-unfriendly environments where battery replacement

and recharging are difficult or even impossible [30]. As a matter of course, WIPT

has the great potential to develop environment-friendly and self-sustainable commu-

nication networks [31]. In general, there are two types of WIPT designs, namely, (a)

simultaneous WIPT (SWIPT) which modulates energy signals to serve the purpose
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of wireless information transfer (WIT) [29, 32, 33]; and (b) concurrent WPT and

WIT, where the transmissions of information and energy signals take place at differ-

ent transmitters [34–36]. Power transfer efficiency is the key measure of WIPT, due

to the fast attenuation of wirelessly transfered power (with the growth of distance).

One of the most critical challenges in WIPT is energy efficiency. To achieve

a high energy efficiency, it is desirable to use antennas with narrow beams and

therefore high directivities. When these antennas are employed in practice, it is

crucial to point the beams accurately in the directions of the transmitter. In the

case of SWIPT, focusing on the strongest paths is to save energy for power transfer

and improve the receive signal strength for information transmission [37, 38]. In

the case of concurrent WPT and WIT, accurate estimation of the angle-of-arrivals

(AoAs) of the strongest paths is still critical for focusing the power transfer on the

paths, thereby improving power transfer efficiency [37, 38]. Accurate estimation of

the AoAs of the strongest WPT paths is also crucial for precisely canceling the paths

and hence accurately estimating the AoAs of the far weaker WIT paths. It can be

particularly important to alleviate the error propagation in successive interference

cancellation (SIC) and, in turn, to improve the data rate for WIT. To this end,
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accurate AoA estimation and consequently accurate beamforming with focus on

the strongest paths can substantially enlarge the rate-energy region of WIPT, and

impact the trade-off between WPT and WIT [31]. Note that in this thesis, we focus

on the estimation of AoAs rather than channel vector, which can be more efficient

in mmWave massive MIMO channels with sparse nature.

With the energy constraint of the receivers, one would need to resort to high-

accuracy estimation of the AoAs of radio signals without using feedback signal loops.

We notice that in WIPT applications, the receiver is generally restricted in its own

power consumption in order to purse a high energy harvesting efficiency. Therefore,

the power that can be consumed for channel/AoA estimation can be very limited,

which therefore requires an AoA estimation methods without feedback loops. Fur-

thermore, the cost of the hardware and signal processing required for AoA estimation

should be kept as low as possible. Currently, there is a strong interest in lens an-

tenna arrays (LAAs) due to its high gain, and low complexity and cost, as compared

to conventional discrete antenna arrays (DAAs) [39–43]. One reason is that an LAA

is more energy-efficient than a DAA [41]. An N -dimensional LAA can readily pro-

duce N discrete Fourier transform (DFT) beams [39], while an N -dimensional linear

DAA requires N2 number of logN2 -bit phase shifters to generate N DFT beams. A

DAA would require more antennas than an LAA to achieve the same spatial reso-

lution [42]. Another reason is that LAAs have strong abilities of spatial interference

suppression [39, 41]. LAAs can separate signals with different AoAs by exploiting

different mainlobes of DFT beams. This is particularly interesting to concurrent

WPT and WIT [35, 36], where different DFT beams can be generated to pinpoint

WPT and WIT paths, and suppress interferences between paths. To the best of

our knowledge, however, no effective AoA estimation technique using LAA has been

reported.

Another critical application of mmWave massive MIMO is the high-speed railway

(HSR) communication. Being an efficient and sustainable land transport method,

future HSR is envisaged to be safer, greener and more convenient [44, 45]. Given

increased passenger capacity of high-speed trains (HSTs), there are expected to be
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a substantially increased number of wireless connections between passengers and

the Internet. As illustrated in Fig. 1.3, a practical scenario is to have a train-top

antenna array to act as the proxy to relay in-cabin (WiFi, cellular or Ethernet)

traffic to track-side base stations (BSs) or communication satellites. Given the

scarcity of frequencies and the demand for high data rates of tens of gigabits per

second (Gbps) [44, 46], high carrier frequencies with broad bandwidths, such as

mmWave and THz, are likely to be used. The mmWave frequency range of 24.25−

52.6 GHz has been specified in 5G new radio, and considered in HST scenario

[47]. Feasibility studies, including extensive measurement campaigns, have been

conducted to confirm the validity of the consideration. For example, a 30 GHz

large-scale hybrid array has been tested over an HST link between an onboard relay

and track-side infrastructure [47]. A significant improvement of spectral efficiency

compared with legacy LTE-configured HST has been demonstrated at the train

speed of 500 km/h [47, Fig. 5]. THz antenna arrays still have issues in compact

and efficient design [44], but have started to show a good prospect. For example, a

recent work [48] has reported a 400-GHz THz antenna array with a measured gain

of 33.66 dBi.

1.2 Large-scale Hybrid Antenna Array

Large-scale antenna arrays have a range of advantages, e.g., in the mmWave
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frequency band. The arrays are able to achieve tunable/steerable narrow beams with

high gains to combat the severe attenuation the mmWave bands. The narrow beams

can also help suppress interference and improve the effective signal-to-interference-

plus-noise ratio of intended signals. For example, the beamwidth of a 1, 000-element

uniform linear array is about 0.0126 rad, which is only two percent of the beamwidth

of a 20-element counterpart. The short wavelength of the mmWave frequency makes

the integration of hundreds to thousands of antenna elements per array possible [49].

A linear aperture size of 150 cm can accommodate up to 300 elements with antenna

spacing of half wavelength at 30 GHz, while it can only accommodate 20 elements

at 2 GHz.

A hybrid antenna array becomes a preferable and cost-effective design of large-

scale antenna arrays, where a large number of antennas are grouped and connected

into a much smaller number of analog subarrays. Each antenna has an individual

configurable phase shifter. Each subarray is connected to a single RF chain. This is

because the physical sizes of RF chains, consisting of analog-to-digital and digital-

to-analog converters, power amplifiers, and filters, do not shrink in the mmWave

frequency band, as compared to the lower frequencies. Hardware impairments, like

different delays in RF components, can be calibrated and suppressed before baseband

digital signal processing. However, we notice that introducing analog arrays can

incur more power consumption. The typical power consumption of a 4-bit mmWave

phase shifter is 30 mW [49]. To produce a 16-dimensional DFT beam, a total of

16 phase shifters are required, consuming 30 × 16 = 480 mW power. To this end,

when determining the size of the analog arrays, the power consumption and also the

parameter estimation performance should be taken into account.

A one-dimensional linear large-scale hybrid array is shown in Fig. 1.1. The sub-

arrays are typically arranged in a localized fashion to facilitate wiring and schematic

design [50]. The subarrays can consist of discrete antenna elements. The resulting

array is referred to as DAA, which is typically a one-dimensional uniform linear

array. In a recent 3GPP HST evaluation [47], a 30-GHz large-scale hybrid array

with 256 antennas was installed at an onboard relay. The array is rectangular with
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four 8 × 8 analog subarrays and four RF chains. The antenna spacing is half of a

wavelength. With considerations on energy and cost efficiency, and integration level,

a subarray can be replaced with a lens antenna or a Butler matrix, as also shown in

Fig. 1.2.

In the case of lens antenna array, each subarray is a lens antenna array [49,

51]. The lens can focus the microwave signals onto its parabola focal surface. By

meticulously placing the antennas on the focal surface of the lens, a complete set of

DFT beams can be activated with sinc-shape beam patterns and pointing directions

evenly spaced within [0, 2π). Each antenna, referred to as a beam port, can be

energized to activate a DFT beam. A switch can be used to select a beam port, and

connect the selected beam port to the RF chain hardwired to the switch [49].

In the case of Butler matrix array, each subarray is a Butler matrix which is a

passive analog beamforming circuit. The Butler matrix also generates DFT beams.

Each beam port can activate an individual DFT beam, like the lens antenna. Also

like the lens antenna array, a switch can be used to select and connect a beam port

to an RF chain in the Butler matrix arrays. The beam pattern of a DFT beam

is a sinc function within [0, 2π). The beam width of the mainlobe depends on the

number of antennas. The mainlobe can be shifted (or rotated) by changing the

phases of the antennas [51, eq. 7].

The Lens antenna arrays and Butler matrix arrays can be much more energy-

efficient than the phase shifter based DAAs due to their high integration level. The

lens and Bulter matrix are passive beamformers, while the phase shifters consume

non-negligible powers. The typical power consumption of a 4-bit mmWave phase

shifter is 30 mW [49]. To produce a 16-dimensional DFT beam, a total of 16 phase

shifters are required, consuming 30 × 16 = 480 mW power. In contrast, the power

consumption of an equivalent lens antenna array is only 4 mW [49].

The one-dimensional Butler matrices and lens antennas can both be readily

extended to two-dimensional uniform planar arrays, due to the fact that the DFT

beams can be decoupled losslessly between the azimuth and elevation [3]. The

DAAs can also be readily extended to two-dimensional uniform planar arrays if
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DFT beams are adopted. There are also other forms of hybrid antenna arrays, such

as fully-connected array and uniform circular array. Overall, they are less tractable

due to too many cross-points (in fully connected hybrid arrays) or weak directivity

(in uniform circular arrays). Therefore, they are far less popular in practice.

1.3 AoA Estimation — Importance, Challenges and State of

the art

The AoA estimation is indispensable for efficient utilization of mmWave hybrid

arrays in future communications. It allows for accurately configuring the arrays to

quickly capture the impinging signal, form narrow and strong beams, and achieve

high signal-to-noise ratio (SNR) and throughput. The fast and accurate AoA es-

timation can also avoid the round-trip delay of the typical channel estimation and

feedback, hence speeding up beamforming and guaranteeing seamless and reliable

connectivity. Conventional channel estimation techniques involving channel sound-

ing, estimation, and feedback would become inadequate. This is because the number

of RF chains is much smaller than that of antennas (beams) in mmWave frequency

bands given the increasingly compact design of antennas. In contrast, conventional

channel estimation approaches were typically designed for digital arrays with the

equal numbers of antennas and RF chains in lower frequencies. Important chan-

nel information which was accessible to digital arrays, such as the phase difference

between antennas, is not readily accessible in the mmWave hybrid antenna arrays.

In this section, the importance and challenges of the AoA estimations in the popu-

lar hybrid arrays (shown in Fig. 1.1) are elaborated on. The state-of-the-art AoA

estimation methods in different narrowband/wideband hybrid arrays are also intro-

duced and summarized. In this thesis, we regard an antenna array with a negligible

spatial-wideband effect as a narrowband array; whereas in contrast, when the effect

is prominent we refer to an antenna array as a wideband array.
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1.3.1 Narrowband Hybrid Array of Phased Subarrays

A critical issue to be addressed in localized hybrid arrays is accurate estimation

of AoA, which is critical to beamforming, interference suppression or localization

[18, 20]. The hybrid nature and the sheer scale of massive MIMO hinder the use

of conventional estimation techniques [1, 3, 15, 16]. Cross-correlation has been

increasingly used for AoA estimation in localized hybrid arrays [1, 3, 4, 15, 17].

Cross-correlations were first taken to estimate the phase difference between consec-

utive analog subarrays, i.e., Nu, using the same phase shift at all subarrays. N is

the number of antennas per subarray. u = 2πd sinφ
λ

, where φ is the azimuth AoA at

a uniform linear array with antenna spacing d and wavelength λ. However, estimat-

ing u from the estimate of Nu exhibits inherent ambiguity with N possible results

[1, 3, 15, 17]. The ambiguities would further deteriorate, coupled with a zigzag effect

which can misjudge an estimate of Nu around (2k ± 1)π with an error around 2π,

k = 0, 1, · · · , N − 1, in the presence of non-negligible noises [15, 17].

In a recent work [4], subarray-specific time-invariant phase shifts were designed.

As we proved in [4] for special localized hybrid arrays with N being a multiple of the

number of subarrays M , the complex gains of subarrays in the direction of φ form a

Fourier series with a consistent phase difference u between coefficients, provided the

subarrays adopt evenly spaced phase shifts between [0, 2π) per symbol. Given that

the gain of the m-th subarray and ejmNu are coupled multiplicatively in the received

signal of the subarray, one could first estimate Nu and suppress ejmNu in the received

signal, then take inverse discrete Fourier transform (IDFT) and correlate the Fourier

coefficients to unambiguously estimate u and hence φ. However, the estimation of

Nu is non-trivial and can incur ambiguities, due to the use of subarray-specific phase

shifts [4]. The complex gains of subarrays can have different phases in the direction

of φ. The estimate of Nu, obtained from the cross-correlation of received signals,

can be corrupted by the different phases of the subarray gains, compromising the

estimation accuracy of Nu and u. There are also undetectable angles in the case

that the AoA happens to be the nulls of all subarrays. Moreover, the phase shifts are

limited to a special case with N being a multiple of M . The results are inapplicable
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to general localized hybrid arrays.

1.3.2 Wideband Hybrid Array of Phased Subarrays

Accurate and fast estimation of AoA is the key enabling technology underlying

wideband multi-beam Terabit satellite-borne communication system [52–54]. In the

case of widely deployed geosynchronous Earth orbit (GEO) satellites, the a-priori

knowledge on the locations of fixed ground stations can help the satellites to steer

beams. However, it is still possible that there is a misalignment due to the incli-

nation of the satellites and the orbit perturbations [55, 56]. Let alone aircrafts and

vessels, of which the a-priori location knowledge can be unavailable or inaccurate

at the satellites [57]. On the other hand, low Earth orbit (LEO) satellites have

been increasingly deployed for Terabit satellite communications. Unlike GEO satel-

lites, the coverage areas of LEO satellites dynamically change [55]. In addition, the

instantaneous information on the trajectory and orbit of an LEO satellite can be

inaccurate, or even unknown [58]. In both cases of GEO and LEO satellites, the

accurate and fast estimation of AoA is vital for improving the beamforming gain

and radio link quality, as well as increasing the data rate, especially in low SNR

regions.

Unfortunately, the on-board accurate and efficient wideband AoA estimation

in satellite-borne localized hybrid arrays is yet to be addressed. With the hybrid

nature and the sheer scale of the arrays, conventional wideband AoA estimation

techniques – classical signal subspace based algorithms, e.g., incoherent signal sub-

space method (ISM) [59], coherent signal-subspace method (CSM) [60] and the

subsequent improvement algorithm [61, 62] are inapplicable or unsuitable, since

they would require a reliable initial AoA estimation, and iterative refinements for a

fine result [63]. The estimation delay would be lengthy, and the estimation accuracy

can be poor, both subject to the initial accuracy.

Revisiting the recent work [4], subarray-specific time-invariant phase shifts were

designed, such that the receive signals of the subarrays, with phases calibrated by

Nu, can form a series of Fourier coefficients with a phase difference of u. Cross-



11

correlations can be taken between the coefficients to estimate u unambiguously.

However, the phase shifts would result in a new ambiguity in estimating Nu with

two possible estimates π apart. Combining the cross-correlation between all pairs

adjacent subarrays can be destructive due to undetermined signs of the amplitude

parts of the cross-correlations which leads to the ambiguous estimation of Nu in the

first place. In [4], the signs were heuristically adjusted before the cross-correlations

were added up. Weak cross-correlations would be likely corrupted by receive noises,

exhibit incorrect signs, and hence be incorrectly adjusted. The combination of the

cross-correlations could remain destructive.

We note that these algorithms have been typically developed for narrow-band

systems. The only exception is the algorithm in [3], which was later applied to

wideband systems in [1], where narrow-band operations, i.e., cross-correlation be-

tween subarrays, were independently conducted at each sub-carrier followed by cross-

correlations between sub-carriers. Unfortunately, the issue of error propagation re-

mains [1]. Moreover, the cross-correlation between sub-carriers can substantially

reduce the estimation SNR, as the frequency interval (in terms of the number of

sub-carriers), over which the cross-correlation is taken, appears as the coefficient of

Nu and needs to be used to divide the phase of the cross-correlation to estimate

Nu. In this sense, the interval can amplify the estimation error of Nu.

1.3.3 Narrowband Lens Antenna Arrays

Accurate knowledge of the AoA is the key to the effective applications of LAAs

and massive MIMO in general, because the AoA allows for correct selection of

the DFT beam pointing at the dominant path [51, 64, 65]. Moreover, channel

estimation can be substantially simplified by first estimating the AoA and then the

path responses in the consecutive transmission blocks [66, 67]. This is because the

AoAs of mmWave/THz channels have a much larger coherent time (or in other

words, stay unchanged longer) than the path responses [44, 68].

Due to the distinct array physics and structure of the LAA, existing AoA estima-

tion techniques become either inapplicable [2, 6, 7, 21, 69–73], or incur inefficiency
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and/or inaccuracy [74, 75]. In [74, 75], the beamspace (spanned by DFT beams)

channel estimation techniques were developed for LAAs by enumerating all DFT

beams and selecting those with the outputs above a predefined threshold. The

least square (LS) approximation was performed on the selected beams for channel

estimations in [74]. In [43], compressive sensing was employed for LAAs and the

beamspace channel structure was used to improve the estimation accuracy of each

channel. The estimation errors of these approaches can be as large as half the width

of a DFT beam of an LAA [43, 74, 75].

Most existing works have been focused on the channel estimation of DAAs, and

are not directly applicable to the AoA estimation of LAAs. Channel estimation has

been extensively studied for WPT [69–72] or SWIPT [76, 77]. It was performed

by taking the LS approximation [69, 70, 76, 77], by combining the Kalman filter

with the LS approximation [71], or by using the maximum likelihood estimation

[72]. In [78, 79], the transmitter was designed to receive one-bit feedback from the

receiver and the channel estimation was refined recursively by adjusting the transmit

beamforming at the cost of significant delays. In these works, a single-path WPT was

assumed at a receiver. In [2, 6, 21], codebook-based channel estimation techniques

were developed for millimeter wave massive multiple-input-multiple-output. The

techniques were based on DAAs, and are not directly applicable to LAAs. The

estimation errors of these approaches can be up to the beamwidth based resolution

of the codebooks [2, 6, 21].

In [5], the state-of-the-art AoA estimation algorithm, referred to as ABP, was

designed for DAAs, where DFT beamforming was employed. Specifically, the two

DFT beams with the two strongest outputs were identified; and the AoA was esti-

mated from the ratio of the power difference of the DFT beams to the total power

of the beams. ABP was able to achieve better estimation accuracy than the other

existing methods in [2, 6, 21, 43, 74, 75], through the exploitation of the determin-

istic amplitudes of DFT beams. However, for the AoA estimation of a path, ABP

enumerated the DFT beams to search for the two adjacent beams with the two

strongest outputs, incurring long estimation delays.
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1.3.4 Wideband Lens Antenna Arrays

It is non-trivial to estimate the AoA in wideband LAAs. As revealed in [80–82],

a prominent reason is that a spatial-wideband effect, also known as a beam squint

effect [82], is non-negligible in mmWave/THz wideband massive MIMO, and leads

to the frequency-dependent spatial responses, as depicted in Fig. 1.4.∗ Consider

a typical linear mmWave massive MIMO with 128 antennas and a bandwidth of

1 GHz at the 60 GHz carrier frequency, the maximum delay caused by across-

aperture propagation can be as large as 1.058 times of a sampling interval [66, 80].

The spatial-wideband effect has been hindering the effective AoA estimation and

beamforming, particularly for passive, analog arrays (such as LAA) where beams

cannot be adjusted independently for different frequencies.

Another reason behind the difficulty in the AoA estimation of LAAs is that the

parameter for the estimation of the AoA, i.e., the phase difference between adjacent

antenna elements, is obscure, due to the DFT beamforming (or in other words, the

high integration level of the LAAs). Moreover, only a subset of (combined) DFT

beams can be selected to feed into the RF chains at any instant, since the number

∗The spatial-wideband effect refers to that phenomenon that the beam pointing direction and
the beamwidth of a wideband array vary with the frequency. Weighting a wideband large-scale

array by the conventional steering vector at θ, i.e.,
[
1, e

2πd sin θ
λ , · · · , e

2π(N−1)d sin θ
λ

]T
, the beam points

at θ if f = fH. N denotes the total number of antenna elements. As f decreases, the beam pointing
direction becomes larger than θ and the beamwidth expands; see Fig. 1.4(a). d is antenna spacing,
λ is the wavelength of the largest frequency fH. Due to the effect, a DFT beam can have different
spatial responses across frequencies; see Fig. 1.4(b).
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of RF chains is typically much smaller than that of the DFT beams [43, 75].

Only a small number of studies [8, 43, 51, 74, 75] have been carried out on the

channel/AoA estimation of LAAs. Most of the studies [43, 51, 74, 75] were focused

on the narrowband channel/AoA estimation, and typically required a large number

of training symbols in search of the dominant path [43, 74, 75]. In [51], the accu-

rate AoA estimation was achieved in LAAs; however, the method was targeted for

narrowband systems. In [8], compressive sensing was applied for the channel esti-

mation in LAAs, where the spatial-wideband effect was accounted for by identifying

the different path supports across frequency sub-carriers. The accuracy achieved by

[8] was shown to be much better than that of the previous methods (developed for

DAAs) [83, 84] in which the spatial-wideband effect was overlooked. However, the

AoA estimation was not pursued in [8, 83, 84]. An accurate estimation of the AoA

for wideband signals was achieved in [7], which, despite being developed based on

DAAs, performed DFT beamforming. However, the N DFT beams were enumerated

at the cost of a long training delay, and the spatial-wideband effect was overlooked.

It is worth pointing out that the few existing methods [8, 66], that did take the

spatial-wideband effect into account, only take countermeasures to offset the effect

passively. This would prolong the estimation delay or incur a high computational

complexity.

1.3.5 Fast Angular Estimation and Tracking of HST

The train-top array and its counterparts at the track-side BSs or satellites are

expected to be large-scale to produce narrow beams with high gains, thereby com-

bating severe attenuation at mmWave frequencies. The arrays are also anticipated

to be hybrid with localized architectures in consideration of cost-efficiency and size.

Omni-directional transmission could be possible at lower frequencies, but the limited

bandwidths available at those frequencies are not wide enough to support Gbps [44].

To this end, accurate estimation and reliable tracking of the AoA from an HST to

the track-side BSs or satellites, or the other way around, is critical to the implemen-

tation of the mmWave HSR communication systems.
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The estimation and feedback could become excessively frequent and likely to be

outdated in the HSR application where the trains can travel at very high speeds

of up to 500 km/h. It is important that a train-top mmWave antenna array and

its counterpart at the track-side BSs (or satellites) can estimate the AoAs passively

and instantly based on the impinging signals from each other, steer and lock their

beams, and keep tracking the changes of AoAs to adapt the beams.

Seen from the previous elaboration, to estimate the AoA in the large-scale hybrid

antenna arrays is non-trivial with several key challenges to be properly addressed.

None of existing techniques are able to address the challenges holistically. Below

we highlight the challenges of the AoA estimation in hybrid arrays, particularly

combining the HST applications.

1. There is a long-standing estimation ambiguity originating from the architec-

ture of localized hybrid antenna arrays where the received signals at the dif-

ferent antenna elements of a subarray are mixed (or added up) before being

sent into an RF chain. The phase difference between adjacent antenna ele-

ments, which gives the estimate of the AoA, becomes obscure. Only the phase

difference between adjacent subarrays is available, which is a multiple of the

inter-element phase difference and needs to be divided by the number of an-

tenna elements in each subarray. Unfortunately, a division of an angle (or

phase) gives ambiguous results due to the 2π periodicity of angles (or phases).

2. In most cases, HSTs have unobstructed line-of-sight (LoS) to the track-side

BSs. When penetrating buildings and propagating through foliage, mmWave

signals attenuate significantly. For these reasons, the mmWave HSR channels

are typically dominated by strong LoS paths [44, 46, 85], and can be modeled as

Rician channels [86]. Ray-tracing techniques have been employed to simulate

the Rician factor – the ratio between the power in the LoS path and the power

in the scattered paths – in typical outdoor scenarios. As reported in [85,

Tab. II], the power in the LoS path is at least 11 dB stronger than the total

power in the other paths in the outdoor 30 GHz channels.
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3. The HSR channels can also exhibit strong temporal variations, due to the

speed of up to 500 km/h of the HSTs [87]. The conventional omnidirectional

broadcast is not suitable for the mmWave frequencies, because of severe atten-

uations at the frequencies. The received SNR can be very low. For example,

the received SNR is around −20 dB at each antenna, when the carry fre-

quency is 100 GHz, the bandwidth is 1 GHz, the transmit power is 20 dBm,

the transmitter-receiver distance is 100 m, and both the transmit and receive

antennas have unit gains [44]. It is necessary to exploit the strong directivity

and gains of efficient mmWave antennas to track and uninterruptedly serve

the HSTs.

1.4 Literature Review

The state-of-the-art AoA estimation methods in mmWave hybrid arrays, to be

used as benchmarks, are summarized in this section.

The two best-known AoA estimation techniques are multiple signal classifica-

tion (MUSIC) [19] and estimation of signal parameters via rotational invariance

techniques (ESPRIT) [19]. Developed originally for full-digital arrays [19], these

techniques exploit the orthogonality of the signal and noise subspaces to estimate

the signal subspace which is the span of the array response vectors in the directions

of the AoAs. MUSIC takes the autocorrelation of received array signals, and esti-

mates the signal subspace as the eigenvectors associated with the large, meaningful

eigenvalues of the autocorrelation matrix. ESPRIT divides an array into two subar-

rays, calculates the transformation matrix between the signal subspaces of the two

subarrays, and estimates the AoA from the eigenvalues of the matrix. Computation-

ally expensive singular value decomposition (SVD) is required in both techniques,

and could hinder the scalability of the techniques. MUSIC and ESPRIT cannot

be directly applied to hybrid antenna arrays, due to the RF combining at analog

subarrays and the resultant obscurity of the phase offset information on individual

antennas.

Some earlier works were focused on extending the results of analog or digital
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arrays to hybrid arrays. In [19], N N -dimensional orthonormal bases were used

to be the phase shifts of a subarray over N symbols. The steering matrix of the

localized hybrid array became an NM × NM matrix, where every M columns ac-

count for a symbol, and each of the columns consists of the N -entry orthonormal

steering vector of the corresponding subarray, and zeros at all the other entries. The

received signal vector can be constructed accordingly over N symbols. The covari-

ance of the steering matrix is the identity matrix, and does not distort the signal

subspace of the covariance of the received signals. This allows the classical MUSIC

and ESPRIT [88] to be applied, which, however, require singular value decompo-

sition. The complexity would grow cubically with the total number of antennas

NM , and become prohibitive since the number of antennas is typically in hun-

dreds. In [21], the received signal of a hybrid array was restructured to be a linear

function of a sparse vector collecting path gains in quantized directions. The AoA

can be estimated through the non-zero element in the vector by using compressive

sensing techniques. The coefficient of the vector, depending on a multi-resolution

beamforming codebook, can be adjusted to scan different directions with different

beamwidths. This algorithm was later extended to use a non-orthogonal codebook,

where the beams, generated by different codewords, overlap [22]. However, these

algorithms require the receiver to repeatedly select the codewords for the transmit-

ter to narrow down the beam. The estimation delay would be lengthy, and the

estimation accuracy would be subject to the resolutions of the codebooks.

More recent approaches have taken cross-correlations among subarrays for AoA

estimation [1, 3, 17]. In [3], the same phase shifts were deployed across subar-

rays at every symbol to scan one direction. By accumulating the cross-correlations

between the received signals of adjacent subarrays, the propagation phase offset be-

tween adjacent subarrays, Nu, was estimated to be the phase of the accumulated

cross-correlation, denoted by N̂u. The accumulation is constructive, since all the

subarrays have the same complex gain in the direction of the AoA. u was estimated

to be ûn = N̂u+2kπ
N

(k = −bN
2
c,−bN

2
c + 1, · · · , bN

2
c) with an odd number of N or

(N + 1) possible estimates due to flooring b·c. By adjusting the phase shifts, the N
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or (N+1) estimates were sequentially scanned in the following N or (N+1) symbols.

The estimate with the highest receive power was recursively scanned, and updated

through the accumulated cross-correlations between the received signals of adjacent

subarrays to recalibrate the scanning direction, till convergence. Unfortunately, a

long estimation delay would occur, and the approach would also suffer from error

propagations resulting from an incorrectly identified initial direction. The algorithm

was later applied to wideband systems, whereas the issue of error propagation re-

mained [1]. Authors in [17] endeavored to improve the estimation accuracy in the

early symbols of [3] to suppress the error propagation. However, the results, though

improved, were still susceptible.

In a recent work [4], a special linear localized hybrid array was considered, where

N is a multiple of M . The phase shift was set to 2πm
M

at the m-th subarray, m =

0, 1, · · · ,M − 1. It was discovered that, given the phase shifts, the complex gains of

the subarrays form a Fourier series with a consistent phase offset u in the coefficients.

The Fourier coefficients could be recovered by suppressing ejmNu in the the received

signal of the m-th subarray, and then taking IDFT on the received signals. u could

be estimated through the cross-correlations between consecutive Fourier coefficients.

To suppress ejmNu, Nu was estimated by evaluating the phase of the accumulated

cross-correlations between the received signals of adjacent subarrays in the same

way as it was in [3]. Unfortunately, the cross-correlations between the complex

gains of adjacent subarrays did not have consistent signs due to the use of different

phase shifts, as opposed to [3]. The accumulation of the cross-correlations of the

received signals were destructive, even after the signs of the cross-correlations were

heuristically calibrated [12]. Moreover, the sign of the accumulated cross-correlation

was still undetermined, leading to estimation ambiguities in Nu and subsequently

u.

For lens antenna arrays, earlier works [74, 75] enumerated the complete set of

DFT beams to detect the pilot signals, selected the beams with the strong received

power, and performed the least squared (LS) approximation to estimate the principle

components of the beamspace channel. Note that in LAAs, the physical channel is
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transformed by the DFT beamforming, and the resulting channel is referred to as the

beamspace channel [75]. These works could be time-consuming, since they require

a large number of training symbols, i.e., O(N
K

).

In [43], compressive sensing was adopted to reduce the number of training sym-

bols. The random Bernoulli matrix (with ±1 elements) was adopted for beam

selection, which acts as the random sampling matrix in sparse sampling. By detect-

ing the support of the strongest path, the principle components of the path were

estimated through sparse recovery. The beamspace channel structure was exploited

to improve sparse recovery performance. By canceling the estimated components,

the next strongest path could be estimated.

In [51], the accurate AoA estimation was achieved in narrowband LAAs by estab-

lishing the one-to-one mapping between the AoA and the received power in the first

two strongest differential DFT beams (DDBs). To identify the DDBs, a new beam

synthesis method was designed in [51] by exploiting solely the analog beam selection

network. As a result, a fast noise-resilient K-ary search of the strongest DDBs was

developed, reducing the number of training symbols to O(logK(N)). However, an

extension of [7] to a wideband system is non-trivial. [7] cannot provide a benchmark

for the wideband AoA estimation technique developed in this thesis.

The above methods [43, 51, 74, 75] were developed for narrowband systems.

The wideband channel/AoA estimation were widely studied in DAA-based massive

MIMO systems [7, 83, 84, 89, 90]. For instance, in [7], an accurate AoA estimation of

wideband signals was achieved at hybrid DAAs by establishing a one-to-one mapping

between the AoA and the selected DFT beams. However, these works are either

inapplicable to LAAs, due to the optimized analog beamforming network which

therein was based on phase shifters; or not tailored according to the properties

of LAAs, such as the simultaneous multi-beam DFT beamforming and the beam

selection-based transceiving. Moreover, these works [7, 83, 84, 89, 90] fail to address

the spatial-wideband effect [82].

It was revealed in [8, 15, 66] that overlooking the spatial-wideband effect in

mmWave massive MIMO systems can degrade both the channel estimation perfor-
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mance and the system achievable rate. The channel estimation method [43] was

extended to wideband LAAs in [8]. Unlike the previous works [7, 83, 84, 89, 90], the

spatial-wideband effect was taken into account in [8] by adopting the sub-carrier-

dependent path supports. To out best knowledge, [8] is the only work accounting

for the spatial-wideband effect in the channel estimation for LAAs; and the AoA

estimation in wideband LAA-based massive MIMOs has yet to be studied properly.

1.5 Thesis Organization

In this thesis, we present four new approaches to address the challenges for

fast and accurate AoA estimations in hybrid arrays of phased subarrays and lens

antenna arrays. The first two approaches are designed for the hybrid array of phased

subarrays, one for narrowband and the other for wideband. The last two approaches

are designed for lens antenna arrays, also one for narrowband and the other for

wideband. The approaches all have their own respective innovations. In specific,

the thesis is organised as follows:

1. Chapter 1 introduces the background of the AoA estimation in mmWave hy-

brid arrays, discusses the critical challenges, and reviews the state of the art.

2. Chapter 2 proposes a new AoA estimation in narrowband hybrid array of

phased subarrays, where the estimation ambiguities are solved for the first

time.

3. Chapter 3 develops a new wideband AoA estimation method in wideband

hybrid array of phased subarrays, achieving the optimal trade-off between

different errors/gains and substantially improving the estimation accuracy.

4. Chapter 4 proposes a new AoA estimation method for lens antenna array,

which is accomplished by a new wide beam synthesis method and a one-to-

one mapping established between judiciously selected DFT beams and AoA.

5. Chapter 5 develops a wideband AoA estimation methods in lens antenna ar-

ray, specifically to exploit the spatial-wideband effect to improve estimation

efficiency.
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6. Chapter 6 presents the conclusions drawn from the results in earlier chapters

of the thesis, and discusses the limitations and future research directions of

this study.

7. Chapter 7 provides the proofs, analyses and derivations for chapters 2 to 5.
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Chapter 2

Robust Unambiguous Estimation of

Angle-of-Arrival in Hybrid Array with Localized

Analog Subarrays

2.1 Introduction

Hybrid array is able to leverage array gains, transceiver sizes and costs for mas-

sive MIMO systems in millimeter wave frequencies. Challenges arise from estima-

tion of AoA in localized hybrid arrays, due to the array structure and the resultant

estimation ambiguities and susceptibility to noises. This chapter eliminates the

ambiguities and enhances the tolerance to the noises based on our new discover-

ies. Particularly, by designing new subarray-specific time-varying phase shifts, we

discover that the cross-correlations between the gains of consecutive subarrays have

consistent signs except the strongest. This enables the cross-correlations to be deter-

ministically calibrated and constructively combined for the noise-tolerant estimation

of the propagation phase offset between adjacent subarrays. Given the phase off-

set, the AoA can be estimated unambiguously with few training symbols. We also

derive a closed-form lower bound for the mean square error of AoA estimation. Cor-

roborated by simulations, our approach is able to dramatically improve estimation

accuracy by orders of magnitude while reducing complexity and training symbols,

as compared to the state of the art. With the ambiguities eliminated, the estimation

errors of our method asymptotically approach the lower bound, as training symbols

increase.

In this chapter, we propose an unambiguous AoA estimator for general localized

hybrid arrays where N does not need to be a multiple of M . By judiciously designing

the phase shifts, we discover that the cross-correlations between the complex gains

of adjacent subarrays have consistent signs except the strongest. The discovery
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enables the cross-correlations between the received signals of adjacent subarrays

to be correctly calibrated in sign and constructively combined for the estimation of

Nu, since the strongest cross-correlation is the least likely to be corrupted by noises.

With the phase shift design, we also lift the restriction of [12] to special arrays and

inherit in general counterparts that u can be uniquely recovered from the Fourier

coefficients of the complex gains of subarrays. As a result, the complex gains of the

subarrays can be retained while the phase differences mNu (m = 0, 1, · · · ,M − 1)

are suppressed in the received signals, recovering the Fourier coefficients and hence

the unambiguous estimation of u.

The key contributions of this chapter can be summarised in the following:

1. We discover that the cross-correlations of the complex gains between adjacent

subarrays have consistent signs except the strongest. In the absence of explicit

knowledge on the AoA, the discovery enables the cross-correlations to be cor-

rectly calibrated and coherently accumulated for unambiguous estimation of

Nu;

2. We extrapolate the phase shift design of [12] for general localized hybrid arrays,

and prove that u can be uniquely estimated from the Fourier coefficients of

the received signals, after the propagation phases of the signals mNu (m =

0, 1, · · · ,M − 1) are estimated and suppressed;

3. By properly configuring the generalized phase shifts, we eliminate undetectable

AoAs, which were overlooked in [12];

4. We alleviate the zigzag effect of the AoA estimation, which often happens in

the case that u is around ±π and misjudged by up to 2π due to non-negligible

receive noises.

An analysis of estimation accuracy is carried out, and an asymptotic lower bound

is derived for the mean square error (MSE) of the estimation. Evident from extensive

simulations, our approach is able to dramatically reduce the MSE by orders of

magnitudes with a fraction of complexity and training symbols, as compared to the
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Figure 2.1 : A two-dimensional planar localized hybrid antenna array composed of
Mx ×My subarrays. Each subarray has Nx ×Ny antenna elements, each connected
to an analog phase shifter. The outputs at analog subarrays are further processed to
generate digital samples. The RF generation and down-converters are suppressed.

state of the art. With the ambiguities eliminated, our approach is noise-tolerant.

Its estimation errors asymptotically approach the lower bound, as the number of

training symbols increases.

The rest of this chapter is organized as follows. In Section 2.2, the system model

is described. In Section IV, we design the new subarray-specific time-varying phase

shifts, discover the deterministic rule on the signs of the cross-correlations between

the gains of consecutive subarrays, and develop unambiguous estimators for both Nu

and u. In Section V, we derive the MSE lower bound (MSELB) of the estimations.

Simulation and numerical results are provided to demonstrate the superior accuracy

of the proposed approach in Section 2.5, followed by conclusions in Section 2.6.

2.2 System Model

Fig. 2.1 illustrates a rectangular localized hybrid array with MxNx × MyNy

evenly spaced antenna elements in two dimensions. The array is divided into Mx ×

My localized rectangular analog subarrays, each comprised of Nx × Ny antenna

elements. These antennas are connected to adjustable phase shifters, one for each,

and aggregated at an ADC. (For clarity, the RF generation and down-converters are

suppressed in the figure.)

