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Abstract

In the field of text analytics, document clustering and topic modelling are two widely-

used tools for many applications. Document clustering aims to automatically organize

similar documents into groups, which is crucial for document organization, browsing,

summarization, classification and retrieval. Topic modelling refers to unsupervised mod-

els that automatically discover the main topics of a collection of documents. In topic

modelling, the topics are simply represented as probability distributions over the words

in the collection (the different probabilities reveal what topic is at stake). In turn, each

document is represented as a distribution over the topics. Such distributions can also be

seen as low-dimensional representations of the documents that can be used for informa-

tion retrieval, document summarization and classification. Document clustering and topic

modelling are highly correlated and can mutually benefit from each other.

Many document clustering algorithms exist, including the classic k-means. In this the-

sis, we have developed three new algorithms: 1) a maximum-margin clustering approach

which was originally proposed for general data, but can also suit text clustering, 2) a

modified global k-means algorithm for text clustering which is able to improve the local

minima and find a deeper local solution for clustering document collections in a lim-

ited amount of time, and 3) a taxonomy-augmented algorithm which addresses two main

drawbacks of the so-called “bag-of-words” (BoW) models, namely, the curse of dimen-

sionality and the dismissal of word ordering. Our main emphasis is on high accuracy and

effectiveness within the bounds of limited memory consumption.

Although great effort has been devoted to topic modelling to date, a limitation of many

topic models such as latent Dirichlet allocation is that they do not take the words’ relations

explicitly into account. Our contribution has been two-fold. We have developed a topic
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model which captures how words are topically related. The model is presented as a semi-

supervised Markov chain topic model in which topics are assigned to individual words

based on how each word is topically connected to the previous one in the collection. We

have combined topic modelling and clustering to propose a new algorithm that benefits

from both.

This research was industry-driven, focusing on projects from the Transport Accident

Commission (TAC), a major accident compensation agency of the Victorian Government

in Australia. It has received full ethics approval from the UTS Human Research Ethics

Committee. The results presented in this thesis do not allow reidentifying any person

involved in the services.
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