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Abstract

In the field of text analytics, document clustering and topic modelling are two widely-

used tools for many applications. Document clustering aims to automatically organize

similar documents into groups, which is crucial for document organization, browsing,

summarization, classification and retrieval. Topic modelling refers to unsupervised mod-

els that automatically discover the main topics of a collection of documents. In topic

modelling, the topics are simply represented as probability distributions over the words

in the collection (the different probabilities reveal what topic is at stake). In turn, each

document is represented as a distribution over the topics. Such distributions can also be

seen as low-dimensional representations of the documents that can be used for informa-

tion retrieval, document summarization and classification. Document clustering and topic

modelling are highly correlated and can mutually benefit from each other.

Many document clustering algorithms exist, including the classic k-means. In this the-

sis, we have developed three new algorithms: 1) a maximum-margin clustering approach

which was originally proposed for general data, but can also suit text clustering, 2) a

modified global k-means algorithm for text clustering which is able to improve the local

minima and find a deeper local solution for clustering document collections in a lim-

ited amount of time, and 3) a taxonomy-augmented algorithm which addresses two main

drawbacks of the so-called “bag-of-words” (BoW) models, namely, the curse of dimen-

sionality and the dismissal of word ordering. Our main emphasis is on high accuracy and

effectiveness within the bounds of limited memory consumption.

Although great effort has been devoted to topic modelling to date, a limitation of many

topic models such as latent Dirichlet allocation is that they do not take the words’ relations

explicitly into account. Our contribution has been two-fold. We have developed a topic
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model which captures how words are topically related. The model is presented as a semi-

supervised Markov chain topic model in which topics are assigned to individual words

based on how each word is topically connected to the previous one in the collection. We

have combined topic modelling and clustering to propose a new algorithm that benefits

from both.

This research was industry-driven, focusing on projects from the Transport Accident

Commission (TAC), a major accident compensation agency of the Victorian Government

in Australia. It has received full ethics approval from the UTS Human Research Ethics

Committee. The results presented in this thesis do not allow reidentifying any person

involved in the services.
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Chapter 1

Introduction

With the rapid growth of the Internet and the World Wide Web in the recent years, avail-

ability of text data has extensively increased. As more information becomes available, it

becomes increasingly difficult to retrieve what we are looking for. Therefore, the need

for tools and techniques to organize, search and understand vast quantities of information

is becoming more urgent. Document clustering and topic modelling are two of the most

important text mining techniques, which provide us with ways to organize, understand

and summarize large collections of textual information. Text-based document clustering

groups a collection of documents based on their similarity. On the other hand, topic mod-

elling can be described as an approach for determining sets of words (i.e., topics) from

a collection of documents that best describe the information embedded in the collection.

It can also be thought of as a form of document clustering – a way to obtain recurring

patterns of words in textual material.

1.1 Motivation

The recent years have witnessed an incessant growth in the creation of digital text, from

the increasing number of organizational documents and workflows to the large amounts of

messages continuously generated on social media. As an example, the number of tweets

generated on the popular Twitter platform is estimated to have reached over 200 billion

per year. The immediate challenge stemming from such a huge growth in textual data is

how to understand their contents in effective and efficient ways.
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Given the increasing size of document collections, it is vital to manage them into struc-

tured forms. Cluster analysis and classification are likely the most widespread automated

tasks on textual data and play important roles in organizing such a huge amount of doc-

uments into meaningful clusters/classes. In clustering, a cluster is a collection of data

objects (can be both words and documents here) that are similar to one another within the

same cluster and dissimilar from those in other clusters.

In recent years, topic models, which are hierarchical Bayesian models of discrete data,

have been widely used for exploratory and predictive analysis of texts. They provide us

with methods to organize, understand and summarize large collections of textual informa-

tion. Topic models such as the latent Dirichlet allocation (LDA) [Blei et al.2003], posit

that topics can be used to explain the observed collection. More precisely, they take as

input a collection of documents and infer the set of their “topics”. Each document is rep-

resented as a discrete distribution over the topics, where each topic is, at its turn, a discrete

distribution over the vocabulary. The model assumes that each word in the document is

generated (in the sense of generative probabilistic models) by one of the topics. Topic

models help in discovering hidden topical patterns that are present across the collection,

annotating documents according to these topics, and using these annotations to organize,

search and summarize texts.

A major issue for effective document clustering and classification is the extraction of

appropriate features and document representations. Techniques using the bag-of-words

(BoW) model are the most widespread, [Arthur and Vassilvitskii2007], with an early ref-

erence in a linguistic context dating back to 1954 [Harris1954]. This model is nothing

more than a normalized count, or empirical frequencies, of the unique words in a given

text.

Most of the current topic models are extensions of the LDA such as the Pachinko al-

location, [Wei et al.2007] which introduces topics’ correlations further to the word cor-

relations which form topics. Examples of other extensions include, but are not limited

to, hierarchical formulations to produce an unknown number of topics [Teh et al.2006],

topics evolution over time [Blei and Lafferty2006, Xuerui and McCallum2006, Wang et

al.2008], topic correlation using the logistic normal distribution [Blei and Lafferty2007],

topics that follow a Markov chain and change over sentences [Gruber et al.2007] and
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topics employing prior knowledge [Chen and Liu2014].

Although the LDA model and many such models produce highly accurate topics, there

are fewer research works investigating words’ relations embedded in topics. For example,

LDA and many such related models do not take subsequent words relations into account.

In [Gruber et al.2007], the topics of the sentences follow a Markov chain. They assume

that topic changes occur only between sentences, and that the topic of each sentence

is decided at the beginning of each sentence. However considering such a restrictive

assumption may lead to poor, and possibly incoherent, topic prediction in collections

where the vocabulary is complex. Therefore, one of the contributions of this thesis is

a semi-supervised hidden Markov chain using prior knowledge to find coherent topics

which is in better agreement with human-judged topic coherence.

1.2 Thesis objectives

A founding aspect of this PhD research is that it has been performed in close collabora-

tion with an industry partner, the Transport Accident Commission (TAC) of the Victorian

Government. The TAC is a large accident compensation agency that possesses a huge

amount of unstructured text data. Using unstructured data in conjunction with structured

data can provide a deeper understanding of the clients’ needs and help plan for better

health outcomes, such as return to work (RTW). Transforming unstructured data to struc-

tured form and using the structured data models to improve the quality of existing models

is another valuable contribution of this thesis.

This research has received ethics approval (UTS HREC REF NO. ETH16-0968) for

the research work with the industry partner, “Unstructured text analytics for the Transport

Accident Commission”. This application has been granted by the UTS Human Research

Ethics Committee on 28 April 2017. The application allows us to work on the TAC’s

deidentified data and publish/present the outcomes of the research in national and inter-

national journals and conferences.

I have developed and completed several projects with significant and promising results

for the industry partner. The unstructured data consisted mainly of phone calls between

the clients and the TAC claim managers, regarding clients’ issues such as diverse as RTW,

health recovery and engagement of external solicitors (to sue the TAC). Accordingly, the

17



CHAPTER 1. INTRODUCTION

ultimate goal of this PhD thesis has been to develop original research outcomes while

fulfilling the industry partner’s expectations for accuracy, using high-level unstructured

data analysis tools with main focus on topic modelling and concept taxonomies. We

have developed two new topic models: 1) a semi-supervised hidden Markov topic model

(SHMTM) and 2) a clustering-based topic model. These models have been applied to the

TAC data to improve over the quality of existing models.

Reducing the number of features in document clustering and classification has been

another aspect of this thesis. The spontaneous number of features in text analytics is

typically excessive, and most clustering techniques struggle to effectively work on such

high-dimensional data. For example, given 100,000 documents and a 20,000-word vo-

cabulary, it is very difficult to use conventional clustering or classification techniques as

such huge data cannot be stored in the memory of a computer and existing algorithms

cannot handle such a data. One of the main objectives of this research has been represent-

ing a document by a much smaller number of features leveraging word embeddings and

word taxonomies.

Based on our objectives, our research questions are defined as:

1. Can we accurately represent a document with a small number of features to the pur-

poses of accurate and efficient clustering and classification?

2. Can we accurately predict the recovery outcomes of clients of accident compensation

agencies based on their conversations with their claim managers via text clustering or

topic modelling? This question can be addressed by developing new algorithms that

better fit the industry partner datasets and regress the topics towards outcomes.

3. Can we anticipate/forecast clients’ outcomes in real time using topic models? How

long ahead can we predict clients’ outcomes with a reasonable accuracy?

4. Can we, in general, leverage topic models and text clustering to build more accurate

predictive models?
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1.3 Publications

Journal papers

1. Seifollahi S., Bagirov A., Zare Borzeshi E., Piccardi M. (2019), A simulated annealing-

based maximum margin clustering algorithm, Computational Intelligence, 35(1),

pp. 23–41.

Conference Papers

1. Seifollahi S., Piccardi M., Taxonomy-Based Feature Extraction for Document Clas-

sification, Clustering and Semantic Analysis, The 20th International Conference on

Computational Linguistics and Intelligent Text Processing (CICLing), April 2019,

France.

2. Seifollahi S., Piccardi M., Zare Borzeshi E., Kruger B., Taxonomy-augmented fea-

tures for document clustering, The Australian Data Mining Conference (AusDM),

November 2018, Bathurst, Australia.

3. Bagirov A., Seifollahi S., Piccardi M., Zare Borzeshi E., Kruger B., SMGKM: An

efficient incremental algorithm for clustering document collections, The 19th Inter-
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4. Seifollahi S., Piccardi M., Zare Borzeshi E., A semi-supervised hidden Markov
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1.4 Thesis outline

This thesis consists of six chapters. Chapter 2 provides a brief overview of the literature

on both document clustering and topic modelling. In Chapter 3, we introduce two meth-

ods, an incremental optimization and a maximum-margin based, for document clustering.

Chapter 4 presents word embedding-based algorithms for document analytics, particu-

larly for document clustering, using a very small number of features. Two algorithms for
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topic modelling are developed and discussed in Chapter 5, with main focus on involving

semantics into consideration. Finally, Chapter 6 concludes the thesis.

1.5 Common notations and symbols

Some notations and symbols are frequently used throughout this thesis. For conve-

nience, they are recapped in Table 1.1.

Table 1.1: Table of the main notations used in this thesis.
Notation Description

m number of points/instances
M number of documents
n dimension of space
N number of words in each document
d a document in the corpus
D set of documents
X set of points/instances or document-term matrix
x a point in X
c center of a cluster
w a word in the vocabulary
V the dimension of the word vocabulary
K number of topics/clusters
φ topic-word matrix
θ document-topic matrix
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Chapter 2

Literature Review

Machine learning techniques are based on an automated learning, where the aim is to

learn a model using historical data, so that the model can generalise to new unseen data.

We have, in general, two types of machine learning approaches, depending on the prob-

lem to be solved; namely, supervised and unsupervised techniques. Figure 2.1 shows

these learning techniques. Classification is the most-well known technique in the super-

vised case, while clustering and topic modelling are two of the most popular unsupervised

techniques.

Figure 2.1: Main machine learning approaches.

In this section, we briefly review the literature for document clustering and topic mod-

elling, with more focus on those techniques that are related to our research aims. Doc-

ument clustering and topic modelling are highly related to each other. Topic modelling

deals with constructing clusters of words rather than clusters of documents. A document

is, therefore, a mixture of all the topics, each having a certain contribution. In other words,

if document clustering is assigning a single category to a text document, topic modelling
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is assigning multiple tags to that document.

2.1 Cluster analysis

Cluster analysis or clustering is one of the most frequently used exploratory data anal-

ysis techniques, often applied to get an intuition about the structure of the data. It is an

unsupervised learning technique, and deals with the problem of organizing a collection

of data into clusters based on a notion of similarity. More precisely, the task is grouping

together a set of objects in a way that objects in the same cluster are more similar to each

other than to objects in other clusters. Similarity is an amount that reflects the strength of

relationship between two data objects.

The similarity measure is fundamental to formulate clustering problems. This measure,

in particular, can be defined using distance(-like) functions. Clustering problems with the

similarity measure defined using the Euclidean norm are usually called the minimum

sum-of-squares clustering (MSSC) problems. To date, many algorithms based on differ-

ent approaches have been developed to solve this problem. Amongst them, the k-means

algorithm and its variations have been widely used to solve the MSSC problem (see, for

example, [Kogan2007, Jain et al.1999] and references therein). The global k-means algo-

rithm and its various modifications are amongst the most effective algorithms for solving

the MSSC problem [Ordin and Bagirov2015, Bagirov et al.2011, Bai et al.2013]. They

deal with a global solution or a near global solution, while k-means can only find a local

solution to the clustering problem.

Figure 2.2: Difference between hard clustering (left) and soft clustering (right).

Clustering can be broadly divided into two subgroups, namely hard clustering and soft

clustering. Figure 2.2 illustrates the differences between them. In hard clustering, each

data object or point either belongs to a cluster completely or not, while in soft clustering,
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a data point can belong to more than one cluster to a certain degree or likelihood value.

Topic modelling can be compared to soft clustering where each document is a mixture

of topics (or clusters). The k-means and Fuzzy c-means algorithms are two widely-used

examples of hard and soft clustering techniques, respectively.

Clustering algorithms can also be categorized based on their cluster model or how they

form the clusters or groups. Most of them are based on two main lines of approaches, the

hierarchical and the partitional ( [Jain et al.1999, Moseley and Wang2017]). They have

been extensively studied in the literature (see for example [Moseley and Wang2017] and

references therein). The k-means algorithm and its variants are the most broadly used

partitional algorithms [Dhillon et al.2001, Seifollahi et al.2017a]. Partitional clustering

algorithms find the partition that optimizes a clustering criterion or a objective function,

e.g. minimise the MSSC problem.

Algorithms based on the hierarchical approach generate a dendrogram representing the

nested grouping of patterns and similarity levels at which groupings change. Hierarchical

algorithms can be divided into two main categories, namely agglomerative and divisive.

Agglomerative algorithms are a bottom-up approach, i.e. the clustering produced at each

layer of the hierarchy merges similar clusters from the previous layer. Conversely, divisive

algorithms sub-divide clusters incrementally, starting from the initial dataset. Agglomer-

ative algorithms generally perform better than divisive algorithms, and often “better” than

single-layer algorithms such as k-means [Moseley and Wang2017].

In some cases, a combination of both techniques has been used. For example, in the

document domain, the work of [Cutting et al.1992] uses a hybrid approach involving

both k-means and agglomerative hierarchical clustering to create a document browsing

system based on clustering. k-means is used because of its efficiency and agglomerative

hierarchical clustering is used because of its quality. It is also shown that the“bisecting” k-

means, which can be considered as k-means in a hierarchical form [Steinbach et al.2000],

can produce clusters of documents that are better than those produced by the standard k-

means and as good or better than those produced by agglomerative hierarchical clustering

techniques. In this report, we focus on partitional clustering algorithms, although we also

use them in a hierarchical form for word clusters, in a way similar to the “bisecting”

algorithm.
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Clustering is used in many fields such as pattern recognition, image analysis, informa-

tion retrieval, bio-informatics, data compression, computer graphics and document clus-

tering [Alshari et al.2017, Wang et al.2016, Yang et al.2016]. Document clustering is one

of the most challenging tasks in the literature as the number of features can reach a power

of 10, i.e. 100,000. It has been investigated for use in a number of different areas of text

mining and information retrieval.

Document clustering is highly related to data clustering. It was initially used for im-

proving the precision or recall in information retrieval systems [Van-Rijsbergen1989,

Kowalski1997] and as an efficient way of finding the nearest neighbors of a document

[Buckley and Lewit1985]. It has also been used to automatically generate hierarchical

clusters of documents [Koller and Sahami1997]. Other earlier references for document

clustering include the work of [Cutting et al.1992] for browsing a collection of documents

and the work of [Zamir et al.1997] for organizing the results returned by a search engine

in response to a user’s query.

Document clustering can be performed in a two-stage scenario. The first stage is to

preprocess the documents in order to transform them into a usable data representation

for analysis. The preprocessing consists of tasks such as the exclusion of words without

informative value known such as stop words; the reduction of the words to their rad-

icals, known as stemming; the uppercase/lowercase conversion known as case-folding;

and transforming the words to a numeric space. The second stage is to analyze the nu-

meric data and partition them into clusters.

2.2 Document representations for clustering

Text document representations play an important role in many natural language pro-

cessing (NLP) based tasks such as document clustering and classification ( [Zhang et

al.2018, Gui et al.2014, Gui et al.2016]), sense disambiguation ( [Gong et al.2017, Gong

et al.2018]), machine translation ( [Mikolov et al.2013b]), document matching ( [Pham

et al.2015]), and sequential alignment ( [Peng et al.2018b, Peng et al.2015]). One of the

main requisites in document clustering is to convert each document into a numeric vec-

tor or set of features. Since there are no explicit numerical features in text documents,

much work has been aimed at developing effective numerical text representations. In the
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following we discuss three well-known methods to convert text document into structured

data, or numerical vectors.

2.2.1 Methods based on term frequency

Most clustering methods applied to unstructured document collections start with cre-

ating a vector-space model, known as a bag-of-words (BoW) model, [Salton and Buck-

ley1988, Steinbach et al.2000, Dhillon and Sra2005], consisting of the frequencies in the

document of each word in a vocabulary. This model is popular due to its simplicity, ef-

ficiency and often surprisingly high accuracy [Wang and Manning2012]. In this model,

documents are described by a very sparse matrix due to the large size of typical vocabu-

laries. The words are treated as attributes and each document is described by a vector that

stores the frequency of each word in the document. The set of all documents is usually

called document-to-term matrix, or sometimes document-term matrix.