The mmWave frequencies are dominated by directive LoS radio links with in-
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significant multi-path interferences [1, 3, 91, 92]. Consider a single-path narrow-

band received signal s̃(t) with wavelength λc, elevation angle θ and azimuth angle

φ, the received signal at the (mx,my)-th analog subarray (mx = 0, 1, · · · ,Mx − 1;

my = 0, 1, · · · ,My − 1) can be written as [3, 4, 15, 16]

smx,my(t) =s̃(t)ej2πfDtP t
mx,my(ux, uy)e

j(mxNxux+myNyuy) + ξmx,my(t), (2.1)

where fD is the Doppler frequency due to the relative movement of the transmitter

and receiver; ξmx,my(t) is the zero-mean additive white Gaussian noise (AWGN) at

the (mx,my)-th subarray; P t
mx,my(ux, uy) is the radiation pattern of the (mx,my)-th

analog subarray at the t-th symbol, and

P t
mx,my(ux, uy) =

Nx−1∑
nx=0

Ny−1∑
ny=0

P nx,ny
mx,my(ux, uy)× e

j(nxux+nyuy+αtmx,my (nx,ny)), (2.2)

where P
nx,ny
mx,my(ux, uy) is the individual radiation pattern of the (nx, ny)-th antenna

element (nx = 0, 1, · · · , Nx − 1, ny = 0, 1, · · · , Ny − 1) at the (mx,my)-th analog

subarray and αtmx,my(nx, ny) is the phase shift at the antenna element and t-th

symbol. nx and ny are the indexes for antennas along the x- and y-axes of the

subarray, respectively. As in other works [1, 3, 4, 17, 19, 93], we assume here that

P
nx,ny
mx,my(ux, uy) = 1. ux and uy are beam-domain AoAs in x- and y-axis, respectively.

They are defined as

ux = 2πdx sin θ cosφ/λc, (2.3)

uy = 2πdy sin θ sinφ/λc, (2.4)

where dx and dy are the distances between two adjacent antenna elements along the

x-axis and y-axis, respectively.

The estimation of AoA, or more specifically θ and φ, is essentially to estimate ux

and uy, since θ = sign{ux} sin−1

(
λc
√
u2
x+u2

y

2π
√
dx+dy

)
and φ = tan−1(uydx

uxdy
). sign{ux} takes

the sign of ux.

Take cross-correlation between the received signals of two consecutive analog



26

subarrays along the x-axis, as given by

ρmx(t) = s∗mx,my(t)smx+1,my(t)

= |s̃(t)|2P t∗
mx,my(ux, uy)P

t
mx+1,my(ux, uy)e

jNxux + ξ̃mx(t), (2.5)

where the superscript “∗” takes complex conjugate, and ξ̃mx(t) is a zero-mean AWGN

that can be given by

ξ̃mx(t) =ξ∗mx,my(t)ξmx+1,my(t)

+s̃(t)∗e−j2πfDtP t∗
mx,mye

−j(mxNxux+myNyuy)ξmx+1,my(t)

+s̃(t)e−j2πfDtP t
mx+1,mye

−j((mx+1)Nxux+myNyuy)ξmx,my(t). (2.6)

fD is suppressed by cross-correlation. Likewise, we can also obtain rmy(t) and

ξ̃my(t).

Note from (2.5) that the estimation of ux can be decoupled from that of uy.

For illustration convenience, we consider a one-dimensional linear localized hybrid

array with M linear analog subarrays and N antenna elements per subarray. The

subscripts “x” and “y” are suppressed in the rest of this chapter. (2.3) can be written

as

u =
2πd sin θ

λc
(2.7)

Nevertheless, the results of this chapter can be readily applied to two-dimensional

planar localized hybrid arrays.

2.3 Proposed AoA Estimation for general Localized Hybrid

Arrays

Considering a general localized hybrid array, we design new phase shifts and

address the aforementioned estimation ambiguity of N̂u. We also prove that u

can be unambiguously estimated through the Fourier coefficients of sm(t)e−jmN̂u,

m = 0, 1, · · · , K − 1, provided N̂u is accurate.
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2.3.1 Phase Shifts under General Localized Hybrid Arrays

We design new phase shift values for generalized hybrid arrays with N unneces-

sarily being a multiple of M , as given by

αtm(n) = nαtm =
2πn(mod{m,K}P + t)

L
, (2.8)

where m, t and n are the indexes for analog subarrays, training symbols and an-

tennas, respectively (0 ≤ m ≤ M − 1; 0 ≤ t ≤ P − 1; 0 ≤ n ≤ N − 1); K is the

number of different phase shifts adopted per symbol; P is the number of training

symbols; L is the total number of different phase shifts in use, and L = PK. αtm is

the slope of the phase shifts with respect to the antenna index in subarray m, and

hence provides the beamforming direction of the subarray. Since N may not be a

multiple of M , K is designed to be a factor of N satisfying:

2<K ≤M, N = QK, K,Q ∈ Z+, (2.9)

where Z+ stands for positive integers.

Different from [4], the phase shifts in (2.8) are designed to accommodate gen-

eral localized hybrid arrays where N may not be a multiple of M . Specifically, we

discovered in [4] that, with linearly increased phase shifts over consecutive subar-

rays, the outputs of the subarrays can form a Fourier series with u unambiguously

captured in the Fourier coefficients. This must be under the condition that N is an

integral multiple of the number of subarrays involved. Our new design of N = QK

(K ≤ M) partitions the total M subarrays by every K subarrays; and obtains

(Q− 1) non-overlapping groups of K consecutive subarrays, and the Q-th group of

the last K consecutive subarrays sharing (QK −M) subarrays with the (Q− 1)-th

group. Each of the K-subarray groups can meet the aforementioned condition and

unambiguously estimate u, even in the general cases where N may not be an integral

multiple of M . Further, K evenly spaced phase shifts between 0 and 2π are applied

to all the Q groups of K consecutive subarrays at a symbol. Between successive

symbols, all the K phase shifts rotate clockwise by 2π
L

. This allows L evenly spaced
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directions within [0, 2π) to be scanned during P symbols, ensuring that the AoA is

captured by one of the L beams with strong gain. Coherent accumulations can be

conducted among the groups and symbols to improve resistance to noises.

Note that it is unnecessary to go through all P symbols to get an estimate of u,

denoted by û. As a matter of fact, we can only use a single symbol, e.g., t = 0. In

the rest of this section, we will prove that the cross-correlations of the subarray gains

P t∗
m (u)P t

m+1(u) in (2.5) have deterministic signs unaffected by the receive noise. The

cross-correlations of the received signals ρm(t) can be coherently combined across

subarrays, within a single symbol or across multiple symbols, to increase the SNR

of Nu estimation. We will also prove that, given N̂u, u can be unambiguously

estimated by taking the cross-correlations of the Fourier coefficients of the received

signals within a symbol after ejmNu (m = 0, 1, · · · ,M − 1) are suppressed in the

signals. Both N̂u and û can be obtained within a single symbol.

Also note that the accuracy of û is not restrained by the resolution of phase shift,

i.e., 2π
L

. As mentioned earlier, cross-correlations are taken to estimate u through

the phase differences between subarrays, rather than scanning at the resolutions.

Moreover, the L phase shifts defined in (2.8) specify L predefined directions. This

is distinctively different from the scanning process of [3], where multiple ambiguous

estimates of u are recursively scanned.

The proposed phase shift design in (2.8) can be readily extended from one-

dimensional linear localized hybrid arrays to two-dimensional rectangular localized

hybrid arrays. At the t-th symbol, the phase shift of the (nx, ny)-th antenna of the

(mx,my)-th subarray can be designed as

αtmx,my(nx, ny) =
2πnx(mod{mx, Kx}Px + t)

Lx
+

2πny(mod{my, Ky}Py + t)

Ly
, (2.10)

where Kx and Ky are the extensions of K to the two dimensions along the x-

and y-axes, respectively; Px and Py are the extensions of P ; and Lx = PxKx and

Ly = PyKy are the extensions of L = PK. The AoA estimation can be decou-

pled between the two dimensions of a rectangular localized hybrid array, since the
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radiation pattern P t
mx,my(ux, uy) of a two-dimensional rectangular antenna array is

the product of individual radiation patterns along x- and y-axes; see (2.2), and the

cross-correlations taken between the received signals of adjacent subarrays along

one dimension can completely suppress the impact of the phase shifts designed for

the other dimension; see (2.5). Specifically, given my, both the cross-correlations

between the received signals of adjacent subarrays along the x-axis to estimate Nux

and the cross-correlations of the Fourier coefficients to estimate ux can eliminate

2πny(mod{my ,Ky}Py+t)

Ly
which stays unchanged in the phases of the signals; and vice

versa. ux and uy can be estimated in the same way as u, as will be elaborated on in

Section 2.3.3.

2.3.2 Estimation of Nu

For illustration convenience and clarity, our discussions are focused on the first

K subarrays using the K phase shifts. The index for the K subarrays is m =

0, 1, · · · , K − 1. The conclusion obtained in the rest of this section can be readily

applied to the rest (M −K) subarrays.

As per the t-th symbol, the phase shift at the n-th antenna of the m-th subarray

is nαtm, according to (2.8). By substituting (2.8) into (2.2), the complex gain of the

m-th subarray P t
m(u) can be given by

P t
m(u) =

N−1∑
n=0

ejnue−jnα
t
m (2.11a)

=
N−1∑
n=0

ejnue−j2π
mod{m,K}P+t

L
n (2.11b)

=
1− ej2N(u2−π

mod{m,K}P+t
L )

1− ej2(
u
2
−πmod{m,K}P+t

L )
= ej(N−1)ωtm

sin(Nωtm)

sin(ωtm)
, (2.11c)

where ωtm = u
2
− αtm

2
= u

2
−π
(
t
L

+ m
K

)
for m = 0, 1, · · · , K−1, because αtm = 2π(mP+t)

L

for m = 0, 1, · · · , K − 1 and can be rewritten as αtm = 2πm
K

+ 2πt
L

by plugging

L = PK. (2.11a) adds up the complex gains of individual antennas of the subarray,

nu is the propagation phase offset of antenna n with respect to antenna 0, and

nαtm is the aforementioned phase shift deployed at antenna n; (2.11b) is achieved
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by substituting (7) into (2.11a); and (2.11c) is obtained by plugging L = PK into

(2.11b). We note that P t
m(u) is a periodic function of m with the cycle of K.

By substituting (2.11) into (2.5), the cross-correlation of the received signals

between the m-th and the (m+ 1)-th analog subarrays at symbol t can be given by

ρm(t) = s∗m(t)sm+1(t) = |s̃(t)|2Gt
m(u)ejNu + ξ̃m(t), (2.12)

where m = 0, 1, · · · , K− 1 (for K < M . In the case of K = M , sK(t) is replaced by

s0(t), exploiting the periodicity of the phase shifts, as will be discussed later), and

Gt
m(u) = P t∗

m (u)P t
m+1(u) and can be written as

Gt
m(u) = e

−j(N−1)π
K

sin(Nωtm)

sin(ωtm)

sin(Nωtm+1)

sin(ωtm+1)
. (2.13)

Since ξm(t) is typically zero-mean additive white Gaussian and independent and

identically distributed (i.i.d), ξ̃m(t) can be approximated as a zero-mean AWGN, as

given by

ξ̃m(t) =ξ∗m(t)ξm+1(t) + s̃(t)P t
m+1(u)ej(m+1)Nuξ∗m(t) + s̃(t)∗P t∗

m (u)e−jmNuξm+1(t).

(2.14)

We attempt to coherently combine ρm(t) for m = 0, 1, · · · ,M − 1, and t =

0, 1, · · · , P − 1, to improve the robustness of N̂u against the noise and subsequently

the estimation accuracy. This requires the coefficients |s̃(t)|2Gt
m(u), ∀m, t in (2.12),

to be consistent in sign. The reason for taking constructive combination is because

the complex gains of the subarrays P t
m(u), depending on u to be estimated, are un-

known in prior, and so is the cross-correlation of the gains Gt
m(u). Other combining

techniques, such as maximal ratio combining, would require explicit knowledge on

Gt
m(u), ∀m, t, and therefore are inapplicable.

Theorem 2.1. At a symbol t, only Gt
m′(u) 6= 0, with the largest amplitude, has the

opposite sign to all the rest of Gt
m(u), where m, m′ ∈ [0, K − 1] and m 6= m′.

Proof. In the case of K < M , sin(Nωtm+1) = sin
(
Nωtm − Nπ

K

)
= (−1)Q sin(Nωtm)
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for m = 0, 1, · · · , K − 1, since ωtm+1 = u
2
− π

(
t
L

+ m+1
K

)
= ωtm − π

K
, and Q = N

K
, as

specified in (2.9). Therefore, Gt
m(t) can be rewritten as

Gt
m(u) = e

−j(N−1)π
K

(−1)Q sin2(Nωtm)

sin(ωtm) sin(ωtm+1)
,m ∈ [0, K − 1]. (2.15)

Given Q, the sign of Gt
m(u) only depends on that of sin(ωtm) sin(ωtm+1).

For any u, sin(ωtm) = sin
(
u
2
− πt

L
− πm

K

)
, m ∈ [0, K − 1], spans half a cycle of

the sine function with the initial phase (u
2
− πt

L
). sin(ωtm+1) is the shifted version of

sin(ωtm).

Lemma 2.1. There exists a unique integer m′ ∈ [0, K − 1] satisfying

sin(ωtm′) sin(ωtm′+1) < 0.

Proof. See Appendix 7.1.1.

Lemma 2.2. Given m′, specified in Lemma 2.1, we have

| sin(ωtm′) sin(ωtm′+1)| < | sin(ωtm) sin(ωtm+1)|,

for any m ∈ [0, K − 1], m 6= m′

Proof. See Appendix 7.1.2

Given m′, as specified in Lemma 2.2, we have sin(Nωtm) = sin
(
Nωtm′+

πN(m′−m)
K

)
= (−1)Q(m′−m) sin(Nωtm′), since ωtm = ωtm′ +

π(m′−m)
K

. Therefore,

sin(Nωtm) sin(Nωtm+1)

=(−1)Q(m′−m) sin(Nωtm′)× (−1)Q(m′−m−1) sin(Nωtm′)

=(−1)Q sin2(Nωtm′). (2.16)

From Lemma 2.2, the denominator of Gt
m(u), m = 0, 1, · · · , K − 1, takes the
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minimum at m′, i.e.,

|Gt
m′(u)| =

∣∣∣∣ (−1)Q sin2(Nωtm′)

sin(ωtm′) sin(ωtm′+1)

∣∣∣∣ (2.17a)

>

∣∣∣∣(−1)Q sin2(Nωtm′)

sin(ωtm) sin(ωtm+1)

∣∣∣∣ (2.17b)

=

∣∣∣∣sin(Nωtm) sin(Nωtm+1)

sin(ωtm) sin(ωtm+1)

∣∣∣∣ (2.17c)

= |Gt
m(u)|,m = 0, 1, · · · , K − 1;m 6= m′, (2.17d)

where (2.17a) and (2.17c) are obtained by plugging (2.16); (2.17b) is based on

Lemma 2.2; and (2.17d) is based on (2.13).

By combining Lemma 2.1 and (2.17), the sign of Gt
m(u) only changes at m′,

which, according to Lemma 2.2, provides the largest of |Gt
m′(u)| form = 0, 1, · · · , K−

1.

In the case of K = M , we can have Gt
K−1(u) = P t∗

K−1P
t
0(u), i.e., the cross-

correlation between the first and the last subarrays. For m = 0, 1, · · · , K − 2,

Gt
m(u) remains the same as (2.13). The discussion on the case of K < M still

applies, because

P t
K(u) = ej(N−1)

(
u
2
−πt
L
−πK

K

) sin
(
N
(
u
2
− πt

L
− πK

K

))
sin
((

u
2
− πt

L
− πK

K

))
= ej(N−1)

(
u
2
−πt
L

) sin
(
N
(
u
2
− πt

L

))
sin
(
u
2
− πt

L

) = P t
0(u). (2.18)

This concludes the proof.

Following Theorem 2.1, we propose to align the signs of ρm(t), before conducting

constructive combination, as follows.

ρ̃m(t) =

 (−1)Qρm(t) if m 6= m′;

(−1)Q+1ρm′(t) if m = m′,
(2.19)

where m = 0, 1, · · · , K − 1; t = 0, 1, · · · , P − 1; and m′ is the index to the cross-
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Algorithm 1 Estimate Nu under generalized hybrid arrays

1: Initialize: Given N and M , select K (∈ (2,M ], ∈ Z+),
2: N/K ∈ Z+.
3: for t← 0, 1, · · · , P − 1 do
4: sm(t)←Analogue beamforming with αtm in (2.8);
5: for all m ∈ [0,M − 2] do
6: ρm ← s∗m(t)sm+1(t);
7: end for
8: if K = M then
9: ρK−1 ← s∗K−1(t)s0(t);

10: end if
11: Find ρm′(t) having the largest amplitude among
12: ρm(t) (0 ≤ m ≤ K − 1);
13: for all m ∈ [0,M − 2] do
14: ρ̃m(t)← (−1)Qρm(t);
15: end for
16: for m← m′ : K : M − 2 do
17: ρ̃m(t)← −ρ̃m(t);
18: end for
19: end for

20: ρ̄← 1
P (M−1)

P−1∑
t=0

M−2∑
m=0

ρ̃m(t);

21: return N̂u← ang
{
e
jπ(N−1)

K ρ̄
}

.

correlation with the largest amplitude, as specified in Lemma 2.2.

The generalization of (2.19) to the case of 0 ≤ m ≤ M − 1 is straightforward.

From (2.8), ρm(t) = ρmod{m,K}(t) = ρm(t), 0 ≤ m ≤ M − 1. Out of the total M

cross-correlations, there can be bM
K
c or dM

K
e with the opposite sign to the rest, i.e.,

one every K. These dM
K
e or bM

K
c cross-correlations are the strongest, and therefore

the least susceptible to the noise and most unlikely to be misjudged in terms of sign,

as compared to the rest. We can reliably calibrate their signs, as done in (2.19),

combine ρ̃m(t) over m ∈ [0,M − 2] and t ∈ [0, P − 1], and estimate Nu with

improved estimation accuracy, as summarized in Algorithm 1. The algorithm is

noise-tolerant.
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Algorithm 2 Estimate u under generalized hybrid arrays

1: Initialize: Given N̂u obtained from Algorithm 1.
2: for t← 0, 1, · · · , P − 1 do
3: for all m ∈ [0,M − 1] do

4: s̃m(t)← sm(t)e−jmN̂u;
5: end for
6: for l ← 0, 1, · · · , bM/Kc − 1 do
7: m← lK;
8: sl(t)← {s̃m(t), s̃m+1(t), · · · , s̃m+K−1(t)};
9: al(t)← IDFT{sl(t)};

10: rln′(t)← al∗n′a
l
n′+1, n

′ = 0, 1, · · · , K − 2;
11: end for
12: sbM/Kc(t)← {sbM/KcK(t), · · · , sM−1(t),
13: sM−bM/KcK(t), · · · sK−1(t)};
14: abM/Kc(t)← IDFT

{
sbM/Kc(t)

}
;

15: r
bM/Kc
n′ (t)← a

bM/Kc∗
n′ a

bM/Kc
n′+1 , n′ = [0, K − 2];

16: end for

17: r̄ ← 1
P dM/Ke(K−1)

P−1∑
t=0

ej
2πt
L

[
bM/Kc∑
l=0

K−2∑
n′=0

rln′(t)

]
;

18: return û← ang {r̄}.

2.3.3 Estimation of u under general localized hybrid arrays

Given N̂u, we can estimate P t
m(u) by multiplying e−jmN̂u to both sides of (2.1),

i.e.,

sm(t)e−jmN̂u = s̃(t)P t
m(u)ej2πfDtejm(Nu−N̂u) + ξm(t)e−jmN̂u. (2.20)

Suppose that ejmNu can be precisely suppressed. u can be unambiguously estimated,

as dictated in the following theorem.

Theorem 2.2. Provided that ejm(Nu−N̂u) → 1, u can be estimated unambiguously

by using (2.8) in general localized hybrid arrays.
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Proof. Let n = n′ + qK (0 ≤ n′ ≤ K − 1, 0 ≤ q ≤ Q− 1). (2.11) can be written as

P t
m(u) =

K−1∑
n′=0

Q−1∑
q=0

ej(n
′+qK)ue−j2π

mP+t
L

(n′+qK)

=
K−1∑
n′=0

gtn′(u)e−j
2πn′m
K ,m = 0, 1, · · · , K − 1, (2.21)

where

gtn′(u) = ejn
′(u− 2πt

L
)ej(N−K)(u

2
−πt
L

) sin(Nu
2
− Nπt

L
)

sin(Ku
2
− Kπt

L
)
, n′ = 0, 1, · · · , K − 1, (2.22)

gives the Fourier coefficients of P t
m(u).

Taking the IDFT of sm(t)e−jmN̂u, m = 0, 1, · · · , K − 1, we obtain an′(t) =

s̃(t)e2πfDtgtn′(u) + zn′(t), n
′ = 0, 1, · · · , K − 1, with zn′(t) = IDFT{ξm(t)e−jmN̂u}.

A cross-correlation can be taken between any two consecutive IDFT points,

i.e., an′(t) and an′+1(t), to achieve an unambiguous estimate of u, since the cross-

correlation, denoted by rn′(t), can be given by

rn′(t) = a∗n′(t)an′+1(t), n′ = 0, 1, · · · , K − 2

= ej(u−
2πt
L

)

∣∣∣∣∣sin(Nu
2
− Nπt

L
)

sin(Ku
2
− Kπt

L
)

∣∣∣∣∣
2

|s̃(t)|2 + z̃n′(t), (2.23)

where

z̃n′(t) =z∗n′(t)zn′+1(t) + s̃(t)C(u)ej(n
′+1)(u− 2πt

L
)z∗n′(t) + s̃(t)∗C(u)∗e−jn

′(u− 2πt
L

)zn′+1(t),

(2.24)

where C(u) = ej(N−K)(u
2
−πt
L

) sin(Nu
2
−Nπt

L
)

sin(Ku
2
−Kπt

L
)
.

Following Theorem 2.2, Algorithm 2 is proposed to estimate u. Consider the

periodicity of the phase shifts in (2.8) over subarrays. The outputs of every K

consecutive analog subarrays outputs can provide an estimate of u. There are a total

of bM/Kc non-overlapping groups of K consecutive analog subarrays, including the
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last group concatenated between the last (M − bM/KcK) subarrays and the last

(K −M + bM/KcK) subarrays of the first cycle, exploiting the periodicity of the

phase shifts designed in (2.8); see Lines 12 to 15. The step in Line 17 captures that

constructively combining (2.23) for n′ = 0, 1, · · · , K − 2, l = 0, 1, · · · , dM/Ke and

t = 0, 1, · · · , P −1 is carried out to improve the tolerance of the estimation to noises

and hence the estimation accuracy, where l indicates the l-th group of K consecutive

subarrays.

In the case that N 6= QM (Q ∈ Z+), the phase shifts in (2.8) enables us to

find K < M satisfying N/K ∈ Z+. Note that IDFT and cross-correlation were also

used to estimate u from P t
m(u) in [4]. However, the phase shifts designed in [4] were

limited to the case that N is a multiple of M . In contrast, Algorithm 2 proposed

here does not require N to be a multiple of M . The phase shifts of [4] is a special

case of (2.8) with K = M and P = Q.

2.3.4 Suppression of the zigzag effect

There can be a zigzag effect on the estimation error of u, especially in the case

that u is close to ±π. Specifically, û can be misjudged up to 2π away from u due

to non-negligible receive noises. For instance, u = 0.98π can be misjudged to be

û = −0.98π in the presence of noises, provided the maximum error is as small as

0.04π (and û is supposed to be within [0.94π, 1.02π]). The zigzag effect on û can

substantially compromise the estimation accuracy of φ = sin−1(λcu/2πd).

By comparing the amplitudes between all the outputs of K consecutive analog

subarrays across P symbols, we can obtain the range of u, denoted by β̃u. Suppose

that the largest amplitude of all the outputs is at the m1-th subarray and t1-th

symbol, and the second largest at the m2-th subarray and t2-th symbol. As noted,

αtm divides [0, 2π) into L evenly spaced segments. In the case that the SNR is high,

u is most likely to be close to αt1m1
, within the segment specified by

βu =


[
αt1m1

, αt2m2
− π

L

)
, if αt1m1

= αt2m2
− 2π

L
;(

αt2m2
+ π

L
, αt1m1

]
, if αt1m1

= αt2m2
+ 2π

L
,

(2.25)
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where π
L

specifies the half of the segment closest to αt1m1
. Since αtk is defined on

[0, 2π) while ang{·} is defined on [−π, π), we project βu onto [−π, π) by

β̃u =

 βu, if αt1m1
< π;

βu − 2π, if αt1m1
≥ π.

(2.26)

If û and β̃u take opposite signs, the zigzag effect is likely to occur. To alleviate

the effect, if û is within −β̃u, we change the sign of û. We note that the segments

are likely to be correctly identified, because a SNR gain of around 10log10N dB∗ is

typically achieved at the m1-th subarray and symbol t1.

2.3.5 Discussions on Undetectable Angles

There can be the special case where Gt
m(u) = 0, m ∈ [0, K − 1], and u can be

undetectable. Theorem 2.1 does not apply and Algorithm 1 cannot achieve N̂u with

accuracy. Nevertheless, we show that the accuracy of Algorithm 2 is unaffected by

Algorithm 1 in this special case. We also prove that the use of as few as two training

symbols can eliminate any undetectable angles using the new phase shifts in general

localized hybrid arrays.

Lemma 2.3. At any symbol t, if there exists m̃ ∈ [0, K − 1] that Gt
m̃(u) = 0, then

Gt
m(u) = 0 ∀m ∈ [0, K − 1].

Proof. If Gt
m̃(u) = 0, then sin(Nωtm̃) = 0 or sin(Nωtm̃+1) = 0. In the case that

sin(Nωtm̃) = 0, we have sin(Nωtm̃+1) = sin(Nωtm̃ − Nπ
K

) = (−1)Q sin(Nωtm̃) = 0.

In the case that sin(Nωtm̃+1) = 0, we have sin(Nωtm̃) = sin(Nωtm̃+1 + Nπ
K

) =

(−1)Q sin(Nωtm̃+1) = 0. We also have

sin(Nωtm̃+r) = sin(Nωtm̃ − rQπ) = (−1)rQ sin(Nωtm̃) = 0, r ∈ N.

As a result, sin(Nωtm) = 0 and hence Gt
m(u) = 0 for m = 0, 1, · · · , K − 1.

∗10log10N is the maximum achievable SNR improvement for beamforming with the proposed
phase shifts when u = αt1m1

. While the maximum difference between u and αt1m1
is π/L, it means

with a considerably large L in massive localized hybrid arrays, the practical SNR improvement
after beamforming can approximate or even be equal to 10log10N in dB.
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From Lemma 2.3, we know that sin(Nωtm) = 0 for m = 0, 1, · · · , K − 1, if

Gt
m̃(u) = 0 for any m̃ ∈ [0, K − 1]. Then, sin(Nωtm) sin(Nωtm+1) = 0. There are two

scenarios in terms of the value of sin(ωtm) or sin(ωtm+1).

Scenario 1: sin(ωtm) = 0 or sin(ωtm+1) = 0, and sin(ωtm) 6= sin(ωtm+1), where

0 ≤ m ≤ K − 1. Without loss of generality, we suppose sin(ωtm̆) = 0. Therefore,

ωtm̆ ∈ {±aπ, a ∈ N}. Given m ∈ [0, K − 1], i.e., ωtm ∈ [u
2

+ πt
L
− π + π

K
, u

2
+ πt

L
] (less

then half a cycle), m̆ is unique and sin(ωtm) 6= 0 for m 6= m̆. Therefore, P t
m(u) = 0

for m ∈ [0, K − 1] and m 6= m̆; and

P t
m̆(u) = lim

ωtm̆→±aπ
ej(N−1)ωtm̆

sin(Nωtm̆)

sin(ωtm̆)
(2.27a)

= (−1)±a(N−1) lim
ωtm̆→±aπ

N cos(Nωtm̆)

cos(ωtm̆)
= N, (2.27b)

where (2.27b) is based on the L’Hospital’s rule [94]. (2.20) can be rewritten as

sm(t)e−jmN̂u =

 Ns̃(t)e2πfDtejm̆(Nu−N̂u) + ξm̆(t)e−jm̆N̂u, m = m̆;

ξm(t)e−jmN̂u, m 6= m̆,
(2.28)

The IDFT of sm(t)e−jmN̂u, m = 0, 1, · · · , K − 1, can be given by

an′(t) = s̃(t)e2πfDtQejm̆(Nu−N̂u)ejn
′(u− 2πt

L
) + zn′(t), n

′ = 0, 1, · · · , K − 1, (2.29)

where gtn′(u) in (2.22) becomes† Qejn
′(u− 2πt

L
), zn′(t) = IDFT{ξm(t)e−jmN̂u}, and

ejm̆(Nu−N̂u) is constant for n′ = 0, 1, · · · , K − 1, due to the poor accuracy of N̂u in

this special case (c.f., Theorem 2.1, where ej(Nu−N̂u) → 1).

Here, u can be unambiguously estimated by evaluating the phase of the cross-

†Given ωm̆ ∈ {±aπ, a ∈ N}, we have u
2 −

πt
L ∈ {

m̆π
K ± aπ, a ∈ N}. Both the denominator and

numerator of the RHS of (2.22) are equal to zero. By using the L’Hospital’s rule [94], we have

lim
u→ŭ

gtn′(u) = lim
u→ŭ

ejn
′(u− 2πt

L )ej(N−K)(u2−
πt
L ) sin

(
Nu
2 −

Nπt
L

)
sin
(
Ku
2 −

Kπt
L

)
= (−1)m̆(Q−1)±a(N−K)Q

cos(m̆Qπ ± aNπ)

cos(m̆π ± aKπ)
ejn
′(u− 2πt

L ) = Qejn
′(u− 2πt

L ),

where ŭ = 2m̆π
K + 2πt

L ± 2aπ.
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correlation of two consecutive IDFT points, i.e., an′(t) and an′+1(t) in (2.29), as

given by

rn′(t) = a∗n′(t)an′+1(t) = Q2|s̃(t)|2ej(u−
2πt
L

) + z̃n′(t). (2.30)

where z̃n′(t) is the composite noise term in a similar form to (2.24). Eq. (2.30)

is independent of N̂u which is suppressed through the cross-correlation. In other

words, Algorithm 1 does not invalidate Algorithm 2 in the first scenario of the special

case.

Scenario 2: sin(ωtm) 6= 0 for m = 0, 1, · · · , K−1. The first term of the right-hand

side (RHS) of (2.20) becomes sm(t)e−jmN̂u = 0 for any m = 0, 1, · · · , K − 1, at the

current symbol t. This is the worst-case scenario where the AoA is undetectable at

the current symbol. Nevertheless, we can prove that by using another training sym-

bol, the undetectable angle can be unambiguously detected, as dictated in Corollary

2.1.

Corollary 2.1. Under the new subarray-specific time-varying phase shifts, no AoA

remains undetectable for P training symbols, as long as P ≥ 2 and gcd{P,Q} = 1,

where gcd{P,Q} takes the greatest common divisor of P and Q.

Proof. This corollary can be proved by hypothesizing t1 and t2 ∈ [0, P − 1] (t1 6= t2)

that sin(Nωt1m) = sin(Nωt2m) = 0, sin(ωt1m) 6= 0, and sin(ωt2m) 6= 0 ∀m. |t1−t2| ≤ P−1.

The following equalities would hold: sin
(
N(un

2
− πm1

K
− πt1

L
)
)

= 0,

sin
(
N(un

2
− πm2

K
− πt2

L
)
)

= 0,
m1,m2 ∈ [0, K − 1],

where m1 and m2 are the indexes for subarrays at symbol t1 and t2, respectively.

As a result,  un
2
− πm1

K
− πt1

L
= a1π

N
,

un
2
− πm2

K
− πt2

L
= a2π

N
,
a1, a2 ∈ {Z−, 0,Z+}, (2.31)

where Z− stands for the set of negative integers. Given L = PK and N = QK,
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(2.31) can be written as

(t1 − t2)Q

P
+Q(m1 −m2) = a2 − a1 ∈ {Z−, 0,Z+}. (2.32)

However, |t1 − t2| ≤ P − 1, and therefore, (2.32) cannot hold for P ≥ 2 and

gcd{P,Q} = 1, contradicting with the hypothesis. As a result, no AoA remains

undetectable across P symbols, if P ≥ 2 and gcd{P,Q} = 1. The corollary is

proved.

2.4 Analysis of AoA estimation accuracy

In this section, we analyze the MSEs of ejN̂u and û and derive closed-form

MSELBs.

2.4.1 MSELB of ejN̂u

The accuracy of ejN̂u is of particular interest, which is the key to recover the

Fourier series underlying the received signals of the subarrays. It depends on

the SNR of ρm(t) in (2.12), where ξ̃m(t) is the zero-mean AWGN with power

σ2
ξ̃

= |s̃(t)|2(|P t
m(u)|2 + |P t

m+1(u)|2)σ2
ξ . The signal power of ρm(t) is |s̃(t)|4|Gt

m(u)|2 =

|s̃(t)|4|P t
m(u)|2|P t

m+1(u)|2. Therefore, the estimation SNR of ejN̂u, before the con-

structive accumulation, can be given by

γNus̃,u =
|s̃(t)|4|P t

m(u)|2|P t
m+1(u)|2

|s̃(t)|2(|P t
m(u)|2 + |P t

m+1(u)|2)σ2
ξ

≤
|P t
m(u)|2 + |P t

m+1(u)|2

4

|s̃(t)|2

σ2
ξ

, (2.33)

which is based on the identity inequality that a geometric mean is no greater than

the corresponding quadratic mean.

To obtain the unconditional SNR of ρm(t), we take the expectation of γNus̃,u over

s̃ and u, as given by

γs̃,u = Es̃,u{γNus̃,u } = Es̃

{
|s̃(t)|2

σ2
ξ

}
Eu
{
|P t
m(u)|2 + |P t

m+1(u)|2

4

}
=

1

2
γ0, (2.34)
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where Es̃
{
|s̃(t)|2
σ2
ξ

}
= 1

N
γ0, γ0(= Es̃

{
|s̃(t)|2
σ2

0

}
) is the average receive SNR per antenna,

σ2
0 =

σ2
ξ

N
is the noise power at antennas, and Eu

{
|P tm(u)|2+|P tm+1(u)|2

4

}
= N

2
by exploit-

ing the property of discrete-time Fourier transform (DTFT) that Eu{|P t
m(u)|2} =

Eu{|P t
m+1(u)|2} = N ; see Appendix 7.1.4.

Considering the coherent combination of the cross-correlations in (2.12), the un-

conditional SNR can be given by γ̄Nu = (M−1)P
2

γ0. From (2.12), we can see that

the variance of ejN̂u is inversely proportional to the SNR of ρm(t). Given the upper

bound for the estimation SNR, γ̄Nu, we finally have

MSELB{ejN̂u} =
1

γ̄Nu
. (2.35)

2.4.2 MSELB of û

Assuming that Nu = N̂u and hence ejm(Nu−N̂u) → 1 in (2.20), we proceed to

analyze the MSELB of û. û is achieved by evaluating the phase of rn′(t) in (2.23).

The accuracy of û depends on the SNR of rn′(t), where z̃n′(t) is a zero-mean AWGN

with power σ2
z̃ = Var{z̃n′(t)} = 2|s̃(t)|2|C(u)|2σ2

z . C(u) = ej(N−K)(u
2
−πt
L

) sin(Nu
2
−Nπt

L
)

sin(Ku
2
−Kπt

L
)
.

σ2
z is the noise power of zn′(t) = IDFT{ξm(t)e−jmN̂u},m = 0, 1, · · · , K − 1, n′ =

0, 1, · · · , K − 1, satisfying that σ2
z =

σ2
ξ

K
. σ2

ξ is the power of ξm(t), i.e., the AWGN

at the m-th subarray and the t-th symbol. Typically, ξm(t) is i.i.d across different

subarrays and symbols.

From (2.23) and (2.24), the conditional SNR for the estimation of u on s̃(t) and

u can be given by

γs̃,u =
m2
rn′ (t)

σ2
z̃

=
|s̃(t)|2|C(u)|2

2σ2
z

, (2.36)

where mrn′ (t)
= |s̃(t)|2|C(u)|2ej(u− 2πt

L
) according to (2.23).

Taking the expectation of γs̃,u, we can obtain the unconditional SNR, as given
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by

γ = E{γs̃,u} = E
{
|s̃(t)|2

2σ2
z

}
Eu
{
|C(u)|2

}
=
K

2
γξEu

{
|C(u)|2

}
, (2.37)

where γξ =
E{|s̃(t)|2}

σ2
ξ

, and Eu {·} takes expectation over u.

Despite the proposed algorithm is general and does not rely on any specific

distribution of the AoA, i.e., in (2.3), we assume a uniform distribution of u over

[−π, π) to analyze the estimation accuracy of the AoA, as extensively assumed in

the literature [1, 3, 4, 17]. As a result,

Eu
{
|C(u)|2

}
=

1

2π

∫ π

−π
|C(u)|2 du

=
1

2π

∫ π

−π

∣∣∣∣∣sin(Nu
2
− Nπt

L
)

sin(Ku
2
− Kπt

L
)

∣∣∣∣∣
2

du. (2.38)

The integral of the RHS of (2.38) can be calculated through the property of the

Fourier transform, see Appendix 7.1.4. Different from Appendix 7.1.4, we use the

K-decimation of rN(n), denoted by rN(mK). rN(mK) = 1, if m = 0, 1, · · · , N/K−

1; or rN(mK) = 0, otherwise [95]. The DTFT of rN(mK), termed f(u), can

be given by f(u) =
N/K−1∑
m=0

rN(mK)e−juKm = ej
N−K

2
u sin(Nu/2)

sin(Ku/2)
. Similarly, we have

Eu {|C(u)|2} = N/K. Substituting (2.38) into (2.37) , we obtain

γ =
N

2
γξ. (2.39)

Consider the coherent accumulation of the cross-correlations in (2.23) over n′ ∈

[0, K−2], l ∈
[
0, dM/Ke−1

]
, and t ∈ [0, P−1]. Since σ2

ξ = Nσ2
0, the unconditional

SNR for the estimation of u is given by

γ̄ =
P dM/Ke(K − 1)N

2
γξ =

P dM/Ke(K − 1)

2
γ0, (2.40)

where d·e stands for ceiling.
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In high SNR regions of flat-fading Rayleigh fading channels, the probability

density function (pdf) of û is given by [3, 93, 96]

f̃(û, γ̄) ≈
√
γ̄π2 + 1

2π(1 + γ̄û2)3/2
, − π ≤ u ≤ π. (2.41)

The MSE of û now can be calculated by

σ2
û=

∫ π

−π
(û)2f̃(û, γ̄) dû

=

√
γ̄π2 + 1

πγ̄3/2
sinh−1

(√
γ̄π
)
− 1

γ̄
. (2.42)

Note that (2.42) is under the assumption that Nu = N̂u. Moreover, (dM/KeK−

M) from the outputs of the first K subarrays are reused to form the last K-point

IDFT with the outputs of the last M − bM/KcK subarrays. z̃n′(t) for l = dM/Ke

can be correlated to those for l = 1, and therefore, (2.40) provides an upper bound for

the unconditional SNR. As a result, (2.42) provides an MSELB for û. However, it is

clear that the MSELB is asymptotically tight, in other words, it gives the asymptotic

expression for the MSE, as M and P become large. This is because N̂u→ Nu and

the contribution of the last K-point IDFT per symbol to the estimation becomes

increasingly negligible.

