Word embedding-based techniques for text clustering and topic modelling

With application in the healthcare domain

Sattar Seifollahi

Principal Supervisor: Prof. Massimo Piccardi

A thesis presented for the degree of Doctor of Philosophy

School of Electrical and Data Engineering University of Technology Sydney

September, 2019

Word embedding-based techniques for text clustering and topic modelling

Sattar Seifollahi

Abstract

In the field of text analytics, document clustering and topic modelling are two widelyused tools for many applications. Document clustering aims to automatically organize similar documents into groups, which is crucial for document organization, browsing, summarization, classification and retrieval. Topic modelling refers to unsupervised models that automatically discover the main topics of a collection of documents. In topic modelling, the topics are simply represented as probability distributions over the words in the collection (the different probabilities reveal what topic is at stake). In turn, each document is represented as a distribution over the topics. Such distributions can also be seen as low-dimensional representations of the documents that can be used for information retrieval, document summarization and classification. Document clustering and topic modelling are highly correlated and can mutually benefit from each other.

Many document clustering algorithms exist, including the classic *k*-means. In this thesis, we have developed three new algorithms: 1) a maximum-margin clustering approach which was originally proposed for general data, but can also suit text clustering, 2) a modified global *k*-means algorithm for text clustering which is able to improve the local minima and find a deeper local solution for clustering document collections in a limited amount of time, and 3) a taxonomy-augmented algorithm which addresses two main drawbacks of the so-called "bag-of-words" (BoW) models, namely, the curse of dimensionality and the dismissal of word ordering. Our main emphasis is on high accuracy and effectiveness within the bounds of limited memory consumption.

Although great effort has been devoted to topic modelling to date, a limitation of many topic models such as latent Dirichlet allocation is that they do not take the words' relations explicitly into account. Our contribution has been two-fold. We have developed a topic

model which captures how words are topically related. The model is presented as a semisupervised Markov chain topic model in which topics are assigned to individual words based on how each word is topically connected to the previous one in the collection. We have combined topic modelling and clustering to propose a new algorithm that benefits from both.

This research was industry-driven, focusing on projects from the Transport Accident Commission (TAC), a major accident compensation agency of the Victorian Government in Australia. It has received full ethics approval from the UTS Human Research Ethics Committee. The results presented in this thesis do not allow reidentifying any person involved in the services.

Dedication

To my family, Sona and Selin, and my parents.

Declaration

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Sattar Seifollahi declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 20/1/2020

Acknowledgements

I would like to acknowledge my great appreciation for my principal supervisor Professor Massimo Piccardi for providing me with the necessary guidance throughout my PhD research. The valuable comments and suggestions provided by him were immensely helpful to me in successfully writing the journal and conference papers on which this thesis is based. It has been an honor and a pleasure working with him. Thanks to my associate supervisors, Associate Professor Adil Bagirov, Associate Professor Federico Girosi and Dr Ehsan Zare Borzeshi for supporting me for this thesis and for helpful discussions. I would like also to thank the Transport Accident Commission (TAC) managers, an accident compensation agency of the Victorian Government in Australia, for their support and for providing the data, and the Capital Markets Cooperative Research Centre (CMCRC) and the School of Electrical and Data Engineering of University of Technology Sydney for providing great support and financial assistance throughout my candidature. This research has received ethics approval from UTS (UTS HREC REF NO. ETH16-0968). Finally, I would like to give special thanks to my family members, Sona and Selin, for their great support and giving me huge energy to work on my thesis, and thanks to all the friends and other staff members of UTS and Federation University Australia who have helped me in many different ways during my PhD study.