It is very common to reweigh the term frequencies to somehow reflect the “discrim-

inative power” of each word. The term frequency-inverse document frequency (tf-idf)

approach, [Robertson and Walker1994], is the most popular reweighting scheme for the

BoW model. The term frequency (tf) is the raw count of the word’s appearances in a doc-

ument, and the inverse document frequency (idf) increases the importance of words that

appear rarely in the collection, assuming that they would be more discriminative in any

ensuing clustering and classification tasks [Erra et al.2015, Qimin et al.2015, Bagirov et

al.2018]. The simple formula of the tf-idf weighting approach is:

t fi, j × log(
M
d fi

) (2.1)

where t fi, j is the number of occurrences of the i-th word in the j-th document, d fi the

number of documents containing the i-th word, and M the total number of documents.

Intuitively, a term has a large weight when it occurs frequently across the document but

infrequently across the corpus. For example, in a health domain words such as “dr” and

“pain” might appear often in a document, but because they are likely fairly common also

in the rest of the corpus, they will not have a high tf-idf score. Conversely, words referring

to a specific pathology may have higher tf-idf score.

25



CHAPTER 2. LITERATURE REVIEW

2.2.2 Ontology based techniques

The BoW model has inherent flaws such as ignoring the word ordering [Cheng2008]

and suffering from the “curse of dimensionality” (the difficulty of learning in high dimen-

sional spaces) [Friedman1997]. Using an ontology, derived from existing databases, is a

promising solution to diminish such flaws [Fodeh et al.2011, Elsayed et al.2015].

In [Hotho et al.2003], the authors integrated the popular WordNet ontology with doc-

ument clustering. WordNet organizes words into hierarchical sets of synonyms called

’synsets’. They tried to solve the problem of the BoW representation by leveraging syn-

onymy, in order to represent relationships between terms which do not co-occur literally.

The authors considered the synsets as concepts and extended the BoW model by including

the parent concepts (hypernyms) of synsets up to five levels. For example, they utilised

the WordNet ontology to find the similarity between related terms such as “beef” and

“pork”, since these two terms have the same parent concept “meat”. Therefore, a docu-

ment having the term “beef” will be related to a document with the term “pork” appearing

in it; the proposed approach is shown to enhance the clustering performance.

The work of [Recupero2007] presents a clustering technique based on an information

extraction system, ANNIE, and WordNet that finds the lexical category of each term and

uses it to replace the term. The document vectors were reduced to 41 dimensions given

that this is the number of lexical categories for nouns and verbs in Wordnet. At its turn,

ANNIE is an information extraction system which helps understand whether two words

or compound words refer to the same entity [Recupero2007]. In [Fodeh et al.2011], the

authors claim that the drawback of augmenting WordNet synsets with original terms is

increasing the dimensionality of terms. They used an ontology to reduce the number of

features. In their work they showed that by identifying and using noun features alone,

document clustering is improved. Furthermore, they used word sense disambiguation

techniques in order to resolve polysemy, which happens when a single word has multiple

meanings. In addition, they used an ontology to resolve synonymy problems, which occur

when two different words refer to the same concept, by using the corresponding concepts

and expelling the synonymous. In turn, the work of [Elsayed et al.2015] leveraged Word-

Net to decrease the document features to just 26 features representing the WordNet lexical

noun categories. They integrated the WordNet ontology with bisecting k-means using the

26



CHAPTER 2. LITERATURE REVIEW

MapReduce parallel programming model. MapReduce is a programming model and an

associated implementation for processing and generating big data sets with a parallel,

distributed algorithm on a computer cluster [Dean and Ghemawat2008].

2.2.3 Methods based on word embeddings

More recently, various document clustering techniques based on word embeddings

[Mikolov et al.2013a] have emerged as capable of overcoming the flaws of the BoW

model. More precisely, these techniques embed each distinct word in a vector space

of dimensionality (≈ 102 − 103) typically much smaller than that of the BoW model

(≈ 105 −106).

A recent empirically successful body of research makes use of distributional or contex-

tual information together with simple neural network models to obtain vector-space repre-

sentations of words and phrases such as Wor2Vec [Mikolov et al.2013a] and GloVe [Pen-

nington et al.2014]. There are two models in Wor2Vec, [Mikolov et al.2013a], namely,

the Continuous Bag-of-Words (CBOW) model and the Skip-gram (SG) model. A graph-

ical description of these models is shown in Fig. 2.3. Both models have three lay-

ers: input layer, projection layer and output layer. For the CBOW model, the context

{wt2,wt1,wt+1,wt+2} is used to predict the word wt , while it is the reverse in the other

model; i.e. the word wt is used to predict the context {wt2,wt1,wt+1,wt+2}. There is no

specific, best value for the size of the context, and it needs to be chosen before the learn-

ing. One of the standing advantages of a word embedding approach such as Wor2Vec

over more recent contextualised approaches such as Embeddings from Language Models

(ELMo) [Peters et al.2018] and Bidirectional Encoder Representations from Transform-

ers (BERT) [Devlin et al.2018] is that it encodes each single word in a vocabulary with a

vector that does not change in different instances of the word. This allows using the word

embeddings for tasks such as counting, clustering and building ontologies which are the

key targets of this thesis.

A number of researchers have proposed extensions of Wor2Vec towards learning se-

mantic vector-space representations of sentences or documents and used them for, among

other: sentiment analysis [Tang et al.2014, Zhang et al.2015], document distance mea-

surement [Kusner et al.2015], topic modelling [Xun et al.2017, Das et al.2015], and
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Figure 2.3: The two models of Wor2Vec.

document clustering and classification [Kim et al.2015, Lilleberg et al.2015, Wang et

al.2016, Lenc and Král2017]. However, extending word embeddings to entire paragraphs

and documents for tasks such as document and short-text classification is a challenge.

A simple but often effective approach is to use a weighted average of some or all of the

word embeddings in the document. While this is simple, important information could eas-

ily be lost in such a document representation, particularly since it does not consider word

ordering. A more sophisticated technique ( [Le and Mikolov2014]) has focused on jointly

learning embeddings for both words and paragraphs using models similar to Wor2Vec,

namely, Distributed Memory Model Paragraph Vectors (PV-DM) and Distributed BoWs

paragraph vectors (PV-DBoW). In PV-DM, the model is learned to predict the next context

word using word and paragraph vectors, while in PV-DBoW, the paragraph vector is di-

rectly learned to determine randomly-sampled context words. These models use the word

order within a small context window and potentially capture only local semantics [Singh

and Mukerjee2015]. The quality of the word embeddings learned in such models may be

limited by the size of the training corpus, which cannot scale to the large sizes used in the

simpler word embedding models, and which may consequently weaken the quality of the

document embeddings. The works of [Wang et al.2016] map word embeddings to a latent

topic space to capture different senses in which words occur. They represent documents

in the same space as words. However, these methods are also computationally intensive.

The work of [Kusner et al.2015] presents a document distance metric, the Word Mover’s

Distance (WMD), that measures the dissimilarity between two documents in the Wor2Vec

embedding space. Despite its state-of-the-art KNN-based classification accuracy over

other methods, combining KNN and WMD might incur very high computational cost.

More importantly, WMD is simply a distance that can be only combined with KNN or

28



CHAPTER 2. LITERATURE REVIEW

k-means, whereas many machine learning algorithms require a fixed-length feature repre-

sentation as input.

In order to better capture the order relationships between words, and improve the topic

discovering in an effective way, the work of [Li et al.2017] classified the order relation-

ships between terms into forward dependence and backward dependence, and presented

a feedback recurrent neural network-based topic model. To deal with capturing back-

ward dependences, they considered each word with a one-hot vector and applied long

short-term memory (LSTM) recurrent neural network to compute its corresponding em-

bedded vector, and designed a feed-back mechanism for the recurrent neural network for

capturing forward dependences.

The work of [Kim et al.2017] proposed the bag-of-concepts method for document rep-

resentation, which overcomes the weaknesses of BoW and Wor2Vec models as shown

by the authors. The method creates concepts through clustering word vectors generated

from Wor2Vec, and uses the frequencies of these concept clusters to represent document

vectors. In the other words, document vectors are represented by the frequencies of the

concepts. The proposed method aims to incorporate the impact of semantically similar

words on preserving document proximity effectively.

The work of [Peng et al.2018a] introduces a Deep Graph convolutional neural net-

works (CNN) approach to text classification. They used recursive regularization to deep

learning for large scale hierarchical text classification. This is a general framework for

deep learning applied to classifications problems when classifying data into a hierarchy

of labels.

2.3 The k-means algorithm and its variants

In this section, we describe the k-means clustering algorithm and some of its variants.

Let X be a finite set of points in the n-dimensional space Rn:

X = {x1, . . . ,xm}, xi ∈Rn, i = 1, . . . ,m.

The data points xi, i = 1, . . . ,m are called instances and each instance has n dimensions.

The hard unconstrained clustering problem is the distribution of the points of the set
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X into a given number K of disjoint subsets X j, j = 1, . . . ,K with respect to predefined

criteria such that

1. X j �= /0, j = 1, . . . ,K;

2. X j ⋂Xl = /0, for all j, l = 1, . . . ,K, j �= l;

3. X =
K⋃

j=1
X j.

The sets X j, j = 1, . . . ,K, are called clusters. Each cluster X j can be identified by its center

c j ∈Rn, j = 1, . . . ,K. The problem of finding these centers is called the K-clustering (or

K-partition) problem.

2.3.1 The k-means algorithm

The k-means clustering algorithm is a form of unsupervised learning, which is used

for unlabeled data (i.e., data without defined categories, groups or classes). The goal of

this algorithm is to partition the data into groups, with the number of groups represented

by the variable K. This is a versatile algorithm that can be used for any type of group-

ing. Some examples of use cases are behavioral segmentation, inventory categorization,

sorting sensor measurements, detecting bots or anomalies and document categorization.

The algorithm works iteratively to assign each data point to one of K groups based on

the features that are provided, i,e. data points are clustered based on notion of feature

similarity. The results of the k-means clustering algorithm are: 1) the centroids of the

K clusters, which can be used to label new data and 2) labels for the training data, e.g.

each data point is assigned to a single cluster. Each centroid of a cluster is a collection of

feature values which define the resulting groups. Examining the centroid feature weights

can be used to qualitatively interpret what kind of group each cluster represents.

The k-means starts with K initial cluster centroids and assigns each object to its closest

one based on the similarity measure defined as the squared Euclidean distance. In each

round, the centroids are recalculated and objects are re-assigned. The algorithm keeps

running until the clusters converge (covnergence to a local minimum is guaranteed). In

other words, it uses iterative refinements to produce a final result. The algorithm’s inputs

are the number of clusters, i.e. K, and the dataset. The initial estimates for the K centroids

can either be randomly generated or randomly selected from the dataset. The algorithm

assigns each object to its closest one. The steps of the algorithm are as Algorithm 1
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[Arthur and Vassilvitskii2007]:

Algorithm 1: Standard k-means algorithm.

1. Arbitrarily choose K initial centers C = {c1, · · · ,cK}.

2. For each i ∈ {1, · · · ,K}, set the cluster Xi to be the set of points in X that are
closer to ci than they are to c j for all j �= i.

3. For each i ∈ {1, · · · ,K}, set ci to be the center of mass of all points in Xi:

ci =
1

|Xi| ∑
x∈Xi

x.

4. Repeat Steps 2. and 3. until no more changes in C .

In Step 2., ties may be broken arbitrarily, as long as the method is consistent. Steps 2.

and 3. are both guaranteed to minimise the objective function f :

f = ∑
x∈X

min
c∈C

‖x− c‖2. (2.2)

where ‖.‖ is generally L2 norm. The algorithm iterates between two steps, 2. and 3., until

a stopping criteria is met. Examples of the stopping criteria can be:

• no data points change clusters;

• the sum of the distances is minimised (oracle solution);

• some maximum number of iterations is reached.

The algorithm is guaranteed to converge to a solution, but it might be a local optimum.

Therefore, it is not necessarily the best possible solution or the global solution. To over-

come this, repeating more than one run of the algorithm with randomized starting cen-

troids may give a better outcome.

2.3.2 The k-means++ algorithm

The k-means++ variant was proposed in 2007 by Arthur and Vassilvitskii [Arthur and

Vassilvitskii2007]. It is identical to the k-means algorithm, except for the selection of

initial conditions. This algorithm comes with a theoretical guarantee to find a solution

that is O(logK) competitive to the optimal k-means solution. At any given time, let d(x)

denote the shortest distance from a data point x to the closest center; the steps of the
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algorithm are, then, defined as follows [Arthur and Vassilvitskii2007]:

Algorithm 2: The k-means++ algorithm.

1. Choose an initial center c1 uniformly at random from X .

2. Choose the next center ci, selecting ci = x̄ ∈ X with probability

d(x̄)2/∑x∈X d(x)2.

3. Repeat Step 2. until K centers are selected.

4. Proceed as with the standard k-means algorithm.

2.3.3 Spherical k-means algorithm

Among many clustering algorithms in the literature, the spherical k-means (spkmeans)

algorithm [Dhillon et al.2001], that performs k-means using the squared Euclidean dis-

tance as the dissimilarity measure of the projections of the feature vectors onto the unit

sphere, or equivalently, the cosine dissimilarity, has been found to work well for document

clustering. The work of [Banerjee et al.2005] shows that the spkmeans is also obtained

as an Expectation Maximization (EM) variant for Maximum Likelihood Estimation of

the mean direction parameters of a uniform mixture of von Mises-Fisher (or Langevin)

distributions.

Let consider symbols M and K to denote the number of documents and the number of

clusters, respectively. We will use the symbol X to denote the set of M documents that we

want to cluster, with X1,X2, . . . ,XK, to denote the collection of the K clusters.

Given the vector space model, the document vectors may be represented by x1,x2, . . . ,xM,

with each xi ∈RV . Recall that V stands for the number of unique words in the vector space

model and M is the total number of documents. A clustering of the document collection

is its partitioning into the disjoint subsets X1,X2, . . . ,XK, i.e.

K⋃
j=1

X j = {x1,x2, . . . ,xM} &X j ∩Xl = /0, j �= l.

In spkmeans, the data is projected to the unit sphere. There are many schemes for se-

lecting the term, global, and normalization components. The spkmeans algorithm uses

the popular tf-idf scheme known as normalized term frequency-inverse document fre-
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quency [Salton and McGill1983]. Note that the tf-idf normalization implies that ‖xi‖= 1,

i.e., each document vector lies on the surface of the unit sphere in RV . This normalization

is the most common weighting method used to describe documents in the vector space

model [Salton and McGill1983]. It reduces the weight (or importance) of common terms

in the collection, ensuring that the matching of documents be more influenced by that of

more discriminative words which have relatively low frequencies across the documents in

the collection. This ensures that documents dealing with the same subject matter (that is,

using similar words), but differing in length lead to similar document vectors [Dhillon et

al.2001]. The partitioning of spkmeans is achieved by maximising the following objective

function:
K

∑
j=1

∑
x∈X j

xT × c j (2.3)

where ‖x‖= 1, xT × c j is the inner product between two vectors and c j is the normalized

centroid of cluster X j,

c j = ∑
x∈X j

x
/
‖ ∑

x∈X j

x‖. (2.4)

2.3.4 Global k-means algorithm

The global k-means algorithm, introduced in [Likas et al.2003], is an improvement

of the k-means algorithm. This algorithm computes clusters successively and in order

to compute K-partition this algorithm uses centers of K − 1 clusters from the previous

iteration. To compute q ≤ m clusters this algorithm proceeds as follows:

Algorithm 3: Global k-means algorithm.

1. Consider the centers c1,c2, . . . ,cK−1 from the previous iteration.

2. Add in turn, each point of A, thus obtaining m initial solutions with K points.
Apply k-means to each of them and keep the best K-partition so-obtained
and its centers c1,c2, . . . ,cK.

3. Set K = K +1 and go to Step 1 as long as K ≤ q.

The global k-means algorithm is not applicable for clustering on medium sized and

large data sets. It is very time consuming as at each iterations the number of the k-means

algorithm applications made is the number of data points.
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2.3.5 Modified global k-means algorithm

In this subsection, we briefly describe the modified global k-means algorithm [Bagirov2008].

Consider the nonsmooth optimization formulation of the MSSC problem [Bagirov and

Yearwood2006]:

⎧⎪⎨
⎪⎩

min fK(c)

subject to c = (c1, . . . ,cK) ∈ RnK,

(2.5)

where

fK(c1, . . . ,cK) = ∑
x∈X

min
j=1,...,K

‖c j − x‖2. (2.6)

The function fK is called the K-th clustering objective function. For K = 1 this function

is convex and for K > 1 it is both non-convex and nonsmooth. To partition the data X to

K clusters one needs to solve the K-clustering problem (2.5).

Assume that the solution c1, . . . ,cK−1 to the (K −1)-clustering problem and the corre-

sponding value f ∗K−1 = fK−1(c1, . . . ,cK−1) of the function fK−1 are known, K > 1. The

so-called auxiliary cluster function is formulated as [Bagirov2008]:

f̄K(y) =
1
m

m

∑
i=1

min
{

di
K−1,‖y− xi‖2} . (2.7)

Here di
K−1 is the squared distance between xi and the closest center among K −1 cluster

centers c1, . . . ,cK−1:

di
K−1 = min

{‖c1 − xi‖2, . . . ,‖cK−1 − xi‖2} . (2.8)

It is obvious that

f̄K(y) = fK(c1, . . . ,cK−1,y), y ∈Rn. (2.9)

Consider the following set

P =
{

y ∈Rn : ∃I ⊂ {1, . . . ,m}, I �= /0 : ‖y− xi‖2 < di
K−1 ∀i ∈ I

}
. (2.10)

The set P contains all points from Rn which are not cluster centers and can attract at least

one data point from the set A. It is clear that c j �∈ P for all j = 1, . . . ,K −1 and xi ∈ P for
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all xi ∈ X : xi �= c j, j = 1, . . . ,K −1. It is also clear that f̄K(y)< f ∗K−1 for all y ∈ P. For

any y ∈ P consider the following set:

S(y) =
{

xi ∈ X : ‖y− xi‖2 < di
K−1

}
. (2.11)

The set S(y) contains all points from X which are attracted by the point y ∈ P. Note that

S(y) �= /0 for any y ∈ P.