There is an opportunity to design the parameters P and K by using (2.42).

Let σ2
e denote the target MSE of AoA estimation to be achieved. The required

unconditional SNR, γ̄, can be calculated by (2.42). From (2.40), γ̄ is a function of

P , K and γ0, as N and M typically depend on the design technologies of mmWave

antenna front-end, cost, and system complexity [97–99], and they are fixed a priori.

γ0 can be estimated based on system specifications, such as the maximum detectable

range Rmax, and the corresponding smallest detectable signal power Pmin[16, 100].

From (2.40), the MSELB decreases with P , while K can take only a limited number

of values, since N/K ∈ Z+ and 2 < K ≤ M . We can examine all possible values

of P and K in (2.42), and choose those meeting the target. There would be a gap
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between the MSELB and the actually achievable MSE given P and K, especially

when the SNR is low. However, the gap is consistent, as revealed by extensive

simulations in Section 2.5, and therefore can be compensated off-line.

2.5 Numerical and Simulation Results

In this section, simulation results are provided to validate the proposed approach

and analysis, where uniform linear localized hybrid arrays are considered. The

array configurations and other simulation parameters are provided in Table I; unless

otherwise specified. We also simulate the state of the art, referred to as differential

beam search (DBS) [3] and double cross-correlation (DCC) [4].

The comparisons between the proposed approach and the state of the art are

fair; or otherwise, in favor of existing approaches, such as DBS [3], by allowing more

training symbols. This is because DBS needs more training symbols to iteratively

scan multiple possible estimates resulting from estimation ambiguities. The pro-

posed approach is simulated typically with far fewer training symbols than DBS.

Other simulation parameters are set to be identical between the proposed approach

and the algorithms in [3] and [4]. For example, the same average receive SNR per an-

tenna, γ0, is taken for fair comparisons between different approaches under different

array/symbol configurations.

Note that the proposed approach and DCC can accommodate any number of

training symbols. Without loss of generality, for the proposed approach, we set

P = 4 (unless otherwise specified), i.e., the phase shifts repeat every 4 symbols till

the end of training symbols. Even if the number of training symbols is unequal to P ,

the symbols can be constructively combined and the AoA can be estimated in the

same way as described in Section 2.3. The estimation accuracy can be analyzed in

the same way as described in Section 2.4 (we just need to replace P with the number

of training symbols). In contrast, DBS sequentially scans the N possible estimates

of u, i.e., û = mod
{
N̂u+2nπ

N
, 2π
}
−π, n = 0, 1, · · · , N−1, given N̂u, due to the phase

ambiguity. This limits the feasible number of training symbols to multiples of N .

For fair comparisons between the proposed approach and the two benchmarks, we
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1234 8 16 32 40 48
Number of symbols

10-3

10-2

10-1

100

Proposed
MSELB
DCC [12]
DBS [9]

Figure 2.2 : MSE of û versus the number of symbols (also iterations for DBS [3]),
where M = 8 and N = 16. For DBS [3], the AoA estimation can only be updated
every 16 symbols, with result output at P = 16, 32 and 48.

always keep the number of training symbols consistent across the three algorithms.

Table 2.1 : Configurations of the localized hybrid array
and other parameters

Parameter Value Parameter Value
M 8 K (≤ M) 8
N 16 Q (= N/K) 2

Ntrials
∗ 4× 104 P 4

AoA U[−π,π]
∗∗ SNR∗∗∗ [−10, 0, 10] dB

∗ Ntrials is the number of independent trials for each SNR. The
curves in all figures are the average of 4 × 104 independent
trials.

∗∗ U[−π,π] represents the uniform distribution on [−π, π].
∗ ∗ ∗ The SNR is antenna-wise, i.e. γ0 in (2.40).

Fig. 2.2 plots the MSEs of the proposed approach and the state of the art, as the

number of training symbols increases. We show that the proposed algorithm is able

to dramatically and increasingly outperform the state of the art with the increasing

number of training symbols. The proposed approach can reduce the MSE by orders

of magnitude. Particularly, the MSEs of the proposed approach keeps declining,

due to the increasingly improved SNR. In contrast, the MSE of DCC flats out

and DBS is far from convergence, as the consequence of the aforementioned phase
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Figure 2.3 : MSE of ejN̂u as γ0 increases, where N = 24, and P = 6.

ambiguities in both methods. We also see that the MSELB becomes increasingly

tight to the proposed approach, as the SNR grows‡. This validates our analysis of the

MSELB, and demonstrates the superiority of the proposed approach in estimation

accuracy. It is worth pointing out that DBS requires recursive search necessitating

multiple training symbols to suppress the phase ambiguity, and therefore provides

no estimation results until the 16-th symbol.

By increasing the training symbols, the estimation accuracy improves consis-

tently with the estimation SNR in Fig. 2. For instance, by increasing the number of

symbols P from 4 to 40, the estimation SNR increases by 10 dB. The case of P = 4

and γ0 = 0 dB has the same estimation SNR as the case of P = 40 and γ0 = −10

dB. γ0 is the average receive SNR per antenna element. The MSEs of the two cases

are 0.4211 and 0.4152, close to each other, as shown in Fig. 2. The case of P = 4

and γ0 = 10 dB has the same estimation SNR as the case of P = 40 and γ0 = 0 dB.

The MSEs of the two cases are 0.0491 and 0.04962, even closer.

Fig. 2.3 plots the MSE of ejN̂u as the receive SNR per antenna increases. Apart

from the closed-form MSELB and simulation results, we also plot the MSE under

the assumption that the strongest cross-correlation between the complex gains of

‡DBS, as an iterative searching approach, requires a large number of iterations to converge,
e.g., more than 400 symbols [3, Fig. 10].
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proposed zigzag mitigated
proposed with zigzag
DCC [12]
MSELB

Figure 2.4 : MSE of û versus γ0, where N = 24, M = 4, 8 and the number of
training symbolsis 6. Both results with and without the proposed zigzag mitigation
are provided, along with that of DCC [4] for comparison.

adjacent subarrays is always correctly identified and calibrated in sign. It provides

the asymptotic MSELB of ejN̂u. By comparing the asymptotic MSELB and simula-

tion results, we see that our discovery in Theorem 1 can help effectively identify and

calibrate the strongest cross-correlation, and constructively accumulate the cross-

correlations to approach the asymptotic MSELB. We also see that the MSELB is

fairly loose due to the relaxation based on the identity inequality that a geometric

mean is no greater than the corresponding quadratic mean; see (2.33). We further

show that the proposed approach is able to dramatically improve the accuracy of

ejN̂u, as compared to the state of the art. This contributes significantly to the

improved accuracy of û in the proposed algorithm, as will be shown in Fig. 2.4.

Fig. 2.4 demonstrates the effectiveness of the proposed zigzag mitigation method

described in (2.25) and (2.26), where, for comparison purpose, we also plot the MSEs

of DCC, the MSELB and the estimation accuracy of the proposed algorithm without

mitigating the zigzag effect. We can see that the zigzag effect can substantially

compromise the estimation of u, even in the case of high SNRs. As a consequence,

the estimation accuracy of the azimuth φ degrades, since u and φ are one-to-one

mapping. We also see that the proposed mitigation of the zigzag effect in (2.25) and
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10-2

10-1

100

Proposed
DCC [12]
MSELB

Figure 2.5 : MSE of û versus the number of subarrays M , where N = 24 and the
number of training symbols is 8. For the proposed approach, M ranges from 4 to 24.
While for [4], only five values can be taken, i.e. 4, 6, 8, 12 and 24, to keep N/M ∈ Z+.

(2.26) becomes increasingly effective as the SNR increases. This is important for

the proposed algorithm to approach the MSELB, as the SNR increases, as shown in

Fig. 2.2.

It is worth pointing out that though mitigating the zigzag appears to dominate in

the improvement of estimation accuracy in Fig. 2.4, yet in fact, the sign alignment

based on our discovery in Theorem 2.1 has the dominating effort on the improvement.

The sign alignment is able to reduce the MSE dominantly in absolute value, and

lay the foundation for the further reduction through the proposed mitigation of the

zigzag effect.

Fig. 2.5 compares the proposed approach and DCC [4] with the increasing

number of subarrays M . We can confirm that the proposed approach is able to

operate in general localized hybrid arrays where N is unnecessarily a multiple of M .

Particularly, M can take any integer that is larger than K. In contrast, DCC only

necessitates N to be a multiple of M . Given N = 24, M can only take the values

of 4, 6, 8, 12 and 24. As also corroborated in Fig. 2.5, the proposed approach is able

to significantly and consistently outperform the state of the art. This is consistent

with Fig. 2.2. Moreover, Fig. 2.5 shows that both algorithms increasingly improve

their estimation accuracy with the growing number of subarrays. The conclusion
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Figure 2.6 : MSE of û and MSELB versus γ0, where N = 16 and M = 8.

drawn is that the increases of digital capability and the number of phase shifts per

symbol help improve the accuracy of AoA.

Fig. 2.6 plots MSEs of û using the proposed algorithm with the growth of

SNR, where N = 16, M = 8, and the number of training symbols is set to be

8, 16 and 24. We observe that the gap between the actually achievable MSEs and

the corresponding MSELBs keeps consistent, under different numbers of training

symbols. Consider the SNR of 0 dB. The gap is 60.52% in the case of 8 training

symbols, and the corresponding gap is 64.48% and 66.44% in the cases of 16 and 24

training symbols, respectively.

In light of this observation, we can design the number of training symbols to

achieve a given requirement of MSE, through MSELB developed in (2.42). Suppose

that the MSE requirement of AoA estimation is 0.1 at 0 dB, where N = 16, M = 8,

and K = 8. Substituting the MSELB of 0.1 and the values of M and K into (2.42),

we need more than 7 training symbols. Take 8 training symbols for simulations. The

achievable MSE is 0.2272 at 0 dB, 55.99%
(
= 0.2272−0.1

0.2272
×100%

)
higher than the MSE

requirement. Observed in Fig. 2.6, the MSELB corresponding to the achievable

MSE with 8 training symbols is 0.08969. As a result, the MSELB, which provides the

actual MSE of 0.1, can be predicted to be around 0.0395(= 0.08969× (1−55.99%)).

Substituting this in (2.42), we can see more than 22 training symbols are required.
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Figure 2.7 : MSE of û in the presence of a LoS path and a NLoS path, where
M = 4, N = 8, and P = 4 for the proposed algorithm and P = 40 for DBS [3]. The
received signal strength of the LoS path is set to be 5 dB stronger than that of the
NLoS path, the LoS path is uniformly distributed within [π

4
, π
3
] and the NLoS path

is uniformly distributed within [−π
3
,−π

4
].

Simulations confirm that 24 training symbols can provide an actually achievable

MSE of 0.1084, which meets the MSE requirement.

Fig. 2.7 plots the estimation accuracy in the presence of a LoS path and a non-

line-of-sight (NLoS) path, where the received signal strength of the LoS path is set

to be 5 dB stronger than that of the NLoS path. Without loss of generality, the

LoS path is uniformly distributed within [π
4
, π
3
], and the NLoS path is uniformly

distributed within [−π
3
,−π

4
]. SIC is carried out in coupling with the proposed ap-

proach to iteratively improve the estimation accuracies of both the LoS and NLoS

paths. We also plot the proposed approach and DBS [9] in the absence of NLoS

for references. We can see that, coupled with SIC, the proposed approach is able

to substantially improve the estimation accuracy of both the LoS and NLoS paths,

especially in the high SNR region. The improved accuracy of the LoS path is close

to the lower bound performance achieved by the proposed approach in the absence

of NLoS. We also see that the estimation accuracy of the LoS path by using the

proposed approach can even be much lower in the presence of NLoS than that by

using DBS in the absence of NLoS. It is indicated that estimation ambiguities can

be as a significant source of inaccuracy as NLoS. The proposed approach eliminating
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the ambiguities helps compensate for inaccuracy resulting from NLoS.

It is worth noting that the comparison study is in favor of DBS in Fig. 2.7,

where P = 4 for the proposed approach while P = 40 for DBS. This is due to the

fact that DBS has to repeatedly scan multiple estimates of u by using more training

symbols. It is also interesting to point out that the curve of “LoS with NLoS”, with

the NLoS path deemed as interference, starts to saturate at γ0 ≈ 23dB, despite the

per-antenna SIR is 5dB. This is because, by running Algorithm 2, the interference

can be decoupled to a randomness-bearing part and a deterministic part with a

deterministic phase and gain. Our analysis reveals that the per-antenna SIR and

γ0 are 5dB and 23.5354dB, respectively, when the random part of interference and

the noise have the same power after coherent accumulation. The random part of

interference can increasingly dominate over the noise, as γ0 grows further. The

deterministic part of the interference can lead to a noise-independent bias upon the

AoA estimation of the LoS path. It can affect the saturated estimation accuracy;

but would not affect the threshold of γ0, beyond which the estimation accuracy

saturates. Details are provided in Appendix 7.1.5.

2.6 Conclusion

In this chapter, we propose high-accuracy AoA estimation with new subarray-

specific time-varying phase shifts in general localized hybrid arrays. We discover

that the signs of the cross-correlations between consecutive subarrays are determin-

istic, and only the strongest cross-correlation takes a different sign from the rest.

We propose to align the cross-correlations, achieving constructive combinations and

improving tolerance to noises. Evident from extensive simulations, the estimation

accuracy can be substantially improved by orders of magnitude through our design

of phase shifts and our discovery, and asymptotically approach the MSELB. In our

future work, we will extrapolate our discovery to more sophisticated wideband and

multi-path environments.
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Chapter 3

Fast and Accurate Estimation of Angle-of-arrival

for Wideband Large-scale Hybrid Arrays

3.1 Introduction

Accurate estimation of AoA is critical to wideband satellite communications,

but is susceptible to receive noises and can be ambiguous due to space/cost-effective

hybrid antenna array designs with localized analog phased subarrays. As a mat-

ter of fact, there has yet to be an unambiguous estimator even for narrow-band

systems. This chapter presents a novel and efficient wideband AoA estimator for

unambiguously and accurately estimating the AoA of wideband impinging signals at

satellite-borne localized hybrid antenna arrays. Embarking on new discoveries, the

chapter addresses the critical challenge of estimation ambiguity which has yet to be

addressed in the literature, and achieves superior estimation accuracy and efficiency

in comparison to the state of the art, e.g., [1]. The contributions of the chapter can

be summarized as follows.

1. We reveal that, by partitioning a hybrid array into groups of K consecutive

subarrays (K is a factor of the number of antennas per subarray, N) and applying

linearly increasing phase shifts per group, the received signals of each group, after

a phase correction of Nu, can form a Fourier series at every sub-carrier with

the AoA unambiguously captured in coefficients. To this end, the AoA can be

efficiently estimated at every sub-carrier, by correcting phases of received signals,

running IDFT, correlating the Fourier coefficients for each K-subarray group and

accumulating coherently among groups.

2. We discover unprecedentedly that the cross-correlations of the received signals

between adjacent subarrays, before corrupted by noises, have deterministically
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changed phases at each sub-carrier, and can be reliably augmented and coherently

accumulated to achieve a noise-resistant estimate of the phase to be corrected,

i.e., Nu, in 1).

3. We extrapolate the sub-carrier-wise operations of 1) and 2) optimally to wide-

band signals and improve estimation accuracy substantially by exploiting co-

herence across sub-carriers. Specifically, the subarray-wise cross-correlations are

correlated between sub-carriers and accumulated coherently to enhance the phase

correction. We identify the optimal gap between sub-carriers to be correlated,

balancing between the decreasing accumulation gain and the alleviating error

amplifying effect of an increasing gap. We also prove that, after the phase cor-

rection, the optimal coherent accumulation gain can be readily achieved for the

AoA estimation by adding up the cross-correlations of the Fourier coefficients

across all sub-carriers.

Corroborated by extensive simulations and analysis, the proposed approach is

able to significantly improve the estimation accuracy and reduce the estimation

delay by up to 99.949% and 70% for the dominant path, respectively, even in low

SNR regions, as compared to the state of the art. The proposed approach is also

demonstrated to asymptotically approach the theoretical limit of the error variance

exhibited by the estimates. To this end, the approach is uniquely suited for satellite-

borne wideband multi-antenna communication systems which typically require high

accuracy of AoA and operate under low SNRs.

The rest of the chapter is organized as follows. In Section 3.2, the system model

and the problem statement are described. In Section 3.3, the new phase shifts are

designed and the deterministic nature of the cross-correlations between subarrays

is discovered. In Section 3.4, we optimize the frequency interval, followed by an

unambiguous estimation of u in Section 3.5. In Section 3.6, the analysis and ex-

tensions of our approach are provided. The superiority of the proposed approach is

demonstrated through simulations in Section 3.7, followed by conclusions in Section

3.8.
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3.2 System Model and Problem Statement

For illustration convenience, we consider a one-dimensional linear localized hy-

brid array with M analog subarrays and N antenna elements per subarray, as shown

in Fig. 1.2.∗ The antennas in the same subarray are connected to adjustable phase

shifters, one for each, and then aggregated and connected to a RF chain. As a

receiver, the RF chain consists of an amplifier, a down-converter and filters and

down-converts RF signals into intermediate or baseband frequencies. The baseband

signals are digitized by an ADC and transformed into the frequency domain.

The wideband satellite transmissions in Q/V band are dominated by directive

LoS radio links with insignificant multi-path components [27]. Let s̃(t) denote the

complex incoming time-domain signal in the baseband. Assume that the frequency

range of s̃(t), is [fl, fh], and B = fh − fl is the frequency bandwidth. The spacing

between adjacent antenna elements, denoted by d, is half the wavelength of the

highest frequency, i.e. d = λl
2

, where λl = c
fh

and c is the light speed.

Every wideband symbol is digitalized, generating I samples. At symbol t, the

i-th sample s̃(t) is taken at ti = tI+i
fs

, where fs is the sampling frequency, t is the

index for symbols (t ≥ 0) and i is the index for samples within a symbol and hence

the index for sub-carriers (0 ≤ i ≤ I − 1). Suppose that the incoming direction of

s̃(ti) is θ. The time-domain output of the m-th subarray can be written as [1]

sm(ti) =
N−1∑
n=0

P n
m(θ)s̃(ti − τmn (θ))ejnα

t
m + zm(ti), (3.1)

where P n
m(θ) is the radiation pattern of the n-th antenna element at the m-th sub-

array (0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1); zm(ti) is the zero-mean AWGN at

the m-th subarray and is typically independent and identically distributed (i.i.d);

τnm(θ) = (nd+mNd) sin θ
c

is the propagation delay of the n-th antenna element at the

m-th subarray with reference to the left-most antenna element; and αtm is the phase

shift value of the m-th subarray at symbol t. The phase shifts are assumed to be

∗Note that the algorithms proposed in this chapter can be readily applied in two-dimension
rectangular hybrid arrays.
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frequency flat [1, 101], i.e. the same phase shifts for all I samples of symbol t.

For the t-th wideband symbol, the I-point DFT of sm(ti), denoted by Sm(fi), 0 ≤

i ≤ I − 1, can be given by

Sm(fi) =
N−1∑
n=0

P n
m(θ)S̃(fi)e

j2πfiτ
n
m(θ)ejnα

t
m + Zm(fi)

= S̃(fi)Pm(ρi, u)ejmρiNu + Zm(fi), (3.2)

where S̃(fi) = DFT{s̃(ti)}; Zm(fi) = DFT{zm(ti)}; u = 2πd sin θ
λl

= π sin θ, since

d = λl
2

; Pm(ρi, u) =
∑N−1

n=0 P
n
m(θ)ejnρiuejnα

t
m is the beamforming gain of the m-th

subarray under αtm; and ρi is the normalized frequency:

ρi =
fi + fl
fh

∈
[
fl
fh
, 1

]
, (3.3)

where fi = iB
I
, 0 ≤ i ≤ I − 1, is the centroid frequency of the i-th sub-carrier in the

baseband. Different from narrowband scenarios, Pm(ρi, u) depends on both u and fi

through ρi. The estimation of AoA, or more specifically, θ, is essentially to estimate

u, since u and θ are one-to-one mapping, i.e., θ = sin−1( uλl
2πd

).

Take the cross-correlation of the frequency-domain outputs between two consec-

utive analog subarrays at the i-th sub-carrier (0 ≤ i ≤ I − 1), as given by

Rm(fi) = S∗m(fi)Sm+1(fi) = |S̃(fi)|2Gm(ρi, u)ejρiNu + Z̃m(fi), 0 ≤ m ≤M − 2,

(3.4)

where Gm(ρi, u) = P ∗m(ρi, u)Pm+1(ρi, u) and the composite noise component Z̃m(fi)

can be given by

Z̃m(fi) =S̃∗(fi)P
∗
m(ρi, u)e−jmρiNuZm+1(fi) + S̃(fi)Pm+1(ρi, u)ej(m+1)ρiNuZ∗m(fi)

+ Z∗m(fi)Zm+1(fi), (3.5)

where Z̃m(fi) can be modeled as a zero-mean AWGN, since Zm(fi), 0 ≤ m ≤ M −

1, 0 ≤ i ≤ I − 1, are i.i.d AWGNs. Provided the sign of Gm(ρi, u) is known in (3.4),



56

ρiNu could be estimated by evaluating the phase of Rm(fi), but an ambiguity would

arise from estimating u.

A second cross-correlation of Rm(fi) over fi can be taken to eliminate the ambi-

guity [1], as given by

R̃m(fi) = R∗m(fi)Rm(fi+4i) = |S̃(fi)|2|S̃(fi+4i)|2G∗m(ρi, u)Gm(ρi+4i , u)ejδρiNu

+ Z̆m(fi), 0 ≤ i ≤ I −4i − 1 (3.6)

where 4i is the difference of indexes for sub-carriers and δρi = ρi+4i − ρi = 4iB
Ifh

.

Z̆m(fi), like Z̃m(fi), is also a zero-mean AWGN and can be written as

Z̆m(fi) =|S̃(fi)|2G∗m(ρi, u)e−jρiNuZ̃m(fi+4i)

+ |S̃(fi+4i)|2Gm(ρ
i+4i

, u)ejρi+4iNuZ̃∗m(fi)

+ Z̃∗m(fi)Z̃m(fi+4i). (3.7)

Provided sgn{G∗m(ρi, u)Gm(ρ
i+4i

, u)} > 0, we can carefully choose δρiN ≤ 1 so

that 4i ≤ Ifh
NB

and u can be estimated unambiguously by evaluating the phase of

R̃m(fi) [1]. The estimate of u, denoted by û, is û = 1
δρiN

arg{R̃m(fi)}, which, un-

fortunately, has the estimation error amplified by 1
δρiN

≥ 1. sgn{·} takes sign and

arg{·} takes angle. From R̃m(fi) in (3.6), sgn{G∗m(ρi, u)Gm(ρ
i+4i

, u)} > 0, ∀m al-

lows for coherent accumulation across subarrays and sub-carriers, hence improving

noise resistence and estimation accuracy. In [1], sgn{G∗m(ρi, u)Gm(ρ
i+4i

, u)} > 0 was

achieved by applying identical phase shifts for all subarrays, but led to iteratively

scanning for initialization with a large number of training symbols and long esti-

mation delays. Additionally, the convergent performance, i.e., estimation accuracy,

would be affected by the selection of the initial phase shifts and error propagation.

Other relevant algorithms, such as [4, 17], cannot guarantee consistent signs at all.
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3.3 New Design of Phase Shifts

In this section, we propose to use different phase shifts across subarrays and

symbols. With few symbols (even a single symbol at high receive SNR regions), the

AoA can be estimated unambiguously with high accuracy. Particularly, the new

phase shifts are able to address the aforementioned issue of inconsistent signs of

Gm(ρi, u).

With M subarrays and N antennas per subarray, the new phase shift values are

given by

αtm =
2π(mod{m,K}P + mod{t, P})

L
, (3.8)

where m and t are the indexes for analog subarrays and training symbols, respec-

tively (0 ≤ m ≤ M − 1, t ≥ 0); K is the number of different phase shifts adopted

per symbol; P is the number of training symbols, and L = PK is the total number

of phase shifts. The L phase shifts are evenly spaced across [0, 2π) with an interval

of 2π
L

. The modulo operations, mod{·}, indicate that αtm has the cycles of K and P

for subarrays and symbols, respectively.

Here, K is designed to satisfy:

2<K ≤M, N = QK, K,Q ∈ Z+, (3.9)

where Z+ is the set of positive integers, and Q is an auxiliary integer variable. For

every symbol, K different phase shifts repeat every K subarrays.

By substituting (3.8) into (3.2), the beam pattern of the m-th subarray at any

symbol t and sub-carrier i (0 ≤ m ≤ K − 1, 0 ≤ t ≤ P − 1, and 0 ≤ i ≤ I − 1), i.e.,

Pm(ρi, u), can be given by

Pm(ρi, u) =
N−1∑
n=0

ejnρiue−jnα
t
m =

N−1∑
n=0

ejnρiue−j2π
mod{m,K}P+mod{t,P}

L
n

= ej(N−1)ωim
sin(Nωim)

sin(ωim)
, (3.10)
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where ωim = ρiu
2
−π
(
t
L

+m
K

)
. As extensively assumed in [1, 3, 4, 17], we set P n

m(θ) = 1,

i.e., the antenna elements are omni-directional with unitary antenna gains, and can

be suppressed.

From (3.10), we can see that Pm(ρi, u) is periodic over m and t, with cycles of K

and P , respectively. For illustration convenience, we take m = 0, 1, · · · , K − 1 and

t = 0, 1, · · · , P − 1 in the following. The conclusion drawn can be readily applied to

the rest (M −K) subarrays within the P symbols, as will be discussed later.

As a result, Gm(ρi, u) in (3.4) can be rewritten as

Gm(ρi, u) = e
−j(N−1)π

K
sin(Nωim)

sin(ωim)

sin(Nωim+1)

sin(ωim+1)
, (3.11)

which has deterministic and predictable signs, as dictated in Theorem 3.1. Two

lemmas are provided before the theorem, as they play important roles in the proof

of the theorem.

Lemma 3.1. There exists a unique integer m′ ∈ [0, K − 1] satisfying

sin(ωim′) sin(ωim′+1) < 0.

Proof. See Appendix 7.2.1.

Lemma 3.2. Given m′ specified in Lemma 3.1, we have

| sin(ωim′) sin(ωim′+1)| < | sin(ωim) sin(ωim+1)|,

for any m ∈ [0, K − 1], m 6= m′

Proof. See Appendix 7.2.2.

Theorem 3.1. At any symbol t and sub-carrier i (i = 0, 1, · · · , I−1), only Gm′(ρi, u)

with the largest non-zero amplitude has the opposite sign to all Gm(ρi, u), m 6= m′,

where m, m′ ∈ [0, K − 1].

Proof. In the case of K < M , sin(Nωim+1) = sin
(
Nωim − Nπ

K

)
= (−1)Q sin(Nωim)
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for m = 0, 1, · · · , K − 1, since ωim+1 = ρiu
2
− π
(
t
L

+ m+1
K

)
= ωim − π

K
, and Q = N

K
, as

specified in (3.9). Therefore, Gm(ρi, u) can be rewritten as

Gm(ρi, u) = e
−j(N−1)π

K
(−1)Q sin2(Nωim)

sin(ωim) sin(ωim+1)
,m ∈ [0, K − 1]. (3.12)

Given Q, the sign of Gm(ρi, u) only depends on that of sin(ωim) sin(ωim+1).

For any u and frequency point ρi, sin(ωim) = sin
(
ρiu
2
− πt

L
− πm

K

)
, m ∈ [0, K − 1],

spans half a cycle of the sine function with the initial phase ( ρiu
2
− πt

L
). sin(ωim+1) is

the shifted version of sin(ωim).

Given m′ specified in Lemma 3.1, we have sin(Nωim) = sin
(
Nωim′+

πN(m′−m)
K

)
=

(−1)Q(m′−m) sin(Nωim′), since ωim = ωim′ +
π(m′−m)

K
. Therefore,

sin(Nωim) sin(Nωim+1) =(−1)Q(m′−m) sin(Nωim′)× (−1)Q(m′−m−1) sin(Nωim′)

=(−1)Q sin2(Nωim′). (3.13)

From Lemma 3.2, the denominator of Gm(ρi, u), m = 0, 1, · · · , K − 1, takes the

minimum at m′, i.e.,

|Gm′(ρi, u)| =
∣∣∣∣ (−1)Q sin2(Nωim′)

sin(ωim′) sin(ωim′+1)

∣∣∣∣ (3.14a)

>

∣∣∣∣(−1)Q sin2(Nωim′)

sin(ωim) sin(ωim+1)

∣∣∣∣ (3.14b)

=

∣∣∣∣sin(Nωim) sin(Nωim+1)

sin(ωim) sin(ωim+1)

∣∣∣∣ (3.14c)

= |Gm(ρi, u)|,m = 0, 1, · · · , K − 1;m 6= m′, (3.14d)

where (3.14a) and (3.14c) are obtained by plugging (3.13); (3.14b) is based on

Lemma 3.2; and (3.14d) is based on (3.11).

By combining Lemma 3.1 and (3.14), the sign of Gm(ρi, u) only changes at

m′, which, according to Lemma 3.2, corresponds to the largest of |Gm′(ρi, u)| for

m = 0, 1, · · · , K − 1.

In the case of K = M , we can have GK−1(ρi, u) = P ∗K−1(ρi, u)P0(ρi, u), i.e., the
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cross-correlation between the first and last subarrays. For m = 0, 1, · · · , K − 2,

Gm(ρi, u) remains the same as (3.11). The discussion in the case of K < M still

applies, because

PK(ρi, u) = ej(N−1)
(
ρiu

2
−πt
L
−πK

K

) sin
(
N
(
ρiu
2
− πt

L
− πK

K

))
sin
(
ρiu
2
− πt

L
− πK

K

)
= ej(N−1)

(
ρiu

2
−πt
L

) sin
(
N
(
ρiu
2
− πt

L

))
sin
(
ρiu
2
− πt

L

) = P0(ρi, u). (3.15)

The theorem is proved.

3.4 Unambiguous Wideband Estimation of Nu

Following Theorem 3.1, we are able to explicitly calibrate the signs of Rm(fi) in

(3.4) at every sub-carrier i, as given by

R̃m(fi) =

 (−1)QRm(fi) if m 6= m′;

(−1)Q+1Rm(fi) if m = m′,
(3.16)

where m = 0, 1, · · · , K − 1, i = 0, 1, · · · , I − 1, and m′ is the index to the cross-

correlation with the largest amplitude per sub-carrier, as specified in Lemmas 3.1

and 3.2.

The generalization of (3.16) to the case of 0 ≤ m ≤ M − 1 is straightforward.

Particularly, Pm(ρi, u) in (3.10) has the periodicity of K and P for m and t, re-

spectively, since the phase shifts in (3.8) exhibit the same periodicity. Therefore,

we can have Rm(fi) = Rmod{m,K}(fi), 0 ≤ m ≤ M − 1. Out of the total M cross-

correlations, there can be bM
K
c or dM

K
e with the opposite sign to the rest, i.e., one

every K. These dM
K
e or bM

K
c cross-correlations are the strongest, the least suscep-

tible to the noise, and therefore most unlikely to be misjudged in terms of sign, as

compared to the rest.

Note that Theorem 3.1 is under an implicit assumption that Gm′(ρi, u) 6= 0.

In the case of Gm′(ρi, u) = 0, m′ ∈ [0, K − 1], we have sin2(Nωim′) = 0, accord-
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ing to (3.12). Combining (3.13) and (3.11), we have Gm(ρi, u) = 0 and hence

|S̃(fi)|2Gm(ρi, u)ejρiNu = 0; see (3.4), for all m’s at the current symbol t and sub-

carrier i. Therefore, we can still calibrate the signs using (3.16) with no impact on

the coherent accumulation, since all useful signal components are zero.

Note that |S̃(fi)|2|S̃(fi+4i)|2G∗m(ρi, u)Gm(ρ
i+4i

, u) in (3.6) becomes consistent in

sign, after calibrating the signs of Gm(ρi, u) ∀m, t, i. Coherent accumulation can be

performed across m, fi and t to improve the estimation SNR and accuracy, as given

by

R̃ =
M−2∑
m=0

P−1∑
t=0

I−4i−1∑
i=0

R̃m(fi). (3.17)

From (3.6), we can estimate Nu by evaluating the phase of R̃, as given by

N̂u =
arg{R̃}
δρi

, (3.18)

Algorithm 3 summarizes the proposed unambiguous estimation method for Nu.

Note that the estimation error of N̂u can be amplified by δρi(= ρi+4i − ρi =

4iB
Ifh

) � 1. To this end, δρiN < 1 is expected to be as close to 1 as possible. This

requires 4i to be large. However, a larger value of 4i can compromise the gain of

the coherent accumulation of (3.17), degrading the estimation of arg{R̃} and N̂u.

4i needs to be holistically selected, as we do in the following corollary.

Corollary 3.1. The optimal 4i for N̂u, is 2I
3

.

Proof. To prove this corollary, we first derive the mean square error lower bound

(MSELB) of N̂u, based on which the optimal 4i providing to the minimum MSELB

of N̂u can be identified.

Suppose that the i.i.d zero-mean AWGN in (3.1) has noise power σ2
0, i.e., zm(ti) ∼

CN (0, σ2
0) for 0 ≤ m ≤ M − 1, 0 ≤ i ≤ I − 1, 0 ≤ t ≤ P − 1. After the I-

point DFT, the noise in (3.2) yields Zm(fi) ∼ CN (0, Iσ2
0). From (3.5), the noise

power of Z̃m(fi) is |σiz̃|2 = |S̃(fi)|2 [|Pm(ρi, u)|2 + |Pm+1(ρi, u)|2] Iσ2
0. After the cross-
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Algorithm 3 Optimal Nu Estimation Approach

1: Initialize: Given N and M , select K (∈ [2,M), ∈ Z+),
2: N/K ∈ Z+, 4i and I.

3: procedure analog beamforming and sign align-
4: ment for cross-correlations
5: for t← 0 : P − 1 do
6: sm(ti)← Analog beamforming using αtm in (3.8);
7: stm = [sm(t0), sm(t1), · · · , sm(tI−1)]T ;
8: Sm(fi)← DFT[stm];
9: for i← 0, 1, · · · , I − 1 do

10: for m← 0, 1, · · · ,M − 2 do
11: Rm(fi)← S∗m(fi)Sm(fi+1);
12: end for
13: Find Rm′(fi) having the largest magnitude
14: among Rm(fi) (0 ≤ m ≤ K − 1);
15: for all m ∈ [0,M − 2] do
16: Rm(fi)← (−1)QRm(fi);
17: end for
18: for m← k′ : K : M do
19: Rm(fi)← −Rm(fi);
20: end for
21: R̃m(fi)← R∗m(fi)Rm(fi+4i)
22: end for
23: end for
24: end procedure

25: R̃←
∑M−2

m=0

∑P−1
t=0

∑I−4i−1
i=0 R̃m(fi), 4i = 2I

3
;

26: return N̂u← 1
δρi

arg{R̃}

correlation between sub-carriers, the noise power of Z̆m(fi) in (3.7) can be given

by

|σz̆|2 = |S̃(fi)|4|Gm(ρi, u)|2|σi+4iz̃ |2 + |S̃(fi+4i)|4|Gm(ρi+4i , u)|2|σiz̃|2 (3.19)

The power of the signal component of R̃m(fi) in (3.6), denoted by σ2
s , can be given

by

σ2
s = |S̃(fi)|4|S̃(fi+4i)|4|Gm(ρi, u)|2|Gm(ρ

i+4i
, u)|2. (3.20)

Therefore, the SNR for evaluating the phase of R̃m(fi) in (3.6) at sub-carrier
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γs̃,u =
σ2
s

|σz̆|2
=

|S̃(fi)|4|S̃(fi+4i)|4|Gm(ρi, u)|2|Gm(ρ
i+4i

, u)|2

|S̃(fi)|4|Gm(ρi, u)|2|σi+4iz̃ |2 + |S̃(fi+4i)|4|Gm(ρi+4i , u)|2|σiz̃|2

=
|S̃(fi)|4|S̃(fi+4i)|4|Gm(ρi, u)|2|Gm(ρ

i+4i
, u)|2

|S̃(fi)|4|Gm(ρi, u)|2|S̃(fi+4i)|2Hm(ρi+4i , u)Iσ2
0

+ |S̃(fi+4i)|4|Gm(ρi+4i , u)|2|S̃(fi)|2Hm(ρi, u)Iσ2
0

,

≈ 1

2Iσ2
0

|S̃(fi)|8|Gm(ρj, u)|4

|S̃(fi)|6|Gm(ρi, u)|2Hm(ρi, u)
=
|S̃(fi)|2|Gm(ρi, u)|2

2Iσ2
0Hm(ρi, u)

≤ |S̃(fi)|2Hm(ρi, u)

8Iσ2
0

(3.21a)

i, subarray m and symbol t, denoted by γs̃,u, can be calculated in (3.21) placed

on the top of the next page, where Hm(ρi, u) = |Pm(ρi, u)|2 + |Pm+1(ρi, u)|2; the

approximation in (3.21a) is taken by assuming that the signal power is uniformly

distributed in the passband and 4i is so small that the difference of |Gm(ρi, u)| and

Hm(ρi, u) over different sub-carriers is negligible. The last inequality in (3.21a) is

based on the following inequalities:

|Gm(ρ
i
, u)|2

Hm(ρi, u)
=

|P ∗m(ρ
i
, u)Pm+1(ρ

i
, u)|2

|Pm(ρ
i
, u)|2 + |Pm+1(ρ

i
, u)|2

≤ |Pm(ρ
i
, u)|2 · |Pm+1(ρ

i
, u)|2

|Pm(ρ
i
, u)|2 + |Pm+1(ρ

i
, u)|2

(3.22a)

≤

(
|Pm(ρi,u)|2+|Pm+1(ρi,u)|2

2

)2

|Pm(ρ
i
, u)|2 + |Pm+1(ρ

i
, u)|2

(3.22b)

=
Hm(ρi, u)

4
,

where (3.22a) is based on the Cauchy-Schwartz inequality and (3.22b) is due to the

fact that a geometric mean, i.e., the numerator in (3.22a), is never greater than the

corresponding quadratic mean, i.e., the numerator in (3.22b).