Contents

1	Intr	oduction	15
	1.1	Motivation	15
	1.2	Thesis objectives	17
	1.3	Publications	19
	1.4	Thesis outline	19
	1.5	Common notations and symbols	20
2	Lite	rature Review	21
	2.1	Cluster analysis	22
	2.2	Document representations for clustering	24
		2.2.1 Methods based on term frequency	25
		2.2.2 Ontology based techniques	26
		2.2.3 Methods based on word embeddings	27
	2.3	The k-means algorithm and its variants	29
		2.3.1 The <i>k</i> -means algorithm \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	30
		2.3.2 The <i>k</i> -means++ algorithm \ldots \ldots \ldots \ldots \ldots \ldots	31
		2.3.3 Spherical <i>k</i> -means algorithm	32
		2.3.4 Global <i>k</i> -means algorithm \ldots \ldots \ldots \ldots \ldots \ldots	33
		2.3.5 Modified global <i>k</i> -means algorithm	34
	2.4	Maximum margin clustering	36

	2.5	Topic modelling		
		2.5.1	Latent semantic analysis	42
		2.5.2	Non-negative matrix factorization	42
		2.5.3	Latent Dirichlet allocation	43
	2.6	Deep l	earning and beyond	44
3	Algo	orithms	for Documents Clustering	45
	3.1	A max	imum margin clustering algorithm	45
		3.1.1	Formulation of the clustering problem	46
		3.1.2	Initial clusters	47
		3.1.3	Post-processing of initial clusters	47
		3.1.4	The proposed algorithm for clustering large-scale data	48
		3.1.5	Convergence of the proposed algorithm	50
		3.1.6	Experiments	50
	3.2	An inc	remental algorithm for clustering document collections	61
		3.2.1	Problem formulation	62
		3.2.2	Initialisation of the cluster centers	63
		3.2.3	An incremental clustering algorithm and its implementation	66
		3.2.4	Experimental results	66
	3.3	Conclu	ision	73
4	Taxo	onomy-	Augmented Features for Text Analytics	75
	4.1	Hierard	chy of word clusters	75
	4.2	Taxono	omy-augmented features given the hierarchy of word clusters	77
	4.3	Taxono	omy-augmented features given a set of words	78
	4.4	Taxono	omy-augmented features for document clustering	80
	4.5	Taxono	omy-augmented features for document classification	83

		4.5.1	Semantic analysis	87
	4.6	Conclu	ision	88
5	Торі	c Mode	lling	89
	5.1	A semi	i-supervised Markov topic model	89
		5.1.1	Initial process	90
		5.1.2	Generative model	92
		5.1.3	Experiments	93
	5.2	Cluster	r based topic learning	96
		5.2.1	Topic-word learning	97
		5.2.2	The document-topic matrix	98
		5.2.3	Evaluation of the proposed method for document classification	99
	5.3	Conclu	ision	102
6	Con	clusion		104

9

List of Figures

Figure 2.1	Main machine learning approaches	21
Figure 2.2	Difference between hard clustering (left) and soft clustering (right).	22
Figure 2.3	The two models of Wor2Vec	28
Figure 2.4	The main steps in topic modelling	40
Figure 2.5	Another view on topic modelling	40
•	Objective function values for SAMMC and KM with varying num- clusters (subset of four datasets).	59
•	Objective function values for SAMMC and KM with varying num-	
	iterations (subset of four datasets); notations "SAMMC k " and " stand for SAMMC and KM with K clusters	60
"SAMI average	Variation of the objective function value over 20 initial solutions. MC-lower value" and "SAMMC-upper value" are the plot of the e function value of SAMMC minus and plus the standard deviation, ively; likewise, "km-lower value" and "km-upper value' are the	
corresp	oonding values for KM	60
gmm" a	Objective function values by removing specific steps from the ed algorithm (ablation analysis). "SAMMC-pert" and "SAMMC- are the function values by removing Steps 4. and 3. from SAMMC hm, respectively;"km" and "SAMMC" stand for KM and SAMMC	
algorith	hms	61
Figure 3.5	Cluster validity (Dunn) index for datasets $1 - 6$	71