A starting point for the K-th cluster center is found as a solution to the following mini-

mization problem:

minimize f̄K(y) subject to y ∈Rn. (2.12)

The steps for solving Problem (2.12) involves the k-means algorithm and proceeds as

Algorithm 4.

Algorithm 4: An algorithm for finding a starting point.

1. For each xi ∈ P
⋂

X compute the set S(xi), its center ci and the value
f̄K,xi = f̄K(ci) of the function f̄K at the point ci.

2. Compute
f̄K,min = min

xi∈P
⋂

X
f̄K,xi , x j = argmin

xi∈P
⋂

X
f̄K,xi ,

select the corresponding center c j and the set S(c j).

3. Recompute the set S(c j) and its center until no more data points escape or
return to this cluster. The final value of c j is a starting point for the K-th
cluster center.

The modified global k-means algorithm solves the problem (2.5) incrementally. It starts

with the computation of the centroid of the whole data set. Then a new cluster center is

added at each iteration. The K-clustering problem is solved using the K−1 centers for the

K−1 clustering problems and the remaining K-th center is placed in an appropriate place.

An auxiliary cluster function is defined using K − 1 cluster centers from the (K − 1)-th

iteration and is minimized to compute the starting point for the K-th center. Then this new

center together with previous K − 1 cluster centers is taken as a starting point for the K-

clustering problem. The k-means algorithm is applied starting from this point to find the

K-partition of the data set. Such an approach allows one to find a global or a near global

solution to the clustering problem. The steps of modified global k-means are explained in
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Algorithm 5.

Algorithm 5: Modified global k-means algorithm.

1. (Initialization). Select a tolerance ε > 0. Compute the center c1 ∈Rn of the
set X . Let f1 be the corresponding value of the objective function (2.6). Set
l := 1.

2. (Stopping criterion). Set l = l +1. If l > K, then stop since the K-partition
problem has been solved.

3. (Computation of the next cluster center). Set l := l +1. Let c1, . . . ,cl−1 be
the cluster centers for (l −1)-partition problem. Apply Algorithm 4 to find a
starting point ȳ ∈Rn for the l-th cluster center.

4. (Refinement of all cluster centers). Select (c1, . . . ,cl−1, ȳ) as a new starting
point, apply the k-means algorithm (K = l) to solve the l-partition problem.
Let y1, . . . ,yl be a solution to this problem and fl be the corresponding value
of the objective function (2.6).

5. (Stopping criterion). If
fl−1 − fl

f1
< ε,

then stop, otherwise set ci = yi, i = 1, . . . , l and go to Step 2.

It is clear that f ∗K ≥ 0 for all K ≥ 1 and the sequence { f ∗K} is decreasing, that is,

f ∗K+1 ≤ f ∗K ∀ K ≥ 1. (2.13)

This means that stopping criterion in Step 5. will be satisfied after a finite number of

iterations and therefore, Algorithm 5 computes as many clusters as the data set A contains

with respect to the tolerance ε > 0. The choice of this tolerance is crucial for Algorithm

5. Large values of ε can result in the appearance of large clusters whereas small values

can produce small and artificial clusters.

2.4 Maximum margin clustering

There is a growing interest in applying support vector machines (SVM) techniques

to clustering motivated by their success in supervised learning. However, unlike large-

margin supervised learning, large-margin unsupervised learning is a non-convex prob-

lem. Most algorithms for large-margin unsupervised learning are based on some relax-
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ation techniques (e.g., [Li et al.2009, Xu and Schuurmans2005]). These techniques allow

applying convex optimization methods, however, they are typically accurate only on rel-

atively small datasets. The use of relaxation techniques in large datasets may lead to

solutions which are significantly different from the global solution of the original non-

convex problem. Therefore, it is imperative to develop methods which are both efficient

and accurate at solving large-margin unsupervised learning problems on large datasets. In

particular, such methods can be designed using opportunistic combinations of local and

global search algorithms. In these methods, local search algorithms are used to determine

local solutions while global search algorithms are used to escape from such local solutions

and find better re-starting points for the local search algorithms.

Consider a set of training samples, X = {(xi,yi)}m
i=1, where xi is the instance and yi

the class. For simplicity assume that yi ∈ {−1,1}. The SVM finds a maximum-margin

hyperplane h(x) = ωT Φ(x)+b = 0, where Φ(x) is the mapping induced by a kernel and

T is transpose of a vector, by solving:

⎧⎪⎨
⎪⎩

minω,b,ξi ‖ω‖2 +2C ξ T e

subject to yi(ωT Φ(xi)+b)≥ 1−ξi, ξi ≥ 0.
(2.14)

Here, the ξi’s are slack variables for the errors, C > 0 is a regularization parameter

and e = (1, . . . ,1)T . The optimization problem (2.14) is convex. If the class labels, yi,

are unknown, the problem becomes a non-convex maximum-margin clustering problem

(MMC) [Zhang et al.2007]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minyminω,b,ξi ‖ω‖2 +2C ξ T e

subject to yi(ωT Φ(xi)+b)≥ 1−ξi, ξi ≥ 0.

yi ∈ {−1,+1},

−l ≤ eTy ≤ l.

(2.15)

The last constraint, −l ≤ eTy ≤ l, is a “balance” constraint preventing the convergence of

the algorithm to a trivially “optimal” solution where all instances are assigned to the same

class.
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The dual problem of (2.15) is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minymaxα 2αT e−αT (K ◦ yyT )α

subject to αT y = 0, Ce ≥ α ≥ 0,

yi ∈ {−1,+1},

−l ≤ eTy ≤ l.

(2.16)

where α is the vector of the dual parameters, α = [α1, . . . ,αm]
T , K is the kernel function

and “◦” is the element-wise product between matrices.

It is shown in [Xu et al.2005] that (2.16) is equivalent to an NP-hard convex integer

programming. Since its introduction, it has been extended in many ways, for instance,

by choosing different loss functions (e.g., [Zhang et al.2007], [Gieseke et al.2009]), in-

corporating additional constraints such as pairwise links ( [Hu et al.2008]) and manifold

smoothness ( [Wang et al.2009]), or adding a feature weighting mechanism ( [Zhao et

al.2009]).

The works of [Xu et al.2005] and [Valizadegan and Jin2006] reformulated the origi-

nal problem as a semi-definite programming (SDP) relaxation. The work of [Zhang et

al.2007] employ alternating optimization - finding labels and optimizing a support vec-

tor regression (SVR). The paper of [Li et al.2009] iteratively infers the most-violating

ground-truth labels and combines them via multiple kernel learning. Note that the above

methods can only solve binary-cluster clustering problems. To handle the multi-cluster

case, [Xu and Schuurmans2005] extends the SDP method in [Xu et al.2005]. The work

of [Zhao et al.2008] proposes a cutting-plane method which uses the constrained convex-

concave procedure to relax the non-convex constraint. The work of [Gopalan and Sankara-

narayanan2011] examines data projections to identify the maximum margin. More re-

cently, [Karnin et al.2012] has proposed a global solution of polynomial complexity; how-

ever, its soft-margin formulation differs from the conventional soft-margin SVM based on

the hinge loss.

Overall, the existing methods for MMC can be categorized as either relaxations or

alternating methods [Zhao et al.2008, Zhang et al.2007]. For the relaxation methods, one

can review the papers of [Xu et al.2005], [Li et al.2009] as examples. These methods
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aim to find best approximating functions to the non-convex formulation of (2.16) and

solve the relaxed problem instead, by hoping that the solution will be close enough to

the actual one. However, in general, the solution found is not qualified compared to the

actual solution (but the relaxation in [Li et al.2009] is provenly tighter than that of [Xu et

al.2005]).

In contrast to the relaxation methods, alternating methods solve the original problem

in two steps [Zhang et al.2007]. They first initialize the labels using a clustering tech-

nique such as k-means and then they solve a supervised problem, often using SVM. The

procedure can be iterated in various ways until no further improvement is achieved. Our

proposed method falls in this group since we use an iterative method leveraging a com-

bination of k-means++ and SVM at each iteration. However, our method differs from

existing methods in that we solve a sub-problem at each step rather than considering the

whole problem at once.

2.5 Topic modelling

Topic models have become a frequently used tool in text mining. They are mostly

referred to as probabilistic topic models, which alludes to probabilistic algorithms for

revealing the hidden structure of a document collection. A topic model takes as input a

collection of documents and returns as output a set of topics. Figure 2.4 shows the input,

output and the main steps in topic modelling. These topics are probability distributions

over the words in the collection, Figure 2.5. Topic models can be used for deriving low-

dimensional representations of documents that are, then, used for information retrieval,

document summarization, and classification [Blei and McAuliffe2008, Lacoste-Julien et

al.2009]. There are several scenarios when topic modelling can prove useful:

1. Document classification: The topic vectors of the documents can be used as features

or input data for document classification. More precisely, topic modelling can im-

prove classification by grouping similar words together in topics rather than using

each word as a feature. The number of features will be the number of topics rather

than the much larger number of unique words in the corpus.

2. Recommender systems: One can build recommender systems using a similarity mea-

39



CHAPTER 2. LITERATURE REVIEW

sure based on topic modelling. If a system has to recommend articles for readers, it

can recommend articles with a topic structure similar to the articles that the user has

already read.

3. Uncovering themes in texts: Useful, for example, for detecting trends in online pub-

lications or customer’s behaviours.

Figure 2.4: The main steps in topic modelling.

Figure 2.5: Another view on topic modelling.

There are several well-known algorithms for topic modelling. The most popular ones

include: 1) Latent Dirichlet Allocation or LDA, where the foundations are Probabilistic

Graphical Models; 2) LSA (or LSI) which stands for Latent Semantic Analysis (or Latent

Semantic Indexing). It uses Singular Value Decomposition (SVD), [Wu and Stathopou-

los2014] of the Document-Term Matrix; 3) Non-Negative Matrix Factorization or NMF,

which uses linear Algebra and matrix factorization to find topic-word and document-topic

matrices. In all the algorithms, the number of topics is a (hyper)parameter of model learn-

ing and needs to be given by the user in advance. All of the algorithms have as input the

document-term matrix, and returns two matrices, a topic-word matrix and a document-

topic matrix. A good model should produce those two matrices such that their multipli-
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cation is as close as possible to the document-term matrix. None of the above algorithms

can infer the number of topics in the document collection.

The beginning of topic modelling dates back to latent semantic indexing (LSI) [Deer-

wester et al.1990]) which was not originally introduced for topic modelling. The ear-

liest topic model as such was introduced by Papadimitriou et al. in [Papadimitriou et

al.2000], and a significant step forward in topic modelling was due to Hofmann [Hof-

mann1999], who introduced a probabilistic model for the LSI (pLSI). Latent Dirichlet

allocation (LDA), [Blei et al.2003], which is nowadays the most widely used model, is

an extension of pLSA. LDA assumes the standard BoW representation and explains each

document as a mixture of topics with each topic describing a probability distribution over

the words in the collection.

Most of the other contemporary topic models are extensions of LDA such as the Pachinko

allocation [Wei et al.2007] which introduces topics’ correlations further to the word cor-

relations to form topics. Examples of other extensions include, but are not limited, hi-

erarchical formulations to produce an unknown number of topics [Teh et al.2006], top-

ics evolution over time [Blei and Lafferty2006], topic correlation using the logistic nor-

mal distribution [Blei and Lafferty2007], topics that follow a Markov chain and change

over sentences [Gruber et al.2007] and topics employing prior knowledge [Chen and

Liu2014, Seifollahi et al.2017b].

Although LDA has been the starting model for many later models, one common lim-

itation of LDA and many such related models is that they do not take subsequent words

relations into account. Conversely, in [Gruber et al.2007] the topics of sentences follow

a Markov chain. They assume that topic changes occur between sentences, and that the

topic for each sentence is decided at the beginning of each sentence by drawing a random

number from a binomial distribution. However, considering such an assumption may lead

to incoherent topics in collections where the vocabulary used by human is complex. For

this reason, this author’s work [Seifollahi et al.2017b] has introduced a model based on

a Markov chain, where the topic of each words depends on the previous word. This is

done by calculating a word transition probability matrix in advance. Such a transition

matrix, which is estimated via an initial topic model, records how two words are topically

correlated to each other (details will be provided in later chapters).
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Below we describe three well-known topic models that can be regarded as strong base-

lines. The core idea is to take the document-term matrix and decompose it into a separate

document-topic matrix and a topic-word matrix in various ways.

2.5.1 Latent semantic analysis

Latent Semantic Analysis (LSA) also known as Latent Semantic Index (LSI) uses the

BoW model [Bellegarda2005]. LSA learns latent topics by performing a matrix decompo-

sition on the document-term matrix using SVD, and is typically used as a dimensionality

reduction or noise reducing technique.

Let’s say we have M as the number of text documents with V the number of total unique

words. We wish to extract K topics from all the text data in the documents. The number

of topics, K, has to be specified by the user. Given the document-term matrix, one can

find two matrices, document-topic and topic-word, using the SVD procedure. In fact,

SVD decomposes a matrix into three matrices. Suppose we want to decompose a matrix

X using SVD. It will be decomposed into θ , Σ, and φ ,

X = θ ×Σ×φ T (2.17)

where θ and φ T are document-topic and topic-word matrices, respectively, and Σ is a

V ×V diagonal matrix with non-negative real numbers which can be compounded with

either of the other two factors.

2.5.2 Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) is a Linear-algebraic model, that factors

high-dimensional vectors into a low-dimensionality representation. Similar to Principal

component analysis (PCA), NMF takes advantage of the fact that the vectors are non-

negative. By factoring them into the lower-dimensional form, NMF forces the coefficients

to also be non-negative.

Given the document-term matrix X , we can obtain two matrices φ and θ , such that

X = θ ×φ , where θ and φ are so-called document-topic and topic-word matrices. These

matrices, θ and φ , are calculated by optimizing over an objective function (like the
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Expectation-Maximization algorithm), and updating both θ and φ iteratively until con-

vergence. To be more specific, the input data matrix X can be approximately represented

by the product of two non-negative matrices θ and φ , such that

min
φ ,θ>0

‖X −θφ‖2 +λR(θ ,φ) (2.18)

where R(., .) is a regularization term, and λ is the parameter of the regularization term.

The regularization term R(., .) can be defined as θ +φ or can be defined based on L1 and

L2 norms:

R(θ ,φ) = γ(‖θ‖1 +‖φ‖1)+(1− γ)(‖θ‖2
F +‖φ‖2

F) (2.19)

where γ is the ratio for the L1 penalty. The regularization parameter helps controlling the

sparsity of the topics.

2.5.3 Latent Dirichlet allocation

The Latent Dirichlet Allocation (LDA) model, [Blei et al.2003], is the most widely used

probabilistic topic model to derive a low-dimensional topic space. It assumes the BoW

representation which is the input for most topic modelling algorithms. Each document

d is represented as a discrete distribution over topics, where each topic K is a discrete

distribution over the words. Both distributions, the document-topic θ and topic-word φ ,

are drawn from Dirichlet distributions with parameters α and η respectively. Figure 5.1(a)

illustrates the graphical model of LDA, where M is the number of documents, V the size

of vocabulary, and K the number of topics in the collection. The documents are known,

whereas the topic parameters, including the topic-word, document-topic and topic-word

assignments, are hidden. The generative model for the LDA is as follows:

With the above notations and generative process for LDA, the joint probability of a

document d with N words can be formulated as:

p(w) =
∫
θ

( N

∏
n=1

K

∑
zn=1

p(wn|zn;β )p(zn|θ)
)

p(θ ;α)dθ (2.20)

The computation in (2.20) is highly intractable. Therefore, the need for an estimation

method to determine the posterior (2.20) is crucial. There are generally two types of
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Algorithm 6: Latent Dirichlet Allocation.

1. For each topic k in {1, . . . ,K}.
1.1. Draw a distribution over words φk ∼ DirV (η).

2. For each document d :

2.1. Draw a vector of topic proportions θd ∼ DirK(α).

2.2. For each word wd,n

2.2.1. Draw a topic assignment zd,n ∼ MultK(θd).

2.2.2. Draw a word wd,n ∼ MultV (βzd,n).

estimation methods: i) the variational Bayesian estimation and ii) (collapsed) Gibbs sam-

pling. The EM algorithm is generally used to learn the LDA parameters by maximising

a variational bound; see [Teh et al.2006], while the aim in Gibbs sampling, [Griffiths and

Steyvers2004], is to estimate the posterior distribution in a Markov chain whose limiting

distribution is the posterior. The Markov chain runs for a large number of iterations, col-

lects samples from the limiting distribution, and then approximates the distribution with

the collected samples.

2.6 Deep learning and beyond

Deep learning is presently the undisputed technology for supervised machine learning,

especially for classification of data of numerical nature. However, its application to un-

supervised learning has been somehow more limited and more recent, with variational

autoencoders the most notable approach [Kingma and Welling2014]. Deep learning has

also recently made its way into unsupervised applications such as clustering and topic

modelling [Aljalbout et al.2018, Yang et al.2016, Srivastava and Sutton2017]. However,

in many cases the training objectives remain unchanged and deep learning seems to con-

tribute mostly to the feature extraction. For instance, Jule is an approach that combines

a variational autoencoder with a k-means output stage [Yang et al.2016]. Since in this

thesis we focus on original formulations of clustering and topic modelling, we reserve to

explore these avenues in future research.
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Algorithms for Documents Clustering

In this section, we present two novel methods for document clustering. First, we describe

a method based on the maximum-margin concept, namely a semi-supervised maximum-

margin clustering [Seifollahi et al.2018]. Then, we present a method based on incremental

optimization and spherical k-means. Both methods use the bag-of-words (BoW) model

to create the feature set.