By taking the expectation of γs̃,u over S̃(fi) and u, we can obtain

γNu = E{γs̃,u} ≤
Es{|S̃(fi)|}

8Iσ2
0

Eu {Hm(ρi, u)} =
I

4
γe, (3.23)
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where Es{·} and Eu{·} take expectations over s̃(t) and u, respectively; Es{|S̃(fi)|}
Iσ2

0
=

I
N
γe with γe denoting the receive SNR at each antenna in the time domain; and

Eu {Hm(ρi, u)} = 2N with u uniformly distributed in [−π, π], as proved in Ap-

pendix 7.2.4.

By coherently accumulating over subarrays, symbols and sub-carriers, the un-

conditional SNR for estimating arg{R̃} can be finally given by

γNuΣ ≤ (M − 1)P (I −4i)I

4
γe. (3.24)

In high SNR regions, the MSELB of estimating the phase of a noise-corrupted

complex signal, like (3.6) and (3.17), can be approximated by 1
2γx

[1, 102], where γx

denotes the SNR of the signal. By plugging this and (3.24) into (3.18) and exploiting

the definitions of δρi and 4i; see (3.6), we have that

MSELB(N̂u) ≈ 2If 2
h

B2(M − 1)Pγe
× 1

42
i (I −4i)

. (3.25)

By setting the first-order derivative of (3.25) with respect to 4i to 0, we can

achieve that the minimum of MSELB(N̂u) is taken at 4i = 2I
3

. This concludes the

proof.

Note that the MSELB is the modified Cramér-Rao lower bound (CRLB) which,

like the standard CRLB, provides the theoretical limit (i.e., a lower bound) to the

error variance of any parameter estimator [93, 96]. The modified CRLB is particu-

larly useful when, in addition to the parameter to be estimated, the observed data

also depend on other unwanted parameters [96], such as the Rayleigh fading chan-

nel gains in the context of this chapter. By comparing to the modified CRLB, the

proposed approach is demonstrated to asymptotically approach the theoretical limit

of the error variance exhibited by the estimates, as will be shown in Section 3.7.

3.5 Unambiguous Wideband AoA Estimation

Given N̂u, we are able to estimate u unambiguously at each sub-carrier i, as

dictated in the following theorem.
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Theorem 3.2. Provided ej(N̂u−Nu) → 1, u can be estimated unambiguously at each

individual sub-carrier i (0 ≤ i ≤ I−1) by using the new phase shifts (3.8) in localized

hybrid arrays.

Proof. Let n = n′ + qK (0 ≤ n′ ≤ K − 1, 0 ≤ q ≤ Q − 1). Then (3.10) can be

written as

Pm(ρi, u) =
K−1∑
n′=0

Q−1∑
q=0

ej(n
′+qK)ρiue−j2π

mP+t
L

(n′+qK)

=
K−1∑
n′=0

gn′(ρi, u)e−j
2πn′m
K ,m = 0, 1, · · · , K − 1, (3.26)

where

gn′(ρi, u) = ejn
′(ρiu− 2πt

L
)ej(N−K)(

ρiu

2
−πt
L

) sin(ρiNu
2
− Nπt

L
)

sin(ρiKu
2
− Kπt

L
)
, n′ = 0, 1, · · · , K − 1,

(3.27)

provides the Fourier coefficients of Pm(ρi, u).

In light of this, we can multiply e−jmρiN̂u to both sides of (3.2), i.e.,

S̃m(fi) =Sm(fi)e
−jρimN̂u (3.28)

=S̃(fi)Pm(ρi, u)ejmρi(Nu−N̂u) + Zm(fi)e
−jmρiN̂u,

Assume that ej(N̂u−Nu) → 1 we can take the IDFT of Sm(fi)e
−jρimN̂u, m = 0, 1, · · · , K−

1, and obtain an′(ρi, u) = S̃(fi)gn′(ρi, u) + ξn′(fi), where

ξn′(fi) = IDFT{Zm(fi)e
−jmρiN̂u}, n′ = 0, 1, · · · , K − 1 (3.29)

A cross-correlation, denoted by rn′(ρi, u), can be taken between any two consec-
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utive IDFT points, i.e., an′(ρi, u) and an′+1(ρi, u), as given by

rn′(ρi, u) =a∗n′(ρi, u)an′+1(ρi, u)

=ej(ρiu−
2πt
L

) |C(ρi, u)|2 |S̃(fi)|2 + ξ̃n′(fi), n
′ = 0, 1, · · · , K − 2, (3.30)

where

ξ̃n′(fi) =S̃(fi)C(ρi, u)ej(n
′+1)(ρiu− 2πt

L
)ξ∗n′(fi) + S̃∗(fi)C(ρi, u)∗e−jn

′(ρiu− 2πt
L

)ξn′+1(fi)

+ ξ∗n′(fi)ξn′+1(fi), (3.31)

and

C(ρi, u) = ej(N−K)(
ρiu

2
−πt
L

) sin(ρiNu
2
− Nπt

L
)

sin(ρiKu
2
− Kπt

L
)
. (3.32)

Given ρi = fl+fi
fh
≤ 1 when fi ≤ B, an unambiguous estimate of ρiu and thus u,

i.e., ρiûi and ûi, can be obtained by evaluating the phase of rn′(ρi, u) at sub-carrier

i. This concludes the proof.

Following Theorem 3.2, u can be estimated independently at each individual

sub-carrier. Considering the periodicity of the phase shifts in (3.8) across K con-

secutive analog subarrays outputs, there are a total of bM/Kc non-overlapping

groups of K consecutive subarrays, including the last group cyclically concatenat-

ing the last (M − bM/KcK) subarrays and the last (K −M + bM/KcK) subar-

rays of the first group. Coherently accumulating (3.30) over n′ = 0, 1, · · · , K − 2,

l = 0, 1, · · · , dM/Ke and t = 0, 1, · · · , P −1, (i.e., antennas, subarrays and symbols)

can enhance the robustness of the AoA estimation to the receive noise, hence im-

proving the estimation accuracy, where l indicates the l-th group of K consecutive

subarrays.

In the extremely high frequency, LoS-dominating multibeam satellite applica-

tions with fh � B, we can further conduct coherent accumulations across sub-

carriers to increase the estimation robustness and accuracy, as stated in the following
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Algorithm 4 The Proposed AoA estimation Approach

1: Initialize: Given N̂u obtained from Algorithm 3.
2: for all i ∈ [0, I − 1],m = [0,M − 1], t ∈ [0, P − 1] do

3: S̃m(fi)← Sm(fi)e
−jmρiN̂u

4: end for
5: for t← 0, 1, · · · , P − 1 do
6: for i← 0, 1, · · · , I − 1 do
7: for all m ∈ [0,M − 1] do

8: S̃m(fi)← Sm(fi)e
−jmρiN̂u;

9: end for
10: for l ← 0, 1, · · · , bM/Kc − 1 do
11: m← lK;
12: Sl(fi)← {S̃m(fi), · · · , S̃m+K−1(fi)};
13: al(ρi, u)← IDFT{Sl(fi)};
14: for n′ = 0, 1, · · · , K − 1 do
15: rln′(ρi, u)← al∗n′(ρi, u)aln′+1(ρi, u)
16: end for
17: end for
18: SbM/Kc(fi)← {SbM/KcK(fi), · · · , SM−1(fi),
19: SM−bM/KcK(fi), · · ·SK−1(fi)};
20: abM/Kc(ρi, u)← IDFT

{
SbM/Kc(fi)

}
;

21: for n′ = 0, 1, · · · , K − 1 do
22: r

bM/Kc
n′ (ρi, u)← a

bM/Kc∗
n′ a

bM/Kc
n′+1 ; see (3.30)

23: end for
24: end for
25: end for

26: r̃i ←
P−1∑
t=0

ej
2πt
L

[
bM/Kc∑
l=0

K−2∑
n′=0

rln′(ρi, u)

]
;

27: r̃ ←
∑i2

i=i1
r̃i

28: return û← fh

fl+
B(i2+i1)

2I

arg{r̃} and ûi ← 1
ρi

arg {r̃i}

proposition.

Proposition 3.1. In a strong LoS environment with |S̃(fi)|2 identical for consecu-

tive sub-carriers i = i1, i1 + 1, · · · , i2, (i2 ≥ i1), u can be estimated from
∑i2

i=i1
r̃i,

where r̃i is given in Algorithm 4 Line 26.
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Proof. Substituting (3.30) into r̃i, we have

r̃i =
P−1∑
t=0

bM/Kc∑
l=0

K−2∑
n′=0

ejρiu |C(ρi, u)|2 |S̃(fi)|2 + ξ̃(fi)

= dM/Ke(K − 1)|S̃(fi)|2ejρiu
PN

K
+ ξ̃(fi), (3.33)

where ξ̃(fi) =
P−1∑
t=0

ej
2πt
L

[
bM/Kc∑
l=0

K−2∑
n′=0

ξ̃n′(fi)

]
and ξ̃n′(fi) is given in (3.31). The second

equality in (3.33) is based on Lemma 7.3, as provided in Appendix 7.2.5.

On the condition that S̃(fi) remains unchanged for sub-carriers i ∈ [i1, i2], we

can accumulate r̃i over sub-carrier i by directly adding up r̃i in (3.33), as given by

r̃ =
PN

K
dM/Ke(K − 1)|S̃(fi)|2

i2∑
i=i1

ejρiu +

i2∑
i=i1

ξ̃(fi); (3.34)

i2∑
i=i1

ejρiu = e
j
fl
fh
u

i2∑
i=i1

e
j Bu
Ifh

i
= e

j
fl
fh
u

(
1− ej

Bu
Ifh

(i2−i1+1)

1− ej
Bu
Ifh

)

= e
j
fl+

B(i2+i1)
2I

fh
u

sin
[
Bu

2Ifh
(i2 − i1 + 1)

]
sin
(

Bu
2Ifh

) , (3.35)

where
sin
[
Bu

2Ifh
(i2−i1+1)

]
sin
(
Bu

2Ifh

) > 0, since u ∈ [−π, π], 0 ≤ i2 − i1 ≤ I − 1, B
Ifh

< B
Ifh

(i2 −

i1 + 1) ≤ B
fh
� 1 and thus the numerator and denominator of (3.35) always take the

same sign.

Evaluating the phase of r̃, we can achieve the estimate of u, denoted by û, as

given by

û =
fh

fl + B(i2+i1)
2I

arg{r̃}, (3.36)

which is unambiguous and therefore concludes this proof.

Remark 3.1. In the numerator of (3.35), Bu
2Ifh

(i2 − i1 + 1) ≤ Bπ
2fh

, since i2 ≤ I − 1,

i1 ≥ 0 and |u| ≤ π. In a wideband multibeam satellite communication system, B
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can typically be 0.1fh, in which case, Bu
2Ifh

(i2 − i1 + 1) ≤ 0.05π. Since sin x ≈ x

for 0 ≤ x ≤ 0.05π with an error less than 6.45 × 10−4, we have
sin
[
Bu

2Ifh
(i2−i1+1)

]
sin
(
Bu

2Ifh

) ≈

(i2− i1 +1). In other words, the coherent accumulation across sub-carriers can bring

a gain of about (i2 − i1 + 1).

3.6 Analysis and Discussion

3.6.1 Accuracy of the Proposed AoA Estimation

To analyze the accuracy, we first calculate the estimation SNRs for evaluating

arg{r̃i} and arg{r̃}; refer to Algorithm 4, Lines 26 and 27, and then derive the

MSELBs of ûi and û.

From rn′(ρi, u) in (3.30), the noise power can be given by

|ηi
ξ̃
|2 = 2|S̃(fi)|2|C(ρi, u)|2|ηξ|2,

where |ηξ|2 is the noise power of ξn′(fi) in (3.29). |ηξ|2 =
Iσ2

0

K
, since ξn′(fi) =

IDFT{Zm(fi)e
−jρiN̂u} and Zm(fi) ∼ CN (0, Iσ2

0) (m = 0, 1, · · · , K − 1). The signal

power of rn′(ρi, u) can be given by η2
s = |C(ρi, u)|4|S̃(fi)|4. Therefore, the estimation

SNR of rn′(ρi, u) develops as

γs̃,u =
η2
s

|ηi
ξ̃
|2

=
K|C(ρi, u)|2|S̃(fi)|2

2Iσ2
0

(3.37)

By taking the expectation of γs̃,u over S̃(fi) and u, we can obtain the unconditional

SNR, as given by

γi = E{γs̃,u} =
K

2
Es

{
|S̃(fi)|2

Iσ2
0

}
Eu
{
|C(ρi, u)|2

}
=
I

2
γe (3.38)

where Es
{
|S̃(fi)|2
Iσ2

0

}
= I

N
γe provided the signal powers are constant across sub-

carriers; and Eu {|C(ρi, u)|2} = N
K

with u uniformly distributed in [−π, π]; see Ap-

pendix 7.2.6. By coherently accumulating over antennas, subarrays and symbols,
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the estimation SNR at the i-th sub-carrier can be finally given by

γuΣi ≤
P dM/Ke(K − 1)I

2
γe, (3.39)

where i = 0, 1, · · · , I − 1 and the equality can be taken if M
K

= dM
K
e.

As discussed in Remark 3.1, the gain of constructively combining r̃i to achieve r̃

is (i2 − i1 + 1). Let γΣ denote the estimation SNR of û. Then we get

γuΣ <
P dM/Ke(K − 1)I(i2 − i1 + 1)

2
γe. (3.40)

With reference to the proof of Corollary 3.1, the MSELB of ûi and û is finally

established as

MSELB(ûi) =
1

ρ2
i

· 1

2γuΣi
; (3.41a)

MSELB(û) =

(
fh

fl + B(i2+i1)
2I

)2

· 1

2γuΣ
. (3.41b)

3.6.2 Extension to the State-of-the-art [1]

In the state-of-the-art approach [1], u was estimated directly from the second

cross-correlation across sub-carriers, i.e., R̃m(fi) in (3.6). We can adopt that ap-

proach to estimate the AoA from R̃ in (3.17) after the signs of the cross-correlations

between subarrays are calibrated, as given by

û1 =
arg{R̃}
Nδρi

=
N̂u

N
, (3.42)

where the second equality is obtained based on (3.18).

Given the MSELB(N̂u) in (3.25), we have that

MSELB(û1) =
1

N2
MSELB(N̂u) =

1

(Nδρi)
2
· 1

2γNuΣi

, (3.43)

where γNuΣi is given in (3.24). It is noteworthy that Corollary 3.1 also holds for û1,
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i.e., 4i = 2I
3

is optimal for estimating û1.

We note that û1 can be seen as an enhanced version of the state-of-the-art

[1], since (i) different subarray-specific phase shifts are used to enable the cross-

correlations between subarrays to exhibit deterministic property; (ii) the signs of

the cross-correlations are fine enough calibrated to enhance robustness to noises,

and (iii) the optimal sub-carrier offset 4i is applied to balance error scaling and

accumulation gain.

3.6.3 Computational Complexity

The proposed scheme is a cross-correlation based approach like the one devel-

oped in [1], and only incurs scalar multiplications and additions to compute cross-

correlations and coherent accumulations. There is neither a matrix inversion, nor

a singular value or eigenvalue decomposition. As pointed out in [1], the cross-

correlation based algorithm developed in [1] has a significantly lower computational

complexity than conventional subspace-based methods, such as MUSIC or ESPRIT

[88], and maximum likelihood estimators, both of which would require matrix inver-

sions or decompositions. The proposed approach incurs even far lower complexity

than the algorithm developed in [1]. As will be shown in Figs. 3.3 and 3.4, the

proposed approach can achieve much better estimation performance with only 3

symbols than the algorithm developed in [1] with 10 symbols.

3.7 Numerical and Simulation Results

In this section, simulations are carried out to validate the proposed approach

and analysis. We also simulate the state of the art, referred to as double cross-

correlation (DCC) [1]. Without loss of generality, uniform linear localized hybrid

arrays are considered. The array configurations and other simulation parameters

are provided in Table 3.1; unless otherwise specified. The parameters are set up

to achieve fair comparisons with DCC. According to [1, Sec. V], DCC is about to

converge after 10 iterations, or in other words 10 training symbols, for a localized

hybrid arrays with 32 antennas. Therefore, we compare our approach with DCC
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after 10 iterations.

Table 3.1 : Configurations of the wideband localized
hybrid array and other parameters

Par. Val. Par. Val. Par. Val.
M,N 4, 8 K 4 Ntrial

† 4× 104

I 256 P 3 AoA U[−π,π]
‡

fc 70 GHz B 0.1fc λ c
fc+B/2

4i 85 fs B SNR†† −30 : 10 : 40 dB
† Ntrials is the number of independent trials for each SNR.

The curves in all figures are the average of 4× 104 indepen-
dent trials.
‡ U[−π2 ,

π
2 ] represents the uniform distribution. Provided d =

λ
2 , [−π2 ,

π
2 ] corresponds to −30◦ ≤ θ ≤ 30◦ of boresight.

†† The SNR is antenna-wise, i.e. γe in (3.24), (3.39) and
(3.40).

Fig. 3.1 validates the accuracy of the SNR upper bounds (3.24), (3.39) and (3.40)

by comparing with the simulation results of unconditional SNRs, where different

number of sub-carriers are accumulated in the two sub-figures. We see that the SNR

upper bounds for γuΣi and γuΣ are tight, especially in the case that M is a multiple

of K, as plotted in Fig. 3.1. γNuΣ has a relatively loose upper bound due to the

inequalities in (3.22). We also see that the SNR of û is improved by 3(= 10 log10 2)

dB and 24(= 10 log10 255) dB, compared with ûi in both sub-figures. In other words,

accumulating across sub-carriers can be approximated to be coherent with negligible

errors.

Fig. 3.2a compares the MSELB of û1, ûi and û with the increase of 4i (i2 − i1
for û), where the receive SNR per antenna is set to 0 dB. We see that the MSELB

of û1 first decreases and then increases with 4i. This is due to the decreasing

unconditional SNR (3.24), and linear scaling coefficient (3.43), as the growth of 4i.

ûi stays unchanged, since it is the estimate per sub-carrier. We also see that û

decreases monotonically with (i2 − i1), as expected. Consider the consistent SNR

gap of 11.1 dB for û1 in Fig. 3.1. We can compensate for the SNR gap by lifting up

the analytical result of SNR by 11.1 dB for the estimation of û1. The accuracy of

û1, despite the gain across sub-carriers, can still be worse than the per-sub-carrier

estimate ûi, due to the adverse effect of the cross-correlation across sub-carriers on
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Figure 3.1 : Simulated and analytical estimation SNRs versus the receive SNR at
antenna element, where (a) for γNuΣ , 4i = 255, which means no accumulation across
sub-carriers, and for γuΣ, i2 − i1 = 1; (b) 4i and i2 − i1 are changed to 1 and 255,
respectively.

the accuracy. Fig. 3.2b plots the MSELB of û1 as 4i increases, where different

values are tested for I. We show that the optimal estimation accuracy is always

achieved at 2I
3

, validating Corollary 3.1.

Fig. 3.3 plots the MSEs of the proposed estimation ûi, û and û1, and the state-

of-the-art, DCC, as γe increases. We show that the proposed approach is able to

dramatically and increasingly outperform the state of the art, even with a much

smaller number of training symbols. The proposed approach can reduce the MSE

by orders of magnitude. Particularly, ûi and û can have a much better estimation

accuracy than DCC in the extremely low SNR region. The MSE of DCC is as high

as 12.63 at −30 dB receive SNR; while for ûi and û, the MSEs are 2.094 and 0.0064,

respectively. This is due to our discovery of the deterministic signs of Gm(ρi, u) and

our exploitation of the discovery, which lead to effective coherent accumulation of

weak signals across antennas, subarrays, sub-carriers and also symbols.
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Figure 3.2 : (a) MSELB of ûi, û and û1 versus i2 − i1 or 4i, where the receive
SNR at antenna is γe = 0 dB unless otherwise specified and the MSELBs of û1 with
modified SNR are obtained by subtracting the constant gap of 11.1 dB between
simulated and analytical estimation SNRs obtained from Fig. 3.1; (b): MSELB of
û1 versus 4i, where the number of sub-carriers, I, ranges from 30 to 240 stepped
by 30.
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Figure 3.3 : MSE of the state-of-the-art DCC [1], ûi, û and û1 versus the receive
SNR at antenna, where the MSE of ûi of all sub-carriers given.

We also see from Fig. 3.3 that the proposed û1 has better but close performance

compared with the convergent result of DCC. This is because both û1 and DCC are
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Figure 3.4 : MSE of the state-of-the-art DCC [1], ûi, û and û1 versus I.

obtained from the second cross-correlation over sub-carriers, and thus suffer from the

low SNR than the proposed ûi and û; c.f. (3.23) and (3.38). Moreover, both û1 and

DCC suffer from the amplification of estimation error pertaining to the linear scaling

coefficient 1
Nδρi

; see (3.6) and (3.42). Nevertheless, û1 provides better accuracy than

DCC, due to the optimal frequency interval for cross-correlations across sub-carriers.

It is worth noting that the MSE of û1 is obtained with only 3 symbols, while for

DCC, 10 symbols are required.

Fig. 3.4 compares the MSE of AoA estimation between the proposed approaches

and DCC [1], as the number of sub-carriers, I, increases. The superiority of the

proposed approach is demonstrated in both MSE and the small number of training

symbols. The proposed approach can reduce the MSE by orders of magnitude,

especially for û. In the case of (extremely) low SNRs and small numbers (even

single) of sub-carriers, ûi and û can be far more accurate than û1. We also see

that û1 is persistently better than DCC under different configurations, which again
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Figure 3.5 : (a) MSE of N̂u versus the receive SNR at antenna element, γe; (b)
MSE of û versus γe, where û1, û2 and û3 stands for û obtained with i2 − i1 = 1, 2I

3

and I − 1, respectively, and the three Nu estimations are used in Algorithm 4 Line

8 to obtained the three u estimations; (c) the best Nu estimation N̂u
2
is used for

generating the three u estimations.

highlights the importance of holistic selection of �i.

Fig. 3.5a plots MSE of N̂u with the growth of γe, where �i = 1, 2I
3
and I−1 are

taken to illustrate the effect of �i on Nu estimation. We confirm that �i =
2I
3
gives

the best Nu estimation, as dictated in Corollary 3.1. We also see the selection �i =

2I
3
allows for asymptotically approaching the MSELB (3.25), where the constant gap

of 11.1 dB between analytical and simulated estimation SNR, observed from Fig.

3.1, has been compensated.

Fig. 3.5b plots the MSE of û, obtained by using the proposed Algorithm 4 upon

the three different approaches for Nu estimation in Fig. 3.5a, and different number
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of sub-carriers are combined. We see that the estimation accuracy of Nu can have a

strong impact on u estimation. Fig. 3.5c correspondingly plots the MSE of û upon

the best estimation N̂u
2

is used, and the three different numbers of sub-carriers

are accumulated. As expected, we can see that û can be increasingly accurate, as

the number of accumulated sub-carriers increases. This indicates the importance of

accurate estimation of Nu and holistic selection of 4i on the estimation accuracy

of u. Note that the irregular turning point observed in Figs. 3.3 and 3.5 at -10 dB

is mainly caused by the different estimation errors of N̂u before and after −10 dB.

3.8 Conclusion

In this chapter, we propose new subarray-specific time-varying phase shifts,

which enable the cross-correlations of receive signal between subarrays to have de-

terministic phase changes, and hence be coherently accumulated to deliver unam-

biguous and noise-tolerant estimation of Nu and u. We also optimize the frequency

interval for coherent accumulation across sub-carriers, minimizing the estimation

error of Nu and leveraging the accumulation gain. Evident from simulations, our

approach is able to dramatically improve the estimation accuracy by orders of magni-

tudes, with significantly reduced requirements of complexities and training symbols,

as well as enhanced robustness against noises.
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Chapter 4

Efficient Angle-of-Arrival Estimation of Lens

Antenna Arrays

AoA estimation are critical to the efficiency of WIPT. The AoA estimation is chal-

lenging for energy-efficient LAAs, due to discrete sets of fixed DFT beams. This

chapter presents a novel fast and accurate approach for the AoA estimation of

LAAs. The key idea is that we prove the two differential outputs of three adjacent

lens beams, referred to as “DFT beam differences (DBDs)”, are the strongest at the

two sides of an AoA. They are easy to identify and robust to noises, and their powers

are proved to provide an accurate estimate of the AoA. Another important aspect

is a new beam synthesis technique which produces different beam widths based on

DFT beams and practical 1-bit phase shifts in real time. As a result, the angular

region containing the AoA can exponentially narrow down, and the two strongest

DBDs can be quickly identified. The proposed approach can operate in coupling

with successive interference cancellation to estimate the AoAs of multiple paths.

Simulations show that the proposed approach is able to outperform the state of the

art by orders of magnitude in term of accuracy. The power transfer efficiency can

be dramatically improved.

4.1 Introduction

In this chapter, we propose a novel efficient and accurate approach for the AoA

estimation of LAAs for WIPT. The key idea is that we propose to use the difference of

the outputs between adjacent lens DFT beams, referred to as “DFT beam difference

(DBD)”. We prove that the two DBDs around an AoA to be estimated have the

stronger outputs than other DBDs and any DFT beams. Therefore, they are more

robust against noises, and more likely to be correctly identified. We also prove that
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the AoA can be accurately estimated based on the signal strengths of the two DBDs,

independent of the signal itself. This is particularly valuable to WIPT, suppressing

the need for training signals and saving energy consumptions of wirelessly powered

devices.

Another important aspect is that we develop a new beam synthesis technique

to produce beams with configurable widths based on DFT beams and practical 1-

bit phase shifts in the analog domain. As a result, the angular region with the

occurrence of a path can be recursively narrowed down to within K contiguous

DFT beams by using only (logNK +1) symbols (as compared to N
K

symbols by the

state-of-the-art auxiliary beam pair (ABP) [5]). K is the number of RF chains.

(K + 1) DBDs can be generated, the two strongest of which can be identified for

the accurate estimation of the AoA.

Other contributions of this chapter also include the AoA estimation of multi-

ple paths by conducting the proposed approach in coupling with SIC, where both

cases of concurrent WPT and WIT, and SWIPT are considered. Corroborated by

extensive simulations and analyses, the proposed approach is able to outperform

the state-of-the-art ABP by orders of magnitude in terms of estimation accuracy,

especially in low SNR regions. With the exploitation of DBDs, the time-average

beamforming gain and hence the power transfer efficiency of a LAA based on the

proposed approach are able to dramatically surpass those of a DAA based on ABP.

The rest of this chapter is organized as follows. In Section 4.2, the system model

is presented. In Section 4.3, the accurate AoA estimation algorithm is developed

based on DBDs, and the estimation accuracy is analyzed. In Section 4.4, the pro-

posed beam synthesis method is proposed, based on which the fast search of the two

strongest DBDs is developed. In Section 4.5, the proposed approach is conducted

in coupling with SIC to estimate multiple AoAs in both cases of concurrent WPT

and WIT, and SWIPT. The superiority of the proposed approach is demonstrated

through simulations in Section 4.6, followed by conclusions in Section 4.7.
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4.1Figure : Schematic diagram of the LAA receiver for concurrent WPT and WIT,
or SWIPT.

4.2 System Model

Fig. 4.1 illustrates an N -dimensional LAA receiver, where the LAA can generate

N DFT beams (this is equivalent to the N × N DFT beamforming) [40–42]. The

N antennas are on the focal surface of the lens. Each antenna corresponds to

a DFT beam and outputs the received signals from the beam. We employ the

beam selecting network developed in [43] for beam selection, also known as antenna

selection in [41, 42]. The output signal of a DFT beam is evenly split between K

number of 1-bit phase shifters (c.f., “on/off” switches [39–42]). We further assume

that the phase shifters can be turned off, as can be readily implemented in practice

[43]. As a result, each phase shifter can take three different states, “+1(= ej
2π×0

2 )”,

“−1(= ej
2π×1

2 )”, or “0 (turned off)”. The outputs of N phase shifters connecting

the N antennas can be combined and fed to an RF chain for information detection

and/or energy harvesting.

As extensively assumed in the literature [31], a narrowband multi-path environ-

ment is considered. The N -dimensional received signal at the antennas is given by
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[35]

x =
P−1∑
p=0

βpa(up)sp + ne, (4.1)

where up is the AoA of the p-th path of the energy signal in the spatial frequency

domain, and up = 2πd sin θp
λ

= π sin θp; θp is the AoA in the physical angle domain; λ

is the wavelength; and d is the antenna spacing, typically d = λ
2

[39]. a(up) ∈ CN×1

is the steering vector of the LAA for the p-th path. βp is the path loss labeled in the

descending order of amplitude gain, i.e., |β0| ≥ |β1| ≥ · · · ≥ |βP−1|. This labeling is

consistent with SIC, where the paths are detected and canceled one after another,

from the strong to the weak. sp is the signal of the p-th path. P is the total number

of paths. ne ∈ CN×1 is the external additive white Gaussian noise (AWGN). The

steering vector a(up) (p = 0, 1, · · · , P − 1) can be given by

a(up) =
[
1, e−jup , · · · , e−j(N−1)up

]T
, j =

√
−1. (4.2)

• In the case of concurrent WPT and WIT, the transmitter of the energy and the

transmitter of information are separate. The strong paths p = 0, 1, · · · , Pi − 1 <

P−1 carry energy; and the rest of the paths, p = Pi, · · · , P−1, carry information.

• In the case of SWIPT, a single transmitter sends modulated energy signals, s0 =

s1 = · · · = sP−1.

We consider single-tone sinewave energy signals which have been widely used

for WPT applications [1], [2], [19], [30], [31], due to the fact that the signal has an

constant envelope and can therefore maximize the efficiency of power amplifiers at

the transmitters [19]. The algorithms developed for singletone sinewave signals in

this chapter can be extended to multitone signals (e.g., OFDM signals) by referring

to our recent work [25], where the estimation results at each of the tones can be

constructively combined to further improve the estimation accuracy.

Let U ∈ CN×N denote the normalized N × N DFT matrix, i.e., U(a, b) =

1
N
e−j

2πab
N (0 ≤ a, b ≤ N − 1). The received signals of the N DFT beams, denoted
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by x̃ ∈ CN×1, can be written as

x̃ =
P−1∑
p=0

βpU
Ha(up)sp + UHne, (4.3)

where (·)H stands for conjugate transpose.

Let W ∈ RN×K denote the matrix of the total N×K states of all the 1-bit phase

shifters. The k-th column of W, denoted by W:,k ∈ RN×1 (k = 0, 1, · · · , K − 1),

collects the states of the N phase shifters connected to the k-th RF chain; and

Wn,: ∈ R1×K collects the states of the K number of 1-bit phase shifters connecting

the n-th antenna and the K RF chains. Note that the received signal of antenna

n is split evenly into ‖Wn,:‖0 parts if ‖Wn,:‖0 out of K phase shifters connected to

the n-th antenna are turned on simultaneously. ‖ · ‖0 gives the sparsity of a vector.

The output of the k-th RF chain is given in (4.4),

y(k) =WH
:,k

(
b� x̃ + np

k

)
+ nd(k)

=
P−1∑
p=0

βpW
H
:,k

(
b�UHa(up)

)
sp + WH

:,k

(
b�UHne + np

k

)
︸ ︷︷ ︸

na(k)

+nd(k), (4.4)

where y ∈ CK×1 collects the outputs of the K RF chains, y(k) is the k-th element

of y, np
k ∈ CN×1 collects the noises of the N 1-bit phase shifters connected to the

k-th RF chain, and nd(k) is the noise at the k-th RF chain. � stands for Hadamard

product. The n-th element of b is b(n) = 1
‖Wn,:‖0 ≤ 1. b ∈ RN×1 is multiplied due

to the splitting of the received signal of the antenna n.

We assume that ne, np
k (k = 0, 1, · · · , K − 1) and nd are independent and iden-

tically distributed (i.i.d). σ2
e , σ2

p and σ2
d are their respective variances. We have the

following findings:

1. As the system frequency increases, nd increasingly outgrows ne, i.e., σ2
e � σ2

d

[103, 104]. For example, the noise figure of nd is 12 dB at 10 GHz; while the

noise figure of ne is typically −8 dB and −15 dB in urban and suburban areas,



83

respectively [104, Fig. 3.1];

2. The power of np
k (k = 0, 1, · · · , K − 1) can be far smaller than that of nd, i.e.,

σ2
p � σ2

d, since the noises incurred at the 1-bit phase shifters can be much weaker

than those from the electronic components in the RF chains [43, 103].

Accordingly, the power of na(k) + nd(k) is no greater than (1 + r‖W:,k‖0)σ2
d (k =

0, 1, · · · , K − 1), since b(n) ≤ 1 (n = 0, 1, · · · , N − 1), where

r =
σ2

e + σ2
p

σ2
d

� 1. (4.5)

From (4.4), we notice that there can be mutual interferences between energy

and information signals in the case of concurrent WPT and WIT. The energy sig-

nal received from the sidelobes, particularly the first several sidelobes, can cause

destructive interference to the weak information signal received from the mainlobe.

This is due to the large power difference between the energy and information sig-

nals, e.g., around typically 90 dB [34]. On the other hand, the mainlobe-to-sidelobe

power ratio is −13.26 dB, −17.83 dB, and −20.82 dB for the first three sidelobes

[95]. For these reasons, the accurate AoA estimation of the strong WPT paths is

critical to the AoA estimations of both the weak WPT paths and weaker WIT paths.

In the case of SWIPT, the accurate AoA estimation of the paths is important to

accumulate energy of the paths and improve power transfer efficiency.

4.3 Fine-resolution AoA Estimation

In this section, we propose the new AoA estimation method with the focus on

the strongest path. For illustration convenience, our elaboration of the proposed

method is focused on one path (without loss of generality, the strongest path). The

AoA estimations of other paths will be discussed in Section 4.5, separately, for the

case of concurrent WPT and WIT, and the case of SWIPT. The estimation of the

path is elemental to the estimations of multiple paths.
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4.3.1 DBD

Distinctively different from existing studies of high-resolution AoA estimation

where the DFT beams are focused on [5, 7, 73], we propose to estimate the AoA of

a path by exploiting the difference of the received signals of adjacent DFT beams

– DBD. DBDs can be readily obtained based on the DFT beams. Specifically, by

setting the N 1-bit phase shifters connected to the k-th RF chain as

W:,k =

[
0, · · · , 0, 1︸︷︷︸

n-th

,−1, 0, · · · , 0

]T

, (4.6)

the n-th DBD can be obtained for n = 0, 1, · · · , N − 2. For n = N − 1, we have

W:,k =

 −1︸︷︷︸
0th

, 0, · · · , 0, 1

T

, based on the cyclicity of the DFT matrix.

Let g(n, u) denote the spatial response of the n-th DFT beam at the AoA of

interest u. Based on (4.2), we have

g(n, u) = UH
:,na(u) =

1

N

N−1∑
n′=0

e−jn
′(u− 2πn

N )

= e−j
N−1

2 (u− 2πn
N ) sin N

2

(
u− 2πn

N

)
N sin 1

2

(
u− 2πn

N

) , u ∈ [0, 2π), (4.7)

where U:,n is the n-th column of the normalized DFT matrix. Accordingly, the

spatial response of the n-th DBD at u, denoted by gd(n, u), can be written as

gd(n, u) = g(n, u)− g(n+ 1, u)

= − 1

N
e−j

N
2 (u− 2πn

N ) sin N
2

(
u− 2πn

N

)
sin π

N

sin 1
2

(
u− 2πn

N

)
sin 1

2

(
u− 2π(n+1)

N

) . (4.8)

Fig. 4.2 illustrates the synthesis of a DBD from two consecutive DFT beams,

where both the amplitude and phase responses of the two DFT beams are plotted.

It is shown that the DFT beams have the same amplitudes at the intersection of

their mainlobes, but opposite phases. By synthesizing the DFT beams differentially,

the DBD aligns the phases of the DFT beams at the intersection point and enhances
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Figure 4.2 : Illustration of two adjacent DFT beams including their amplitude and
phase responses.

the amplitude response. Another useful feature of DBDs follows.

Lemma 4.1. For a path with u ∈ Ωn (n = 0, 1 · · · , N − 1), the n-th and (n+ 1)N -

th DBDs have the larger amplitude gains than the rest of the other DBDs, where

Ωn =
[
2πn
N

+ π
N
, 2π(n+1)N

N
+ π

N

)
and (·)N denotes the modulo-N operation.∗

Proof. See Appendix 7.3.1.

From Lemma 4.1, the n-th and (n+1)-th DBDs have the larger amplitude gains

than the rest of the DBDs for the path with u ∈ Ωn = [2πn
N

+ π
N
, 2πn

N
+ 3π

N
). The two

DBDs can be identified for AoA estimation by comparing the amplitudes among the

received signals of all the N DBDs. Given the highest amplitude gains of the two

DBDs, the received signals of the two DBDs are more tolerant to the noises, and

less likely to be missed, than those of the other DBDs. Fig. 4.3 shows that the AoA

to be estimated must be in the mainlobes of two consecutive DBDs, as asserted in

Lemma 4.1. Provided the receiver noises are negligible, the received signals of the

two DBDs can be used to deterministically estimate the AoA, as to be established

in Theorem 4.1.