Figure 3.6	Cluster validity (Davies Bouldin) for datasets $1 - 6$	72
Figure 4.1	Three layers of the hierarchy of word clusters	76
Figure 4.2	The process of extracting features via the hierarchy of word clusters.	77
•	The process of extracting features via the hierarchy of word clus- nd a set of predefined words	79
	Connectivity and silhouette measures of all models for the PCalls	82
C	Connectivity and silhouette measures of all models for the WebKB	82
C	Connectivity and silhouette measures of all models for the Reuters	83
-	Average accuracy from 10-fold cross-validation. The horizontal haps the classifier and the coloured bars represent the feature vectors.	86
their n	Average of the absolute deviations (AVDEV) of accuracies from nean. Horizontal axis shows classification methods and vertical axis AVDEV value.	86
Figure 4.9 selecto	Evolution of the chosen features in the phone calls of two randomly- ed clients. The semantic scores are computed by Algorithm 13	87
	Graphical models of (a) LDA model and (b) the proposed model, TM. The number of prior topics in SHMTM is K_0 ($K_0 \ge K$) and the ulary size is V_0 ($V_0 \le V$)	90
	A sample set of words and their relations in the transition matrix. elations have been created using 200 prior topics on the phonecalls et	94

Figure 5.3 PMI score with the phonecalls data set for the SHMTM model
using 1) the top words of prior topics (SHMTM topwords) and 2) all the
words in the collection (SHMTM all words), and for the LDA model with
Gibbs sampling using 3) the top words only (LDA Gibbs topwords) and
4) all the words in the collection (LDA Gibbs all words)
Figure 5.4 PMI score with the filenotes data set for the SHMTM model using
1) the top words of prior topics (SHMTM topwords) and 2) all the words
in the collection (SHMTM all words), and for the LDA model with Gibbs
sampling using 3) the top words only (LDA Gibbs topwords) and 4) all
the words in the collection (LDA Gibbs all words)
Figure 5.5 Overall process of the cluster-based topic learning
Figure 5.6 Accuracy and standard deviation (%) of models for D1 using xgb
classification. The bar is for the accuracy and the line with dots shows the
standard deviation
Figure 5.7 Accuracy and standard deviation (%) of models for D2 using xgb
classification. The bar is for the accuracy and the line with dots shows the
standard deviation
Figure 5.8 Accuracy and standard deviation (%) of models for D3 using xgb
classification. The bar is for the accuracy and the line with dots shows the
standard deviation
Figure 5.9 Accuracy and standard deviation (%) of models for D4 using xgb
classification. The bar is for the accuracy and the line with dots shows the
standard deviation

List of Tables

Table 1.1	Table of the main notations used in this thesis.	20
Table 3.1	Dataset summary	52
Table 3.2 1-8.	Objective function values for the SAMMC algorithm over datasets	55
Table 3.3 9-16	Objective function values for the SAMMC algorithm over datasets	56
obtai spect Table 3.5	Clustering errors obtained with the compared algorithms over datasets for compactness of notation, E_1 , E_2 , E_3 , E_4 , E_5 and E_6 are the errors ned using KM, MBKM, DPGMM, FCM, MMC and SAMMC, re- tively	57
rors	; for compactness of notation, E_1 , E_2 , E_3 , E_4 , E_5 and E_6 are the er- obtained using KM, MBKM, DPGMM, FCM, MMC and SAMMC, ectively	58
Table 3.6	Dataset summary.	67
Table 3.7	The function value and relative errors	69
Table 3.8	The function value and relative errors	70
	The optimal number of clusters and cumulative CPU time for com- ing up to 100 clusters. K_1^* and K_2^* stand for the optimal number of ers using SKM and SMGKM, respectively, and t_1 and t_2 for the time	73

Table 4.1	Dataset summary	81
Table 5.1	Top words from four topics for SHMTM using only the top words	
or the	e whole dictionary with the phonecalls data set	95
Table 5.2	Top words from four topics for LDA using only the top words or	
the w	hole dictionary with the phonecalls data set	96
Table 5.3	Data set summary.	100