3.1 A maximum margin clustering algorithm

Maximum margin clustering (MMC) is an extension of the support vector machines

(SVM) technique for clustering. It partitions a set of unlabelled data into multiple groups

by finding hyperplanes with the largest margins. Although existing algorithms have

shown promising results, there is no guarantee of convergence of these algorithms to

global solutions due to the non-convexity of the optimization problem. In this section, we

propose a simulated annealing-based algorithm that is able to deal with the issue of local

minima in the MMC problem. The novelty of our algorithm is twofold: (1) it comprises

a comprehensive cluster modification scheme based on simulated annealing and (2) it in-

troduces a new approach based on the combination of k-means++ and SVM at each step

of the annealing process. More precisely, k-means++ is initially applied to extract subsets

of the data points. Then, an unsupervised SVM is applied to improve clustering results.

We design a method to address two main issues of the MMC method: (1) its compu-

tational complexity and (2) the inherent risk of falling into local solutions. To address
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the first problem, we perform the computation over only a subset of the points, hereafter

called representative points, instead of the whole data. To address the second problem,

we use a scheme employing simulated annealing and a combination of k-means++ and

SVM to find “deeper” local solutions. The details for the initial process, post-processing,

and the steps of the algorithm are presented in the following sub-sections.

3.1.1 Formulation of the clustering problem

In this section we present nonsmooth optimization formulations of the clustering prob-

lem. Consider a finite set X of points in the n-dimensional space Rn is given:

X = {x1, . . . ,xm},where xi ∈ Rn, i = 1, . . . ,m.

The data points xi, i = 1, . . . ,m are called instances and each instance has n dimensions.

The hard unconstrained clustering problem is the distribution of the points of the set

X into a given number K of disjoint subsets X j, j = 1, . . . ,K with respect to predefined

criteria such that

1. X j �= /0, j = 1, . . . ,K

2. X j ⋂Xl = /0, for all j, l = 1, . . . ,K, j �= l.

3. X =
K⋃

j=1
X j.

The sets X j, j = 1, . . . ,K are called clusters. Each cluster X j can be identified by its cen-

ter c j ∈ Rn, j = 1, . . . ,K. The problem of finding these centers is called the K-clustering

(or K-partition) problem.

In this report, the similarity measure is defined using the Euclidean norm (the L2-norm)

d2(c,x) =

(
n

∑
i=1

(c−xi)2

)1/2

. (3.1)

The nonsmooth optimization formulation of the MSSC problem is [Bagirov and Year-

wood2006]:
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⎧⎪⎨
⎪⎩

min fK(c)

subject to c = (c1, . . . ,cK) ∈ RnK,

(3.2)

where

fK(c1, . . . ,cK) = ∑
x∈X

min
j=1,...,K

d2(c j,x). (3.3)

The function fK is called the K-th clustering objective function. For K = 1 this function

is convex and for K > 1 it is both non-convex and nonsmooth.

3.1.2 Initial clusters

We generate an initial set of clusters using k-means++. These clusters are meant to act

as “coarse-scale” points in the final clustering algorithm. Their number has to be very

high so as to not over-simplify the problem, yet significantly smaller than the number

of the original points to be approachable by MMC-like algorithms. An adequate value

for the number of such initial clusters is likely to depend on the number of points, the

number of attributes and the closeness of the points to each other. Herewith, we choose it

as random number proportional to the number of points. The initialization procedure can

be summarized as follows:

Algorithm 7: Computation the set R of representative points.

1. Select a number δ ∈ (0,1) and the final number of clusters K to be computed.

2. Compute K clusters X1, . . . ,XK using the k−means++ algorithm.

3. For each cluster X j, j = 1, . . . ,K compute the weight w j = |X j|/m and
define the number of initial clusters as Kj = δw jm.

4. For each cluster X j, j = 1, . . . ,K compute Kj clusters using k−means++.

5. Define the set R of representative points as the set of cluster centers
computed in Step 4..

3.1.3 Post-processing of initial clusters

The set R of representative points obtained using Algorithm 7 are used as the input for

a post-processing phase to generate the final clusters. The points are, then, grouped using
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a combination of k-means++ and SVM, labelled as KMSVM. We use an iterative cluster

modification scheme based on simulated annealing in which we update the representative

points at each iteration using two steps: (1) perturbing a randomly-selected representative

point to other points from the same initial cluster and (2) splitting an initial cluster into

two new clusters if it exhibits high bi-modality when applying a Gaussian Mixture Model

on the corresponding points.

We exploit simulated annealing to find a “deeper”’ local solution to the clustering prob-

lem. Simulated annealing comprises two main iterations: the outer and inner iterations. In

the outer iteration the temperature, T , which is analogous to the temperature in the phys-

ical process of annealing, is updated. In order to do so, we take any initial value T0 for the

temperature and a number r ∈ (0,1) and use the following schedule for the temperature

update: Ti+1 = r×Ti, i = 0,1,2, .... In the inner iteration the current state is modified to

generate a new solution based on a proposal step. If the proposal reduces the value of the

objective function, the transformation to the new state is accepted. If it increases the value

of the objective function, the transformation is accepted with an acceptance probability:

p = min
(

1,exp
(−Δ f

T

))
, (3.4)

where Δ f = f new − f old , f old is the function value in the previous state and f new is the

function value based on the perturbed configuration. More precisely, a random number u

from the uniform distribution U [0,1] is generated. If p ≥ u, the perturbed configuration is

accepted as a new solution; otherwise the inner iterations are repeated. For more details on

the simulated annealing method see [Kirkpatrick et al.1983] and [Seifollahi et al.2014].

3.1.4 The proposed algorithm for clustering large-scale data

Here we propose our algorithm which consist of two stages. First, Algorithm 7 is

applied to generate the initial clusters. Then, the representative points of the initial clusters

are used as input for the post-processing stage that outputs the final clusters.

We leverage bi-modality information (Step 3. in Algorithm 8) to decide whether the

initial clusters are appropriate. The idea is to split a candidate initial cluster so that it

substantially contains only one mode. The presence of two distinctive modes in a cluster

can be identified using the Gaussian Mixture Model (GMM). Then the Kullback-Leibler
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divergence (KLD) can be applied to measure the difference between distributions of these

modes. KLD is a measure of the difference between two probability distributions. For

Gaussian distributions P and Q it can be expressed in closed-form as [Duchi2007]:

DKLD(P|Q) =
1
2

(
tr(Σ−1

q Σp)+ (3.5)

(μq −μp)
T Σ−1

q (μq −μp)−
n+ ln

(detΣq

detΣp

))

where μp and μq are the means of P and Q, Σp and Σq are their covariance matrices and n

is the dimension of the vector space.

Algorithm 8: Simulated annealing-based maximum-margin clustering (SAMMC).

1. (Initialization). Compute K0 initial clusters using Algorithm 7, where
K0 = ∑K

i=1 Ki and compute the set R of representative points. Choose the
final number of clusters, K < K0.

2. (Computation of clusters). Apply KMSVM to the set R to find K clusters.

3. (Splitting clusters based on GMM). Apply the GMM on each initial cluster
to find two new clusters for each one. Select an initial cluster with the
highest KLD value as a candidate. Split the candidate cluster into two new
clusters using k−means++. Set K0 = K0 +1 and update the set R. Apply
KMSVM on the set R. Accept or reject the proposal based on (3.4).

4. (Perturbation of representative points). Select a representative point at
random and perturb it to another point (at random) within the corresponding
initial cluster. Recompute clusters using KMSVM on new representative
points, and accept or reject the proposal based on (3.4).

5. (Termination of algorithm). Repeat steps 3.- 4. until convergence.

As can be seen, Algorithm 2 uses the ratio (3.4) twice to accept or reject a new proposal:

the first one (at Step 3.) is a supervised form of learning and the second one (Step 4.) is

an unsupervised one, or random walk. More precisely, i) Step 3 is a proposal of a cluster

split, in which the cluster having the highest KLD value is conditionally split into two

new ones, while ii) Step 4 is a random perturbation of a representative point to update

the cluster labels. In this step, the representative point of an initial cluster is switched

to another point from the same initial cluster by a random walk. In this way, we give a

chance to all points of that initial cluster to choose a different labelling. In both Steps 3
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and 4, initial clusters with only one point are discarded as they will cause no change to

the objective function.

3.1.5 Convergence of the proposed algorithm

The convergence of the proposed algorithm to the global solutions follows from the

convergence of the simulated annealing algorithm. It is well-known that under some mild

assumptions the simulated annealing method convergence to global solutions of continu-

ous global optimization problems with probability 1 (see, [Locatelli2000], for details).

The proposed algorithm is the combination of a local search and the simulated anneal-

ing method. A local search algorithm is applied to find stationary points of the problem

(2.15) and the simulated annealing method is applied to escape from these points and find

points with better values of the objective function or point which are located in deeper

basins of the objective function.

The objective function in the problem (2.15) has a finite number of local minimizers.

As the simulated annealing method escapes such points with the probability 1 then we

get that the proposed algorithm converges to the set of global minimizers of the problem

(2.15) with probability 1.

3.1.6 Experiments

We compare the performance of the proposed algorithm with a pool of algorithms

widely adopted for clustering: 1) the k-means++ algorithm (in the implementation of

the scikit-learn Python machine learning library) [Arthur and Vassilvitskii2007]; 2) mini-

batch k-means++ (initialized with k-means++) [Sculley2010]; 3) An algorithm based on a

Dirichlet process Gaussian mixture model (DPGMM), from the same library [Görür and

Rasmussen2010]; 4) the fuzzy c-means algorithm, from the fuzzy logic scikit Python ma-

chine learning library [Winkler et al.2011] and 5) the alternating maximum-margin clus-

tering (MMC) [Zhang et al.2007]. The mini-batch k-means++ algorithm [Sculley2010]

was proposed as an alternative to the k-means algorithm for clustering very large datasets.

The advantage of this algorithm is a reduction of the computational load deriving from

the use of sub-samples of fixed size. The DPGMM is an infinite mixture model with a

Dirichlet Process as a prior distribution over the number of clusters. The fuzzy c-means
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algorithm [Winkler et al.2011] is a clustering algorithm in which each data point is as-

signed to multiple clusters according to its membership grade. For hardening the final

assignment, we assign the point to the cluster with the highest grade. The alternating

MMC is a clustering algorithm that simply alternates steps of SVM classification and

prediction, starting fron an initial, arbitrary (possibly random) assignment.

For ease of reference, hereafter we refer to the proposed algorithm as simulated-annealing

MMC, or SAMMC for short; the k−means++ algorithm as KM; the mini-batch k-means++

algorithm as MBKM; the algorithm based on the Dirichlet process Gaussian mixture

model as DPGMM; the fuzzy c-means algorithm as FCM; and the alternating MMC sim-

ply as MMC. All algorithms were implemented in Python 3.5 on a PC with an Intel(R)

Core(TM) i5-5300, a CPU frequency of 2.3 GHz and 8 GB RAM.

To test the performance of the proposed algorithm and compare it with other algo-

rithms, we have carried out experiments with sixteen datasets. A brief description of

these datasets is given in Table 3.1, while their more detailed description can be found

in [Lichman2001], with the exception of the dataset D15 which is described hereafter. In

Table 3.1, m is the number of points and n is the number of features (dimensions).

The dataset D15 is from the Transport Accident Commission (TAC) which is a major

accident compensation agency of the Victorian Government in Australia. It consists of

a collection of 593,433 phone calls from 13,937 single TAC clients recorded by various

operators over 5 years. The phone calls are made for different purposes including, but

not limited to: compensation payments, recovery and return to work, different type of

services, medications and treatments, pain, solicitor engagement and mental health issues.

We refer to this data set as “Phone Calls” or briefly as “PCalls”.

The following preprocessing steps have been applied to the dataset D15 before its use

in the experiments: 1) removal of numbers, punctuation, symbols and “stopwords”; 2)

synonyms and misspelled words have been replaced with the base and actual words; 3)

infrequently occurring words have been removed; 4) as common in text mining, we have

also removed the most frequently occurring words such as names and addresses based

on a predefined list. The data have then been projected to a vector space by using the

tf-idf scheme [Beel et al.2016, Seifollahi et al.2017a]. The tf-idf is the most frequently

applied weighting scheme among those approaches used to describe documents in the
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vector space model [Beel et al.2016, Seifollahi et al.2017a], particularly in information

retrieval. The idf part is applied to normalize the word frequencies by means of their rel-

ative frequency of presence in the document and over the entire collection. It reduces the

weight (or significance) of common terms in the collection, ensuring that the matching of

documents be more influenced by that of more discriminative words which have relatively

low frequencies in a collection.

All datasets contain only numeric features and do not have missing values. In brief, the

datasets were chosen so that i) the number of attributes would range from very few (2)

to many (4,696); and ii) the number of data points would range from thousands (small-

est: 2,310) to millions (largest: 4,178,504). Their diversity provides a thorough base for

evaluation and comparison.

Table 3.1: Dataset summary.

Name Datasets m n

D1 Image Segmentation 2,310 19
D2 Page Blocks 5,473 10
D3 Gas Sensor Array Drift 13,910 128
D4 EEG Eye State 14,980 14
D5 D15112 15,112 2
D6 Online News Popularity 39,797 58
D7 KEGG Metabolic Relation Network 53,413 20
D8 Shuttle Control 58,000 9
D9 Sensorless Drive Diagnosis 58,509 48
D10 MiniBooNE particle identification 130,065 49
D11 Skin Segmentation 245,057 3
D12 3D Road Network 434,874 3
D13 Cover Type 581,012 10
D14 Poker Hand 1,025,010 10
D15 Phone Calls (PCalls) 593,433 4,696
D16 Gas sensor array under dynamic 4,178,504 19

gas mixtures

In order to implement Algorithm 7, one has to choose the parameter δ at Step 1. Values

of δ close to one significantly increase computational time. Therefore, we decreased the

value of this parameter with the increase of the number of data points. For the datasets

(D1-D11), we set it between 0.05 and 0.20 and decreased it to 0.01 for the very large data

sets (D12-D16).
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For the implementation of the two alternating steps of the KMSVM in Algorithm 8,

we used the MBKM and linear SVM algorithms from the scikit-learn module in Python.

Algorithm 8 terminates if one of the following criteria is satisfied:

• (Temperature drop). If the temperature parameter in the simulated annealing method

drops to a minimum user-defined value. We set the minimum temperature to 10−5.

• (Number of iterations). If the number of iterations reaches a maximum number defined

by the user. We set the maximum number of iterations to 20,000.

• (Number of unsuccessful iterations). If the number of unsuccessful iterations exceeds

a user-defined value (an unsuccessful iteration is an iteration that does not decrease the

objective). It was set to 1,000.

• (Time consumption). If the CPU time spent exceeds a pre-defined value. The maxi-

mum CPU time used by any algorithm is limited to: two hours for very large datasets

including Cover Type, Poker Hand, Phone Calls, and Gas sensor array under dynamic

gas mixtures; and half an hour for all the other datasets.

Results for comparing the SAMMC with the KM are given in Tables 3.2 and 3.3, while

Tables 3.4 and 3.5 present results for all the clustering algorithms used in numerical ex-

periments. These results are the best output out of 20 runs with different random initial-

izations. In these tables, we have adopted the following notations:

• K0 is the number of initial clusters before the use of the SAMMC;

• K is the number of final clusters;

• finitial is the objective function value of the MMC problem before the use of the

SAMMC;

• f f inal is the objective function value of the MMC problem after the use of the SAMMC;

• fbest (scaled by the number shown immediately after the name of the dataset) is the

best value of the clustering objective function (3.8) among all algorithms used in this

paper;

• EA is the error (in %) of an algorithm A calculated as follows:

EA =
f̄ − fbest

fbest
×100 (3.6)
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where f̄ is the value of the objective function obtained by an algorithm A.

For all datasets, we computed up to 20 clusters. Since the proposed algorithm, SAMMC,

requires an initial KM step in all cases, we report the objective function values before and

after the use of the SAMMC (i.e., finitial and f f inal) in Tables 3.2 and 3.3. Tables 3.4 and

3.5 instead report the errors of all the compared algorithms. While it is possible to use

additional performance figures such as the Dunn and Davies-Bouldin indices, we found

that they to tend to be very sensitive to outliers [Davies and Bouldin1979].

Results presented in Tables 3.2 and 3.3 show that the decrease of the objective function

values over iterations generated by the proposed method, where finitial is the function

value before the use of the SAMMC algorithm and f f inal is the function value after the

simulated annealing method’s iterations. In fact, the initial function values finitial are the

values obtained by applying the k-means++ algorithm. The parameter K0 is the number of

initial clusters used in the SAMMC algorithm; i.e. K0 in Step 1. of Algorithm 8. Almost

in all cases, the function values decrease and in most of them the amount of decrease is

significant.

Tables 3.4 and 3.5 demonstrate the relative errors, formulated in (3.6), of algorithms.

In these tables, E1, E2, E3, E4, E5 and E6 are the errors obtained using KM, MBKM,

DPGMM, FCM, MMC and SAMMC, respectively. The best objective function value

fbest among all algorithms are also presented in these figures. Results presented in both

Tables 3.4 and 3.5 show that the proposed SAMMC algorithm is the most accurate among

all algorithms, followed by MMC, KM, FCM, MBKM and DPGMM, respectively. It was

able to find better values of the objective function for most datasets; with particularly sig-

nificant improvements over datasets Image Segmentation, Page Block, KEGG Metabolic

Relation Network, Shuttle Control, Sensorless Drive Diagnosis and 3D Road Network.