In [5], the two DFT beams with the strongest outputs, i.e., the n-th and (n+1)-

th DFT beams, were used for the AoA estimation of u ∈ Ωn. By exploiting DBDs,

∗The modulo-N is used in (8) to capture the case where n = N − 1 and the (N − 1)-th and
(N − 1 + 1)N th (i.e., 0th) DBDs form the pair of consecutive DBDs to estimate the AoAs in the

region of
[
2π(N−1)

N + π
N , 2π

)
∪
[
0, π

N

)
. In the following, for notational simplicity, we suppress the

modulo operation.
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Figure 4.3 : Illustration of amplitude gains of DBDs, where four consecutive DBDs
are illustrated with the AoA of u = 2.05 rad to be estimated.

the probability of correctly identifying the n-th and (n + 1)-th DBDs, denoted by

PDBD
d , is greater than the probability of correctly identifying the corresponding DFT

beams, denoted by PDFT
d ; i.e., PDBD

d ≥ PDFT
d , as proved in Appendix 7.3.5. This

improved probability can lead to a better estimation accuracy, as will be shown in

Section 4.6.

4.3.2 DBD-based AoA Estimation

We proceed to prove that for any u ∈ Ωn, by exploiting the received signals of

the n-th and (n+ 1)-th DBDs (n = 0, 1, · · · , N − 1), the AoA, u, can be estimated.

By first substituting (4.6) into (4.4), and then combining with (4.8), the received

signal of the n-th DBD to the k-th RF chain can be written as†

yn(k) = −βs

N
e−jN

2
ũ sin N

2
ũ sin π

N

sin 1
2
ũ sin 1

2
(ũ− 2π

N
)
+ n(k), (4.9)

where ũ = u − 2πn
N

and n(k) = na(k) + nd(k); see (4.4). The received signal of

the (n + 1)-th DBD to the l-th RF chain is yn+1(l). k �= l, and 0 ≤ k, l ≤ N − 1.

Given u ∈ Ωn, we have ũ = u − 2πn
N

∈
[
π
N
, 3π
N

)
. ũ, and in turn u = ũ + 2πn

N
, can be

estimated.

In the following, we first establish the proposed AoA estimator in the absence of

noises, as given in Theorem 4.1; and then evaluate the impact of non-negligible noises

†For notational simplicity, we suppress the subscript for β and s, since the strongest path is
estimated at first.
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on the estimation accuracy, as provided in Corollary 4.1. Such research approach

has been taken by the state-of-the-art ABP [5], as well as the latest AoA estimators

for hybrid antenna arrays [7, 73].

Theorem 4.1. In the absence of noises (i.e., n(k) = 0), for π
N
≤ ũ = u− 2πn

N
≤ 3π

N
,

ũ can be evaluated from the ratio ρ = ρ(ũ, n) = |yn(k)|2−|yn+1(l)|2
|yn(k)|2+|yn+1(l)|2 :

ˆ̃u =
2π

N
− arcsin

ρ sin 2π
N

(
sign{ρ}

√
1− ρ2 cos 2π

N
− 1
)

sin2 2π
N

+ ρ2 cos2 2π
N

 , (4.10)

where sign{·} takes sign. The AoA estimate, denoted by û, can be given by û =

2πn
N

+ ˆ̃u.

Proof. See Appendix 7.3.2.

The impact of non-negligible noises on the estimation error is then analyzed in

Corollary 4.1:

Corollary 4.1. The mean square errors (MSEs) of ˆ̃u and û, denoted by σ2
ˆ̃u

and σ2
û,

respectively, are σ2
û = σ2

ˆ̃u
= E{û2} ≈ ε

2γu
, where ε = 1+ρ2(ũ,n)

η2 , η = dρ(ũ,n)
dũ

∣∣∣
ũ= 2π

N

, and

γu = σ2
s

σ2
n

is the estimation SNR.

Proof. See Appendix 7.3.3.

4.4 Fast Search of Two Strongest DBDs

As described in Section 4.3, the AoA of a path can be accurately estimated from

the received signals of two DBDs, if the path is in the overlapped angular region

of the mainlobes of the two DBDs. As also proved, the two DBDs can be more

reliably identified than the other DBDs, as they have higher amplitude gains in the

direction of the path. In this section, we propose a fast search of the two DBDs for

AoA estimation (as opposed to enumerating all the N DBDs by using the K RF

chains and hence taking at least N
K

symbols). This starts with a new beam synthesis

technique, as proposed in the following.



88

Theorem 4.2. Given the N DFT beams, g(n, u), n = 0, 1, · · · , N−1, and the N×1

vector of the states of the N phase shifters connected to the k-th RF chain:

W:,k =

0, · · · , 0︸ ︷︷ ︸
m

, (−1)m, · · · , (−1)m+K−1︸ ︷︷ ︸
K

, 0, · · · , 0︸ ︷︷ ︸
N−K−m

H

, (4.11)

the beam synthesized by
∑N−1

n=0 g(n, u)Wn,k approximates the following beam

P (u) =

 ej
N
2
u, 2πm

N
≤ u ≤ 2π(m+K−1)

N
;

0, otherwise,
(4.12)

where m is an integer satisfying 1 ≤ m ≤ N −K, and Wn,k is the state of the n-th

phase shifter connected with the k-th RF chain; see Fig. 4.1.

Proof. See Appendix 7.3.4.

By exploiting Theorem 4.2, we can recursively steer K simultaneous synthesized

beams to probe the angular region of interest (one beam per RF chain), identify the

beam with the strongest received signal, and narrow down the angular region by 1
K

times. By repeating this for up to (logNK −1) rounds (or in other words, symbols),

we are able to identify the angular region with the strongest output and the width

of K contiguous DFT beams.

In the next two symbols, we propose to use DBDs to scan the angular region

with the width of K DFT beams. For illustration convenience, we assume that the

angular region of interest spans from the n-th DFT beam through the (n+K − 1)-

th DFT beam. Consider the boundary of the angular region. The (n − 1)-th and

(n+K)-th DFT beams are also taken into account for the DBD generation.

• In the first of the two symbols, a set of (K
2

+ 1) DBDs, i.e., the (n + 2k − 1)-th

DBD, are generated as the differences between (n + 2k − 1)-th and (n + 2k)-th

DFT beams for k = 0, 1, · · · , K
2

;

• In the second of the two symbols, a set of K
2

DBDs, i.e., the (n+ 2k)-th DBD, are
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Algorithm 5 Fine-resolution AoA Estimation

1: Input K and N . Initialize: t = 0;
2: Generate K beams to cover [0, 2π) using Theorem 4.2;
3: for 1 ≤ t ≤ logNK −2 do
4: Update the angular region to be detected to the mainlobe of the beam with

the strongest output at t− 1;
5: Update K beams to cover the reduced angular region;
6: end for
7: The angular region is reduced to have the width of K DFT beams. Identify

the starting index of the DFT beam, denoted by n (0 ≤ n ≤ N − 1);
8: At t = logNK −1, the (n + 2k − 1)-th DBD, are generated as the differences

between (n+ 2k − 1)-th and (n+ 2k)-th DFT beams for k = 0, 1, · · · , K
2

;

9: At t = logNK , the (n + 2k)-th DBD, are generated as the differences between
(n+ 2k)-th and (n+ 2k + 1)-th DFT beams for k = 0, 1, · · · , K

2
− 1;

10: Let yt ∈ C(K+1)×1 collect the (K+ 1) DBD outputs. Identify the two strongest
elements in yt with the indices denoted by k and (k + 1);

11: Perform the fine-resolution AoA estimation by exploiting Theorem 4.1 based
on yt(k) and yt(k + 1). Return û.

generated as the differences between (n+ 2k)-th and (n+ 2k+ 1)-th DFT beams

for k = 0, 1, · · · , K
2
− 1.

The total (K + 1) received signals of the DBDs, i.e., the (n − 1)-th, n-th, · · · ,

(n+K − 1)-th, can be compared.

The two consecutive DBDs with the strongest received signals can be reliably

identified and used as the input of (4.10) to the AoA estimation of the path, as

discussed in Section 4.3.2. We use the two strongest DBDs, rather than the two

strongest DFT beams (as done in [5]), since the probability of correctly identify-

ing the two strongest DBDs is higher, as revealed in Section 4.3.1. Collecting the

received signals of the (K + 1) DBDs at two symbols can prevent power splitting

between the DBDs; otherwise, the n-th and (n + 1)-th DBDs are generated at the

same symbol at different RF chains, b(n + 1) = 1
2
; see (4.4), and the estimation

SNR at the symbol would reduce.

Algorithm 5 is formally established to accurately estimate the AoA of a path. It

starts with the fast search of the angular region with the width of K DFT beams

and the strongest received signal, by using the proposed beam synthesis technique
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Figure 4.4 : Illustration of the search of the DBDs for AoA estimation using the
beams synthesized by Theorem 4.2, where N = 64, K = 4 and u = 4.25 rad.

in Theorem 4.2; see Steps 2 to 6. Then the algorithm generates (K + 1) DBDs to

scan the angular region, and identifies the two adjacent DBDs with the strongest

received signals based on Lemma 1; see Steps 7 to 9. Finally, the AoA estimation

can be accurately estimated by using Theorem 1; see Steps 10 and 11.

Fig. 4.4 illustrates the search of DBDs for AoA estimation, where the amplitudes

of the synthesized beams in each iteration are plotted. N = 64, K = 4 and u = 4.25

rad. We see that in Fig. 4.4(a), four synthesized wide beams evenly cover [0, 2π].

The angular region of interest is recursively reduced by K times per iteration, as

shown in Fig. 4.4(b). After the angular region with the width of K DFT beams is

identified, DBDs are generated at two symbols and placed together, as shown in Fig.

4.4(c). We see that two adjacent DBDs can output much higher signal strengths in

the direction of u, and they are much stronger than the corresponding DFT beams.

The similarities of the proposed approach to ABP are that both approaches

identify the two consecutive beams with the strongest received signals, and estimate

the AoA based on the received signals. The AoA is estimated based on the ratio

between the difference and the sum of the powers of the received signals in both the

proposed approach and ABP.
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Table 4.1 : Comparison of the proposed approach to
existing techniques in terms of computational and sig-
naling overheads.

ABP [5] WDFT[2] Proposed

Complexity† O(N) > O (N) O
(
K(logNK +1)

)
Signaling‡ N

K logNK logNK +1
†Computational complexity.
‡Signaling overhead, i.e., no. of training symbols.

A key difference of the proposed approach to ABP is that the proposed ap-

proach synthesizes DFT beams differentially to produce beams with configurable

beamwidths and improved gains (as compared to the direct use of the DFT beams

in ABP). As a result, the proposed approach can recursively narrow down the beams

until the beams become the difference of two consecutive DFT beams (i.e., DBDs)

and cannot be further narrowed. In contrast, ABP linearly scans the entire angular

space by directly using the standard DFT beams with fixed beamwidths.

Another important difference is that the proposed approach estimates the AoA

based on the strongest received signals of the two consecutive DBDs, while ABP is

based on the strongest received signals of the two consecutive DFT beams. With

the improved gain, the two strongest consecutive DBDs are much more likely to

be correctly identified in the proposed approach than the two strongest consecutive

DFT beams in ABP. This is particularly important in low SNR regions. In the case

that both the DBDs and DFTs can be correctly identified in the proposed approach

and ABP, e.g., in high SNR regions, the improved gain of the DBDs leads to lower

estimation errors in the proposed approach.

Table 4.1 compares the proposed approach and the existing methods in terms of

complexity and signaling overhead. The computational complexity of the proposed

approach is O
(
K(logNK +1)

)
, since the approach synthesizes K beams per sym-

bol in the analog domain for (logNK −1) symbols. With configurable beamwidths,

the K beams keep narrowing down by 1
K

times per symbol around the AoA of a

path. The last two symbols are used to synthesize K DBDs out of K consecu-

tive DFT beams in the analog domain. The complexity of ABP [5] is O (N), since
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ABP scans K DFT beams per symbol for a total of N
K

symbols to assess all the

N possible pairs of consecutive DFT beams. WDFT [2] synthesizes K beams per

symbol with configurable beamwidths, and narrows the beams down by 1
K

times at

every symbol for logNK symbols. Different from the proposed approach, the beam

synthesis of WDFT is carried out in the digital domain and has a complexity of

O
(∑logNK −1

l=0
N
Kl

)
= O

(
N−1

1−K−1

)
> O(N), given the beam synthesis coefficients gen-

erated in prior. Here, N
Kl is the number of DFT beams to synthesize each of the K

beams at the l-th symbol (l = 0, 1, · · · , logNK −1). Moreover, WDFT only identifies

the DFT beam in which the path is, and does not estimate the AoA of the path.

In the case of multiple paths, say L paths, Algorithm 1 can be extended to

estimate the paths one after another by carrying out SIC, as will be described in

Section V. The total number of symbols required is no greater than L(logNK +1),

which can be still much lower than N
K

, in the case where the number of significant

paths, L, is less than N
K(logNK +1)

. The accuracy of Algorithm 1 can be much finer

than a DFT beamwidth. This is important to implement SIC and recover typically

weaker information signals in the case of concurrent WPT and WIT. It is also im-

portant to accurately estimate different paths for effective equalization and coherent

accumulation of received signals in the case of SWIPT.

4.5 Multipath AoA Estimation

In this section, we elaborate on the application of the proposed Algorithm 5 to

the estimation of multi-path AoAs, where both cases of concurrent WPT and WIT,

and SWIPT are discussed. For illustration convenience, we consider two paths. In

the case of concurrent WPT and WIT, the stronger path delivers energy signals, and

the weaker carries information. In the case of SWIPT, both paths carry modulated

energy signals. The discussions can be readily extrapolated to the scenarios with

more paths.

From (4.4), (4.8) and (4.9), the received signal of n-th DBD to the k-th RF chain
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at time t, can be given by

ytn(k) = β1stgd(n, ũ1) + β2stgd(n, ũ2) + nt(k)

= −β1st
N

e−j
N
2
ũ1

sin N
2
ũ1 sin π

N

sin 1
2
ũ1 sin 1

2
(ũ1 − 2π

N
)
−β2st

N
e−j

N
2
ũ2

sin N
2
ũ2 sin π

N

sin 1
2
ũ2 sin 1

2
(ũ2 − 2π

N
)

+ nt(k),

(4.13)

where the definitions of βi and ũi (i = 1, 2) can be referred to those of β and ũ in

(4.9), and |β1| ≥ |β2|. Clearly, the interference between the two paths can affect the

accuracy of the AoA estimation. We have the following finding.

Corollary 4.2. The signal-to-interference ratio (SIR) in the n1-th DBD for u1

estimation, denoted by γ, satisfies

γ =

∣∣β1stgd

(
n1, u1 − 2πn1

N

)∣∣2∣∣β2stgd

(
n1, u2 − 2πn1

N

)∣∣2 (4.14a)

≥
N2 sin2

(
2π(n2−n1)+π

2N

)
sin2

(
2π(n2−n1)−π

2N

)
sin2 π

N

, (4.14b)

where n1 and n2 are the indices for the strongest DBDs for the two paths, respectively.

Proof. The lower bound of γ is attained in the case that the numerator on the RHS

of (4.14a) takes the minimum while the denominator takes the maximum. According

to the proof of Lemma 4.1, we have
∣∣gd

(
n1, u1 − 2πn1

N

)∣∣ ≥ 1, i.e., the minimum of

the numerator is |β1st|2.

To derive the maximum value of the denominator, we first prove that∣∣∣∣gd

(
n,

2π(n′ − n)

N
+
π

N

)∣∣∣∣ for ∀n′ ∈ [0, N − 1],

takes the maximums of the sidelobes of the n′-th DBD. The proof can be readily

established based on (4.7) and (4.8), and therefore is suppressed for brevity.

As a result, the maximum of the denominator on the RHS of (4.14a) can be

taken at the n1-th DBD if u2 = 2πn2

N
+ π

N
. By substituting (4.8) and u2 = 2πn2

N
+ π

N

into (4.14a), and exploiting |β1| ≥ |β2|, we can finally obtain (4.14b).
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Figure 4.5 : The SIR between two equal-power paths and the MSE of the AoA
estimate of one path in the presence of the interference from the other path vs.
(n2 − n1), where n1 = 1 and the AoAs of the two paths are set as u1 ∼ U

[
π
N
, 3π
N

]
,

u2 ∼ U
[
2π(n2−1)

N
+ π

N
, 2π(n2−1)

N
+ 3π

N

]
, respectively.

Fig. 4.5 plots the SIR for and the MSE of u1 estimation as (n2 − n1) increases,

where |β1| = |β2|, n1 = 1, u1 ∼ U
[
π
N
, 3π
N

]
, u2 ∼ U

[
2π(n2−1)

N
+ π

N
, 2π(n2−1)

N
+ 3π

N

]
, and

N = 32, 64 and 128. U [a, b] denotes the uniform random distribution between a and

b. The lower bounds for SIRs are also provided. We see that the SIR increases with

the growth of (n2 − n1), which is consistent with the lower bound (4.14b). We also

see that the MSE of u1 decreases with the growth of (n2 − n1). Specifically, when

n2 − n1 > 3, the MSE is less than 10−5 for different values of N . As will be shown

in Section 4.6, the interference of the weaker path to the stronger is negligible in the

case of n2 − n1 > 3; and the weaker path can also be estimated with high accuracy

by canceling the stronger path in the case of 0 ≤ n2 − n1 ≤ 3.

4.5.1 Concurrent WPT and WIT

By using the LS approximation [31], we can estimate the path response, as given

by β̂1st1 =
y
t1
n1

(k)

gd(n1,û1− 2πn1
N

)
, where yt1

n1
(k) is strongest DBD output at symbol t1 for u1

estimation. By running Algorithm 5, the second strongest DBD output is at either

(t1−1) or (t1+1). For illustration convenience, we assume that the second strongest

signal is received by the (n1 − 1)-th DBD output to the k-th RF chain at symbol

(t1 − 1), and denoted by yt1−1
n1−1(k). Given the single-tone sinewave energy signal,
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st = |s|ejωt+φ, where |s| is the constant envelope of the energy, ω is the baseband

frequency, and φ is the initial phase (which is assumed to be constant during AoA

estimation). ω can be estimated as ω̂ = arg

{
y
t1
n1

(k)

y
t1−1
n1−1(k)

}
, where arg{·} takes angle.

The impinging energy signal carried by the first path can be recovered as β̂1se
jω̂t for

∀t, where s = |s|ejφ and β̂1s =
β̂1st1
ejω̂t1

.

The second path can be estimated at symbol t2 = t1 + logNK +1 and t2 − 1 by

subtracting the first path. Suppose that yt2−1
n2−1(k) and yt2n2

(k) are the (n2 − 1)-th

and n2-th DBDs (with the first two strongest outputs), respectively. By carrying

out SIC, the second path can be estimated based on

ỹt
′

n′(k) = yt
′

n′(k)− β̂1se
jω̂·t′gd

(
n′, û1 −

2πn′

N

)
, (4.15)

where t′ = t2 − 1, t2 and n′ = n2 − 1, n2. This is because, as a single-tone sinewave,

the energy signal is a-priori known to the receiver. The first path can be readily

canceled while the information path is being estimated. The receiver does not have

to spare an RF chain to monitor the first path.

Algorithm 6 summarizes the proposed multi-AoA estimation in the case of con-

current WPT and WIT. The initial estimation of the strong WPT path in Step 4

is critical for carrying out SIC. As will be evaluated in Figs. 4.11 and 4.12, with

substantially improved accuracy of the initial estimation, the proposed approach is

able to alleviate error propagations in SIC and provide good estimation accuracy

for the WIT paths.

4.5.2 SWIPT

For illustration convenience, we consider the binary phase-shift keying (BPSK)

modulated energy signals. During a symbol duration, the modulated energy signal

is a single-tone sinewave. The AoA estimation of the first path can be achieved,

as described in Section 4.3.2, since the proposed AoA estimation (i.e., Theorem

4.1) only depends on the amplitude of the signals. The amplitude, phase and the

modulated signal can be estimated, as described in Section 4.5.1.
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Algorithm 6 Multi-AoA Estimation for Concurrent WPT and WIT

1: Run Algorithm 5, producing û1, yt1−1
n1−1(k) and yt1n1

(k);

2: Estimate β̂1st1 =
y
t1
n1

(k)

gd(n1,û1− 2πn1
N

)
;

3: Estimate the sinewave frequency as ω̂ = arg

{
y
t1
n1

(k)

y
t1−1
n1−1(k)

}
;

4: Calculate β̂1s =
β̂1st1
ejω̂t1

and the received signal from the first path is receiver as

β̂1se
jω̂t;

5: Run Algorithm 5 till Step 9;
6: Modify the selected DBD outputs based on (4.15);
7: Perform the last step of Algorithm 5 for u2 estimation.

Algorithm 7 Multi-AoA Estimation for SWIPT

1: Run Algorithm 6 till Step 5;
2: Test the hypothesis that the modulated signal is “+1”;
3: Run Steps 6 and 7 of Algorithm 6 for u2 estimation, and Steps 2 to 4 for the

estimation of the modulated signal;
4: Test the hypothesis that the modulated signal is “−1” by rerunning Step 3;
5: The u2 estimation under the hypothesis that the modulated signal estimate of

the second path is consistent with that of the first path is accepted as the final
AoA estimate.

The estimation of the second path of the SWIPT signal is different in the case

of SWIPT from it is in the case of concurrent WPT and WIT. This is because the

SWIPT signals can be modulated differently at different symbols. While estimating

the second path, the signal (on the first path) may have already changed from

what it was when the first path was estimated. An uncertainty arises when SIC

is used to cancel the first path for estimating the second path. Nevertheless, we

can readily eliminate the uncertainty by setting up two different hypotheses of the

current SWIPT signal (i.e., “+1” or “−1”), canceling the first path separately under

the two hypotheses and estimating the two AoAs of the second path. The modulated

signal of the second path can be estimated under the two different hypotheses. Given

the fact that the first and second paths carry the same SWIPT signal, we accept

the one of the hypotheses, under which the modulated signal of the second path is

consistent with the hypothesis of the modulated signal on the first path. Algorithm

7 summarizes the proposed multi-AoA estimation in the case of SWIPT.
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4.6 Simulation Results

In this section, simulations are carried out to validate the proposed method and

analysis, as shown in Fig. 4.1. Without loss of generality, linear LAA receivers are

considered. Unless otherwise specified, the array configuration and other simulation

parameters are set as follows. N = 64, K = 4 and u ∼ U [−π, π]. γ̃ = 1
(1+rL)σ2

d
is

tested for r = 10−8, 10−3 and 10−2; refer to (4.5). Here, γ̃ has already accounted for

the DFT beamforming gain. For fair comparison, the state of the art, namely, ABP

[5], DFT-DA [6], and WDFT [2], are also simulated.

Fig. 4.6 compares PDFT
d and PDBD

d , i.e., the probabilities of correctly identify-
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ing the DFT beams and DBDs to carry out ABP [5] and the proposed method,

respectively. We see that PDBD
d is increasingly larger than PDFT

d . Particularly, in

the low SNR regions, e.g., γ ≤ 10 dB, PDBD
d grows much faster than PDFT

d . PDBD
d

is 0.8751, 0.8467 and 0.7214 at γ = 10 dB for r = 10−8, 10−3, and 10−2, respec-

tively. In contrast, PDFT
d is only 0.5417, 0.4744, or 0.3454. We also see that PDBD

d

converges after γ ≥ 20 dB and reaches 0.995, 0.9816 and 0.9435 at γ = 40 dB for

the three values of r. In contrast, PDFT
d only reaches 0.9424, 0.882 and 0.8038 at

γ = 40 dB. The reason for the faster convergence of the proposed method to 1 than

WDFT is because the proposed approach is able to achieve higher receive SNR by

conducting the beam synthesis in the analog domain (before entering RF chains)

under low noises. In contrast, WDFT synthesizes the beams in the digital domain,

and hence accumulates the noises from all RF chains, as proved in Appendix 7.3.5.

Fig. 4.7 compares the MSE of the AoA estimation between the proposed algo-

rithm, Algorithm 5, and the state-of-the-art ABP [5], as γ increases. We see that

Algorithm 5 is able to dramatically and increasingly outperform ABP, and reduces

the MSE by orders of magnitude, especially in low SNR regions. In the case of

γ = 10 dB, the MSEs of ABP can be as high as 0.5545 and 0.7252 for r = 10−3

and 10−2, respectively. The corresponding MSEs of Algorithm 5 are only 0.01588

and 0.05608. This is because the MSE in the low SNR regions, e.g., γ ≤ 16 dB, is

dominated by PDBD
d (or PDFT

d ). According to Fig. 4.6, PDBD
d is much higher than

PDFT
d . The simulations also validate the analysis in Corollary 1. Specifically, the

analytical and numerical results of the MSE asymptotically converge and become

indistinguishably close for γ ≥ 13 dB, when PDBD
d > 0.9. In other words, the MSE is

dominated by the estimation SNR for PDBD
d > 0.9, and the MSE decreases linearly

with the growth of γ.

The key reason underlying the superiority of the proposed approach to ABP

in terms of AoA estimation accuracy is that the DBDs can produce higher receive

SNR than the DFT beams. As proved in Appendix 7.3.5, a DBD has a much higher

amplitude response than a DFT beam, while the noise powers of the two schemes

are roughly the same. As a result of the improved gain of the DBDs, the two
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Figure 4.8 : Mainlobe comparison of the synthesized beams using WDFT [2], DFT-
DA [6] and the proposed method, where N = 64, K = 8 and 16.
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Figure 4.9 : A Detailed comparisons of WDFT [2] and the proposed method by
zooming in the beams in Figs. 4.8(c) and 4.8(d), respectively.

strongest consecutive DBDs are much more likely to be correctly identified in the

proposed approach than the two strongest consecutive DFT beams in ABP. This is

particularly important in low SNR regions. In the case that both the DBDs and

DFTs can be correctly identified in the proposed approach and ABP, e.g., in high

SNR regions, the improved gain of the DBDs leads to lower estimation errors in the

proposed approach.

Fig. 4.8 compares the performance of beam synthesis between DFT-DA [6],

WDFT [2], and the proposed method developed in Theorem 2, where, for fair com-

parison, the parameter configurations in [2] are considered, i.e., K = 8 and 16. We

see that the synthesized beams of DFT-DA show severe ripples and nulls in the
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mainlobes; while the proposed method can eliminate nulls and reduces ripples in

the mainlobe, as discussed in Appendix 7.3.6. We also see that, as expected, the

ripples in the mainlobes of the proposed method can be slightly more severe than

those of WDFT, since WDFT is designed to minimize the variances of the mainlobe

directivity. Nevertheless, the mainlobe-to-sidelobe ratio of the proposed method is

higher than that of WDFT; see Appendix 7.3.7. By aligning the first sidelobes of

the synthesized beams, we see that the beamforming gain of the proposed method

is much larger than that of WDFT.

Fig. 4.9 zooms in and shows the detailed differences of the synthesized beams

of Figs. 4.8(c) and 4.8(d). We see that the mainlobe beamforming gains of the

approach proposed Theorem 4.2 are higher than those of WDFT, and the sidelobe

levels of the proposed method are much lower than those of WDFT. For M = 8,

the maximum mainlobe beamforming gain of WDFT is 2.543 dB lower than the

minimum mainlobe beamforming gain of the proposed method, and the levels of

the second and third sidelobes of WDFT are 1.653 dB and 3.033 dB higher than

those of the method proposed in Theorem 4.2, respectively. Moreover, the sidelobes

of the proposed method decrease much faster than WDFT, and achieve gains of

up to 16 dB and 22 dB for M = 8 and 16, respectively. It is noteworthy that

the proposed method linearly combines the DFT beams with the coefficients having

only three values, i.e., ±1 and 0. In contrast, WDFT optimize the phase rotational

speed through exhaustive search [2]. To this end, the proposed method incurs far

less complexity.

Fig. 4.10 compares the probabilities of correctly identifying the angular regions

(or beams) of interest, denoted by P{E}, where the beams are synthesized by WDFT

[2] and the proposed method. The beams in Figs. 4.4(a) and 4.4(b) are employed

for receiving at symbols t = 0 and t = 1, respectively. We see that P{E} of the

proposed method can converge much faster to 1 than those of WDFT, as γ increases.

Given P{E}, the proposed method can achieve an average SNR improvement of 10

dB over WDFT. For example, in the case of P{E} = 0.8, the proposed method has

the SNR improvements of 12 dB and 10 dB at t = 0 and 1, respectively. This is
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Figure 4.11 : MSEs of the AoA estimates of two paths, where γ = 1
σ2
d
, r = 10−3,

ui ∼ U
[
2πni

N
, 2π(ni+1)

N

]
(i = 1, 2).

because WDFT combines DFT beams in the digital domain, where the noises of

the RF chains are also digitized and injected. In contrast, the proposed method

combines the DFT beams in the analog domain, and only experiences the RF chain

noise, thus providing higher SNRs.

Fig. 4.11 plots the MSEs of AoA estimations for two separate paths, one for

WPT and the other for WIT, where the signal power of the WPT and WIT paths

are 35 dB and 0 dB, respectively, and r = 10−3. The AoA of the WPT path is set

as u1 ∼ U
[
2πn1

N
, 2π(n1+1)

N

]
; and the AoA of the WIT path u2 ∼ U

[
2πn2

N
, 2π(n2+1)

N

]
.

Algorithm 2 is run. Different values of (n2 − n1) are considered. We see that the
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Figure 4.12 : MSE of the AoA estimate (vs. γ = 1
σ2
d
) of the third path, u3, in the

presence of two strong and close paths, u1 and u2, where r = 10−3, the powers of
the path are 35 dB, 20 dB and 0 dB, respectively; and the AoAs of the three paths

satisfy u1 ∼ U
[
2π(n1−1)

N
, 2πn1

N

]
, u2 ∼ U

[
2πn1

N
, 2π(n1+1)

N

]
and u3 ∼ U

[
2πn2

N
, 2π(n2+1)

N

]
,

respectively.

MSEs of the WIT path, for n2 − n1 = 3, 4 and 5, saturate for any γ, as the result

of the interference from the strong path. From Fig. 4.5, we can conclude that the

average SIRs between two paths are 33.98dB, 38.57dB and 42.13dB for n2−n1 = 3,

4 and 5, respectively. With the setting of 35dB SIR in Fig. 4.11, the strong path

can still suffer the interference of 1.02dB, −3.57dB and −7.13dB to the weak path,

respectively. With γ = 1
σ2
d
≥ 10 dB, the noise power is below −10 dB. As a result,

the MSE of the weak path is dominated by the interference from the strong path

and saturates within the range of γ in the figure. We can still see that the MSE

of the weak path can be substantially improved after the strong path is canceled.

Moreover, for n2 − n1 = 3, the accuracy of both the weak and strong paths can be

slightly worse than the case of n2−n1 > 3. This is consistent with the result of Fig.

4.5.

We proceed to consider a case of three paths, where the two stronger paths are

close to each other, i.e., in the mainlobes of two adjacent DBDs. The AoAs of

the three paths satisfy u1 ∼ U
[
2π(n1−1)

N
, 2πn1

N

]
, u2 ∼ U

[
2πn1

N
, 2π(n1+1)

N

]
and u3 ∼

U
[
2πn2

N
, 2π(n2+1)

N

]
. The powers of the three paths are 35dB, 20dB and 0dB, re-

spectively. Fig. 4.12 compares the MSEs of the third path before and after the
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Figure 4.13 : Time-average beamforming gain of an LAA and a DAA receiver based
on the AoA estimates obtain by ABP and the proposed algorithm, respectively,
where γ = 1

σ2
d
, r = 10−2, u ∼ U [0, 2π).

interferences from the first two paths are canceled. We see that before the interfer-

ence is canceled, the MSE of the third path quickly saturates with γ. As explained

in Fig. 4.11, the saturation is because the interferences have the dominating effect

over the noises. We also see that, after SIC, the AoA estimation accuracy of the

third path is improved dramatically, especially for n2 − n1 > 3. This demonstrates

the effectiveness of the proposed approach in estimating and canceling the paths.

The accurate AoA estimation of signal paths serves the purpose of forming ef-

ficient beams to capture the energy and/or signals carried on the paths. To this

end, the time-average beamforming gain of a transmission block, defined as (T−τ)G
T

,

provides an effective measure of the efficiency of the AoA estimation [78]. T is the

duration of a transmission block; τ is the time for AoA estimation, and hence (T−τ)

is the time for power/information transmission; G is the instantaneous beamforming

gain based on the estimated AoA. The time-average beamforming gain is used for

fair comparisons between the proposed algorithm and ABP [5].

Fig. 4.13 plots the time-average beamforming gains of Algorithm 5 and ABP,

where the AoA of a single path is set to u ∼ U [0, 2π). We see that the time-average

beamforming gains of the proposed algorithm are increasingly and dramatically

larger than those of ABP. In the case of T = 50, the proposed algorithm, Algorithm

5, converges to 1.082, 64.51 % higher than the maximum gain achieved by ABP. One
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Figure 4.14 : The rate-energy region of the proposed approach and ABP [5] under
SWIPT, where T = 30.

reason underlying the improvement of Algorithm 5 over ABP is that Algorithm 5

enables fast search of the angular regions of interest based on the new beam synthesis

in Theorem 4.2. In this simulation, T−τ
T

= 0.9 and 0.68 for Algorithm 5 and ABP,

respectively. Another reason for the improvement is that Algorithm 5 can achieve

significantly higher accuracy of AoA estimation than ABP; see Fig. 4.7.

In Fig. 4.13, we also plot the upper bounds for the time-average beamforming

gains, where the upper bounds are obtained by taking the maximum amplitude gains

of a DBD or a DFT beam, i.e., 4
π
and 1, respectively; see Appendix 7.3.6. We can see

that the time-average beamforming gain of the proposed Algorithm 5 is close to the

corresponding upper bounds. The gap of LAA between the achieved beamforming

gain and its upper bound is because the LAA can only produce fixed DFT beams. In

contrast, the DAA is able to point at any directions with its continuous adjustable

phase shifters. Nevertheless, the proposed algorithm enables the LAA to achieve

larger time-average beamforming gains than the upper bounds which ABP allows

the DAA to achieve. The significant gain of LAA, resulting from the accurate AoA

estimation of the proposed algorithm, is of practical value to WIPT.

Fig. 4.14 plots the rate-energy region of the proposed approach in comparison to

that of the state-of-the-art ABP [5] by taking SWIPT as an example. T is partitioned

between the AoA estimation (i.e., (logNK +1) symbols for the proposed approach and
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N
K

symbols for ABP), and SWIPT by focusing on the AoA (i.e., (T − logNK −1)

symbols for the proposed approach and (T − N
K

) symbols for ABP). We set T = 30

and the RF-to-DC conversion efficiency to 0.1 [31]; and these parameters can be

readily changed to other values. The power splitting factor (PSF) of SWIPT is

denoted by η; in other words, the ratio of the received power used for information

detection and for energy harvesting is η
1−η [29, eqs. 2&3]. By varying the value

of η from 0 to 1 with a step of 0.1, the figure is plotted. We can see that the

proposed approach is able to substantially enlarge the rate-energy region and the

trade-off between energy harvesting and information detection is improved. This is

due to the reduced number of training symbols for the AoA estimation and hence

the increased number of symbols for SWIPT. It is also due to the increased accuracy

of the AoA estimation and hence the improved beamforming gain for energy transfer

and data transmission.

4.7 Conclusion

In this chapter, we propose a fast and accurate approach for the AoA estimation

of LAAs. We prove that the AoA of a path can be accurately estimated from the

two adjacent DBDs at both sides of the AoA. The two DBDs are proved to have

larger amplitude gains than other DBDs and DFT beams, and can be more reliably

identified in the presence of non-negligible noises. We design a novel beam synthesis

method based on discrete lens beams and 1-bit phase shifts. As a result, the angular

region containing the two strongest DBDs can be exponentially narrowed down, and

the two DBDs can be quickly identified. Evident from extensive simulations, the

proposed approach is able to improve estimation accuracy and the time-average

beamforming gain by orders of magnitude, as compared to the state of the art.



106

Chapter 5

Exploiting Spatial-Wideband Effect for Fast AoA

Estimation at Lens Antenna Array

Energy-efficient, highly integrated LAAs have found widespread applications in

wideband millimeter wave or terahertz communications, localization and tracking,

and wireless power transfer. Accurate estimation of AoA is key to those applica-

tions, but has been hindered by a spatial-wideband effect in wideband systems. This

chapter proposes to exploit (rather than circumventing) the spatial-wideband effect

to develop a fast and accurate AoA estimation approach for LAAs. Specifically,

we unveil new spatial-frequency patterns based on the spatial-wideband effect, and

establish one-to-one mappings between the patterns and the strongest DFT beam

containing the AoA. With the strongest DFT beam identified, we propose to esti-

mate the AoA uniquely and accurately with only a few training symbols, by deriving

a new one-to-one mapping between the AoA and the set of DFT beams judiciously

selected based on the strongest. In the case that an impinging path is uniformly

distributed in [0, 2π], simulations show that the proposed algorithm is able to reduce

the mean squared error of the AoA estimation by as much as 82.1% while reducing

the number of required symbols by 93.2%, as compared to existing techniques. The

algorithm can also increase the spectral efficiency by 89% when the average SNR is

−20 dB at each antenna of the receiver.

5.1 Introduction

Distinctively different from any existing work, the proposed algorithm utilizes

(rather than circumventing) the spatial-wideband effect to achieve a fast and accu-

rate AoA estimation for mmWave wideband LAAs. None of the existing techniques,

such as [7], can make use of the spatial-wideband effect for AoA estimation. They
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have either focused on narrowband signals [5-7], [18], or overlooked the spatial-

wideband effect [19-21]. The proposed algorithm is the first of its kind with promis-

ing performances. The main contributions of the chapter are summarized as follows.

1. We unveil new spatial-frequency patterns by exploiting the spatial-wideband

effect over a judiciously selected set of frequency sub-carriers, and establish

one-to-one mappings between the strongest DFT beam and the patterns. As

a result, the strongest DFT beam containing the AoA can be identified within

as few as a single symbol at a high probability. To the best of our knowledge,

this has never been achieved in the existing literature.

2. With the strongest DFT beam identified and selected, we propose to estimate

the AoA uniquely and accurately in another symbol by deriving a one-to-one

mapping between the AoA and a set of DFT beams judiciously selected based

on the strongest. We prove that, in the presence of a dominant LoS path,

the strongest DFT beam contributes predominantly to the AoA estimation

accuracy. The other beams contribute asymptotically negligibly, as the number

of antennas increases;

3. We analyze the performance of the proposed methods. The average number

of symbols for identifying the strongest DFT beam is derived. The number

is proved to rapidly decrease, as the system bandwidth or K increases. K

denotes the number of RF chains. We also derive the closed-form expression

for the MSELB of the proposed AoA estimation.

Corroborated by extensive simulations, the analytical results confirm that, by using

an average of only 1.19 symbols, the proposed approach is able to achieve as much

as 82.1% accuracy improvement, as compared with the existing work [7] using 32

symbols. Due to the accurate AoA estimation, the proposed approach is able to

improve the spectral efficiency by up to 89.04% at the SNR of −20 dB, compared

to the state of the art [8].

The rest of the chapter is organized as follows. In Section 5.2, the system model

is described. In Section 5.3, the new spatial-frequency pattern is unveiled, and
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the fast search of the strongest DFT beam is designed. In Section 5.4, the AoA

estimation based on the strongest DFT beam is proposed, followed by the analyses

of the proposed algorithms. The superiority of the proposed approaches in terms

of accuracy and efficiency is demonstrated via extensive simulations in Section 5.6,

followed by conclusions in Section 5.7.

5.2 System Architecture

We consider an uplink mmWave massive SIMO-OFDM system with a single-

antenna user∗, where the BS is equipped with a large-scale LAA. This section de-

scribes the structure of the LAA receiver, followed by the signal model.

5.2.1 LAA Structure

Fig. 5.1 illustrates an N -dimensional LAA receiver, where the LAA can generate

N DFT beams (this is equivalent to the N × N DFT beamforming) [41, 43]. The

N antennas are placed on the focal surface of the lens. Each antenna corresponds

to a DFT beam and outputs the received signals from the beam. Let K denote the

number of RF chains, which is much less than N , i.e., K � N . A beam selection,

also known as antenna selection [41, 74], is required to connect the smaller number

of RF chains (than the number of antennas). We employ the beam selection network

developed in [8, 43]. The output signal of a DFT beam is evenly split between K

number of 1-bit phase shifters (c.f., “on/off” switches [74, 75]). The phase shifters

can be turned off, as can be readily implemented in practice [43]. As a result, each

phase shifter can take three different states, “+1(= ej
2π×0

2 )”, “−1(= ej
2π×1

2 )”, or “0

(turned off)”. The outputs of N phase shifters connecting the N antennas can be

combined and fed to an RF chain.

Let W denote the beam selection network, where [W]:,k ∈ RN×1 collects the

states of the N phase shifters connected to the k-th RF chain (k = 0, 1, · · · , K− 1);

see Fig. 5.1. The (n, k)-th element of W is [W]nk = 1√
‖[W]n,:‖0

, 0 or − 1√
‖[W]n,:‖0

.

∗The proposed approach can be readily extended to multi-user scenario by applying orthogonal
pilot signals in the same way as the existing wideband channel estimation algorithms [8, 66].
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Figure 5.1 : The schematic diagram of an LAA receiver, where “1-bit phase shifter”
refers to a phase shifter with the phase shift of either 0 or 180 degree.

The received signal power of antenna n is divided evenly into ‖Wn,:‖0 parts, if

‖Wn,:‖0 out of K phase shifters connected to the n-th antenna are turned on simul-

taneously. As widely adopted in the literature [8, 66], we assume that the lens and

beam selection network are frequency-flat. In other words, they are invariant in the

frequency band of interest.

We note that the beam selection network, comprised of 1-bit phase shifters, was

originally proposed in [6, 8]. But the idea of this chapter using the beam selection

network to generate spatial-frequency wide beams for AoA estimation (as will be

provided in Lemma 1) is novel and distinctively different from [6, 8]. In particular,

the beam selection network is now configured deterministically based on the one-

to-one mapping we unveil between an inherent spatial-frequency pattern and the

strongest DFT beam (as will be provided in Theorem 2). This facilitates estimating

the AoA quickly and accurately by utilizing a spatial-wideband effect (or in other

words, beam squinting). In contrast, all the 1-bit phase shifters were randomly set

to ±1 in [6, 8], and the channels (not the AoA) were estimated using compressive

sensing.
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5.2.2 Signal Model

As assumed in [8, 84], the user sends the i-th pilot signal at symbol i, denoted

by si, and the same signal is conveyed by the M sub-carriers for uplink channel

estimation. Let sim denote the signal transmitted by sub-carrier m at symbols i.

sim (∀m, i) has the unit power, i.e., |sim|2 = 1 [8]. At the user, an IDFT is taken over

si0, si1, · · · , si(M−1), the cyclic prefix (CP) is appended to the IDFT results, and an

OFDM symbol is transmitted. The m′-th sample of the OFDM symbol is denoted

by xm′ , where 0 ≤ m′ ≤M ′ − 1 and (M ′ −M) is the number of CP samples.

The m′-th sample is received by the LAA antennas at the BS. The antenna

outputs can be collected by the vector ym′ = UHhm′xm′ , where U ∈ CN×N is the

N × N DFT matrix and hm′ ∈ CN×1 is the time-domain channel response vector.

The (a, b)-th element of U is given by

[U]ab =
1

N
e−j

2πab
N , ∀a, b ∈ [0, N − 1]. (5.1)

After receiving for the M ′ samples, the received OFDM symbol can be written as

Ŷ = [y0,y1, · · · ,yM ′−1] ∈ CN×M ′ , where ym′ ∈ CN×1 collects the OFDM samples

received by the N -element array at the sample time m′(= 0, 1, · · · ,M ′ − 1). The

first (M ′ −M) columns of Ŷ are the CP. After the beam selection and RF chains,

Ȳ is digitized and Ỹ = WTȲ + N, where W ∈ RN×K is the beam selection matrix

and N ∈ CK×M ′ is the AWGN from the RF chains.

After the removal of the CP which consists of the first (M ′ −M) columns of Ỹ,

we obtain

Y = WTȲ + N̄, (5.2)

where Ȳ and N̄ are obtained by removing the first (M ′ −M) columns of Ŷ and

N̂, respectively. Taking the row-wise DFT of Y, i.e., the DFT over each row of

M samples, we obtain (5.3), where (5.3a) and (5.3c) are based on the definition

of matrix product, and (5.3b) is obtained by applying the linearity of DFT (i.e.,

ax1[n] + bx2[n]
DFT←→ aX1[k] + bX2[k]. x1[n] and x2[n] are finite sequences. X1[k] and
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X = DFT{WTȲ + N} = DFT{WTȲ}+ DFT{N}

=


DFT

{∑N−1
n=0 [W]n0[Ȳ]n,:

}
...

DFT
{∑N−1

n=0 [W]n(K−1)[Ȳ]n,:

}
+ DFT{N} (5.3a)

=


∑N−1

n=0 [W]n0DFT
{

[Ȳ]n,:
}

...∑N−1
n=0 [W]n(K−1)DFT

{
[Ȳ]n,:

}
+ DFT{N} (5.3b)

= WTDFT{Ȳ}+ DFT{N} (5.3c)

= WTUH[h0,h1, · · · ,hM−1]si + Ñ,

X2[k] are the DFTs of x1[n] and x2[n], respectively.) [24, Eq.(8.76)].

We note that there are two DFTs in the signal model. The first DFT is performed

inherently by the lens to produce the DFT beam. The outcome is the product of

the conjugate transpose of the DFT matrix U and the received signal vector; see

(1). The second DFT in (3) accounts for an important step of an OFDM receiver to

transform the received signal from the time domain to the frequency domain (i.e.,

sub-carriers). Both are the standard DFT operations, and they are salient parts of

lens and OFDM signal processing.

We adopt the dual-wideband channel model proposed in [66]. hm is given by

hm =

√
1

(P + 1)

P∑
p=0

βpe
−j2πfmτpa(µp, ρm), (5.4)

where there are (P +1) resolvable paths, βp is the channel response of the p-th path,

τp is the path delay, and µp is the beamspace-domain AoA of the path; fm = fL+ mB
M−1

is the centroid frequency of the m-th sub-carrier (0 ≤ m ≤ M − 1), B is the

bandwidth, and fL is the lowest system frequency; and ρm = fm
fH

is the normalized

frequency, and fH = fL + B is the highest system frequency. Clearly, fL

fH
≤ ρm ≤ 1.

a(µp, ρm) is the spatial-frequency-domain array response vector. The n-th element
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of a(µp, ρm) is

[a(µp, ρm)]n = e
−jnρm

2πd sin θp
c/fH = e−jnρmµp , (5.5)

where θp is the physical AoA of the p-th incident path, and µp = 2πd sin θp
c/fH

is

the beamspace-domain AoA defined based on fH. a(µp, ρm) is both spatial- and

frequency-dependent, and undergoes the spatial-wideband effect [66, 82].

Note that the beamspace AoA µp is distributed in [−π, π] based on the definition

below (5). Our proposed AoA estimation will be achieved by estimating the angle

of ejµp which, for µp ∈ [−π, 0], is a one-to-one mapping to ejµp , µp ∈ [π, 2π], due to

the periodicity of ejµp . By using variable substitution, we can define

up =

 µp, if µp ∈ [0, π];

µp + 2π, if µp ∈ [−π, 0],
(5.6)

so that up can be consistent with the angular coverage of the complete set of DFT

beams in terms of range, i.e., [0, 2π] [24]. µp can be recovered unambiguously, once

up is estimated by using the proposed approach.

We note from (5.3) that it is non-trivial to estimate up from X, because the

key information to estimate the AoA, i.e., the phase difference between adjacent

antenna elements, is obscure due to the DFT beamforming U. On the other hand,

given the much smaller number of RF chains than the number of antenna ports

(K � N), only partial or combined DFT beam outputs can be obtained through

the beam selection W. It is important to establish the relation between the AoA

and the (selected) DFT beams to achieve the accurate AoA estimate and expedite

the AoA estimation. W is the only DoF, and needs to be designed judiciously to

fast identify the required DFT beams.

5.2.3 Proposed Wideband AoA Estimation Framework

In this chapter, we design the method to unambiguously extract the AoA from

the selected DFT beams and W to fast identify the required DFT beams. Overall,
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the proposed AoA estimation has two stages:

1. Identify the strongest DFT beam by exploiting the spatial-wideband effect

in Section 5.3. Interestingly, the spatial-wideband effect, generally known to

degrade the performance of mmWave massive MIMO systems [8, 15, 66], is

shown to be exploitable to the AoA estimation problem;

2. Extract the AoA based on the identified DFT beam using as few as a single

symbol in Section 5.4. We prove that, in the LoS-dominant mmWave/THz

channel, the strongest DFT beam contributes the most to the AoA estimation.

The strongest DFT beam refers to the DFT beam with the strongest output, which

indicates that the AoA is in the angular region of ( 2πn?

N
− π

N
, 2πn?

N
+ π

N
], where n?

denotes the index of the strongest DFT beam.

5.3 Fast Search of the Strongest DFT Beam

In this section, the spatial-wideband effect of the spatial response is exploited to

achieve the fast search of the strongest DFT beam (as opposed to enumerating all

the N DFT beams by taking at least N
K

symbols [7]), so that we can suppress the

subscript “p” from up for illustration convenience. To achieve this, we first unveil

a new spatial-frequency pattern underlying the spatial-wideband effect. Then, we

reveal that, by constructing the spatial-frequency patterns judiciously based on the

selected sub-carriers, the patterns can be exploited to identify the strongest DFT

beam uniquely and rapidly.

5.3.1 New Spatial-Frequency Pattern

We reveal two spatial-frequency patterns based on the selection of a single or

multiple DFT beams. As will be proved later, the patterns are the one-to-one map-

pings to the strongest DFT beam at the LAA. The new spatial-frequency patterns

can be defined based on the spatial responses of the DFT beams. Based on (5.5),
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the spatial response of the n-th DFT beam at sub-carrier m is given by

[g(u, ρm)]n = UHa(u, ρm) =
N−1∑
n′=0

1

N
e−jn

′(ρmu− 2πn
N

)

= e−j
N−1

2
(ρmu− 2πn

N
) sin N

2
(ρmu− 2πn

N
)

N sin 1
2
(ρmu− 2πn

N
)
, (5.7)

where g(u, ρm) ∈ CN×1 collects the spatial responses of the N DFT beams at sub-

carrier m and the AoA u. We see that the spatial response is coupled multiplicatively

with the sub-carrier frequency, which is known as the spatial-wideband effect [66, 82].

If m = M − 1, then ρM−1 = 1 and [g(u, ρM−1)]n is a standard discrete sinc function

of u. As m and ρm decrease, [g(u, ρm)]n moves rightwards w.r.t. u, and its pointing

direction increases from 2πn
N

to 2πn
Nρm

.

Single-Beam Selection

In the case that a single DFT beam is selected to be fed to an RF chain, the

spatial-frequency pattern can be revealed at the output of the RF chain, as follows.

Definition 5.1. The m̃-th spatial-frequency pattern (0 ≤ m̃ ≤ M̃ − 1) associated

with the n-th DFT beam is defined to be the spatial responses of the n-th DFT beam

at u = 2π(n+m̃)
N

and the selected set of frequency sub-carriersM. M̃ = b n
ρ0
c−n is the

maximum number of patterns when DFT beam n is selected. Let g̃n(m̃,M) ∈ CM̃×1

denote the m̃-th pattern. The m̃′-th element of g̃n(m̃,M) (0 ≤ m̃ ≤ M̃ − 1, 0 ≤

m̃′ ≤ |M| − 1) is given by

[g̃n(m̃,M)]m̃′ =

[
g

(
2π(n+ m̃)

N
, ρMm̃′

)]
n

(5.8)

where the RHS is obtained by substituting u = 2π(n+m̃)
N

and m = [M]m̃′ into (5.7).

Note in (5.8) that, by selecting different sub-carriers in M, different spatial-

frequency patterns can be obtained even the same DFT beam is selected. By prop-

erly constructing M, the spatial-frequency pattern can be used for the fast search

of the strongest DFT beam, as described in the following theorem.
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Theorem 5.1. Suppose that the nL-th DFT beam is selected, nH is the index of the

last DFT beam in the angular region S(nL, nH) covered by the nL-th DFT beam†,

u ∈ S(nL, nH), nH = bnL

ρ0

c, (5.9a)

and [M]m̃′ =

⌊
( nL

nL+m̃′
− ρ0)(M − 1)

1− ρ0

⌉
, (5.9b)

the index for the strongest DFT beam is a one-to-one mapping of the spatial-frequency

pattern g̃nL
(m̃,M), m̃ ∈ {0, 1, · · · , M̃ − 1}, because the patterns satisfy

∣∣∣[g̃nL
(0,M), g̃nL

(1,M), · · · , g̃nL
(M̃ − 1,M)

]∣∣∣ ≈ IM̃ , (5.10)

where M̃ = |M| = nH − nL + 1 is the number of patterns.

Proof. See Appendix 7.4.1.

Multi-Beam Selection

The spatial-frequency pattern can also be defined when multiple consecutive

DFT beams are activated and synthesized to be a wider beam fed into an RF chain.

The beam selection vector has to be carefully designed; otherwise, nulls can be

formed in the mainlobe [51]. We propose a new wideband beam synthesis method

in LAAs with flat mainlobe response across the frequencies and the angular regions

of interest. The flat mainlobe response is the design goal of the newly proposed

beam synthesis method in wideband lens antenna arrays in Lemma 1.

Lemma 5.1. Given the N DFT beams, g(u, ρm), and the N × 1 beam selection

vector for the k-th RF chain

[W]:,k =

0, · · · , 0︸ ︷︷ ︸
l

, (−1)l, · · · , (−1)l+L−1︸ ︷︷ ︸
L

, 0, · · · , 0︸ ︷︷ ︸
N−L−l

T

, (5.11)

†Due to the spatial-wideband effect, the pointing direction of the nL-th DFT beam becomes
2πnL

Nρ0
; see (5.7). Note that nH ≤ nL

ρ0
. Here, S(nL, nH) denotes the angular region spanned between

the nL-th and the nH-th DFT beams. S(nL, nH) := ( (2nL−1)π
N , (2nH+1)π

N ].
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the beam synthesized by
∑N−1

n=0 [g(u, ρm)]n[W]n,k can be approximated by

P (u, ρm) =

 ej
N
2
ρmu, if 2πl

N
≤ ρmu ≤ 2π(l+L−1)

N
;

0, otherwise,
(5.12)

where l is a non-negative integer satisfying 0 ≤ l ≤ N − L.

Proof. By treating ρmu as a single variable, g(u, ρm) in (5.7) becomes a standard

sinc function of ρmu. The lemma can be proved based on [51, App. D].

Based on Lemma 5.1, we define the spatial-frequency pattern for a selected set

of multiple consecutive DFT beams for an RF chain.

Definition 5.2. Given the multiple DFT beams selected by [W]:,k in (5.11), the

spatial-frequency pattern is defined as such that the m̃′-th element of the m̃-th spatial-

frequency pattern (0 ≤ m̃ ≤ M̃ − 1) associated with the n-th DFT beam (l ≤ n ≤

l + L− 1), denoted by [ğn(m̃,M)]m̃′, is given by

[ğn(m̃,M)]m̃′ = P

(
2π(n+ m̃)

N
, ρMm̃′

)
, (5.13)

where the RHS is obtained by substituting u = 2π(n+m̃)
N

and m = Mm̃′ into (5.12).

M̃ = b n
ρ0
c − n and M are the same as in Definition 5.1.

The spatial-frequency pattern of multiple consecutive DFT beams (5.13) can also

be used to identify the strongest DFT beam, as stated in the following theorem.

Theorem 5.2. Consider that [W]:,k in (5.11) is set for beam selection. By setting

nL = l+L−1 (L ≥ 2 and 0 ≤ l ≤ N−L), the index for the strongest DFT beam for

u ∈ S(nL, nH) is a one-to-one mapping of the spatial-frequency pattern ğnL
(m̃,M),

m̃ ∈ {1, · · · , M̃ − 1}, if (5.9) holds.‡

Proof. See Appendix 7.4.2.

‡ğnL(0,M) is precluded in the spatial-frequency patterns under multi-beam selection because
of its non-uniqueness. In contrast, g̃nL

(0,M) is unique in the spatial-frequency patterns under
single-beam selection, as stated in Theorem 5.1.
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Figure 5.2 : Illustration of the spatial-frequency patterns, where N = 256, M = 128,
and ρm ∈ [0.8, 1]. Fig. 5.2(a) plots [g(u, ρm)]204 in (5.7) across u ∈ S(0, 255) and
sub-carrier m ∈ [0,M − 1]; Fig. 5.2(c) plots P (u, ρm) in (5.12) by taking l = 0 and
L = 164 in Lemma 5.1; and Figs. 5.2(b) and 5.2(d) plot g̃n(m̃,M) and ğn(m̃,M)
constructed based on the beams in Figs. 5.2(a) and 5.2(b) by applying Theorems
5.1 and 5.2, respectively.

Fig. 5.2 illustrates the spatial-frequency patterns, where Figs. 5.2(a) and 5.2(b)

show the beams for constructing the patterns, Theorems 5.1 and 5.2 are applied to

construct M based on the beams, and Figs. 5.2(c) and 5.2(d) show the patterns

based onM. Each column in Fig. 5.2(b) or 5.2(d) represents a pattern specified by

(5.8) or (5.13). We see from Figs. 5.2(c) and 5.2(d) that, in either case, the patterns

are unique, which validates the one-to-one mappings in Theorems 5.1 and 5.2.

5.3.2 Fast Search of the Strongest DFT Beam

By exploiting the new spatial-frequency patterns, the strongest DFT beam can be

rapidly identified via a pattern matching. Take the single-beam selection described

in Section 5.3.1 for instance. The nL-DFT beam is selected to feed an RF chain by

setting [W]:,k in (5.3) as

[W]:,k =

[
0, · · · , 0, 1

nL

, 0, · · · , 0
]T

, (5.14)
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and hence the k-th RF chain output can be written as

[X]:,k = β[U:,nL
]H[h0,h1, · · · ,hM−1] + [Ñ]:,k, (5.15a)

= β
[
[g(u, ρ0)]nL

, · · · , [g(u, ρM−1)]nL

]T � b + [Ñ]:,k, (5.15b)

where (5.15b) is obtained by substituting (5.7) into (5.15a), si is suppressed since

the pilot sequence is known to BS, � stands for Hadamard product, and b ∈ CM×1

collects the phase difference caused by the path delay τ , as given by [b]m = e−j2πfmτ ;

see (5.4).

In (5.15), only the LoS is considered for illustration convenience§, and hence the

subscript “0” of β, u and τ is suppressed. By substituting nL = 128 into (5.15), the

frequency response of the received signal is shown in Fig. 5.2(c), where the AoA

u = 5.65 and |β| = 1.

Provided |β| is known and the condition (5.9) is satisfied, the index for the

strongest DFT beam is n? = nL + m̃?, where m̃? can be obtained through the

following pattern matching:

min
m̃

∥∥∥∣∣[X]M̃,k

∣∣− ∣∣βg̃nL
(m̃,M̃)

∣∣∥∥∥2

2
. (5.16)

Here, M̃ is obtained from (5.9b), and [X]M̃,k rearranges the elements of [X]:,k ac-

cording to M̃; see the pentagram markers in Fig. 5.3(a). g̃nL
(m̃,M), is constructed

by substituting n = nL and M = M̃ into (5.8). Due to |b| = 1M , b has no impact

on the pattern matching (5.16). Problem (5.16) can be depicted by matching the

RF chain output in Fig. 5.3(a) with the patterns in Fig. 5.2(b) that scaled by

|β|. By replacing (5.14) with (5.11) and g̃nL
(m̃,M̃) with (5.13), Problem (5.16) can

be used to describe the pattern matching under multi-beam selection described in

Section 5.3.1.

Note that Problem (5.16) is intractable due to the lack of the knowledge on nL

§The mmWave/THz wireless channels are typically dominated by the LoS paths over much
weaker NLoS paths [44, 66]. The applicability of the proposed approach in the multi-path case is
validated in Section 5.6.
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and β. With no a-priori information on the AoA, nL can take any of the values

0, 1, · · · , N − 1. Moreover, it is non-trivial to estimate the channel response β,

since, in the RF chain output, β is coupled with the spatial response which relies

on the unknown AoA; see (5.7) and (5.15). Next, we propose a viable solution to

(5.16) by first identifying nL, then estimating |β| based on the output of the selected

beam, and finally substituting the estimates of nL and |β| into (5.16) to perform

pattern matching. To identify nL, we propose to iteratively and rapidly search for

the angular region of interest. Based on Theorems 5.1 and 5.2 and Lemma 5.1, we

design an efficient way to partition the angular region of interest, such that nL and,

in turn, the strongest DFT beam can be identified using as few as a single symbol.

Let [nL]k(k ∈ {0, 1, · · · , K − 2}) denote the index for the DFT beam selected by

the k-th RF chain. [nH]k(k ∈ {0, 1, · · · , K − 2}) denotes the index for the last DFT

beam in the angular region covered by the [nL]k-th DFT beam (see Theorem 5.1).

ΩT ∈ S(bL, bH) denotes the angular region of interest. bL and bH are the first and

last beam of ΩT, respectively.

Proposition 5.1. Given K RF chains and ΩT, the following beam selection scheme,

[nH]0 = bH, [nL]0 = d[nH]0 × ρ0e; (5.17a)

[nH]k = [nL]k−1 − 1, [nL]k = d[nH]kρ0e, k ∈ [1, K − 2]; (5.17b)

l = bL, L = d([nL]K−2 − 1)ρ0e − bL + 1, (5.17c)

results in the highest probability of identifying the strongest DFT beam at a symbol.

A wide beam is synthesized at RF chain (K−1) by substituting (5.17c) into Lemma

5.1.

Proof. See Appendix 7.4.3.

Based on Theorems 5.1 and 5.2, and Proposition 5.1, a fast search for the

strongest DFT beam is proposed in Algorithm 8. Step 1 lists the input parame-

ters, where ΩT is the initial angular region of interest, e.g., (0, 2π]. Steps 2 to 7
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Algorithm 8 Fast Search of the Strongest DFT Beam

1: Input ΩT = S(bL, bH), K, M and N .
2: Initialize [nH]0 = bH and [nL]0 = dbHρ0e;
3: for k = 1 : K − 2 do
4: Update [nH]k = [nL]k−1 − 1 and [nL]k = d[nH]kρ0e;
5: Set W̃:,k by substituting nL = [nL]k into (5.14);
6: end for
7: Substitute L = L̃ = d([nL]K−2 − 1)ρ0e − bL + 1 and l = l̃ = bL into (5.11) to

obtain W̃:,K−1;
8: Substituting W̃ into (5.3) yields X̃;

9: Estimate |β| via {|β̂|, k?} = maxk

{∥∥[X̃]:,k
∥∥
∞

}
;

10: if k? 6= (K − 1) then
11: Calculate M̃ by setting nL = [nL]k? into (5.9b);
12: Construct g̃[nL]k? (m̃,M̃), ∀m̃ ∈ [0, |M̃| − 1] by

13: substituting nL = [nL]k? and M = M̃ into (5.8);
14: Solve (5.16) to obtain m̃?;
15: Return n? = nLk? + m̃?.
16: else
17: Calculate M̃ by setting nL = l̃ + L̃− 1 into (5.9b);
18: Construct ğl̃+L̃−1(m̃,M̃), ∀m̃ ∈ [0, |M̃| − 1] by

19: substituting nL = l̃ + L̃− 1 and M = M̃ into (5.13);
20: Solve (5.16) to obtain m̃?;
21: if m? 6= 0 then
22: Return n? = l̃ + L̃− 1 + m̃?.
23: else
24: Update bH = l̃ + L̃− 1. Go to Step 2.
25: end if
26: end if

partition ΩT into K sub-regions, denoted by sub-regions 0, · · · , K − 1, by apply-

ing Proposition 5.1. In Step 9, |β| is estimated based on the RF chain outputs

obtained from Step 8. Combining (5.7) and (5.15), we see that ‖[X]:,k‖∞ ≤ |β| in

the absence of AWGNs, since we have |[g(u, ρ0)]nL
| ≤ 1. To this end, we can use

maxk∈[0,K−1]

{∥∥[X]:,k
∥∥
∞

}
as the |β| estimate. The index for the strongest RF chain

output is denoted by k?.

In the case of k? 6= K−1, the strongest DFT beam can be uniquely identified by

matching the spatial-frequency pattern; refer to Theorem 5.1. First, the sub-carrier

set corresponding to [nL]k? can be calculated, leading to M̃; see Step 11. Next, the
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Figure 5.3 : Illustration of RF chain outputs based on (a) the single-beam selection,
where nL = 204 and u = 5.65; and (b) the multi-beam selection, where l = 0,
L = 164 and u = 2.9. N = 256, M = 128, and ρm ∈ [0.8, 1].

spatial-frequency patterns corresponding to DFT beam [nL]k� can be constructed by

substituting nL = [nL]k� and M = M̃ into (5.8); see Step 12. Then, by substituting

M = M̃, |β| = |β̂|, nL = [nL]k� , g̃nL
(m̃,M) = g̃[nL]k� (m̃,M̃), and X = X̃ into

(5.16), the pattern matching can be performed, leading to m̃�. Finally, the index

for the strongest DFT beam, denoted by n�, is obtained in Step 15.

In the case of k� = K − 1, the strongest DFT beam can be uniquely identified

if u ∈ S(l̃ + L̃, [nL]K−2 − 1); refer to Theorem 5.2. Therefore, we proceed to check

whether the strongest DFT beam falls into the angular region. Step 17 evaluates the

sub-carrier set corresponding to DFT beam l̃+ L̃−1. Step 18 constructs the spatial-

frequency patterns. Step 20 performs pattern matching, leading to m̃�. We further

check whether m̃� is acceptable, since the first spatial-frequency pattern needs to be

excluded in the case of multi-beam selection, as proved in Theorem 5.2. If m� �= 0,

the strongest DFT beam is uniquely identified; see Step 22; otherwise, we can assert

u ∈ S(bL, l̃ + L̃ − 1). Accordingly, we update bH = l̃ + L̃ − 1 and return to Step 2;

see Step 24.

An example of Algorithm 1 is provided in Figs. 5.2 and 5.3. The beams selected

and synthesized at the two RF chains by following Steps 2 to 7 are shown in Figs.

5.2(a) and 5.2(c). In the case of u = 5.65 rad, the first RF chain produces the

stronger output with the frequency response plotted in Fig. 5.3(a). This leads to

k� = 0( �= K− 1) in Step 9. By implementing Steps 11 and 12, the spatial-frequency
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patterns are obtained in Fig. 5.2(b). By matching Fig. 5.3(a) with the patterns

in Fig. 5.2(b), m̃? and n? can be identified in Steps 14 and 15, respectively. In

the case of u = 2.9 rad, the second RF chain produces the stronger output, leading

to k? = K − 1 = 1 in Step 9. The frequency response of the second RF chain

output is shown in Fig. 5.3(b). Thus, the pattern matching based on the multi-

beam selection needs to be performed. The spatial-frequency patterns, associated

with the wide beam in Fig. 5.2(b), are constructed in Steps 17 and 18, and plotted

in Fig. 5.2(d). By matching Fig. 5.3(b) with the patterns in Fig. 5.2(d), m̃? = 0

can be obtained in Step 20, followed by Step 24 to restart the search of a narrower

angular region, denoted by Ω2nd, in Fig. 5.2(c).

5.4 Estimating AoA from DFT Beam Outputs

With the strongest DFT beam identified from Algorithm 8, we design an efficient

algorithm to estimate the AoA with a fine accuracy. The research approach taken

is to first develop a one-to-one mapping between the AoA and a general set of DFT

beams which may not include the strongest DFT beam; and then prove that, if

the strongest DFT beam is activated, the AoA estimation accuracy can asymptoti-

cally approach what is achieved with all the DFT beams. The one-to-one mapping

between the AoA and the selected DFT beams is established under a noise-free con-

dition. With the noise-free mapping, we reveal that in the presence of non-negligible

noises, the estimation problem can be converted to a maximum-likelihood estimator

with additive noises. The maximum-likelihood estimator is known to be optimal

and achieve the Cramér-Rao lower bound in the presence of additive noises. More-

over, we derive the analytical lower bound of the mean squared error (MSE) of the

AoA estimate to evaluate the noise-resistance performance of the proposed method.

This research approach has been taken by state-of-the-art studies on AoA/channel

estimation, e.g., [13, 14] and [21].

For illustration convenience, we consider that K is a factor of N , i.e., Q = N
K

is an

integer. At the i-th symbol, the
(
(i)Q+kQ

)
-th DFT beam (i ≥ 0 and 0 ≤ k ≤ K−1)

is selected at the k-th RF chain. (·)Q denotes modulo-Q. The beam selection can
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be achieved by configuring W. Take N = 4 and K = 2 for instance. We can set

W =
[

1, 0, 0, 0
0, 0, 1, 0

]T
at symbol i = 0 to select the 0th and 3rd DFT beams at the two

RF chains; and set W =
[

0, 1, 0, 0
0, 0, 0, 1

]T
at symbol i = 1 to select the other two DFT

beams.

Let h̃m = UHhm ∈ CN×1; see (5.3), and refer to h̃m as the beamspace channel

response vector at sub-carrier m. By substituting (5.4) and (5.5) into (5.3), and

assuming 0 ≤ i ≤ Q − 1 (such that the modulo operator (·)Q can be suppressed),

the
(
(i)Q + kQ

)
-th element of h̃m is given by

[h̃m]i+kQ = βe−j2πfmτ [UHa(u, ρm)]i+kQ (5.18a)

=
1

N
βe−j2πfmτ

N−1∑
n′=0

e−jn
′(ρmu− 2π(i+kQ)

N
) (5.18b)

=
1

N
βe−j2πfmτ

K−1∑
k′=0

Q−1∑
q=0

e−j(k
′+qK)(ρmu− 2π(i+kQ)

N
) (5.18c)

=
K−1∑
k′=0

1

N
βe−j2πfmτG(u, ρm, i)e

−jk′(ρmu− 2πi
N

)︸ ︷︷ ︸
[f(u,ρm,i)]k′

ej
2πk′k
K , (5.18d)

where (5.18c) is obtained by substituting n′ = k′+ qK in (5.18b) for 0 ≤ k′ ≤ K−1

and 0 ≤ q ≤ Q− 1; and

G(u, ρm, i) =

Q−1∑
q=0

e−jqK(ρmu− 2π(i+kQ)
N

) = ej
Q−1

2
K(ρmu− 2πi

N
) sin QK

2
(ρmu− 2πi

N
)

sin K
2

(ρmu− 2πi
N

)
. (5.19)

Clearly, G(u, ρm, i) is independent of k and k′.

From (5.18d), we notice that the beamspace channel vector [h̃m]i+kQ (k =

0, 1, · · · , K − 1) is the IDFT of [f(u, ρm, i)]k′ (k′ = 0, 1, · · · , K − 1). [f(u, ρm, i)]k′

are the Fourier coefficients. The cross-correlation of any two consecutive Fourier co-

efficients has a constant angular component ρmu, and can be used for unambiguous

u estimation. In practice, only the scaled version of [h̃m]i+kQ is available, i.e., X in

(5.15). Therefore, we can take the DFT of X w.r.t. k, i.e., column-wise DFT, to

estimate the AoA u. At sub-carrier m, by taking the DFT of the m-th column of
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Algorithm 9 Wideband AoA Estimation

1: Input n? (obtained by running Algorithm 8), K and N .
2: Calculate i? = (n?)Q, and select the DFT beams for AoA estimation: I =
{i?, i? +Q, · · · , i? + (K − 1)Q};

3: Set the beam selection matrix W̃ based on I; see (5.23);
4: Substituting W = W̃ into (5.3) yields X̃;
5: Take DFT of each column of X̃; see (5.18);
6: Take cross-correlation of the DFT coefficients; see (5.20);
7: Accumulating [r(u, ρm, i

?)]k′ across RF chain and sub-carrier yields r̃(u, i?); see
(5.21);

8: Taking the angle of r̃(u, i?) for u estimate, i.e., (5.22);

X, the DFT coefficient becomes K[f(u, ρm, i)]k′si + [ñm]k′ , where ñm is the DFT of

the m-th column of Ñ, and K is multiplied to [f(u, ρm, i)]k′ based on the definition

of IDFT [24].

Taking the cross-correlation between the consecutive coefficients, we obtain

[r(u, ρm, i)]k′ = [f(u, ρm, i)]k′ [f(u, ρm, i)]
∗
k′+1|si|2 + [n̆m]k′

=
K2|βsi|2

N2
|G(u, ρm, i)|2ej(ρmu−

2πi
N

) + [n̆m]k′ , (5.20)

where n̆m is the noise component after the cross-correlation. As the signal compo-

nent of [r(u, ρm, i)]k′ is independent of k′, we can coherently accumulate [r(u, ρm, i)]k′

across k′ to improve the estimation SNR for u, i.e.,
∑K−2

k′=0[r(u, ρm, i)]k′ = (K −

1)[r(u, ρm, i)]k′ . Since ρm ≤ 1, we can take the angle of (K − 1)[r(u, ρm, i)]k′ at any

sub-carrier m and symbol i for the unambiguous u estimation.

By taking m1 ≤ m ≤ m2, |G(u, ρm, i)|2 is approximately uniform across m, and

(K − 1)[r(u, ρm, i)]k′ can be coherently accumulated across m [7, Proposition 1],

leading to

r̃(u, i) =
(K − 1)K2|βsi|2

N
|G(u, ρm, i)|2e−j

2πi
N︸ ︷︷ ︸

C(i)

m2∑
m=m1

ejρmu

= C(i)× ej
fL+

B(m2+m1)
2(M−1)
fH

u
sin Bu(m2−m1+1)

2(M−1)fH

sin Bu
2(M−1)fH

(5.21)
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where 0 ≤ m2 − m1 ≤ M − 1, B
(M−1)fH

< B
(M−1)fH

(m2 − m1 + 1) ≤ B
fH
� 1, and

hence the numerator and denominator of (5.21) always take the same sign. The

accumulation gain of (5.21) is approximately (m2 − m1 + 1) [7, Remark 1]. For

illustration convenience, the noise term is suppressed in (5.21), and its impact on

the AoA estimation will be analyzed later.

By taking the angle of r̃(u, i), the one-to-one mapping of u to the selected DFT

beams is finally established, as given by

ûi =
fH

fL + B(m2+m1)
2(M−1)

arg{r̃(u, i)}. (5.22)

Note that the estimation accuracy of ûi is affected, not only by the noise com-

ponent in (5.20), but C(i) in (5.21) as well. From (5.19) and (5.21), we can see that

the amplitude of C(i) depends on the selected DFT beams. By selecting the DFT

beams with the strongest received signal power, the largest |C(i)| and, in turn, the

largest AoA estimation SNR can be attained.

Corollary 5.1. In the case of N → ∞, the AoA estimate (5.22) is dominated by

the DFT beam i? + k?Q which is the strongest DFT beam; and the contribution of

other DFT beams is asymptotically negligible.

Proof. See Appendix 7.4.4.

Algorithm 9 summarizes the proposed AoA estimation technique by applying

Corollary 5.1 in the one-to-one mapping established in (5.22). Step 1 lists the input

parameters, where n? is obtained from Algorithm 8. In Step 2, i? is calculated via

i? = (n?)Q and the set of DFT beams for the AoA estimation is identified, denoted

by I. The index for the strongest DFT beam is in I. In Step 3, the beam selection

matrix is configured based on I. The k-th column of W̃ can be given by

[W̃]:,k =

[
0, · · · , 0, 1

[I]k−th
, 0, · · · , 0

]T

. (5.23)

In Step 4, [W̃]:,k is set at RF chain k to perform beam selection. In Step 5, the
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column-wise DFT is taken on X̃ based on (5.18). The DFT coefficients are cross-

correlated and accumulated in Steps 6 and 7, respectively. Finally, the AoA is

estimated unambiguously in Step 8.