The proposed algorithm requires more, and in some cases significantly more, compu-

tational time than all other algorithms as it may call many times the simulated annealing

step. However, the CPU time for the proposed method is reasonable even for very large

datasets (two hours for datasets D15 and D16). In fact, this is a trade-off between the

effectiveness and complexity. One can decrease the time by terminating the algorithm in

early iterations, which may lead to less improvement over k−means++, or can have more

effectiveness by running the algorithm for a long time.
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Table 3.2: Objective function values for the SAMMC algorithm over datasets 1-8
K #itr finitial f f inal #itr finitial f f inal

D1 (×105); K0 = 203 D2 (×106); K0 = 849

3 2999 2.27535 1.92150 2000 6.92090 4.86011
5 2999 1.71600 1.66362 2000 4.21305 3.30935
7 2000 1.57640 1.49572 2000 3.01114 2.47169
10 2000 1.31979 1.27118 2000 2.76200 1.96377
12 2000 1.24097 1.16674 2000 2.17831 1.78075
15 2000 1.09656 1.08162 2999 2.06897 1.61311
17 2000 1.02597 1.02597 2000 1.73571 1.54352
20 2000 0.96981 0.96691 2000 1.63124 1.41833

D3 (×108); K0 = 1974 D4 (×106); K0 = 2250

3 2999 6.94459 6.77215 2000 1.69264 1.69264
5 2999 5.84274 5.28765 2000 1.13563 0.98754
7 2000 4.72804 4.62881 2000 0.87802 0.85799
10 2000 4.02730 4.02730 2000 0.75413 0.75413
12 2000 3.83332 3.70030 2000 0.71172 0.70948
15 2999 3.41227 3.36523 2000 0.67419 0.67418
17 2000 3.23031 3.22069 2000 0.65220 0.64999
20 2000 3.03252 3.03028 2000 0.62949 0.62949

D5 (×107); K0 = 1975 D6 (×109); K0 = 1763

3 2999 5.54539 5.54065 1907 3.57554 3.55978
5 2000 4.03324 4.03281 1845 2.56188 2.28574
7 2000 3.41973 3.41973 1826 2.05394 1.90084
10 2999 2.86699 2.86601 1789 1.68326 1.56733
12 2000 2.62155 2.62132 1764 1.47500 1.42740
15 2000 2.33309 2.33309 1717 1.34470 1.27022
17 2000 2.18249 2.18249 1691 1.26208 1.19329
20 2000 2.02283 2.02283 1642 1.13187 1.12003

D7 (×106); K0 = 1930 D8 (×106); K0 = 1646

3 1567 2.80643 1.86366 709 2.51994 1.90781
5 1244 1.63321 1.29238 647 2.46973 1.99779
7 1184 1.28721 1.04727 629 2.40504 1.60107
10 973 0.94686 0.80424 584 1.79075 1.51039
12 963 0.94071 0.74028 571 1.75150 1.39149
15 884 0.82894 0.66603 566 1.72041 1.20582
17 852 0.71239 0.63615 528 1.50015 1.23395
20 843 0.66856 0.59669 548 1.39315 1.11643

The datasets can be divided in two groups based on their dimensionality. The first

group contains the datasets with small dimensionality (≤ 10): Page Blocks, D15112,
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Table 3.3: Objective function values for the SAMMC algorithm over datasets 9-16
K #itr finitial f f inal #itr finitial f f inal

D9(×105); K0 = 1889 D10(×107); K0 = 3195

3 482 8.24640 6.44864 453 4.98413 4.90467
5 333 6.50427 5.89485 456 3.90094 3.88245
7 331 5.86409 5.36534 451 3.25558 3.22204
10 331 5.53054 4.86941 450 2.82944 2.77394
12 326 5.10210 4.54399 447 2.62172 2.62172
15 315 4.49256 4.24934 440 2.54134 2.43630
17 318 4.31557 4.06649 439 2.37069 2.34742
20 321 4.01503 3.93085 442 2.25009 2.23405

D11(×107); K0 = 2892 D12(×106); K0 = 3526

3 363 1.17959 1.17271 151 2.53221 2.45714
5 338 0.87830 0.87783 124 1.57130 1.55483
7 325 0.71552 0.71552 121 1.19048 1.15124
10 302 0.57940 0.57381 120 0.89404 0.85363
12 295 0.53372 0.53317 120 0.75937 0.73588
15 293 0.49592 0.49114 119 0.63639 0.62200
17 291 0.45631 0.44613 117 0.73587 0.56791
20 287 0.41331 0.41206 115 0.52566 0.51077

D13(×108); K0 = 3568 D14(×106); K0 = 4219

3 322 6.84525 6.82126 223 7.73012 7.73012
5 315 5.31869 5.31693 224 7.10038 7.09909
7 314 4.73661 4.73574 227 6.66651 6.66651
10 316 4.12908 4.12908 251 6.15894 6.15712
12 315 3.88909 3.88898 264 5.95588 5.94458
15 313 3.55111 3.52572 250 5.63555 5.63519
17 310 3.41428 3.41428 242 5.49580 5.49443
20 309 3.23589 3.22004 283 5.35294 5.35294

D15(×104); K0 = 1558 D16(×1010); K0 = 3812

3 383 5.27089 5.27052 41 2.19410 2.19334
5 384 5.25709 5.25586 40 1.75273 1.75209
7 380 5.25277 5.24668 40 1.52607 1.52607
10 376 5.23029 5.22822 38 1.25024 1.25024
12 379 5.22126 5.21523 38 1.15669 1.14279
15 375 5.20914 5.20049 38 1.00832 0.99651
17 362 5.20057 5.20057 39 0.95343 0.92735
20 349 5.18291 5.17676 39 0.85912 0.85175

Shuttle Control, Skin Segmentation, 3D Road Network, Cover Type and Poker Hand.

The number of points in these datasets ranges from 15,112 to 1,025,010. Results pre-
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Table 3.4: Clustering errors obtained with the compared algorithms over datasets 1-8; for
compactness of notation, E1, E2, E3, E4, E5 and E6 are the errors obtained using KM,
MBKM, DPGMM, FCM, MMC and SAMMC, respectively
K fbest E1 E2 E3 E4 E5 E6 fbest E1 E2 E3 E4 E5 E6

D1 (×105) D2 (×106)

3 1.92065 18.46 0.34 35.42 0.00 12.56 0.04 4.86011 42.40 7.06 29.41 11.57 38.75 0.00
5 1.66362 2.83 3.07 22.57 1.29 1.55 0.00 3.30935 27.30 1.84 67.69 5.55 16.96 0.00
7 1.49572 5.39 7.81 31.29 1.01 2.85 0.00 2.47169 21.82 18.03 90.63 18.67 17.68 0.00
10 1.27072 3.86 0.00 49.03 1.76 2.53 0.03 1.96377 40.64 32.27 109.14 13.35 28.72 0.00
12 1.16674 6.36 1.00 55.16 3.31 0.41 0.00 1.78075 22.32 10.16 108.26 13.85 15.95 0.00
15 1.08162 1.38 2.95 58.82 2.02 1.36 0.00 1.61311 28.26 46.55 142.47 1.19 14.22 0.00
17 1.0236 0.23 0.00 62.20 5.55 0.23 0.23 1.54352 12.45 52.57 88.48 0.54 7.22 0.00
20 0.96691 0.30 0.35 89.45 4.74 0.30 0.00 1.41833 15.01 86.40 123.33 0.62 9.38 0.00

D3 (×108) D4 (×106)

3 6.77215 2.55 0.07 56.14 1.52 1.70 0.00 1.69264 0.00 153.30 24.26 0.00 0.00 0.00
5 5.28765 10.50 2.32 59.50 2.79 6.51 0.00 0.98754 14.99 182.78 15.92 0.18 10.57 0.00
7 4.62881 2.14 1.75 77.33 1.78 1.47 0.00 0.85799 2.33 377.50 11.05 2.47 2.29 0.00
10 4.0273 3.35 4.37 64.53 3.74 2.15 0.00 0.74556 0.40 336.08 53.54 3.95 0.39 0.00
12 3.7003 3.59 6.99 66.01 3.62 1.84 0.00 0.70699 0.32 159.20 24.02 6.55 0.00 0.00
15 3.36523 1.40 0.01 66.60 3.41 0.07 0.00 0.67114 0.00 284.78 69.80 9.92 0.00 0.00
17 3.22069 0.30 6.80 43.15 6.42 0.27 0.00 0.64949 0.34 513.23 35.70 11.16 0.00 0.00
20 3.03252 0.07 10.25 66.34 2.64 0.07 0.00 0.62333 0.00 306.83 81.85 11.81 0.00 0.00

D5 (×107) D6 (×109)

3 5.53855 0.13 0.07 24.29 0.00 0.10 0.04 3.55978 0.59 7.50 37.91 0.00 0.22 0.15
5 4.02884 0.11 1.64 142.09 0.00 0.09 0.10 2.28574 12.08 13.27 144.65 0.14 10.71 0.00
7 3.41973 0.00 1.77 14.89 1.37 0.00 0.00 1.90084 8.05 5.17 128.04 1.69 6.83 0.00
10 2.86414 0.03 1.73 240.54 2.06 0.00 0.00 1.56733 7.39 0.64 222.86 8.29 3.81 0.00
12 2.62132 0.01 1.66 11.66 0.25 0.00 0.00 1.42740 3.33 2.88 227.17 10.70 2.74 0.00
15 2.32964 0.15 1.33 318.44 0.00 0.08 0.15 1.27022 5.86 2.93 298.94 7.63 3.72 0.00
17 2.17353 0.41 2.54 9.45 0.00 0.08 0.41 1.19320 5.76 6.11 239.74 12.15 0.00 0.00
20 2.00347 0.97 3.55 383.42 0.00 0.54 0.97 1.12003 1.06 4.24 335.47 13.85 1.06 0.00

D7 (×106) D8 (×106)

3 1.86366 50.58 8.30 10.66 15.14 49.57 0.00 1.90781 34.47 2.91 20.36 0.00 18.65 2.39
5 1.29238 26.37 5.36 25.04 14.04 19.70 0.00 1.77075 42.88 5.87 14.64 0.00 24.39 3.43
7 1.04727 22.91 11.42 88.22 16.04 12.89 0.00 1.60107 50.21 12.03 30.62 0.43 48.79 0.00
10 0.80424 17.73 12.62 59.07 21.79 12.31 0.00 1.51039 18.56 4.61 23.33 4.19 14.51 0.00
12 0.74028 27.07 18.37 136.27 17.39 13.00 0.00 1.39149 25.87 10.68 39.76 9.84 16.44 0.00
15 0.66603 24.46 26.33 74.73 16.09 12.86 0.00 1.20582 42.68 9.65 34.08 24.37 21.75 0.00
17 0.63615 11.98 22.19 128.04 13.34 6.11 0.00 1.23395 21.57 9.50 53.30 18.83 19.33 0.00
20 0.59669 12.04 25.43 101.41 14.94 10.09 0.00 1.11643 24.78 25.16 53.49 29.26 24.78 0.00

sented in Tables 3.4 and 3.5 show that SAMMC improves the results for most of them,

with a particularly strong improvement on Page Blocks, Shuttle Control and 3D Road

Network. The second group contains datasets with larger number of attributes: Image

Segmentation, Gas Sensor Array Drift, EEG Eye State, Online News Popularity, KEGG

Metabolic Relation Network, Sensorless Drive Diagnosis, MiniBooNE particle identifi-

cation, Phone Calls and Gas sensor array under dynamic gas mixtures. The number of

dimensions in these datasets ranges from 14 to 4,696. Results presented in Tables 3.4
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Table 3.5: Clustering errors obtained with the compared algorithms over datasets 9-16;
for compactness of notation, E1, E2, E3, E4, E5 and E6 are the errors obtained using KM,
MBKM, DPGMM, FCM, MMC and SAMMC, respectively
K fbest E1 E2 E3 E4 E5 E6 fbest E1 E2 E3 E4 E5 E6

D9 (×105) D10 (×107)

3 6.44864 30.29 2.85 6.05 0.00 20.58 2.40 4.90467 1.62 49.06 93.91 41.52 1.58 0.00
5 5.65453 15.03 0.00 11.23 0.73 7.91 4.25 3.88245 2.29 67.57 107.18 0.00 0.32 1.80
7 5.11723 14.59 0.00 27.83 1.30 14.43 4.84 3.22204 1.04 84.64 43.40 97.54 0.55 0.00
10 4.86941 13.58 3.01 20.64 4.68 6.86 0.00 2.77394 2.00 105.57 179.43 123.64 0.82 0.00
12 4.49953 13.39 0.00 38.67 3.47 10.97 0.98 2.62172 0.00 131.61 61.21 133.11 0.00 0.00
15 4.24934 5.72 0.12 15.91 15.31 5.67 0.00 2.43630 4.31 124.53 215.33 148.27 2.16 0.00
17 4.06649 6.12 0.42 41.43 6.68 4.38 0.00 2.31230 2.52 0.00 76.76 160.27 2.07 1.51
20 3.93085 2.14 1.86 14.36 21.44 1.11 0.00 2.23405 0.72 138.92 204.42 167.56 0.08 0.00

D11 (×107) D12 (×106)

3 1.17271 0.59 2.36 16.11 0.59 0.28 0.00 2.45714 3.06 0.24 1.61 2.11 2.78 0.00
5 0.87783 0.05 2.52 12.32 0.01 0.05 0.00 1.55483 1.06 6.56 0.93 0.66 1.03 0.00
7 0.71549 2.66 2.59 65.33 2.57 0.00 0.00 1.15124 3.40 0.44 188.85 2.36 3.33 0.00
10 0.57382 0.97 13.07 37.44 3.08 0.67 0.00 0.85363 4.73 3.66 14.28 2.33 4.12 0.00
12 0.53317 0.10 4.42 51.60 2.61 0.01 0.00 0.73587 3.19 3.67 457.07 1.50 2.93 0.00
15 0.47046 5.71 0.00 65.30 2.75 5.54 1.32 0.62200 2.31 1.04 35.41 1.30 2.28 0.00
17 0.45377 4.79 0.41 48.42 3.86 0.00 0.00 0.56791 2.27 2.70 607.59 1.05 1.55 0.00
20 0.41271 1.31 4.52 69.23 6.37 0.01 0.00 0.51077 2.91 1.70 48.86 0.85 2.72 0.00

D13 (×108) D14 (×106)

3 6.82126 0.35 0.74 51.93 0.28 0.22 0.00 7.73012 0.00 0.56 0.88 1.07 0.00 0.00
5 5.30732 0.21 3.91 95.28 0.00 0.14 0.18 7.09909 0.02 0.47 3.92 1.44 0.01 0.00
7 4.72561 0.24 2.36 118.52 0.00 0.18 0.19 6.66651 0.00 1.48 7.80 8.00 0.00 0.00
10 4.12908 0.00 2.59 50.03 0.33 0.00 0.00 6.15712 0.03 0.90 13.65 10.83 0.00 0.00
12 3.88312 0.16 1.80 165.64 0.00 0.09 0.09 5.94458 0.19 0.93 15.12 10.52 0.00 0.00
15 3.52572 0.72 1.21 192.69 2.08 0.68 0.00 5.63519 0.01 1.78 19.47 11.70 0.00 0.00
17 3.41428 0.00 2.99 191.43 1.04 0.00 0.00 5.49443 0.03 1.77 19.94 17.41 0.00 0.00
20 3.22004 0.49 1.98 220.24 1.71 0.14 0.00 5.35294 0.00 0.98 22.20 20.46 0.00 0.00

D15 (×104) D16 (×1010)

3 5.26584 0.01 0.22 0.11 0.10 0.00 0.00 2.19334 0.03 0.25 109.71 0.08 0.02 0.00
5 5.25389 0.03 0.49 0.08 0.30 0.00 0.00 1.75209 0.04 0.25 157.66 0.05 0.03 0.00
7 5.24107 0.12 0.46 0.19 0.40 0.00 0.00 1.52476 0.02 0.00 170.02 0.62 0.00 0.02
10 5.22501 0.04 0.77 0.23 0.60 0.00 0.00 1.24970 0.00 0.87 266.32 1.45 0.00 0.00
12 5.21195 0.12 0.67 0.22 0.76 0.08 0.00 1.12905 1.21 0.86 147.42 1.18 0.00 0.00
15 5.19658 0.17 1.16 0.26 1.02 0.00 0.00 0.99651 1.19 1.99 330.68 4.74 0.30 0.00
17 5.18806 0.05 1.08 0.00 0.95 0.00 0.05 0.92565 2.81 4.08 183.29 2.55 0.00 0.00
20 5.17138 0.12 1.15 0.43 1.32 0.00 0.00 0.85090 0.87 0.43 418.83 3.83 0.00 0.00

and 3.5 show that SAMMC was able to improve over the other algorithms and that this

improvement is remarkable in most cases.

For further analysis, Figures 3.1 show the objective function values for algorithms

SAMMC and KM over a subset of the datasets when the number of clusters varies. Since

the SAMMC algorithm is initialized with KM, they also show how much the SAMMC

has been able to improve over its initial KM clustering. Figures 3.2 show the objective

function values for algorithms SAMMC and KM over the same subset when the number
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Figure 3.1: Objective function values for SAMMC and KM with varying number of clus-
ters (subset of four datasets).

of iterations varies. As can be seen from these figures, the proposed method significantly

decreases the objective function values within the first 500 iterations.

Figure 3.3 shows the variation of the objective function value over different initial so-

lutions. In particular, “SAMMC-lower value” is the average value minus the standard

deviation over 20 different initial solutions, while “SAMMC-upper value” is the aver-

age value plus the standard deviation; “km-lower value” and “km-upper value” are the

corresponding values for KM. In all experiments, KM is used as the initial solution for

SAMMC. Please note that not only the average for KM is always higher, but its variation

is much higher.