Algorithm 9 can be carried out by applying the same I for receiving over the

consecutive Nu
sym(≥ 1) symbols, in the case that there are Nu

sym symbols for u esti-

mation. In this case, Steps 4 to 7 are carried out individually at each symbol. Let

r̃i′(u, i
?) denote the output of Step 7 at any symbol i′ ∈ [1, Nu

sym]. In Step 8, before

taking the angle for AoA estimation, r̃i′(u, i
?) can be accumulated across i′, i.e.,∑Nu

sym

i′=1 r̃i′(u, i
?). This is a coherent accumulation, because r̃i′(u, i

?) ∀i′ is identical

by applying the same I; see (5.21).

Note that (5.22) is derived with reference to [7]; nevertheless, the asymptotic

analysis in Corollary 5.1 is new: in the LoS-dominant mmWave channel, the strongest

DFT beam having the strongest output, i.e., satisfying ρmu− 2πi?

N
+ 2πk?

K
∈
(
− π
N
, π
N

)
,

contributes the most to the AoA estimation. In other words, given (i?, k?), we can

use a single symbol to estimate the AoA of interest accurately. Without this, the

complete set of DFT beams have to be enumerated in [7], for which N
K

symbols

would be required.

Also note that all the three values of the beam selection, i.e., 0 and ±1, are used

in the proposed AoA estimation method across this chapter. Specifically, during

the wide beam synthesis, all the three beam selection values are all used; see (5.11).

The synthesized beams are used in Algorithm 1 for quick search of strongest DFT

beams, and hence contribute to the estimation of the AoA in Algorithm 2.

5.5 Performance Analysis

This section analyzes the average number of symbols used by Algorithm 8, and

the MSELB of the proposed AoA estimation, ûi? , from Algorithm 9.

5.5.1 Average Number of Symbols Used by Algorithm 8

We start by deriving the probability at which Algorithm 8 requires x symbols,

where x can be as small as one. This is because, by exploiting the new spatial-
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frequency pattern, Algorithm 8 can identify the strongest DFT beam at any symbol,

if the AoA u sits in the unambiguous angular region probed at the symbol¶.

Lemma 5.2. Assume that beamspace-domain AoA u is uniformly distributed in

[0, 2π]. The probability at which Algorithm 8 uses x symbols asymptotically converges

to

lim
N→∞

f(x) = (1− ρK0 )ρ
(x−1)K
0 , x ≥ 1. (5.24)

Proof. See Appendix 7.4.5.

Based on Lemma 5.2, the average number of symbols used by Algorithm 8 for

the fast search of the strongest DFT beam can be evaluated, as follows.

Theorem 5.3. The average number of symbols used by Algorithm 8, denoted by Ī,

can be asymptotically given by

lim
N→∞

Ī =
1

1− ρK0
. (5.25)

Proof. Based on the results from Lemma 5.2, we have

lim
N→∞

Ī = lim
N→∞

∞∑
x=1

xf(x) = lim
N→∞

∞∑
x=1

(1− ρK0 )xρ
(x−1)K
0

ρ̃0:=ρK0== lim
N→∞

(1− ρ̃0)
∞∑
x=1

xρ̃x−1
0︸ ︷︷ ︸

g(ρ̃0)

(5.26a)

= (1− ρ̃0) lim
x→∞

d (ρ̃0 + ρ̃2
0 + · · ·+ ρ̃x0)

dρ̃0

. (5.26b)

To calculate g(ρ0) in (5.26a), the sum of the geometric series in (5.26b) is first

calculated, leading to ρ̃0 + ρ̃2
0 + · · ·+ ρ̃x0 =

ρ̃0(1−ρ̃x0 )

1−ρ̃0
; and then taking the derivative of

the series sum w.r.t. ρ̃0 results in g(ρ̃0) =
1−ρ̃x+1

0 −(x+1)ρ̃x0 (1−ρ̃0)

(1−ρ̃0)2 which asymptotically

¶The unambiguous angular region consists of the sub-regions probed by the first (K − 1) RF
chains; see Steps 11 to 15, and a part of the sub-region probed by RF chain (K − 1), given by
S(L̃+ l̃, [nL]K−2); see Step 17.
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K−2∑
k′=0

[n̆m]k′ =
K−2∑
k′=0

[ñm]k′ [ñm]∗k′+1 +
K−2∑
k′=0

KM [f(u, ρm, i
?)]∗k′s

∗
i? [ñm]k′+1

+
K−2∑
k′=0

KM [f(u, ρm, i
?)]k′+1si? [ñm]∗k′

≥
K−2∑
k′=0

[ñm]k′ [ñm]∗k′+1 +KM [f(u, ρm, i
?)]∗K−2s

∗
i? [ñm]K−1

+KM [f(u, ρm, i
?)]1si? [ñm]∗0 + 2R{ξ} (5.27)

γ̄up =
σ2

s

σ2
n

(a)
=

K4

N4 |Mβsi? |4|G(u, ρm, i
?)|4(K − 1)2

2K2M2

N2 |βsi? |2|G(u, ρm, i?)|2KMσ2
0

(b)
=
KM |G(u, ρm, i

?)|2(K − 1)2

2N2

|βsi? |2

σ2
0︸ ︷︷ ︸
γ0

(c)
=
M(K − 1)2γ0

2K
(5.28)

converges to 1
(1−ρ̃0)2 . This is because ρ̃0 < 1 and lim

x→∞
ρ̃x0 = 0. By substituting

g(ρ̃0) = 1
(1−ρ̃0)2 into (5.26b), (5.25) is obtained, which concludes the proof.

As revealed in Lemma 5.2, there is a high probability given by (1 − ρK0 ), at

which Algorithm 8 can identify the strongest DFT beam with a single symbol.

By substituting the typical wideband configuration ρ0 ≈ 0.2 and K = 8 [8] into

(5.24), f(1) ≈ 0.832. Moreover, the probability increases with the bandwidth and

the number of RF chains. To the best of our knowledge, no existing methods can

identify the strongest DFT beam with a single symbol.

Theorem 5.3 indicates that the average number of symbols required by Algorithm

8 depends asymptotically on the system bandwidth and the number of RF chains,

K. We note that Ī decreases, as ρ0 or K increases. In the above example, Ī ≈

1.2. Although Lemma 5.2 and Corollary 5.1 are derived based on the asymptotic

condition that N →∞, we will show in Section 5.6 that the results are accurate for

a typical massive MIMO antenna with N = 256.
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5.5.2 MSELB of Algorithm 9

With reference to [7], the MSELB can be approximated by 1
2γ̄up

in high SNR

regions, where γ̄up is the upper bound of the estimation SNR for u. Therefore, we

first derive γup. From (5.22) and (5.21), the signal power is σ2
s = |C(i?)|2(m2−m1 +

1)2 = K4

N4 |Mβsi? |4|G(u, ρm, i
?)|4(K− 1)2, where |Msi? | is the amplitude of the signal

component in (5.3), G(u, ρm, i
?) is given in (5.19), and (m2 −m1 + 1) is the gain of

the accumulation across sub-carriers; see (5.21).

Based on (5.20), the noise term in the cross-correlation of consecutive DFT

coefficients can be given by [n̆m]k′ = [ñm]k′ [ñm]∗k′+1 +KM [f(u, ρm, i
?)]∗k′s

∗
i? [ñm]k′+1 +

KM [f(u, ρm, i
?)]k′+1si? [ñm]∗k′ , where ñm is the DFT of the m-th column of Ñ in

(5.15) and Ñ is the row-wise DFT of N in (5.2). The accumulation in (5.21) also

accumulates the noise [n̆m]k′ across k′, leading to (5.27), where

ξ =
K−3∑
k′=0

KM [f(u, ρm, i
?)]∗k′s

∗
i? [ñm]k′+1.

The inequality in (5.27) is obtained due to the removal of the imaginary parts of ξ,

provided ρmu− 2πi?

N
= 0 and [f(u, ρm, i

?)]k′ is invariant with k′; see (5.18d).

By suppressing the real component in (5.27), the power of the accumulated noise,

denoted by σ2
n, is lower bounded by

σ2
n ≥K2M2|[f(u, ρm, i

?)]K−2si? |2σ2
ñ +K2M2|[f(u, ρm, i

?)]1si? |σ2
ñ

=
2K2M2

N2
|βsi? |2|G(u, ρm, i

?)|2KMσ2
0,

where σ2
ñ is the variance of every element of the AWGN Ñ and σ2

0 is the variance of

every element of N.

By assuming the AWGN N satisfies [N]km ∼ CN (0, σ2
0) ∀k,m, the power of the

AWGN Ñ is [Ñ]km ∼ CN (0, KMσ2
0) ∀k,m; see (5.2) and (5.15). Given σ2

s and σ2
n,

the SNR of the AoA estimation is upper bounded by (5.28), where γ0 is the receive

SNR at each antenna element, (a) is obtained by replacing σ2
s and σ2

n with their

expressions derived earlier in this section, and (b) is obtained by suppressing the
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Figure 5.4 : MSE of the AoA estimate, where the state of the art [7], referred to as
“all” (since the method uses all the DFT beams), is simulated for comparison.

common factors in the numerator and denominator. In (5.28), (c) is obtained by

plugging (7.31) into (b). Specifically, as N → ∞, we have

lim
N→∞

γ̄up = lim
N→∞

KM |G(u, ρm, i�)|2(K − 1)2

2N2
γ0

=
KM

[
lim

N→∞
|G(u, ρm, i�)|2

]
(K − 1)2

2N2
γ0 =

KMQ2(K − 1)2

2N2
γ0

=
MK2Q2(K − 1)2

2KN2
γ0 =

M(K − 1)2γ0
2K

, (5.29)

where the third equality is obtained based on (7.31), the fourth is obtained by

multiplying K to both the enumerator and denominator, and the last equality is

obtained due to the setting N = QK. In the case that Nu
sym(≥ 1) symbols are used

in Algorithm 2, the estimation SNR for u is Nu
sym × γ̄up. Finally, the MSELB of the

proposed AoA estimation is given by

MSELB(ûi�) =
1

2Nu
symγ̄up

=
K

Nu
symM(K − 1)2γ0

. (5.30)
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Figure 5.5 : (a) the detection probability of Algorithm 8; (b) the simulated and
analytical probability that Algorithm 8 uses x symbols (x = 1, 2, · · · ), referred to as
“sim” and “ana”, respectively.

5.6 Simulation Results

In this section, simulations are carried out to validate the proposed method and

analysis. Without loss of generality, linear LAAs are considered. Unless otherwise

specified, the array configuration and other simulation parameters are set as: N =

256, M = 128, fH = 1, fL = 0.8, B = 0.2, K = 4 and Nu
sym = 1. We first

consider LoS-dominant channels with negligible NLoS paths, where the beamspace-

domain AoA of the LoS satisfies u0 ∈ U [0, 2π] and |β0| = 1. Then the multi-path

scenario in [8] is simulated to validate the applicability of the proposed algorithms,

where |β0| = 1 and βp ∼ CN (0,−10 dB), p = 1, 2; and up ∼ U [0, 2π], p = 0, 1, 2.

Ntrial = 2 × 104 independent trials are carried out to get each of the results in this

section.

Fig. 5.4 compares the MSE of the AoA estimate between the proposed method

and the existing work [7], as γ0 increases, where the number of symbols used by

Algorithm 8 is listed in Table 5.1, and Nu
sym = 1 symbol is adopted to perform

Algorithm 9. We see that, using a much smaller number of symbols on average,

the proposed method outperforms the state of the art in the low SNR regions. To

achieve the same MSE of 4.975× 10−3 rad2, the proposed algorithm can operate at

a 4 dB lower estimation SNR than the existing method [21], when K = 8. . We also
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Table 5.1 : Simulated occurrence of using x symbols by Algo-
rithm 8

x 1 2 3 4 5 6 SA AA
K = 2 7169 4631 2821 1944 1162 785 2.80 2.78
K = 4 11799 4840 2039 783 539 0 1.67 1.69
K = 6 16723 2830 447 0 0 0 1.19 1.20
1 The content of the six columns corresponding to x =

1, 2, · · · , 6 is the occurrence times based on 2 × 104 inde-
pendent trials;

2 SA and AA refer to the “Simulated Average number of sym-
bols” and the “Analytical Average number of symbols” used
by Algorithm 8, respectively;

3 x can take up to 11 in the case of K = 2, the occurrence times
of which are less than 450 and suppressed due to limited
space.

see that, despite using a single symbol, Algorithm 9 attains the considerably close

performance to the existing work [7], using 32, 64 and 128 symbols in the case of

K = 2, 4 and 8, respectively.

The key reason for the superiority of the proposed method is that the strongest

DFT beam can be fast identified by exploiting the new spatial-frequency patterns

in Algorithm 8. As a result, only a single symbol is required to carry out Algorithm

9. In contrast, without the a-priori information on the AoA, the existing work [7]

had to enumerate all the N DFT beams. To this end, the AWGNs are accumulated

by the proposed method not as much as the existing work [7] in the noise-limited

low SNR regions. In the high SNR regions, the strongest DFT beams dominates the

AoA estimation performance, as proved in Corollary 5.1.

Fig. 5.5(a) plots the probability of correctly detecting the strongest DFT beam

using Algorithm 8, referred to as “detection probability”. We see that the detection

probability asymptotically approaches 1 as γ0 increases, and achieves 1 when γ0 ≥ 0

dB. By jointly inspecting Figs. 5.4(a) and 5.5, we see that the AoA estimation

performance is affected by the detection probability when γ0 ≤ −2 dB. The high

detection probability contributes to the high estimation accuracy of Algorithm 9

in high SNR regions, i.e., γ0 ≥ 0 dB. From Fig. 5.5(a), the detection probability

decreases as K increases, for −15 ≤ γ0 ≤ −5 dB. This leads to the better estimation

accuracy at smaller K in the same SNR region; see Fig. 5.4.

Fig. 5.5(b) plots the probability that Algorithm 8 uses x(= 1, 2, · · · ) symbols. As
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Figure 5.6 : MSE of the AoA estimate against the number of symbols used by
Algorithm 9, denoted by Nu

sym, where K = 4.

shown in the figure, the probability of a single symbol being sufficient for Algorithm

1 to correctly identify the strongest DFT beam grows with K. The probability can

be as high as 83.2%. Based on the simulated probability, the average numbers of

symbols used by Algorithm 8 are 2.80, 1.67, and 1.19 in the case of K = 2, 4,

and 8, respectively. Correspondingly, the analytical average numbers of symbols are

2.78, 1.69 and 1.20 by applying Theorem 5.3. The conclusion drawn is that Fig.

5.5(b) validates the applicability of Lemma 5.2 and Theorem 5.3 in typical massive

MIMO settings with a large finite number of antennas, e.g., 256. Hence they can

serve as a practical guideline for the design of LAA-based wideband massive MIMO

transceivers.

Fig. 5.6 compares the MSE of the AoA estimations between the proposed algo-

rithm, i.e., Algorithm 9, and the existing work [7], as Nu
sym increases. K = 4. We see

that the estimation accuracy of the proposed AoA estimation technique increases

with Nu
sym, especially in high SNR regions, i.e., γ0 ≥ 0 dB. The MSE can be reduced

by over 80% from 2.14× 10−3 rad2 to 3.53× 10−4 rad2, as Nu
sym grows from 1 to 6.

Algorithm 9 can also achieve as large as 88% improvement of the MSE in the case

of Nu
sym = 6. Even in the case of Nu

sym = 6, the total number of symbols used by the

proposed method is still much smaller than that of the existing work [7]. In Fig. 5.6,
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Figure 5.7 : (a) detection probability of the strongest DFT beam against bandwidth
B; (b) probability of Algorithm 8 using x symbols given various B.

we also see that the MSE improvement in the case of γ0 = −10 dB is not as obvious

as that in the other two cases. This indicates that the AoA estimation accuracy is

limited by the detection probability of the strongest DFT beam; see Fig. 5.5(a).

To improve AoA estimation accuracy in low SNR regions, we need to enhance the

detection probability.

Fig. 5.7 presents the performance of Algorithm 8 with regards to the system

bandwidth, where K = 4. We see that the detection probability remains around

1 as the bandwidth B changes. We see that the probability of a single symbol

being sufficient for Algorithm 1 to correctly identify the strongest DFT beams grows

with B. The simulated results are consistent with the analytical results. This

again validates the applicability of Lemma 5.2 and Theorem 5.3. Moreover, the

probability of using a single symbol can be as large as 0.9744 under B = 0.6fH.

This indicates that the proposed algorithm has the potential to be applied to ultra-

wideband systems.

Fig. 5.8 compares the MSE of the LoS AoA estimation between the proposed

method and the existing work [7] in the presence of two NLoS paths, where B = 0.4

andM = 256. We see that the proposed method achieves the substantially improved

robustness against the NLoS paths, as compared to the method [7]. Specifically, to
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Figure 5.8 : left: MSE of LoS AoA estimate against γ0 in the presence of two NLoS
paths; right: the DP of the strongest DFT beam for the LoS path. The existing
work [7], referred to as “all”, is provided as the benchmark.
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Figure 5.9 : CDF of the squared error of the AoA estimates obtained by running
the proposed algorithm in conjunction with SIC.

achieve the MSE of 0.01 rad2, the proposed method can operate at a 14 dB lower

estimation SNR than the existing technique [21]. Moreover, the proposed method

can reduce the MSE of the AoA estimation for the LoS path by orders of magnitude

in high SNR regions (e.g., γ0 ≥ 10 dB). This is because the proposed Algorithm 9

only selects the strongest DFT beams, and can suppress the NLoS paths with the
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Figure 5.10 : Spectral efficiency comparison between the proposed method and the
state of the art [8], referred to as “SSD”, where K = 8.

asymptotic probability (1 − K
N
)2 as N → ∞.‖ On the other hand, the superiority

of the proposed method to the existing work [7] is also due to the resilience of

Algorithm 8 against the NLoS paths. This can be confirmed by jointly inspecting

the detection probabilities in Figs. 5.5(b) and 5.8.

Fig. 10 plots the performance of the proposed algorithm in the presence of

multipath, where three paths, an LoS path and two NLoS paths, are considered and

the cumulative density functions (CDFs) of the squared estimation errors of their

AoAs are plotted. The estimation SNR is set to be γ0 = 10 or 20 dB for the LoS

path. With reference to [8], the two NLoS paths are are set to be 5 and 10 dB

weaker than the LoS, respectively. The AoAs of the three paths are independently

and randomly uniformly distributed within [0, π].

The proposed AoA estimation method can operate in coupling with serial iter-

ative cancellation (SIC), especially in a typical multipath mmWave scenario where

‖The probability that the NLoS paths are not in theK DFT beams selected in Step 2, Algorithm
9 asymptotically approaches the probability that the NLoS paths are incident to any of the other
(N −K) DFT beams, as N → ∞. The asymptotic condition N → ∞ guarantees no leak of the
signal received by any DFT beam. Given up ∼ U [0, 2π], ∀p = 1, 2, the probability that the p-th
NLoS path is incident to one of the (N−K) DFT beams is N−K

N ; moreover, the probability becomes

(N−K
N )2 in the presence of two independent NLoS paths. Based on the simulation configurations,

the probability is 0.969 and 0.9385 for K = 4 and 8, respectively.
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an NLoS path is much weaker than the LoS path, e.g., lower by 5 dB or more [1,

2]. One after another from the strongest path to the weakest, the multiple AoAs

can be estimated by using the proposed algorithm and the associated paths can

be accordingly estimated and canceled from the received signals. Specifically, after

obtaining the AoA, we can pick up the received signal of the corresponding DFT

beams (with the beam selection matrix specified in Lemma 1). Given the estimated

AoA of a path, the complex gain of the path, βp in (4), can be estimated by reusing

the same received symbol with which the AoA has been estimated. As the spatial

responses of the DFT beams in the direction of the AoA can be calculated, βp can

be estimated by using an LS estimator [13, 14].

As we can see in Fig. 10, the proposed algorithm in conjunction with SIC is

effective in the presence of multipath components. The LoS path can achieve much

better estimation accuracy than the NLoS paths. This is due to the weaker signal

strengths of the NLoS paths and the error propagation which is typical to SIC.

Last but not least, we provide the spectral efficiency achieved by the proposed

method and the state of the art [8], referred to as “SSD”. As in [8], the transmission

scheme in [82] is adopted to evaluate the spectral efficiency based on the AoA esti-

mated in Fig. 5.8. The beam selection matrix can be configured to activate multiple

DFT beams capturing the estimated AoAs in their mainlobes to receive the signals,

as designed in Lemma 1.

Fig. 11 plots the special efficiency, under the condition that the SNR of the

uplink AoA estimation γ0 = 8 or 16 dB (and the AoAs can be reasonably accurately

estimated), while the SNR of the downlink transmission varies from −20 dB to 10

dB. The condition is consistent with [6, Figs. 8&9] and [8, Fig. 4], and adopted

for the purpose of fair comparisons with [8]. Each curve in Fig. 11 has a consistent

uplink SNR for AoA (and channel) estimation, i.e., γ0 = 8 or 16 dB, and hence a

consistent AoA estimation accuracy. Given the AoA estimation, the curve displays

the growth in spectral efficiency with the increasing downlink SNR. The spectral

efficiency based on the perfect channel is also provided as an upper bound. We see

that the proposed method outperforms SSD [8] markedly, especially in low SNR
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regions. The spectral efficiency can be improved by up to 89.04% at −20 dB SNR.

This is due to the accurate AoA estimation achieved by the proposed method. By

jointly assessing Figs. 5.8 and 5.10, we can see that the better AoA estimation can

result in the larger spectral efficiency, confirming the value of the accurate AoA

estimation to the wideband LAA-based massive MIMO systems.

As shown in Fig. 11, a curve under γ0 = 16 dB is above its counterpart under

γ0 = 8 dB, indicating that channel estimation is worse in a low region of the uplink

SNR used for AoA estimation, than in a high region of the SNR. The spectral

efficiency of the proposed approach (under γ0 = 16 dB) is indistinguishably close

to that under the perfect channel condition, when the downlink SNR is low. This

is because the downlink SNR is too low and contributes negligibly (by Shannon’s

Law).

We notice in Fig. 11 that spectral efficiency is close to zero, with and without the

perfect channel conditions. The spectral efficiency of the proposed approach deviates

from that under the perfect channel, when the downlink SNR is high. The reason

is that the received SNR in the downlink has a dominating effect on the spectral

efficiency, when it is high (by Shannon’s Law as well). The channel estimation error

of the proposed approach under γ0 = 16 dB can lead to a consistent gap (in dB)

between its spectral efficiency and the spectral efficiency under the perfect channel

condition, as shown at the right ends of the curves.

5.7 Conclusion

In this chapter, we propose a fast and accurate approach for the AoA estimation

in wideband LAAs. This is achieved by unprecedentedly exploiting (rather than

circumventing) the spatial-wideband effect. New spatial-frequency pattern are un-

covered to establish one-to-one mappings between the strongest DFT beam contain-

ing the AoA of interest and the patterns constructed judiciously based on selected

sub-carriers. As a result, a new algorithm is designed to identify the strongest DFT

beam within a single symbol, set up the relation between the AoA and the strongest

DFT beam, and accordingly estimate the AoA uniquely and accurately. Closed-
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form expressions are derived to analyze the accuracy of the algorithm. Evident

from simulations, the proposed approach is able to improve the estimation accuracy

and spectral efficiency substantially using a much smaller number of symbols, as

compared to the state of the art.
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Chapter 6

Conclusions and Future Works

In this thesis, the AoA estimation in popular mmWave hybrid arrays is studied. Four

approaches are proposed for different types of hybrid arrays, which are accomplished

by new discoveries, derivations and analyses. To be concluded, the following has

been accomplished.

1. For narrowband hybrid array of phased subarrays, we propose high-accuracy

AoA estimation with new subarray-specific time-varying phase shifts in general

localized hybrid arrays. We discover that the signs of the cross-correlations

between consecutive subarrays are deterministic, and only the strongest cross-

correlation takes a different sign from the rest. We propose to align the cross-

correlations, achieving constructive combinations and improving tolerance to

noises. Evident from extensive simulations, the estimation accuracy can be

substantially improved by orders of magnitude through our design of phase

shifts and our discovery, and asymptotically approach the MSELB.

2. For wideband hybrid array of phased subarrays, we propose new subarray-

specific time-varying phase shifts, which enable the cross-correlations of receive

signal between subarrays to have deterministic phase changes, and hence be

coherently accumulated to deliver unambiguous and noise-tolerant estimation

of Nu and u. We also optimize the frequency interval for coherent accumula-

tion across sub-carriers, minimizing the estimation error of Nu and leveraging

the accumulation gain. Evident from simulations, our approach is able to

dramatically improve the estimation accuracy by orders of magnitudes, with

significantly reduced requirements of complexities and training symbols, as

well as enhanced robustness against noises.
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3. For narrowband LAAs, we propose a fast and accurate approach for the AoA

estimation. We prove that the AoA of a path can be accurately estimated

from the two adjacent DBDs at both sides of the AoA. The two DBDs are

proved to have larger amplitude gains than other DBDs and DFT beams, and

can be more reliably identified in the presence of non-negligible noises. We

design a novel beam synthesis method based on discrete lens beams and 1-

bit phase shifts. As a result, the angular region containing the two strongest

DBDs can be exponentially narrowed down, and the two DBDs can be quickly

identified. Evident from extensive simulations, the proposed approach is able

to improve estimation accuracy and the time-average beamforming gain by

orders of magnitude, as compared to the state of the art.

4. For wideband LAAs, we propose a fast and accurate approach for the AoA

estimation. This is achieved by unprecedentedly exploiting (rather than cir-

cumventing) the spatial-wideband effect. New spatial-frequency pattern are

uncovered to establish one-to-one mappings between the strongest DFT beam

containing the AoA of interest and the patterns constructed judiciously based

on selected sub-carriers. As a result, a new algorithm is designed to identify

the strongest DFT beam within a single symbol, set up the relation between

the AoA and the strongest DFT beam, and accordingly estimate the AoA

uniquely and accurately. Closed-form expressions are derived to analyze the

accuracy of the algorithm. Evident from simulations, the proposed approach

is able to improve the estimation accuracy and spectral efficiency substantially

using a much smaller number of symbols, as compared to the state of the art.

The following future works are expected to further validate the proposed in

real-life scenarios, and to improve the proposed approaches in more complicated

scenarios.

1. The proposed approach can have the potential to operate in the presence of

NLoS, despite LoS overwhelmingly dominates many mmWave bands [1, 3, 4,

15–17]. For instance, the difference of SNR between LoS and NLoS paths is
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more than 5 dB on average in the 28, 38, 60, and 73 GHz mmWave bands [91],

and 20 dB in the sub-mmWave bands, e.g., Tera Hertz [92]. In the case that

NLoS is much weaker than LoS, e.g., by 5 dB or more, as typically is in practice

[91], SIC can be conducted in AoA estimation [21, 22]. Sequentially, we can

run the proposed algorithms (i.e., Algorithms 1 and 2) to estimate the AoA

of one of the paths, ui = 2πd sin(θi)/λc (ui, or more precisely, θi, is the AoA

of the i-th strongest path); see (2.7), steer the beams of all subarrays towards

the path to measure its strength and phase, regenerate and subtract the signal

component of the path from the received signals at all subarrays. One path

after another, all paths can be estimated and subtracted. We note that, as

part of the inputs to SIC, the AoAs of the estimated paths take sinusoidal

formats, i.e., ui = 2πd sin(θi)/λc. The sinusoidal formats result from the array

responses (or in other words, the geometry of the arrays). The pilot signal can

take a different waveform. By conducting SIC, we can successively reconstruct

and cancel the received pilot signals along the estimated paths based on the

waveform and the estimates of the AoAs, and then estimate the AoAs of the

other paths. In the case that the multiple paths are of similar strengths, which

is unlikely though in practice for mmWave, the proposed approach could be

carried out in coupling with parallel interference cancellation (PIC). The only

difference from SIC is that the multiple AoAs would be estimated and canceled

in parallel. Initial results of combining the proposed approaches with SIC have

been achieved, e.g., in Figs. 2.7, 4.12, 4.11 and 5.9. More analysis is required

on the SIC-based AoA estimation approaches, in terms of the convergence rate

and performance.

2. Butler matrix, as a promising massive MIMO transceiver front-end, has in-

creasingly attracted interest, due to its high gain, low complexity and low

cost, as compared to conventional DAAs and LAAs [2, 105, 106]. Similar to

a LAA, a Butler matrix is an integrated, passive beamforming network with

Na evenly-spaced antennas and Nb feeders (also referred to as “beam ports”),

where typically Na = Nb = 2Z (Z is a nonnegative integer) [106]. A Butler ma-
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trix is more energy-efficient than a conventional DAA. An Na-dimensional But-

ler matrix can readily produce Na Butler beams [2], while an Na-dimensional

linear DAA requires N2
a number of logNa

2 -bit phase shifters to generate Na DFT

beams [106]. The Butler matrix can also provide effective spatial interference

suppression, and separate signals with different angle-of-arrivals (AoAs) by

exploiting different mainlobes of the Butler beams [105, 107].∗ An array of

Butler matrices can readily form a massive MIMO transceiver. This can help

by either reducing the numbers of antennas and beam ports of each Butler ma-

trix, or improving the array gain, as compared to a single large-dimensional

Butler matrix [2, 105]. The reduced number of antennas and beam ports can

also reduce cross-overs and mutual couplings [106, 107]. To fulfill the expected

benefits of Butler matrix arrays (BMAs), accurate estimations of AoAs of inci-

dent paths are the key. BMAs still face the key challenge which DAAs face in

AoA estimation. Specifically, the received signals of the antennas of an analog

subarray (or a Butler matrix) are added up (via RF combining) before being

fed into an RF chain. The key information to estimate the AoA, which is the

phase offset between adjacent antenna elements, becomes obscure. There is

no existing research on the AoA estimation for BMAs. For future works, we

would explore the feasibility of applying the proposed approaches onto Butler

matrices, or develop new methods based on the proposed ones in this thesis.

∗It is noteworthy that Butler matrices incur lower implementation complexity and cost, and
can cover wider angular region and generate more orthogonal beams, as compared to LAAs [106].
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Chapter 7

Appendices

7.1 Proof, Analysis and Derivation in Chapter 2

7.1.1 Proof of Lemma 2.1

Proof. We start by proving the existing of m′ satisfying sin(ωtm′) sin(ωtm′+1) < 0. To

prove this, we hypothesize that sin(ωtm̃) = 0 for a given m̃ ∈ [0,M − 1], so that

m′ does not exist. Then sin(Nωtm̃) = 0, since ωtm̃ ∈ {2aπ, 2aπ ± π, a ∈ N}. For

m = 0, 1, · · · , K − 1, we have

sin(Nωtm) = sin(Nωtm̃+m−m̃)

= sin(Nωtm̃ −Nπ(m− m̃)/K)

= (−1)(m−m̃)Q sin(ωtm̃) = 0.

From (2.13), Gt
m(u) = 0, ∀m ∈ [0, K − 1]. In other words, if sin(ωtm) intersects

with the x-axis at any integer point, all the cross-correlations of the received signals

between consecutive subarrays would be zero. This contradicts with the condition

of Theorem 2.1 that Gt
m′(u) 6= 0, and therefore, m̃ does not exist. The existence of

m′ satisfying sin(ωtm′) sin(ωtm′+1) < 0.

The uniqueness of m′ is confirmed since sin(ωtm) (0 ≤ k ≤ K − 1) only covers

half a cycle of a sine function.

7.1.2 Proof of Lemma 2.2

Proof. ωtm is a function of u and can be written as ωtm(u). Given m1 and m2(=

m1 + 1), satisfying sin(ωtm1+1(u)) = sin(ωtm2
(u)) = 0, we have | sin(ωtm1

(u))| =

| sin(ωtm2+1(u))| according to Lemma 7.1 in Appendix 7.1.3. Without loss of gener-

ality, we assume that sin(ωtm1
) > 0 and sin(ωtm2+1) < 0. An adequate δu > 0 can
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be selected to make sin(ωtm2
(u + δu)) > 0 and sin(ωtm2+1(u + δu)) < 0. As a re-

sult, | sin(ωtm1
(u+ δu))| > | sin(ωtm1

(u))| and | sin(ωtm2+1(u))| > | sin(ωtm2+1(u+ δu))|.

Subsequently, we have

| sin(ωtm1
(u+ δu))| > | sin(ωtm1

(u))|

= | sin(ωtm2+1(u))|

> | sin(ωtm2+1(u+ δu))|. (7.1)

Since m2 = m1 + 1, we have | sin(ωtm1+1(u + δu))| = | sin(ωtm2
(u + δu))|, which,

combined with (7.1), leads to

| sin(ωtm1
(u+ δu)) sin(ωtm1+1(u+ δu))|

> | sin(ωtm2+1(u+ δu)) sin(ωtm2
(u+ δu))|. (7.2)

Let m2 = m′, we obtain that | sin(ωtm′) sin(ωtm′−1)| > | sin(ωtm′+1) sin(ωtm′)|.

Likewise, we can prove that | sin(ωtm′+1) sin(ωtm′+2)| > | sin(ωtm′+1) sin(ωtm′)|, by

selecting an adequate δu < 0.

From Lemma 2.1, m′ is unique. Since sin(ωtm), 0 ≤ m ≤ K − 1, only covers

half a cycle of a sine function, we confirm that | sin(ωtm′) sin(ωtm′+1)| has the smallest

amplitude. This concludes this proof.

7.1.3 Lemma 7.1 and its proof

Lemma 7.1. If there exist m1 and m2 ∈ [0, K−1], satisfying sin(ωtm1+1) = sin(ωtm2
) =

0 and m2 = m1 + 1, then | sin(ωtm1
)| = | sin(ωtm2+1)|.

Proof. If sin(ωtm1+1) = 0 and sin(ωtm2
) = 0, then | cos(ωtm1+1)| = | cos(ωtm2

)| = 1.

Since 2ωtm+1 = 2ωtm − 2π/K, it is easy to obtain that

| sin(ωtm1
)|=| sin(ωtm1+1 + π/K)|

=| sin(ωtm1+1) cos(π/K) + cos(ωtm1+1) sin(π/K)|

=| sin(π/K)|. (7.3)
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Likewise, | sin(ωtm2+1)| = | sin(ωtm2
− π/K)| = | sin(π/K)|. Therefore, Lemma 7.1 is

proved.

7.1.4 Derivation of Eu {|P t
m(u)|2}

Given that u is uniformly distributed in [−π, π] and P t
m(u) in (2.11), we have

Eu {|P t
m(u)|2} = 1

2π

∫ π
−π

∣∣∣ sin(Nωtm)
sin(ωtm)

∣∣∣2 du. The integral on the RHS can be calculated

by using the property of Fourier transform. Specifically, we can define a rectangular

window function as rN(n) = 1, ∀n ∈ [0, N − 1]. The discrete-time Fourier trans-

form (DTFT) of rN(mK), termed f(u), can be given by f(u) =
N−1∑
n=0

rN(n)e−jun =

ej
N−1

2
u sin(Nu/2)

sin(u/2)
. Exploiting the frequency-shift property of DTFT [95], the inverse

DTFT of P t
m(u) is the phase shifted version of rN(n), i.e., rN(n)ej(

2πtn
L

+ 2mπn
K

). This

is because P t
m(u) = f(u − 2πt

L
− 2mπ

K
) and is a shifted version of f(u) in the (an-

gular) frequency domain. As a result, we have 1
2π

∫ π
−π

∣∣∣f(u− 2πt
L
− 2πm

K

)∣∣∣2 du =∑∞
n=−∞ |rN(n)|2 = N , based on Parseval’s theorem [95]. Therefore, we prove that

Eu {|P t
m(u)|2} = N for m = 0, 1, · · · ,M − 1 and t = 0, 1, · · · , P − 1.

7.1.5 Saturation Analysis of Fig. 2.7

The proposed operations of AoA estimation (or more specifically, Algorithm 4),

such as the IDFT of all subarrays, the cross-correlations of consecutive IDFT points,

and the coherent accumulation of the cross-correlations, can have different impacts

on the suppression of the noise and the NLoS interference. In the presence of a

LoS and a NLoS paths, denoted respectively by s̃(t) and ĩ(t), the cross-correlation

between every K consecutive IDFT points in Algorithm 2 can be given in (7.4),

where us and ui capture the AoAs of the LoS and NLoS paths, respectively, an′(t) =

s̃(t)gtn′(us)+ĩ(t)g
t
n′(ui)+zn′(t), n

′ = 0, 1, · · · , K−1, stands for the Fourier coefficients

of the outputs of K consecutive subarrays, gtn′(u) and C(u) are given in (2.22) and

(2.24), respectively.

The first and second terms on the RHS of (7.4), denoted by f(t), provide the

effective signal with a deterministic phase which is evaluated to estimate the AoA

in Algorithm 2, for any given us, ui, and the input per-antenna SIR, Es̃,̃i
{
|s̃(t)|2
|̃i(t)|2

}
, of

5dB in Fig. 2.7. Es̃,̃i{·} takes expectations over s̃(t) and ĩ(t). The estimated AoA
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rn′(t) = a∗n′(t)an′+1(t) = ej(us−
2πt
L

) |C(us)|2 |s̃(t)|2 + ej(ui−
2πt
L

) |C(ui)|2 |̃i(t)|2︸ ︷︷ ︸
f(t)

+ s̃∗(t)gt∗n′(us)̃i(t)g
t
n′+1(ui) + s̃(t)gtn′+1(us)̃i

∗(t)gt∗n′(ui)︸ ︷︷ ︸
I(t)

+z̃n′(t). (7.4)

z̃n′(t) =z∗n′(t)zn′+1(t)

+ s̃(t)C(us)e
j(n′+1)(us− 2πt

L
)z∗n′(t) + s̃(t)∗C(us)

∗e−jn
′(us− 2πt

L
)zn′+1(t)︸ ︷︷ ︸

denoted by z̃s̃

+ ĩ(t)C(ui)e
j(n′+1)(ui− 2πt

L
)z∗n′(t) + ĩ(t)∗C(ui)

∗e−jn
′(ui− 2πt

L
)zn′+1(t)︸ ︷︷ ︸

denoted by z̃ĩ

. (7.5)

σ2
I(t) =

⌈
M

K

⌉2

× Es̃,̃i,us,ui


(
P−1∑
t=0

K−2∑
n′=0

[
s̃∗(t)gt∗n′(us)̃i(t)g

t
n′+1(ui) + s̃(t)gtn′+1(us)̃i

∗(t)gt∗n′(ui)
]
e
j2πt
L

)2


u 44.787 Watts. (7.6)

can incur a noise-independent bias resulting from ĩ(t). The third and fourth terms on

the RHS of (7.4), denoted by I(t), capture the cross-correlations between the LoS

and NLoS paths, and bear randomness resulting from the random instantaneous

phases and amplitudes of s̃(t) and ĩ(t). In Fig. 2.7, uniformly distributed phases

and Rayleigh distributed amplitudes are taken into account. I(t) can be interpreted

as an additional noise source. The last noise term on the RHS of (7.4) can be written

as (7.5).