To analyze the importance of Steps 3. and 4. in the overall SAMMC algorithm, we

have removed each step in turn and re-run the algorithm (what is commonly called an

ablation analysis). We call “SAMMC-pert” the algorithm obtained from SAMMC by

removing Step 3. (splitting proposal) and “SAMMC-gmm” the algorithm obtained from

SAMMC by removing Step 4. (perturbation proposal). The results show that both steps

are important. It should be noted that only a few steps are accepted using ratio (3.4). For
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Figure 3.2: Objective function values for SAMMC and KM with varying number of iter-
ations (subset of four datasets); notations “SAMMC k” and “KM k” stand for SAMMC
and KM with K clusters.

Figure 3.3: Variation of the objective function value over 20 initial solutions. “SAMMC-
lower value” and “SAMMC-upper value” are the plot of the average function value of
SAMMC minus and plus the standard deviation, respectively; likewise, “km-lower value”
and “km-upper value’ are the corresponding values for KM.
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Figure 3.4: Objective function values by removing specific steps from the proposed algo-
rithm (ablation analysis). “SAMMC-pert” and “SAMMC-gmm” are the function values
by removing Steps 4. and 3. from SAMMC algorithm, respectively;“km” and “SAMMC”
stand for KM and SAMMC algorithms.

example, in Fig 3.4-(a) the average number of steps used by “SAMMC-pert”, “SAMMC-

pert” and “SAMMC” are 10, 8 and (10,4), respectively, where (10,4) means 10 and 4

successful repeats of Steps 3 and 4, respectively, in “SAMMC”.

3.2 An incremental algorithm for clustering document

collections

Given a large unlabeled document collection, the aim of this section is to develop an

algorithm to distribute this collection into clusters of similar documents. This problem is

formulated as an optimization problem and an incremental algorithm is developed for its

solution. The use of the incremental approach allows one to design an efficient procedure

for finding good starting points for solving nonconvex problem of document clustering.

Then we apply the k-means algorithm for solving clustering starting from these points.

The main idea is the following: instead of working with K clusters from the start, we

add the clusters one by one in successive iterations. At each iteration, we select the initial

position of the added cluster by using a partitioning approach that is described in Section

3.2.2. This approach enjoys a performance guarantee that proves key for the accuracy of

the overall algorithm. After the addition of the new initial cluster, a conventional k-means

algorithm is called to re-optimize all the clusters (3.11). Then, the algorithm proceeds to

the next iteration, until all clusters have been added.
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3.2.1 Problem formulation

Given the vector space model, the document vectors may be represented as x1,x2, . . . ,xM,

with each xi ∈ RV . Recall that M is the total number of documents and V stands for the

number of unique words in the vector space model. A clustering of the document collec-

tion is its partitioning into the disjoint subsets X1,X2, . . . ,XK, i.e.

K⋃
j=1

X j = {x1,x2, . . . ,xM}= X &X j ∩Xl = /0, j �= l.

In SKM, the data are projected onto the unit sphere. Dhillon et al. [Dhillon et al.2001]

have used the popular tf-idf scheme which reads out as (normalized) term frequency-

inverse document frequency [Salton and Buckley1988]. The tf-idf normalization implies

that ‖xi‖ = 1, i.e., each document vector lies on the surface of the unit sphere in RV .

The K-clustering (or K-partition) problem is formulated as the following optimization

problem:

⎧⎪⎨
⎪⎩

min fK(c)

subject to c = (c1, . . . ,cK) ∈ RV K,

(3.7)

where

fK(c1, . . . ,cK) = ∑
x∈X

min
j=1,...,K

d(c j,x). (3.8)

Here, c1, . . . ,cK ∈ RV are cluster centers and the function d : RV ×RV → R+ is the simi-

larity measure, R+ is the set of nonnegative numbers.

The function fK is called the K-th clustering objective function. The similarity measure

d is defined using the cosine measure, that is for c,x ∈ RV ,

d(c,x) = 1− cos(x,c) = 1− 〈x,c〉
‖x‖‖c‖ , (3.9)

where 〈x,c〉 stands for the inner product of x and c and ‖ · ‖ is the Euclidean norm in RV .

Since all document vectors are normalized it is also required that for each cluster center

ci ∈RV is also normalized that is: ‖ci‖= 1, i= 1, . . . ,K. In this case one has the following
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similarity measure d:

d(c,x) = 1−〈x,c〉. (3.10)

Then the K-clustering can be reformulated as the following constrained optimization

problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min fK(c)

subject to c = (c1, . . . ,cK) ∈ RV K,

‖ci‖= 1, i = 1, . . . ,K.

(3.11)

The problem (3.11) is a nonconvex constrained optimization problem and its objective

function is piecewise linear. Due to the minimum operation used in the definition of this

function (see (3.8)), it is also nonconvex. Since the document collections usually contain

hundreds of thousands of documents, objective function fK has many local solutions.

Furthermore, the typical number of words in these collections is thousands or even tens of

thousands. Therefore, Problem (3.11) is a large-scale optimization problem. Finally, the

feasible set in this problem is nonconvex and it is a thin set in the V -dimensional space.

Such problems are highly challenging not only for global optimization techniques, but

also for local optimization methods. In this paper, we use the spherical k-means algorithm

as our algorithm of choice.

3.2.2 Initialisation of the cluster centers

The incremental algorithm proposed in this paper solves the clustering problem gradu-

ally by starting with one cluster and adding a new cluster at a time, up to the set number.

Hereafter we describe the algorithm for determining the initial position of the cluster

added at the K-th iteration.

Assume that the solution c1, . . . ,cK−1, K ≥ 2 to the (K − 1)-clustering problem is

known. Denote by di
K−1 the distance between xi, i = 1, . . . ,M and the closest cluster

center among K −1 centers c1, . . . ,cK−1:

di
K−1 = min

{
d(c1,xi), . . . ,d(cK−1,xi)

}
. (3.12)
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We will also use the notation dx
K−1 for x ∈ {x1, . . . ,xM}. Consider the following two sets:

S1 =
{

y ∈ RV : d(y,xi)≥ di
K−1, ∀i ∈ {1, . . . ,M}} , (3.13)

S2 =
{

y ∈ RV : ∃i ∈ {1, . . . ,M} such that d(y,xi)< di
K−1

}
. (3.14)

The set S1 contains all points y ∈ RV which do not attract any point from the set X and the

set S2 contains all points y ∈ RV which attract at least one point from X . It is obvious that

cluster centers c1, . . . ,cK−1 ∈ S1. Since the number K of clusters is less than the number

of data points in the set X all data points which are not cluster centers belong to the set S2

(because such points attract at least themselves) and therefore this set is not empty. Note

that S1
⋂

S2 = /0 and S1
⋃

S2 = RV . This means by taking any point y ∈ S1 as a starting

point for the K-th cluster center will not decrease the value of the clustering function fK .

Therefore, starting points should not be chosen from the set S1.

Take any y ∈ S2. Then one can divide the set X into two subsets as follows:

B̄1(y) =
{

x ∈ X : d(y,x)≥ dx
K−1

}
, (3.15)

B̄2(y) =
{

x ∈ X : d(y,x)< dx
K−1

}
. (3.16)

The set B̄2(y) contains all data points x ∈ X which are closer to the point y than to their

cluster centers and the set B̄1(y) contains all other data points. Since y∈ S2 the set B̄2(y) �=
/0. Furthermore, B̄1(y)

⋂
B̄2(y) = /0 and X = B̄1(y)

⋃
B̄2(y).

Define the K-th auxiliary clustering function

f̄K(y) =
M

∑
i=1

min{di
K−1,d(y,x

i)}, y ∈ RV . (3.17)

The difference zK(y) between the value of the function f̄K(y) and the value of the (K−1)-

th clustering function fK−1(c1, . . . ,cK−1) is:

zK(y) =
1
M ∑

x∈B̄2(y)

(
dx

K−1 −d(y,x)
)

(3.18)
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which can be rewritten as

zK(y) =
1
M ∑

x∈X
max

{
0,dx

K−1 −d(y,x)
}
. (3.19)

The difference zK(y) shows the decrease of the value of the K-th cluster function fK

comparing with the value fK−1(c1, . . . ,cK−1) if the point (c1, . . . ,cK−1,y) is chosen as the

cluster center for the K-clustering problem.

If a data point x ∈ X is the cluster center then this point belongs to the set S1, otherwise

it belongs to the set S2. Therefore we choose a point y from the set X \ S1. We take any

y = x ∈ X \S1, compute zK(x) and introduce the following number:

z1
max = max

x∈X\S1
zK(x). (3.20)

Let γ1 ∈ [0,1] be a given number. We compute the following subset of X :

X̄1 =
{

x ∈ X \S1 : zK(x)≥ γ1z1
max

}
. (3.21)

If γ1 = 0 then X̄1 = X \S1 and if γ1 = 1 then the set X̄1 contains data points with the largest

decrease z1
max.

For each x ∈ X̄1 we compute the set B̄2(x) and its center c(x). We replace the point

x ∈ X̄1 by the point c(x) because the latter is better representative of the set B̄2(x) than the

former. Denote by X̄2 the set of all such centers. For each x ∈ X̄2 we compute the number

z2
K(x) = zK(x) using (3.19). Finally, we compute the following number:

z2
max = max

x∈X̄2

z2
l (x). (3.22)

The number z2
max represents the largest decrease of the values fl(c1, . . . ,cl−1,x) among all

centers x ∈ X̄2 comparing with the value fK−1(c1, . . . ,cl−1).

Let γ2 ∈ [0,1] be a given number. We define the following subset of X̄2:

X̄3 =
{

x ∈ X̄2 : z2
l (x)≥ γ2z1

max
}
. (3.23)

If γ2 = 0 then X̄3 = X̄2 and if γ2 = 1 then the set X̄3 contains only centers x with the largest
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decrease of the cluster function fK .

All points from the set X̄3 are considered as starting points for solving problem (3.11).

Therefore, their selection guarantees to maximally decrease the objective.

The algorithm for finding the initial cluster centers in solving Problem (3.11) can be

summarized as follows:

Algorithm 9: Finding the set of starting cluster centers.

Input: The solution (c1, . . . ,cK−1) to the (K −1)-clustering problem.
Output: The set of starting cluster centers for the K-th cluster center.

1. (Initialization). Select γ1,γ2 ∈ [0,1].

2. Compute z1
max using (3.20) and the set X̄1 using (3.21).

3. Set Cw =Cw ∪{Cl+1,1
w , . . . ,Cl+1,2l

w }.
4. Compute z2

max using (3.22) and the set X̄3 using (3.23).

3.2.3 An incremental clustering algorithm and its implementation

In this subsection we present an incremental algorithm for solving Problem (3.11). The

steps of the algorithm is as follows:

We call the proposed Algorithm 10 the Spherical Modified Global k-means (SMGKM).

The most important and time consuming step in this algorithm is Step 4 where Problem

(3.11) is solved starting from many initial cluster centers. For this problem, we use a con-

ventional spherical k-means algorithm which allows us to automatically take into account

the constraints of Problem (3.11).

3.2.4 Experimental results

In this section we present numerical results on the evaluation of the proposed method

and compare it with the Spherical k-means algorithm (SKM), described in [Dhillon et

al.2001]. We do not include comparison with hierarchical clustering algorithms as these

algorithms have not been widely used in text mining. The reason of using the SKM

for comparison is the similarity of the SKM with our proposed method in which both

algorithms use spherical space and k-means as the base.
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Algorithm 10: An incremental clustering algorithm.

Input: The collection of documents X = {x1, . . . ,xM}.
Output: The set of K cluster centers {c1, . . . ,cK},K > 0.

1. (Initialization). Compute the center c1 ∈ RV of the set X . Set l := 1.

2. (Stopping criterion). Set l := l +1. If l > K then stop. The K-partition
problem has been solved.

3. (Computation a set of starting points for the next cluster center). Apply
Algorithm 9 to compute the set X̄3 of starting point for the l-th cluster center.

4. (Computation a set of cluster centers). For each ȳ ∈ X̄3 take (c1, . . . ,cl−1, ȳ)
as a starting point, solve Problem (3.11) and find a solution (ŷ1, . . . , ŷl).
Denote by X̄4 a set of all such solutions.

5. (Computation of the best solution). Compute

f min
l = min

{
fl(ŷ1, . . . , ŷl) : (ŷ1, . . . , ŷl) ∈ X̄4

}
and the collection of cluster centers (ȳ1, . . . , ȳl) such that

fl(ȳ1, . . . , ȳl) = f min
l .

6. (Solution to the l-partition problem). Set c j := ȳ j, j = 1, . . . , l as a solution
to the l-th partition problem and go to Step 2.

To test and compare the proposed algorithm, we have carried out experiments with six

datasets. A brief description of these datasets is given in Table 3.6 and more details of the

datasets and preprocessing are given in Table 3.6.

Table 3.6: Dataset summary.
Datasets M V

1. Cora 2,240 2,319
2. Associated Press (APress) 2,246 4,994
3. WebKB 4,199 2,153
4. Reuters 12,902 1,313
5. Phone Calls (PCalls) 13,937 2,696
6. 20 Newsgroups (20Newsg) 18,774 3,103

The Cora data set [McCallum et al.2000] consists of the abstracts and references of

approximately 34,000 computer science research papers; of these, we selected a subset of

2410 papers categorized into one of seven subfields of machine learning.

The Associated Press (APress) collection [Harman1992] contains Associated Press
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news stories from 1988 to 1990. The original data includes over 200,000 documents

with 20 categories. The sample AP data set from [Blei et al.2004], which is sampled from

a subset of the TREC AP collection contains 2,246 documents.

The WebKB data set [WebKB] consists of approximately 6000 web pages from com-

puter science departments of various university, divided into seven categories: student,

faculty, staff, course, project, department and other. In this paper, we use the four most

populous entity-representing categories: student, faculty, course, and project, which all

together contain 4,199 pages.

The Reuters data set [Lewis1997] was originally collected by Carnegie Group, Inc. and

Reuters, Ltd. in the course of developing the CONSTRUE text categorization system. It

consists of 21,578 news stories appeared on the Reuters newswire in 1987. We use a sub-

set of data containing 12,902 documents which are manually assigned to 135 categories.

The 20 Newsgroups dataset (20Newsg) [Rennie2008] contains postings to Usenet news-

groups. The postings are organized by content into 20 different newsgroups with about

1000 messages from each newsgroup and are therefore well suited for text clustering. This

collection consists of 18,774 non-empty documents distributed evenly across 20 news-

groups.

Finally, The Phone Calls dataset (PCalls) is from the Transport Accident Commission

(TAC) which is a major accident compensation agency of the Victorian Government in

Australia. It consists of a collection of 593,433 phone calls from 13,937 single TAC

clients recorded by various operators over 5 years. The phone calls are made for different

purposes including, but not limited to: compensation payments, recovery and return to

work, different type of services, medications and treatments, pain, solicitor engagement

and mental health issues.

The following preprocessing steps have been applied to all datasets before their use

in the experiments: 1) removal of numbers, punctuation, symbols and “stopwords”; 2)

synonyms and misspelled words have been replaced with the base and actual words (for

the PCalls dataset); 3) sparse terms (95% sparsity or more) and infrequently occurring

words have been removed; 4) we have also removed generic words (for the PCalls dataset)

such as names and addresses based on a predefined list. The data have then been projected

to a vector space by using the popular tf-idf scheme.
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Tables 3.7 and 3.8 show the best objective function value, fbest , and relative errors, E1

and E2 for the SKM and SMGKM respectively, where the relative error is defined as:

Ei =
fi − fbest

fbest
×100 (3.24)

where fi is the value of the clustering function obtained by i-th algorithm. In most cases,

SMGKM demonstrate better performance, i.e., low values for the objective function in

terms of relative errors, and in some cases the differences are significant. When the num-

ber of clusters is small, SKM performs slightly better than SMGKM (in some cases) but

the differences are not significant.

Table 3.7: The function value and relative errors

K
Associated Press Cora WebKB

fbest E1 E2 fbest E1 E2 fbest E1 E2

10 1509.66 0.00 0.15 1475.39 0.00 0.06 2607.65 0.00 0.45
12 1481.68 0.00 0.25 1455.01 0.16 0.00 2567.58 0.00 0.27
15 1456.63 0.00 0.26 1423.41 0.00 0.29 2505.60 0.00 0.09
17 1435.98 0.56 0.00 1406.54 0.00 0.21 2455.62 0.34 0.00
20 1411.64 0.66 0.00 1384.11 0.44 0.00 2408.00 0.65 0.00
25 1380.19 0.95 0.00 1351.01 0.49 0.00 2342.28 0.30 0.00
30 1355.94 0.97 0.00 1324.20 0.89 0.00 2285.21 0.25 0.00
35 1337.06 0.90 0.00 1300.97 1.28 0.00 2229.02 0.62 0.00
40 1316.64 0.95 0.00 1279.14 1.61 0.00 2183.48 0.68 0.00
45 1300.28 0.53 0.00 1262.07 1.79 0.00 2143.49 0.68 0.00
50 1286.99 1.03 0.00 1248.15 1.73 0.00 2099.22 1.01 0.00
55 1274.34 0.70 0.00 1235.44 1.95 0.00 2064.24 1.05 0.00
60 1263.40 0.85 0.00 1223.60 2.48 0.00 2035.21 1.16 0.00
65 1254.37 1.06 0.00 1213.49 1.85 0.00 2009.59 1.64 0.00
70 1245.54 0.82 0.00 1204.21 1.96 0.00 1986.34 1.58 0.00
75 1235.14 0.52 0.00 1195.76 2.13 0.00 1960.96 1.67 0.00
80 1227.43 0.78 0.00 1187.62 1.63 0.00 1939.72 1.74 0.00
85 1220.38 0.04 0.00 1180.06 1.67 0.00 1915.72 2.42 0.00
90 1213.26 0.30 0.00 1172.98 1.72 0.00 1896.69 2.43 0.00
95 1203.35 0.00 0.21 1165.74 1.88 0.00 1879.04 2.64 0.00
100 1198.26 0.00 0.13 1159.05 2.01 0.00 1862.89 2.90 0.00

To further compare and assess the quality of the clusters generated by the algorithms,

we apply two well-known cluster validity indices: the Dunns and DaviesBouldin validity

indices.
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Table 3.8: The function value and relative errors

K
Reuters Phone Calls 20 NewsGroups

fbest E1 E2 fbest E1 E2 fbest E1 E2

10 4586.69 0.00 0.06 9493.95 0.00 0.01 12910.54 0.01 0.00
12 4458.53 0.00 0.37 9388.49 0.00 0.16 12772.45 0.00 0.01
15 4289.97 0.00 0.02 9237.82 0.10 0.00 12590.80 0.12 0.00
17 4215.26 0.24 0.00 9144.10 0.53 0.00 12488.07 0.32 0.00
20 4119.90 0.87 0.00 9029.94 0.43 0.00 12367.28 0.15 0.00
25 3984.14 0.69 0.00 8867.60 0.20 0.00 12182.07 0.00 0.09
30 3871.80 1.17 0.00 8729.13 0.23 0.00 12042.95 0.24 0.00
35 3785.61 1.37 0.00 8614.72 0.05 0.00 11898.11 0.00 0.13
40 3719.43 1.41 0.00 8491.54 0.34 0.00 11777.05 0.00 0.27
45 3663.73 0.63 0.00 8385.29 0.23 0.00 11690.82 0.00 0.05

50 3607.86 0.84 0.00 8297.62 0.20 0.00 11559.44 0.13 0.00
55 3555.87 1.20 0.00 8214.63 0.21 0.00 11455.58 0.34 0.00
60 3512.71 1.43 0.00 8139.41 0.15 0.00 11362.46 0.30 0.00
65 3471.35 0.72 0.00 8065.04 0.00 0.06 11282.29 0.30 0.00
70 3431.43 0.95 0.00 7976.79 0.00 0.36 11200.54 0.53 0.00
75 3402.23 1.26 0.00 7931.58 0.00 0.07 11125.10 0.66 0.00
80 3374.66 0.80 0.00 7862.77 0.04 0.00 11044.67 0.60 0.00
85 3344.92 1.07 0.00 7806.99 0.18 0.00 10982.90 0.66 0.00
90 3321.59 1.16 0.00 7756.88 0.14 0.00 10926.60 0.72 0.00
95 3293.53 1.47 0.00 7707.74 0.08 0.00 10874.15 0.49 0.00
100 3271.34 1.15 0.00 7640.79 0.36 0.00 10823.80 0.63 0.00

The Dunn’s validity index is defined as

I(D) = max
i=1,··· ,K

{
min

j=1,··· ,K; j �=i

{ d(ci,c j)

maxl=1,··· ,K r(cl)

}}
(3.25)

where d(ci,c j) is the distance between centers ci and c j. The r(cl) is the radius of the l-th

cluster center and is defined as

r(cl) = max
x∈Xl

‖cl − x‖, (3.26)

where K is the number of clusters. The Dunns cluster validity measure maximizes the

inter-cluster distances and minimizes the intra-cluster distances. Therefore, the number

of clusters that maximizes I(D) can demonstrate the optimal number of the clusters.

The Davies-Bouldin validity index is a measure of within-cluster to between-cluster
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separation

I(DB) =
1
K

K

∑
i=1

max
j=1,··· ,K; j �=i

SK(Xi)+SK(X j)

d(ci,c j)
(3.27)

where K is the number of clusters, SK(Xl) is the average distance of all data points from

the cluster Xl to their cluster center cl and d(ci,c j) is the distance between i-th and j-th

cluster centers. Smaller values for the I(DB)means that clusters are compact and far from

each other. Therefore, the smaller I(DB), the better clustering.

Figures 3.5(a) – 3.5(f) display the Dunn’s cluster validities for SKM and SMGKM as

the number of clusters increases from 10 to 100. Here, the dot lines correspond to the

SKM and solid lines to the SMGKM. Terms “dn SKM” and “dn SMGKM” stand for

Dunn index values using the SKM and SMGKM, respectively. Graphs for the SMGKM

are much more stable than graphs for the SKM when the number of clusters increases.

The reason is likely that the SMGKM exploits an incremental scheme which adds one

cluster each time, while the SKM calculates all clusters from scratch.

(a) Cora (b) Associated Press

(c) WebKB (d) Reuters

(e) Phone Calls (f) 20 NewsGroups

Figure 3.5: Cluster validity (Dunn) index for datasets 1 – 6
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Figures 3.6(a) – 3.6(f) show the Davies-Bouldin indices for SKM and SMGKM as the

number of clusters increases. Terms “db SKM” and “db SMGKM” stand for Davies-

Bouldin index values using the SKM and SMGKM, respectively. The graph for SMGKM

is more stable, confirming stability in Figures 3.5(a) and 3.5(f). These figures also demon-

strate significant improvements of SMGKM over the SKM, as the graphs for SMGKM

are below (much, when the number of clusters increases) those for SKM in almost all

cases.

(a) Cora (b) Associated Press

(c) WebKB (d) Reuters

(e) Phone Calls (f) 20 NewsGroups

Figure 3.6: Cluster validity (Davies Bouldin) for datasets 1 – 6

Table 3.9 reports the optimal number of clusters using the Dunn and Davies-Bouldin

measures as well as the total CPU time spent by SKM and SMGKM. K∗
1 and K∗

2 stand for

the optimal number of clusters using the SKM and SMGKM and t1 and t2 are the times

(cumulative CPU) consumed by SKM and SMGKM, respectively. Despite using a less

efficient environment for coding, the times for SMGKM have been lower than those for

SKM, except on Cora.
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Table 3.9: The optimal number of clusters and cumulative CPU time for computing up
to 100 clusters. K∗

1 and K∗
2 stand for the optimal number of clusters using SKM and

SMGKM, respectively, and t1 and t2 for the time

dataset
Dunn index DB index Total CPU time

K∗
1 K∗

2 K∗
1 K∗

2 t1 t2

Cora 50 40 40 36 1024 1568
APress 77 70 72 74 2601 2088
WebKB 93 92 68 81 2501 1862
Reuters 29 39 10 20 5327 4745
PCalls 89 90 89 88 15861 11710
NewsG 79 81 68 77 27873 20280

3.3 Conclusion

In this chapter, two methods for clustering have been introduced and discussed. The

first method is a simulated annealing maximum-margin clustering under a minimum sum-

of-squares objective. The proposed algorithm leverages simulated annealing to escape

local minima and a combination of k−means++ and SVM to provide high-quality local

minima. By exploiting a two-stage organization, the proposed algorithm has been able

to mollify the computational complexity of maximum-margin clustering and prove suit-

able for large-scale data. In the experiments, algorithms including the proposed one, are

tested on real-world datasets, including text documents, with number of points ranging

from thousands to millions and number of dimensions ranging from a few to thousands.

The experimental results have provided clear evidence that the proposed method is able

to achieve significant improvements of the objective function in comparison to popular

clustering algorithms including k-means++, mini-batch k−means++, DPGMM, fuzzy c-

means and MMC.

The second method uses an incremental algorithm for document clustering that is capa-

ble of finding “deeper” solutions. In the algorithm, a new cluster is added in turn starting

from an initial position that is guaranteed to maximally decrease the objective function

value. Clustering is performed in a spherical space, meaning that each solution is pro-

jected to the unit sphere to mitigate the potential bias from more frequent words.

In the experiments, the proposed method is compared to the spherical k-means algo-

rithm (SKM) that can be regarded as state-of-the-art for document clustering. The results

over six challenging text document datasets have shown that the proposed algorithm has
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consistently outperformed SKM under a number of clustering indices (objective func-

tion value, Dunn and Davies-Bouldin). This gives a ground to believe that the proposed

algorithm can prove beneficial for large-scale document clustering applications.

74



Chapter 4

Taxonomy-Augmented Features for

Text Analytics

This chapter describes the main components of our methodology for generating features

based on taxonomies, namely i) the approach for generating the hierarchy of word clus-

ters, ii) the approach for extracting taxonomy-based features based on a set of predefined

words, and iii) a comparison approach that generates the features directly from the clusters

in the hierarchy.

4.1 Hierarchy of word clusters

The work of [Steinbach et al.2000] found that “bisecting” k-means can produce clusters

that are both better than those of standard k-means and as good as (or better than) those

produced by agglomerative hierarchical clustering. In plain terms, bisecting k-means

joins k-means with divisive hierarchical algorithms and has been successfully applied to

document clustering [Steinbach et al.2000].

For these reasons, in this chapter we employ a method similar to bisecting k-means

with two modifications; 1) we use spherical k-means instead of standard k-means and

2) each cluster is split into two sub-clusters only if the number of its elements exceeds

a predefined threshold. A cluster here is a collection of words that are similar to one

another within the same cluster and are dissimilar to objects in other clusters. Spherical k-

means projects data onto the unit sphere and has been shown to be an effective method for
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document clustering [Dhillon et al.2001]. Building clusters in a hierarchical fashion has

the advantages of reducing time complexity, increasing performance as well as implicitly

producing a taxonomy of words, where words with similar semantics are expected to

appear in the same branch or close branches of the hierarchy. Figure 4.1 illustrates our

hierarchical word clusters. All data (word vectors) are, first, partitioned into two clusters,

and from the first level down each cluster is iteratively partitioned into two new clusters

until the level limit is reached.

Figure 4.1: Three layers of the hierarchy of word clusters.

Let us note the hierarchy of word clusters as Cw. This expands as Cw = [C1
w, . . . ,C

L
w],

where Cl
w = {Cl,1

w , . . . ,Cl,2l

w } is the set of clusters in the l-th level. The process of building

the hierarchy of clusters is illustrated in Algorithm 11.

Algorithm 11: Computing the hierarchy of clusters in word space

Input: Word vectors Y = [yν ]; ν = 1, . . . ,V ; yν ∈ R|W |.
Output: Hierarchy of word clusters Cw.

1. Set level number l = 0, a threshold δ as lower bound for splitting a cluster
and Cw = /0.

2. For i = 1, . . . ,2l :

2.1. Partition Cl,i
w into two new clusters as Cl+1,2i−1

w and Cl+1,2i
w .

3. Set Cw =Cw ∪{Cl+1,1
w , . . . ,Cl+1,2l

w }.
4. If the stopping criteria are satisfied, exit; otherwise, set l = l +1 and repeat

from Step 2.

We have two stopping criteria in Step 4.; either when l exceeds an integer value, L (the

maximum number of levels in the hierarchy) or when the number of words in a cluster
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is less than a predefined threshold, δ . Increasing the number of levels may increase the

quality of the word clusters, hence enhancing the quality of the ensuing document vectors;

however, it also increases the complexity and therefore a heuristic trade-off is needed.

Some of the clusters at the lower levels may have no entities (i.e., they are empty) due to

a small number of words (< δ ) in the corresponding upper layer.

4.2 Taxonomy-augmented features given the hierarchy of

word clusters

A taxonomy can play a key role in document clustering by reducing the large number

of features from thousands to a few tens only. The feature reduction process benefits from

the taxonomy’s semantic relations between words. Our utilization of the taxonomy differs

from previous work, since we construct a hierarchy of word clusters and utilize it directly

for document representation. In other terms, the documents are projected to a word cluster

space by matching their contents to the hierarchy of word clusters. The process of feature

extraction from documents using hierarchy of word clusters is given in Figure 4.2.

Figure 4.2: The process of extracting features via the hierarchy of word clusters.
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Let us assume that D = [d1, . . . ,dM] are M documents in word space. Each document

can be further noted as di = [d1
i ,d

2
i , ...,d

L
i ], where L is the number of levels in the hi-

erarchy of word clusters and dl
i = [dl,1

i ,dl,2
i , ...,dl,2l

i ]. For simplicity, we store D in a

two-dimensional matrix of size M × n, where n is the overall number of clusters in all

levels, i.e. n = ∑L
l=1 2l.

Algorithm 12: Taxonomy-augmented features

Input: Hierarchy of word clusters Cw.
Output: Document matrix D ∈ RM×N

1. Set D = [d1, . . . ,dM] = 0 where di ∈ RN , n = ∑L
l=1 2l , and L is the number of

layers in the hierarchy of word clusters.

2. For each document di, i = 1, . . . ,M:

2.1. For each word w in document di:
2.1.1. For level l = 1, . . . ,L:

2.1.1.1. Find cluster index in Cl
w, j, such that w ∈Cl, j

w .

2.1.1.2. Set dl, j
i = dl, j

i + xiw.

2.2. For l = 1 . . .L:
2.2.1. Normalize dl

i to one, i.e. ‖dl
i‖= 1.

3. Remove any features from D that have zero value across all documents.

If some of the clusters in the hierachy never appear in any of the documents in the

collection, the corresponding features in D will all be zero. Therefore, we remove those

features in Step 3. of Algorithm 12. In Step 2.1.1.2., xi,w corresponds to the document-

term weight of the i-th document and word w, which is based on tf-idf weighting.

4.3 Taxonomy-augmented features given a set of words

In this section, we propose an alternative approach for representing the documents for

clustering. In this approach, the documents are projected to a space of predefined words,

and the feature dimensionality is the same as the size of this set of words. This approach is

particularly suitable for short documents, where the total number of words per document

is limited; typically, say, less than 100 words. For such short documents, the BoW features

result in an extremely sparse matrix. In order to alleviate this issue, the representation of

short documents must be enriched with information from the semantics of the words.

The correlation between words and its use for measuring short-text similarities have been
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studied in the literature, for example, in [Seifzadeh et al.2015]. Based on [Seifzadeh et

al.2015], if two short segments do not have any common words, but words from the first

segment appear frequently with words from the second segment in other documents, this

implies that these segments are semantically related, and any measure of their similarity

should be high.

Our proposal differs from previous works, including [Seifzadeh et al.2015], since we

build features by combining the documents’ content, the hierarchy of word clusters, and a

set of predefined words. An intuition of the approach can be provided in these terms: for

every word in a given document and for every level in the hierarchy, we find the cluster

where the word belongs. We then retrieve all the predefined words that belong to that

same cluster, and we increment their counters. The final counters of the predefined words

are used as the feature vector to represent the document. In other terms, the predefined

words can be seen as the “representative elements” of the clusters they belong to, and their

counters are incremented every time a document’s word falls in their cluster. To describe

the process precisely, let us assume that D = [d1, . . . ,dM] is the document matrix, where

di ∈ Rn and n is the number of the predefined words. The process of extracting features

from documents considering a set of predefined words is given in Figure 4.3, and the steps

and details for generating the document features are described by Algorithm 13.

Figure 4.3: The process of extracting features via the hierarchy of word clusters and a set
of predefined words.

The number of the indices in I(l, j), Step 3., depends on how many of the predefined
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Algorithm 13: Taxonomy-augmented features given a set of predefined words

Input: Hierarchy of word clusters Cw, set of predefined words S = {w1, . . . ,wn}.
Output: Documents D ∈ RM×n

1. Set D = [d1, . . . ,dM] = 0, where di ∈ Rn and n is the size of the set of
predefined words. Set Ws = [w1

s , . . . ,w
L
s ] =

[
[w1,1

s ,w1,2
s ], . . . , [wL,1

s , . . . ,wL,2L

s ]
]
,

and wl, j
s = /0.

2. For each word w in S :

2.1 For level l = 1, . . . ,L :
2.11 Find index of cluster in Cl

w, j, such that w ∈Cl, j
w .

2.12 Set wl, j
s = wl, j

s ∪w.

3. For each document di, i = 1, . . . ,M :

3.1 For each word w in document di :
3.11 For level l = 1, . . . ,L :

3.111 Find cluster index in Cl
w, i.e. j such that w ∈Cl, j

w .

3.112 Retrieve all words of wl, j
s with corresponding indices in S,

I(l, j).

3.113 Set dI(l, j)
i = dI(l, j)

i + xi,w.

words are in the cluster of word w (from zero to, potentially, n). Rather than simple

counters, the document features d j
i add up the tf-idf weight of word w, xi,w.

4.4 Taxonomy-augmented features for document cluster-

ing

In this section, we use two algorithms, described in previous sections, to solve cluster-

ing problem. The main benefits of these algorithms are using small number of features,

while clustering quality remains in a good mode. To this aim, we use the three-step pro-

cess. First, a word embedding technique is used to convert each distinct word to a vector

of |W | dimensions. Second, the word vectors are partitioned into a hierarchy of clusters,

simply referred to as “word clusters”, via a hierarchical clustering algorithm. Third, the

individual documents are projected onto the word clusters to produce their taxonomy-

based feature vectors.

To test and compare the proposed models, we have carried out experiments with three,

diverse datasets. The first (PCalls) consists of phone call transcripts recorded by the
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Transport Accident Commission (TAC), the accident compensation agency in Victoria,

Australia. It contains a total of 59,048 transcripts from phone calls from 8,000 sin-

gle clients, transcribed by various operators. The second (WebKB) is a classic cluster-

ing benchmark consisting of web pages from computer science departments of universi-

ties, [WebKB]. The last (Reuters) is a dataset of news stories published on the Reuters

newswire in 1987. The main statistics of these datasets are given in Table 4.1. For more

details, please refer to [Bagirov et al.2018] and references therein.

Table 4.1: Dataset summary.
Datasets Dataset name M #words after pre-processing

D1 PCalls 8,000 6,684
D2 WebKB 4,199 2,153
D3 Reuters 12.902 1,313

The following preprocessing steps have been applied to each dataset before its use

in the experiments: 1) removal of numbers, punctuation, symbols and “stopwords”; 2)

replacement of synonyms and misspelled words with the base and actual words (only

for the PCalls dataset); 3) removal of sparse terms (keeping 95% sparsity or less) and

infrequently occurring words; 4) removal of uninformative words such as people names

and addresses.