From (7.4), we can see three separate causes of error to the estimation of us,

namely, the bias from the estimation of the phase of f(t), the randomness-bearing

interference I(t), and the noise z̃n′(t). f(t) is independent of z̃n′(t) and has a different

impact on the estimation of u from I(t) and z̃n′(t), while both I(t) and z̃n′(t) act as

additive noises. We can study the saturation behavior of the AoA estimation with

respect to γ0 by comparing the coherently accumulated powers of I(t) and z̃n′(t),
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denoted by σ2
I(t) and σ2

z̃ , respectively. The threshold of γ0, which leads to σ2
I(t) ≥ σ2

z̃

is evaluated. The estimation accuracy of us starts to saturate beyond the threshold,

since z̃n′(t) starts to be, and increasingly is, dominated by I(t).

Consider the settings of Fig. 2.7, i.e., us and ui are uniformly distributed on[
π
4
, π

3

]
and

[
−π

3
,−π

4

]
, respectively; N = 8; and M = P = K = 4. σ2

I(t) can be given

in (7.6), where Es̃,̃i,us,ui{·} takes expectations over all randomness, i.e., s̃(t), ĩ(t), us

and ui. The gain of coherent accumulation is accounted for by the coefficient dM
K
e

and the summations over t and n′. The result is achieved numerically.

On the other hand, σ2
z̃ can be attained by separately evaluating the accumu-

lated powers of z̃s̃ and z̃ĩ in (7.5), denoted by σ2
z̃s̃

and σ2
z̃ĩ

, respectively. By refer-

ring to (2.40), the ratio of the coherently accumulated signal power of
⌈
M
K

⌉
(K −

1)
∑P−1

t=0 |C(us)|2 |s̃(t)|2ejus to σ2
z̃s̃

can be approximated to P (K−1)dM/Ke
2

γ0 = 6γ0,

while the coherently accumulated signal power can be given by

Es̃,us


(⌈

M

K

⌉
(K − 1)|s̃(t)|2

P−1∑
t=0

|C(us)|2
)2


=

⌈
M

K

⌉2

(K − 1)2 × Es̃{|s̃(t)|4}︸ ︷︷ ︸
8σ4
s

×Eus


(
P−1∑
t=0

|C(us)|2
)2
︸ ︷︷ ︸

12
π

∫ π
3
π
4

(
∑P−1
t=0 |C(us)|2)

2
dus=64

= 4608σ4
s . (7.7)

Here, σs is the scale parameter of the Rayleigh distributed LoS path. Es̃{|s̃(t)|4} =

8σ4
s is the fourth raw moment of the Rayleigh distributed channel gain, i.e., |s̃(t)|,

of the LoS path. Therefore, σ2
z̃s̃

= 4608σ4
s

6γ0
.

Likewise, we have σ2
z̃ĩ

=
4608σ4

i

6γ0
σ2
i
σ2
s

, where γ0
σ2
i

σ2
s

gives the per-antenna interference-to-

noise ratio at each individual antenna element and σi is the scale parameter of the

Rayleigh distributed NLoS path.

As discussed, the threshold of γ0, beyond which the estimation accuracy of us

starts to saturate, can be achieved by solving σ2
z̃s̃

+σ2
z̃ĩ
≤ σ2

I(t), which, with σ2
s = 10

1
2
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Watts and σ2
i = 1 Watts in Fig. 2.7, leads to

4608σ4
s

6γ0

+
4608σ4

i

6γ0
σ2
i

σ2
s

≤ 44.787⇒ γ0 ≥ 23.5354 dB. (7.8)

This is consistent with Fig. 2.7, where the estimation accuracy of “LoS with NLoS”

starts to saturate over 23 dB.

7.2 Proof and Derivation in Chapter 3

7.2.1 Proof of Lemma 3.1

Proof. We start by proving the existing of m′ satisfying sin(ωtm′) sin(ωtm′+1) < 0.

To prove this, we assume that sin(ωtm̃) = 0 for a given m̃ ∈ [0,M − 1], so that

m′ does not exist. Then sin(Nωtm̃) = 0, since ωtm̃ ∈ {2aπ, 2aπ ± π, a ∈ N}. For

m = 0, 1, · · · , K − 1, we have

sin(Nωim) = sin(Nωtm̃+m−m̃) = sin(Nωtm̃ −Nπ(m− m̃)/K)

= (−1)(m−m̃)Q sin(ωtm̃) = 0.

From (3.11), Gm(ρi, u) = 0, ∀m ∈ [0, K − 1]. In other words, if sin(ωim) intersects

with the x-axis at any integer point, all the cross-correlations of the receive signals

between consecutive subarrays would be zero. This contradicts with the condition

of Theorem 3.1 that Gt
m′(u) 6= 0, and therefore, m̃ does not exist. The existence of

m′ satisfies sin(ωtm′) sin(ωtm′+1) < 0.

The uniqueness of m′ can be readily confirmed since sin(ωim) (0 ≤ k ≤ K − 1)

only covers half a cycle of a sine function.

7.2.2 Proof of Lemma 3.2

Proof. ωtm is a function of u and can be written as ωtm(u). Given m1 and m2(=

m1 + 1), satisfying sin(ωtm1+1(u)) = sin(ωtm2
(u)) = 0, we have | sin(ωtm1

(u))| =

| sin(ωtm2+1(u))| according to Lemma 7.2 in Appendix 7.2.3. Without loss of gener-

ality, we assume that sin(ωtm1
) > 0 and sin(ωtm2+1) < 0. An adequate δu > 0 can
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be selected to ensure sin(ωtm2
(u + δu)) > 0 and sin(ωtm2+1(u + δu)) < 0. As a re-

sult, | sin(ωtm1
(u+ δu))| > | sin(ωtm1

(u))| and | sin(ωtm2+1(u))| > | sin(ωtm2+1(u+ δu))|.

Subsequently, we have | sin(ωtm1
(u + δu))| > | sin(ωtm1

(u))| = | sin(ωtm2+1(u))| >

| sin(ωtm2+1(u+δu))|. Since m2 = m1+1, we have | sin(ωtm1+1(u+δu))| = | sin(ωtm2
(u+

δu))|, which leads to

| sin(ωtm1
(u+ δu)) sin(ωtm1+1(u+ δu))| > | sin(ωtm2+1(u+ δu)) sin(ωtm2

(u+ δu))|.

(7.9)

Let m2 = m′, we obtain that | sin(ωim′) sin(ωtm′−1)| > | sin(ωim′+1) sin(ωim′)|.

Likewise, we can prove that | sin(ωim′+1) sin(ωtm′+2)| > | sin(ωim′+1) sin(ωim′)|, by

selecting an adequate δu < 0.

From Lemma 3.1, m′ is unique. Since sin(ωim), 0 ≤ m ≤ K − 1, only covers

half a cycle of a sine function, we confirm that | sin(ωim′) sin(ωim′+1)| has the smallest

amplitude. This concludes this proof.

7.2.3 Lemma 7.2 and its proof

Lemma 7.2. If there exist m1 and m2 ∈ [0, K−1], satisfying sin(ωtm1+1) = sin(ωtm2
) =

0 and m2 = m1 + 1, then | sin(ωtm1
)| = | sin(ωtm2+1)|.

Proof. If sin(ωtm1+1) = 0 and sin(ωtm2
) = 0, then | cos(ωtm1+1)| = | cos(ωtm2

)| = 1.

Since 2ωtm+1 = 2ωim − 2π/K, it is easy to obtain that

| sin(ωtm1
)|=| sin(ωtm1+1 + π/K)|

=| sin(ωtm1+1) cos(π/K) + cos(ωtm1+1) sin(π/K)|

=| sin(π/K)|. (7.10)

Likewise, | sin(ωtm2+1)| = | sin(ωtm2
− π/K)| = | sin(π/K)|. Therefore, Lemma 7.2 is

proved.
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7.2.4 Calculation of Eu{Hm(ρi, u)} (= 2N)

By substituting the definition of Hm(ρi, u), we have

Eu{Hm(ρi, u)} = Eu{|Pm(ρi, u)|2}+ Eu{|Pm+1(ρi, u)|2}.

Given that u is uniformly distributed in [−π, π] and Pm(ρi, u) in (3.10), we have

Eu
{
|Pm(ρi, u)|2

}
=

1

2π

∫ π

−π

∣∣∣∣sin(Nωim)

sin(ωim)

∣∣∣∣2 du.

The integral on the RHS can be calculated by using the property of Fourier trans-

form. Specifically, we can define a rectangular window function as rN(n) = 1, ∀n ∈

[0, N − 1]. The discrete-time Fourier transform (DTFT) of rN(mK), termed f(u),

can be given by f(u) =
N−1∑
n=0

rN(n)e−jun = ej
N−1

2
u sin(Nu/2)

sin(u/2)
.

Exploiting the frequency-shift property of DTFT [95], the inverse DTFT of

Pm(ρi, u) is the phase shifted version of rN(n), i.e., rN(n)ej(
2πtn
L

+ 2mπn
K

). This is

because Pm(ρi, u) = f(u− 2πt
L
− 2mπ

K
) at ρi = 1 and is a shifted version of f(u) in the

(angular) frequency domain. As a result, we have 1
2π

∫ π
−π

∣∣∣f(u− 2πt
L
− 2πm

K

)∣∣∣2 du =∑∞
n=−∞ |rN(n)|2 = N , based on Parseval’s theorem [95] is applied. Therefore, we

prove that Eu {|Pm(ρi, u)|2} = N at ρi = 1.

On the other hand, ρi in (3.3) is typically close to 1. In the case of B = 0.05fc,

we have ρi ∈ [0.9512, 1], according to (3.3). Finally, we have Eu {|Pm(ρi, u)|2} =

Eu {|Pm+1(ρi, u)|2} = N and Eu{Hm(ρi, u)} = 2N .

7.2.5 Proof of Lemma 7.3

Lemma 7.3. For any sub-carrier i and random u, we have
P−1∑
t=0

|C(ρi, u)|2 = PN
K

,

where C(ρi, u) is given in (3.32).

Proof. Given (3.26) and (3.32), we can express C(ρi, u) as matrix multiplication,

i.e., C(ρi, u) = Ax, where A is a P × Q matrix with the element at the t-th row

and q-th column given by A(t, q) = e−j
2πtq
P (0 ≤ t ≤ P − 1, 0 ≤ q ≤ Q − 1) and x

is a Q× 1 vector with the q-th element ejρiKuq. Clearly, A is the first Q columns of
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a P × P DFT matrix [95]; in other words, A has full column rank. Therefore, we

have |C(ρi, u)|2 = xHAHAx = PQ = PN
K

. This concludes the proof.

7.2.6 Calculation of Eu{|C(ρi, u)|2}

Given (3.32) and a uniform distribution of u over [−π, π), we have

Eu
{
|C(ρi, u)|2

}
=

1

2π

∫ π

−π

∣∣C(ρi, u)|2
∣∣2 du =

1

2π

∫ π

−π

∣∣∣∣∣sin(Nρiu
2
− Nπt

L
)

sin(Kρiu
2
− Kπt

L
)

∣∣∣∣∣
2

du.

Like in Appendix 7.2.4, we can calculate the integral through the property of Fourier

transform. Note that
sin(

Nρiu

2
−Nπt

L
)

sin(
Kρiu

2
−Kπt

L
)

can be seen as the DTFT of a K-decimation

of a rectangular window function, denoted by rN(mK). rN(mK) = 1, if m =

0, 1, · · · , N/K − 1; or rN(mK) = 0, otherwise [95]. By applying Parseval’s theorem

[95], we have Eu {|C(ρi, u)|2} =
N/K−1∑
m=0

|rN(mK)|2 = N
K

.

7.3 Proof and Analysis in Chapter 4

7.3.1 Proof of Lemma 4.1

Proof. It is clear that Ωn ∩ Ωn′ = ∅ for n′ 6= n, and Ω0 ∪ Ω1 ∪ · · ·ΩN−1 = [0, 2π).

We first prove the lemma in the case of u ∈ ΩL
n by showing that |gd(n, u)| mono-

tonically decreases and |gd(n+ 1, u)| monotonically increases with the growth of u,

respectively; and the maximum and the minimum of |gd(n, u)| and |gd(n+ 1, u)| are

taken at u = 2π(n+1)
N

. ΩL
n =

[
2πn
N

+ π
N
, 2π(n+1)

N

)
is the left half of Ωn.

From (4.8), |gd(n, u)| = − 1
N

sin N
2 (u− 2πn

N ) sin π
N

sin 1
2(u− 2πn

N ) sin 1
2(u− 2π(n+1)

N )
for u ∈ ΩL

n, where the

negative sign is due to the fact that sin 1
2

(
u− 2π(n+1)

N

)
< 0. The first-order deriva-

tive of |gd(n, u)| with respect to (w.r.t) u is given by (7.11), from which we can

obtain d|gd(n,u)|
du

≤ 0. The equality only takes at u = 2πn
N

+ π
N

. In other words,

|gd(n, u)| decreases monotonically with the growth of u. Likewise, we can prove

that d|gd(n+1,u)|
du

> 0, i.e., |gd(n + 1, u)| monotonically increases with u for u ∈ ΩL
n.

In addition, we have
∣∣∣gd

(
n, 2π(n+1)

N

)∣∣∣ =
∣∣∣gd

(
n+ 1, 2π(n+1)

N

)∣∣∣ = 1 by substituting

u = 2π(n+1)
N

into (4.8). As a result, |gd(n, u)| > 1 > |gd(n+ 1, u)| for u ∈ ΩL
n.
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d|gd(n, u)|
du

= −

N
2

cos N
2 (u− 2πn

N ) sin 1
2(u− 2πn

N ) sin 1
2(u− 2π(n+1)

N )
− 1

2
sin N

2 (u− 2πn
N ) sin(u− 2π(n+1)

N )

1
sin π

N
sin2 1

2

(
u− 2πn

N

)
sin2 1

2

(
u− 2π(n+1)

N

) (7.11)

On the other hand, by exploiting (4.8), we can write

|gd(n+ 1, u)|
|gd(n′, u)|

=

∣∣∣sin 1
2

(
u− 2πn′

N

)
sin 1

2

(
u− 2π(n′+1)

N

)∣∣∣∣∣∣sin 1
2

(
u− 2π(n+1)

N

)
sin 1

2

(
u− 2π(n+2)

N

)∣∣∣ > 1,

since the numerator of the RHS is greater than the denominator for u ∈ ΩL
n and

n′ 6= n, n + 1. Finally, we obtain that |gd(n, u)| > |gd(n + 1, u)| > |gd(n′, u)| for

u ∈ ΩL
n.

The case of u ∈ ΩR
n can be proved in the same way and therefore is suppressed

for brevity. ΩR
n =

[
2π(n+1)

N
, 2π(n+1)

N
+ π

N

)
is the right half of Ωn. Therefore, we attain

 |gd(n, u)| > |gd(n+ 1, u)| > |gd(n′, u)|, u ∈ ΩL
n;

|gd(n′, u)| < |gd(n, u)| ≤ |gd(n+ 1, u)|, u ∈ ΩR
n ,

(7.12)

where |gd(n, u)| = |gd(n+ 1, u)| holds at u = 2π(n+1)
N

.

It can be concluded from (7.12) that, given u ∈ Ωn, the spatial response of either

the n-th or the (n + 1)-th DBD has the maximum amplitude gain among the total

N DBDs, and the other one has the second maximum amplitude gain. Lemma 4.1

is proved.

7.3.2 Proof of Theorem 4.1

Proof. After suppressing the noise in (4.9), we substitute (4.9) into ρ(ũ, n) and have

ρ(ũ, n) =
sin 2π

N
sin(2π

N
− ũ)

1− cos 2π
N

cos(2π
N
− ũ)

. (7.13)
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sin

(
2π

N
− ũ
)

=
−b±

√
b2 − 4ac

2a

=
−ρ(ũ, n) sin(2π

N
)± sign{ρ(ũ, n)}ρ(ũ, n) sin 2π

N
cos 2π

N

√
1− ρ2(ũ, n)

sin2 2π
N

+ ρ2(ũ, n) cos2 2π
N

. (7.16)

Given ρ(ũ, n), ũ can be uniquely solved from (7.13) if ρ(ũ, n) is strictly monotonic

w.r.t ũ, i.e., it is a one-to-one mapping between ρ(ũ, n) and ũ. The derivative of

ρ(ũ, n) w.r.t ũ can be given by

dρ(ũ, n)

dũ
=

1
2

sin 4π
N
− sin 2π

N
cos(ũ− 2π

N
)(

cos 2π
N

cos(ũ− 2π
N

)− 1
)2 . (7.14)

For π
N
≤ ũ ≤ 3π

N
, we have |ũ− 2π

N
| ≤ π

N
, leading to cos(ũ− 2π

N
) > cos 2π

N
and in turn

sin 2π
N

cos(ũ− 2π
N

) > 1
2

sin 4π
N

. Therefore, dρ(ũ,n)
dũ

< 0 for π
N
≤ ũ ≤ 3π

N
, which indicates

the strict monotonicity of ρ(ũ, n).

To derive the inverse function of (7.13), we replace cos( 2π
N
− ũ) in (7.13) with√

1− sin2(2π
N
− ũ) and collapse the resulting terms. (7.13) can be rewritten as

a sin2

(
2π

N
− ũ
)

+ b sin

(
2π

N
− ũ
)

+ c = 0, (7.15)

where a = sin2(2π
N

) +ρ2(ũ, n) cos2(2π
N

), b = 2ρ(ũ, n) sin(2π
N

) and c = ρ2(ũ, n) sin2(2π
N

).

The solution for (7.15) is given in (7.16). Since | sin
(

2π
N
− ũ
)
| ≤ sin 2π

N
, we finally

obtain (4.10). This concludes the proof.

7.3.3 Proof of Corollary 4.1

Proof. Given u = ũ + 2πn
N

(û and ˆ̃u are the estimates of u and ũ, respectively),

the MSE of û is equal to that of ˆ̃u. To derive the MSE of ˆ̃u, we first calculate

the signal power in |yn(k)|2 − |yn+1(l)|2, denoted by σ2
s , and the noise power in

|yn(k)|2 + |yn+1(l)|2, denoted by σ2
n. By exploiting (4.9), σ2

s can be calculated in

(7.17). As for σ2
n, we notice that the cross terms between the signal and noise

components in |y(k)|2 are AWGNs with zero means. Therefore, σ2
n is twice the
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σ2
s =

∣∣|y(k)− n(k)|2 − |yn+1(l)− n(k + 1)|2
∣∣ =
|βs|2 sin2 π

N
sin2 N

2
ũ

N2

×
∣∣∣∣ sin2 1

2
(ũ− 4π

N
)− sin2 1

2
ũ

sin2 1
2
ũ sin2 1

2
(ũ− 2π

N
) sin2 1

2
(ũ− 4π

N
)

∣∣∣∣ . (7.17)

power of n(k) in (4.9), i.e., σ2
n = 2(1 + 2r)2σ2

d. r is given in (4.5).

Combining (4.10) and (7.13), we have E{ˆ̃u} = 0. The MSE of ˆ̃u can be approx-

imated by [5]

σ2
ˆ̃u

= E{ˆ̃u2} −
[
E{ˆ̃u}

]2

≈ 1

2σ
2
s

σ2
n

[1 + ρ2(ũ, n)]

η2
, (7.18)

where η = dρ(ũ,n)
dũ

∣∣∣
ũ= 2π

N

=
1
2

sin 4π
N
−sin 2π

N

(cos 2π
N
−1)

2 , as given in (7.14),

7.3.4 Proof of Theorem 4.2

Proof. From (4.7), g(n, u) is the beamforming gain of the n-th DFT beam in the

AoA of u. Apparently, g(n, u) is also the discrete-time Fourier transform (DTFT)

of 1
N
ej

2πnn′
N , n′ = 0, 1, · · · , N − 1. In other words, g(n, u), n = 0, 1, · · · , N − 1, is

a complete set of orthogonal bases spanning the space of continuous band-limited

signals [95]. Here, the “band” is the “spatial frequency band”. Therefore, P (u) in

(4.12) can be linearly combined through P (u) =
∑N−1

n=0 Wn,kg(n, u), and Wn,k is

the projection coefficient of P (u) on the n-th orthogonal basis. Wn,k = 〈P (u),g(n,u)〉
〈g(n,u),g(n,u)〉 .

〈·, ·〉 stands for inner product, i.e.,

〈a(u), b(u)〉 =

∫ 2π

0

a(u)b†(u) du, (7.19)

where (·)† denotes conjugate, a(u) and b(u) are band-limited functions of u in the

spatial frequency domain.



156

Accordingly, 〈P (u), g(n, u)〉 can be calculated as

〈P (u), g(n, u)〉 =

∫ 2π

0

P (u)g†(n, u) du (7.20a)

=

∫ 2π

0

P (u)ej
N−1

2 (u− 2πn
N ) sin

[
N
2

(
u− 2πn

N

)]
√
N sin

[
1
2

(
u− 2πn

N

)] du (7.20b)

=

∫ 2π

0

P (u)e−j
N−1

2
(τ−u) sin

[
N
2

(τ − u)
]

√
N sin

[
1
2

(τ − u)
] du

∣∣∣∣∣
τ= 2πn

N

(7.20c)

=

∫ 2π

0

P (u)g(0, τ − u) du

∣∣∣∣
τ= 2πn

N

. (7.20d)

(7.20b) is obtained by plugging (4.7) into (7.20a). By rewriting
(
u− 2πn

N

)
as−

(
2πn
N
− u
)

and letting τ = 2πn
N

, (7.20b) becomes (7.20c) which is the linear convolution of P (u)

and g(0, u) = e−j
N−1

2
u sin N

2
u√

N sin 1
2
u
. Finally, 〈P (u), g(n, u)〉 can be written as (7.20d),

the discrete sampling of the linear convolution
∫ 2π

0
P (u)g(0, τ − u) at τ = 2πn

N
,

n = 0, 1, · · · , N − 1.

Likewise, by substituting (4.7) into (7.19), we have 〈g(n, u), g(n, u)〉 = 1
N

. Ap-

plying the convolution property of DTFT [95], we have

Wn,k = N ·
∫ 2π

0

P (u)g(0, τ − u) du

∣∣∣∣
τ= 2πn

N

= N ·DTFT{p(n)� q(n)}|τ= 2πn
N
,

= P (τ)|τ= 2πn
N

=

 (−1)n if m ≤ n ≤ m+K − 1;

0 for other n,
(7.21)

where p(n) and q(n) are the inverse DTFT of P (u) and g(0, u), respectively. Given

(4.7), q(n) = 1
N

. The convolution of P (u) and g(0, u) is P (τ) in the spatial frequency

domain, which is achieved by replacing u in P (u) with τ .

By using (4.11) and (4.7), the synthesized beam pattern can be written as

P̂ (u) =
N−1∑
n=0

Wn,kg(n, u) =
m+K−1∑
n=m

(−1)ng(n, u). (7.22)

It is easy to find out the analogy of (7.22) to the synthesis of a time-/frequency-

domain rectangular window based on a limited number of sinc kernels [95]. There-



157

fore, the synthesized beam pattern in (7.22) can suffer from the well-known Gibbs

phenomenon [95]. As a result, the synthesized beam pattern takes the exactly same

value as (4.12) for u = 2πn
N
, m ≤ n ≤ m + K − 1, and approximates (4.12) for the

rest of the values of u. This concludes the proof.

7.3.5 Proof of PDBD
d ≥ PDFT

d

Proof. We first consider ũ ∈
[
π
N
, 2π
N

]
, i.e., u ∈ ΩL

n. From Theorem 4.1 and (7.12),

we have that the n-th and (n + 1)-th DBDs were used for AoA estimation, and

|gd(n, u)| ≥ |gd(n + 1, u)|. From [5], |g(n + 1, u)| and |g(n, u)|(≤ |g(n + 1, u)|) are

used for AoA estimation. To prove PDBD
d ≥ PDFT

d is equivalent to proving that the

SNRs of the n-th and (n+1)-th DBD outputs are greater than those of the (n+1)-th

and n-th DFT beam outputs, respectively.

We start by showing that the noise power in the n-th (n = 0, 1, · · · , N −1) DFT

beam output approximates to the noise power in the n-th DBD output, if r � 1,

with the error of rσ2
d. From (4.4), the n-th DBD output can be obtained at the k-th

RF chain by configuring (4.6) in the LAA receiver. The n-th DFT beam output

can be obtained at the k-th RF chain by setting WDFT
:,k = [0, · · · , 0, 1, 0, · · · , 0]T.

As discussed in Section 4.2, the powers of the noises at the n-th DBD and the n-th

DFT beam outputs are (1 + 2r)σ2
d and (1 + r)σ2

d, respectively, since ‖W:,k‖0 = 2

and ‖WDFT
:,k ‖0 = 1. Given r � 1, we have (1 + 2r)σ2

d u (1 + r)σ2
d.

We next prove that |gd(n, u)| > |g(n + 1, u)| and |gd(n + 1, u)| ≥ |g(n, u)|. As

shown in the proof of Lemma 4.1, |gd(n, u)| > 1 for u ∈ ΩL
n. Given the sinc function

|g(n, u)|, we have |g(n, u)| < 1. From (4.7) and (4.8), it is easy to establish that

|gd(n + 1, u)| ≥ |g(n, u)| (the details are suppressed for brevity). Therefore, we

conclude that the first and second strongest DBD outputs have greater amplitudes

than the first and second DFT beam outputs. Given the equal noise-level, the proof

concludes.
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7.3.6 Analysis on Fig. 4.8: Null Elimination in Mainlobes

Theorem 4.2 eliminates nulls in the mainlobe. From (4.7), nulls can only occur

at u = π(2n+1)
N

when adjacent beams have identical beamforming amplitudes. The

angles of g(n, u) and g(n+ 1, u) at u = π(2n+1)
N

satisfy

arg{g(n, u)}+ arg{g(n+ 1, u)}

=
N − 1

2

(
u− 2πn

N

)
+
N − 1

2

(
u− 2π(n+ 1)

N

)
= 0.

For this reason, directly adding adjacent DFT beams for beam synthesis, as done in

[6], can result in nulls in the mainlobe.

In contrast, the proposed beam synthesis in Theorem 4.2 eliminates the nulls.

As proved for Lemma 4.1, |gd(n, u)| monotonically decreases with the growth of u

in the case of u ∈ ΩL
n. Therefore, the maximum of |gd(n, u)| is taken at π(2n+1)

N

(i.e., the left boundary of ΩL
n). As a matter of fact, the maximum is the global

maximum of |gd(n, u)|, This can be readily established based on (7.11) by verifying

that the second derivative of |gd(n, u)| w.r.t u is negative and d|gd(n,u)|
du

∣∣∣
u=

π(2n+1)
N

= 0.

By substituting u = π(2n+1)
N

into (4.8), the maximum amplitude gain of a DBD

can be calculated as 1
N

sin π
N

sin2 π
2N

≈ 1
N

π
N
π2

4N2

= 4
π
, where the approximation is due to

sin
(
π

2N

)
≈ π

2N
for N � 1. The approximation error is negligible. Take N = 32 for

instance, the approximation error is less than 1.971×10−5. Therefore, by controlling

the phases of adjacent beams, the proposed beam synthesis turns the nulls in [6]

into the maximums.

7.3.7 Analysis on Fig. 4.9: Larger Mainlobe-to-sidelobe Ratio than

WDFT [2]

The proposed beam synthesis method in Theorem 4.2 has a larger mainlobe-to-

sidelobe ratio than WDFT [2]. Let the element-wise constant-modulus w̃ ∈ CN×1

and w ∈ RN×1 denote the coefficient vectors for WDFT and the proposed method to

combine the DFT beams in the beam synthesis. According to [2] and (4.11), to ap-

proach P (u) in (4.12), the indices for the nonzero elements of w̃ are identical to those



159

of w. Given (4.7) and (7.22), the gains of the synthesized beams are w̃HUHa(u)

and wHUHa(u), i.e., the DTFT of the DFT of w̃ and w, respectively. From Parse-

val’s Theorem of DTFT and DFT [95], w̃HUHa(u) and wHUHa(u) have the same

overall power in the spatial frequency domain. In [2], w̃ is obtained by minimizing

the directivity of the synthesized mainlobe, i.e., minw̃

∣∣∣∣∫ 2π(m+K−1)
N

2πm
N

w̃HUHa(u)

∣∣∣∣2 [2,

Eq. (36)].∗ WDFT can achieve smaller ripples, i.e., power, in the mainlobe than

the proposed method. Therefore, given the same overall powers of the beams, the

sidelobe level of the proposed beam synthesis can be lower than that of WDFT [2].

According to the Gibbs phenomenon [95], the reduction of the sidelobes is greater

than the growth of ripples, leading to the larger mainlobe-to-sidelobe ratio of the

proposed method than WDFT in Fig. 4.9.

7.4 Proof in Chapter 5

7.4.1 Proof of Theorem 5.1

By combining (5.7) and (5.8), the m̃′-th element (0 ≤ m̃′ ≤ M̃ − 1) of the m̃-th

spatial-frequency pattern can be given by

[g̃nL
(m̃,M)]m̃′ = e−j

(N−1)ρ[M]m̃′
∆

2
sin

Nρ[M]m̃′
∆

2

sin
ρ[M]m̃′

∆

2

;

∆ =

(
2π(nL + m̃)

N
− 2πnL

Nρ[M]m̃′

)
.

(7.23)

Based on (5.9b) and the definition of ρm = fm
fH

, we have

ρ[M]m̃′
=
fL +

[M]m̃′B
M−1

fH

≈ ρ0 +
B

(M − 1)fH

( nL

nL+m̃′
− ρ0)(M − 1)

1− ρ0

=
nL

nL + m̃′
, (7.24)

∗We reformat the expression to keep consistency with our notations. This does not change the
original design object in [2].
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where the approximation is due to the suppression of the rounding operator. By

substituting (7.24) into (7.23), we obtain

∆ ≈

 0 if m̃′ = m̃

2π(m̃−m̃′)
N

if m̃′ 6= m̃
, (7.25)

and, in turn,

|[g̃nL
(m̃,M)]m̃′ | =

∣∣∣∣∣sin
Nρ[M]m̃′

∆

2

sin
ρ[M]m̃′

∆

2

∣∣∣∣∣ ≈


1 if m̃′ = m̃∣∣∣∣∣ sin ρ[M]m̃′
π(m̃−m̃′)

sin
ρ[M]m̃′

π(m̃−m̃′)

N

∣∣∣∣∣ ≈ 0 if m̃′ 6= m̃
. (7.26)

The last approximation in the case of m̃′ 6= m̃ is because π(m̃−m̃′) is the null of the

sinc function f(x) = sinNx
sinx

and ρ[M]m̃′
π(m̃ − m̃′) is close to null, as ρ[M]m̃′

is small;

see (7.24). (7.26) leads to (5.10), which indicates that every pattern is unique. Since

m̃ is the index of the pattern and nL + m̃ is the index of the DFT beams in the

angular region S(nL, nH), the pattern is a one-to-one mapping of the DFT beam.

This concludes the proof.

7.4.2 Proof of Theorem 5.2

By substituting u = 2π(nL+m̃)
N

, ρm = ρMm̃′
and (5.9b) into (5.12), we have

ρMm̃′

2π(nL + m̃)

N
=

2πnL

N
× nL + m̃

nL + m̃′
(7.27)

∈


[

2πl
N
, 2πnL

N

]
, if m̃ ≤ m̃′ ≤ nL(nL+m̃)

l
− nL

(0, 2πl
N

] ∪ (2πnL

N
, 2π], otherwise

.

where ρMm̃′
≈ nL

nL+m̃′
, obtained based on (5.9b) in Appendix 7.4.1, is used to attain

the first equality. Combining (5.12), (5.13) and (7.27) yields

[ğnL
(m̃,M)]m̃′ = P

(
2π(nL + m̃)

N
, ρMm̃′

)
≈

 1, if m̃ ≤ m̃′ ≤ nL(nL+m̃)
l

− nL

0, otherwise
.

(7.28)
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As m̃ varies from 0 to M̃ − 1, each pattern ğnL
(m̃,M) is unique, which proves the

one-to-one mapping.

By taking m̃ = 0 in (7.28), ğnL
(0,M) = 1M̃×1 can happen provided a small l.

However, ğnL
(0,M) may be non-unique in the case of multi-beam selection. By

assuming l = 0, u ∈ S(d l
ρ0
e, nL) always leads to |p(M)| = 1M̃×1, where

p(M) =
[
P (u, ρM0) , P (u, ρM1) , · · · , P

(
u, ρMM̃−1

)]T

(7.29)

has the same structure as the spatial-frequency pattern; see (7.28). Therefore, we

need to exclude g̃nL
(0,M)

7.4.3 Proof of Proposition 5.1

To maximize the probability of correctly identifying the strongest DFT beam

at a symbol, we should maximize the angular regions probed by the single-beam

selections at the first (K − 1) RF chains and synthesize a wide beam to probe the

remaining angular region. This is the because the single DFT beam can be used

for unambiguous estimation of the strongest DFT beam if the AoA of the strongest

path is in the angular region covered by the beam; see Theorem 5.1. In contrast,

a wide beam may fail to detect the strongest DFT beam, since the AoA cannot be

guaranteed to fall into the detectable angular region of Theorem 5.2. The reason we

synthesize the wide beam is to make sure the strongest path is not overlooked.

Based on the spatial response of a DFT beam in (5.7), the angular region probed

by the k-th RF chain (k ∈ [0, K − 2]) is given by Ωk = S([nL]k, [nH]k). The larger

[nL]k is, the wider angular region can be probed by selecting the [nL]k-th DFT beam.

This is because the width of Ωk is |Ωk| = 2π([nH]k−[nL]k+1)
N

. Based on (5.9a), we have

|Ωk| ≈
2π
(

[nL]k( 1
ρ0
−1)

)
+1

N
which is a monotonically increasing function of [nL]k. The

angular partition scheme in (5.17) guarantees that the maximum [nL]k(k ∈ [0, K−2])

is taken. This concludes the proof.
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7.4.4 Proof of Corollary 5.1

Given the amplitude relation among DFT beams, the fact that the (i?+k?Q)-th

DFT beam has the strongest output indicates that ρmu − 2πi?

N
+ 2πk?

K
∈
(
− π
N
, π
N

)
.

Asymptotically, we have

lim
N→∞

(
ρmu−

2πi?

N
− 2πk?

K

)
= 0, (7.30)

which indicates that ρmu can be represented by any Butler beam pointing direction

in the case of N →∞. Substituting (7.30) into (5.19), we obtain

lim
N→∞

|G(u, ρm, i
?)| = lim

N→∞

∣∣∣∣∣sin QK
2

(
ρmu− 2πi?

N

)
sin K

2

(
ρmu− 2πi?

N

) ∣∣∣∣∣ =

∣∣∣∣sin k?Qπsin k?π

∣∣∣∣ = Q, (7.31)

where the last equality is based on L’Hospital’s rule [94]. Likewise, the amplitude

of G(u, ρm, i) at i 6= i? can be calculated by

lim
N→∞

|G(u, ρm, i)| =

∣∣∣∣∣sin QK
2

(
2πi?

N
+ 2πk?

K
− 2πi

N

)
sin K

2

(
2πi?

N
+ 2πk?

K
− 2πi

N

) ∣∣∣∣∣ = 0, (7.32)

where the last equality is because the enumerator in (7.32) is zero while the denom-

inator is non-zero.

By substituting (7.31) and (7.32) into (5.21), we see that, in the case of N →∞,

the AoA estimate (5.22) can only be obtained at i 6= i? with the largest estima-

tion SNR achieved; and the other DFT beams make an asymptotically negligible

contribution. This concludes the proof.

7.4.5 Proof of Lemma 5.2

From Algorithm 8, the number of DFT beams probed at RF chain 0 and symbol

0 is N − dNρ0e + 1 ≈ N(1 − ρ0), where the approximation is based on N →

∞. Likewise, at symbol 0, the 2nd RF chain asymptotically probes Nρ0(1 − ρ0)

DFT beams. More generally, the k-th RF chain asymptotically probes Nρk0(1 −

ρ0) DFT beams. As such, at symbol 1, the first RF chain asymptotically probes

NρK0 (1− ρ0) DFT beams. More generally, the k-th RF chain asymptotically probes
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NρK+k
0 (1 − ρ0) DFT beams. To this end, we conclude that the k-th RF chain

asymptotically probes Nρ
(x−1)K+k
0 (1−ρ0) DFT beams at symbol (x−1), as N →∞;

and, accordingly, the number of DFT beams probed at symbol (x− 1) can be given

by I(x) =
∑K−1

k=0 Nρ
(x−1)K+k
0 (1− ρ0) = Nρ

(x−1)K
0 (1− ρK0 ).

The fact that Algorithm 8 uses x symbols indicates that the strongest DFT beam

is one of the DFT beams probed at symbol (x−1). Therefore, the PDF of Algorithm

using x symbols is equivalent to that the strongest DFT beam is one of the I(x)

beams probed at symbol (x−1). Finally, as u is uniformly distributed in [0, 2π], the

probability of any beam being the strongest DFT beam is 1
N

, which leads to (5.24).
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