We have employed two document vector methods as the baselines for comparison; 1)

the well-known tf-idf and 2) doc2vec which is based on the average of word embeddings.

As word embeddings, we have used GloVe for its reported strong performance in a variety

of tasks [Pennington et al.2014]. To learn the embeddings, we have used the following

settings: the dimensionality was set to 200; the context window size was set to 12; and

the number of training epochs was set to 1,000. For clustering, we have used two very

popular algorithms, k-means++ and PAM (partitioning around medoids). In Algorithm

13, we set n = 100.

We compare the effectiveness of the model based on two complementary measures:

connectivity and silhouette. The connectivity captures the “degree of connectedness” of

the clusters and it is measured in terms of how many nearest neighbors of any given

sample belong to other clusters. The connectivity value ranges between 0 and infinity

and should be minimized. The silhouette measures the compactness and separation of the

clusters and it ranges between −1 (poorly clustered observations) and 1 (well clustered
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observations). To compute these measures, we have used clValid, the R package for

cluster validity [Brock et al.2008].

Figure 4.4: Connectivity and silhouette measures of all models for the PCalls dataset.

Figure 4.5: Connectivity and silhouette measures of all models for the WebKB dataset.

Figures 4.4 – 4.6 show the connectivity and silhouette measures for PCalls, WebKB and

Reuters as a function of the number of the clusters. In these figures, “tfidf” stands for the

BoW model, “w2v” for doc2vec, and “tax.1” and “tax.2” for our proposed models from

Algorithms 12 and 13, respectively. In turn, “km” and “pam” stand for k-means++ and

PAM, respectively. These results show that the proposed taxonomy-augmented models,

“tax.1” and “tax.2”, have performed better than the other two models over all datasets
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for a large majority of cluster numbers and for both clustering algorithms. Among the

conventional models, the performance of BoW is generally better than that of doc2vec.

We do not formally compare the time complexity of the models, but we note that BoW is

the most time-consuming due to its large number of features. Based on our experiments,

it is approximately 10 times slower than the other models.

Figure 4.6: Connectivity and silhouette measures of all models for the Reuters dataset.

4.5 Taxonomy-augmented features for document classifi-

cation

Document classification (or categorisation) is likely the most widespread automated

task on textual data, with a vast array of applications such as sentiment analysis, ad tar-

geting, spam detection, client relationships, risk assessment and medical diagnosis. A

class is a subset of documents which are, in some sense, similar to one another and differ-

ent from those of other classes, and the goal is to assign text documents to a predefined

set of classes. Document classification has been extensively studied, especially since the

emergence of the Internet where documents are typically created by an unverified variety

of authors and with little metadata.

In this section, we use algorithm 13 to classification and semantic analysis to demon-

strate its effectiveness for these tasks. We also leverage sets of predefined “words of

interest” for the specific organization to greatly decrease the number of features to a very
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manageable size, equal to the size of the set of predefined words. The feature extraction

algorithm uses a three-step process: first, a word embedding technique is used to convert

each distinct word to a vector of |W | dimensions. Second, the word vectors are partitioned

into a hierarchy of clusters, simply referred to as “word clusters”, via a hierarchical clus-

tering algorithm. Third, the individual documents are projected onto a space of predefined

words whose size is equal to the size of this set.

To test and compare the proposed approach, we have carried out experiments with tex-

tual data from an accident support agency, the Transport Accident Commission (TAC)

of the Victorian Government in Australia. The data consist of phone calls between

the agency’s clients and its claim managers, annotated by the managers into transcripts.

Phone calls for single clients take place over time, so the data are suitable for monitoring

the clients’ progress, such as return to work and physical and emotional recovery. The

phone calls typically cover a wide range of topics: for example, some are related to the

client’s health and recovery, while others are related to payments and compensation.

To conduct experiments on classification, we have merged all the phone call transcripts

of each individual client into single documents and created four datasets (D1-4) based

on the number of words per document and the number of documents itself. Datasets D1

and D2 consist, respectively, of 2,000 and 5,000 short-length documents, ranging from

20 words to 100 words per document. The TAC experts have indicated that such short-

length documents are likely to come from clients with fewer phone calls overall and more

rapid recovery. Datasets D3 and D4 are similar, but with larger-size documents ranging

from 100 to 5,000 words each. The four datasets have been manually annotated by the

TAC experts into a binary classification problem using labels “MH” and “NO MH” ( label

“MH” is used by the TAC to identify clients with a variety of mental health issues). All

datasets are balanced in terms of number of samples per class.

The following preprocessing steps have been applied to each phone call before its use

in the experiments: 1) removal of numbers, punctuation, symbols and “stopwords”; 2)

replacement of synonyms and misspelled words with the base and actual words; 3) re-

moval of sparse terms (keeping 95% sparsity or less) and infrequently occurring words;

4) removal of uninformative words such as people names and addresses.

To learn the word embeddings, we have used the following settings: the dimensionality
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was set to 100; the context window size was set to 12; and the number of training epochs

was set to 1,000. In Algorithm 13, we have set n = 100.

For the experiments on document classification we have employed two document fea-

tures as the baselines for comparison: 1) the well-known tf-idf and 2) doc2vec which is

based on the average of word embeddings. We have also used Algorithm 12 as another

method for comparison. As word embeddings, we have used GloVe due to its reported

strong performance in a variety of tasks [Pennington et al.2014]. For classification, we

have compared three popular classifiers: 1) eXtreme Gradient Boosting (XGBoost) [Chen

and Guestrin2016], 2) a support vector machine (SVM) with a radial basis function ker-

nel, and 3) a random forest. We have used 10-fold cross-validation to report the accuracy:

first, the dataset is randomly shuffled and split into 10 folds; then, in turn, each fold is used

as the test set and the remaining nine as training set. All codes, including the packages

for the classifiers, have been implemented in the R language in a Windows environment.

Figure 4.7 shows the average accuracies from the 10-fold cross-validation for datasets

D1-4. Notations “xgb”, “svm” and “rf” stand for classifiers XGBoost, SVM with RBF

kernel and random forest, respectively. Notations “w2v”, “tfidf”, “tax.1” and “tax.2”

stand for feature extraction models doc2vec, BoW with tf-idf weighting, taxonomy-augmented

algorithm 12 and taxonomy-augmented algorithm 13, respectively.

Based on Figure 4.7, the model based on predefined words, “tax.2”, performs better

than the others in most cases, followed by “tax.1”. The “tfidf” model performs very

similarly to “tax.2” using “xgb”; however, it fails to produce accurate predictions with the

other two classifiers, in particular with “svm”. Amongst the classification methods, “xgb”

performs the best, followed by “rf” and “svm”, respectively.

In Figure 4.8 we also use the average of the absolute deviations (AVDEV) to explore the

variability of the 10-fold cross-validation accuracies around their means. Figure 4.8 shows

that the AVDEV for all methods are mostly in a very similar range, with the exception of

“tfidf” using “rf” in D1 and D4 where the AVDEV are, undesirably, much higher.

We have not conducted a formal complexity analysis for the methods. However, we

have noted that classification takes a very similar time with the different feature vectors,

with the exception of “tfidf” that is considerably slower. If we include the time for feature

extraction, “w2v” becomes the fastest, followed by “tax.1”, “tax.2” and “tfidf”, respec-
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Figure 4.7: Average accuracy from 10-fold cross-validation. The horizontal axis maps the
classifier and the coloured bars represent the feature vectors.

Figure 4.8: Average of the absolute deviations (AVDEV) of accuracies from their mean.
Horizontal axis shows classification methods and vertical axis is the AVDEV value.

tively. Model “tfidf” is much slower due to its much larger dimensionality, in particular

in conjunction with “svm” classification.
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4.5.1 Semantic analysis

In this section, we illustrate the use of the taxonomy-augmented features of Algorithm

13 for the “semantic analysis” of TAC clients. The data for each client consist of several

phone calls, where each phone call has been represented by a set of predefined words us-

ing Algorithm 13. In this section, we use S= { f amily, pain, provider,recovery,stress,upset}
as predefined words. In this way, each phone call is represented as a distribution over cho-

sen words, which in turn are represented as distributions over the entire vocabulary. The

concept looks very similar to that of topic modelling, where each document is represented

as a distribution over topics and each topic is a distribution over the vocabulary. However,

the two models differ notably in that the topics are latent variables without an a-priori

semantic, whereas our predefined words are observed and can be chosen by experts.

Figure 4.9: Evolution of the chosen features in the phone calls of two randomly-selected
clients. The semantic scores are computed by Algorithm 13.

Figure 4.9 shows the semantic analysis of two clients as plots of the six chosen features

along successive phone calls. The first client recorded a total of 48 phone calls over 38

months and the second client 14 over 29 months (a few phone calls have been removed

because the number of words after preprocessing had fallen below a minimum set thresh-

old). This figure should be regarded just as an illustrative example as any set of words or

reasonable size can be used in this analysis.
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4.6 Conclusion

In this Chapter, the application of two taxonomy-augmented feature extraction ap-

proaches has been examined in a variety of important document tasks such as classifica-

tion, clustering, and semantic analysis. The approaches addresses two urgent challenges

of conventional document representations, namely 1) their large number of features, and

2) the dismissal of the word ordering in the formation of the features. By amending these

two shortcomings, the proposed models have proved able to provide a more compact and

semantically-meaningful document representation and improve the tasks’ performance.

In an original set of experiments on document classification, we have compared the pro-

posed approach with two well-known methods, BoW/tf-idf and doc2vec, over four phone

call datasets from an accident support agency. The results have shown that the proposed

models have achieved better average accuracy in the large majority of cases, while their

absolute deviations from the averages have kept almost the same. These improvements

confirm the results obtained by the proposed models in experiments on document cluster-

ing. In addition, we have illustrated the usefulness of the proposed feature vector for the

monitoring of individual progress over time.
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Topic Modelling

Topic models are unsupervised models to automatically discover the topics discussed in

a collection of documents. Most topic modelling techniques follow the LDA principles

and meet its main assumptions: 1) each topic is a mixture of words and 2) each text

document is a mixture of topics. In this section, we present two novel approaches for

topic modelling. The first approach is based on LDA and extends it by utilising prior

knowledge and using a Markov process for topic generation. In the second approach, the

procedure for creating the topics is cluster-based and is completely different from that of

LDA and other mainstream topic models in the literature. However, the two main stated

assumptions still apply to the proposed models.

5.1 A semi-supervised Markov topic model

In this section, we propose a topic model approach that follows the LDA principles and

uses a Markov process for topic learning. Topic models can generate topics which are

incoherent by human. To deal with this, we present a topic model which uses knowledge

from prior topics. This prior knowledge can be extracted from an initial topic model.

More precisely, we introduce a two-staged semi-supervised Markov topic model in which

in the first stage a topic model will produce prior knowledge such as topic terms and the

topical co-occurrence matrix. These outputs are used to build a final model in which topic

assignment follows a Markov chain process.

The graphical representation of the model is displayed in Fig. 5.1(b). As shown in this
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figure, it consists of two stages; i) prior topics and ii) final topic model. The aim of the

first stage is to determine a subset of prior topics to calculate words’ relations upon. More

precisely, a transition matrix for the topic assignment in the second stage is calculated by

looking at both subsequent words in the prior topics and co-occurrences of words in the

collection. The frequent co-occurring words in the collection and in prior topics represent

the more topically-related words - this is the main idea behind the proposed topic model,

called semi-supervised hidden Markov topic model, or SHMTM, hereafter. In addition,

the prior topics will also be used to extract a low-dimensional vocabulary for the final

model.

(a) LDA (b) SHMTM

Figure 5.1: Graphical models of (a) LDA model and (b) the proposed model, SHMTM.
The number of prior topics in SHMTM is K0 (K0 ≥ K) and the vocabulary size is V0
(V0 ≤V ).

5.1.1 Initial process

Frequently co-occurring words in collections can be much more topically-related than

words without significant co-occurrence. To calculate words relations, we first extract a

topic model with a high number, K0, of topics using the LDA model. For each pair of

words in the vocabulary, or in a lower-dimensional vocabulary using only the top words,

we calculate the probability of words co-occurring in the collection given the prior topics.

The words relations give us a measure to find how two subsequent words are topically

related. This measure, called a “transition matrix” herewith for analogy with Markov

chains, is used by the final topic model for topic assignment. The initialization procedure

can be summed up as Algorithm 14.

The number of prior topics, K0, is equal to or greater than the final number of topics, and

there is no specific criterion for an optimal number of prior topics. K0 can be considered as
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Algorithm 14: Initial topic model for calculating transition matrix.

Input: Text corpus, number o f initial topics K0.
Output: Transition matrix P.

1. Set the number of initial topics, K0.

2. Find K0 topics using the LDA model.

3. Select the top nk words of each topic with high probabilities and set
W0 = {wk

i }; i = 1, . . . ,nk;k = 1, . . . ,K0.

4. Calculate a transition probability matrix, P = [Pi, j]
V0
i, j=1, between top words

of each topic, where V0 is the size of set W0.

an upper bound for the possible topics and it may depend on the data set and application;

we fix K0 = 200. The number of top words nk is also fixed to 20 based on the fact that

only a few words from each topic have significant impact on the topics. The term Pi, j

in Step 4., is proportional to the probabilities of the i-th and j-th words in the collection

where wi and w j are both top words in the same topic; they are calculated as:

Pi, j = ∑
k

p(wk
j,w

k
i )p(wk

j), (5.1)

where p(wk
j,w

k
i ) is the probability of co-occurrence of words w j and wi in the collection

(or related external data), and p(wk
j) is the probability (weight) of word w j in the k-th

topic. We calculate the score for any two words in the vocabulary by investigating the top

nk words of each topic. If two words do not appear as top words of any topics, a weight

of zero will be assigned to the corresponding score, meaning that those words are not

topically related (or independent given the topic). In contrast, if two words appear in many

topics and frequently co-occur in the collection, they are more likely to be dependent

words or topically-related words.

To leverage (5.1) as a transition probability matrix, one need to scale each row of P to

interval [0,1]. The diagonal of this matrix is also set to 1 to ensure that two (subsequent)

equal words are assigned to the same topic. As P is not symmetric, i.e. Pi, j �= Pj,i, one

can consider the mean of P and the transpose of P, which is used in this paper. It is noted

that only top words of prior topics are used to construct a transition matrix as well as a

low-dimensional vocabulary for the final model.
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5.1.2 Generative model

We propose a topic model where the topic assignment is formed in a semi-supervised

way, i.e. based on a transition matrix obtained in the previous step. The central idea

is that highly topically-related, subsequent words are generated from the same topics.

However, the extent to which subsequent words are topically related is decided based on

a Markov chain process. A transition matrix is first constructed using both prior topics

and word co-occurrences in the collection, and topic assignment is then decided using the

transition matrix and a random number drawn from a binomial distribution. The steps of

the generative model are given in Algorithm 15.

Algorithm 15: Semi-supervised hidden Markov topic model (SHMTM).

Input: Text documents D and number of topics K.
Output: Topic-word matrix φ and document-topic matrix θ .

1. For each topic k in {1, . . . ,K}.
1.1. Draw a distribution over words φk ∼ DirW0(η).

2. For each document d :

2.1. Draw a vector of topic proportions θd ∼ DirK(α).

2.2. For n = 1 :

2.2.1. Draw a topic assignment zd,1 ∼ MultK(θd).

2.2.2. Draw a word wd,1 ∼ MultW0(φzd,1).

2.3. For n = 2, . . . ,Nd :

2.3.1. Draw a binomial random number, bn ∼ binomial(Pn−1,n).

2.3.2. If bn = 0, set zd,n = zd,n−1, else draw a new topic zd,n ∼ MultK(θd).

2.3.3. Draw a word wd,n ∼ MultW0(φzd,n).

As shown in Step 2.3.1. of Algorithm 15, the topic of each word is decided based on

two factors: i) the transition matrix and ii) the binomial distribution. The topic of the first

word in each document follows the standard LDA topic assignment, i.e., it is generated

from a Dirichlet distribution. The model can be regarded as semi-supervised overall since

the process is a Markov chain employing prior knowledge.
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5.1.3 Experiments

We use the point-wise mutual information (PMI score) to evaluate the proposed model

using: 1) a low-dimensional vocabulary of top words from prior topics and 2) the whole

vocabulary of the collection. According to [Newman et al.2011, Arora et al.2012a], the

PMI score is a suitable measure for comparing topics’ quality and coherence. For ease

of reference, hereafter we refer to the SHMTM using the top words of prior topics in

the dictionary as SHMTM-top, the SHMTM using all words of the document collection

for the dictionary as SHMTM-all, the LDA with top words of prior topics as LDA-top,

and the LDA with all words of the collection as LDA-all. All algorithms were imple-

mented in Python 3.5. The PMI score is proportional to the probability of co-occurrence

of words normalized by the probabilities of individual words [Newman et al.2011], and

is expressed as:

PMI(K) =
1
45 ∑

i< j
PMI(wi,w j), i, j ∈ {1, . . . ,10}, (5.2)

where

PMI(wi,w j) = log
P(wi,w j)

P(wi)P(w j)
(5.3)

where P(wi,w j) is the probability of co-occurring i-th and j-th words in the collection, and

45 is the number of distinct possible word pairs in the top 10 words. The above equation,

(5.2), measures the PMI score of the k-th topic, and the PMI score of K topics is simply

the average of their PMI score values. Figure 5.2 shows how words are topically related

for some words using 200 prior topics on the phonecalls data set. The higher the value,

the more topically related. Based on this table, “return to work” (rtw) is highly related

to other words including “recovery” and “progress”; hence, their topic assignments will

very likely be the same.

Figures 5.3 and 5.4 display the PMI scores for LDA and SHMTM using the phonecalls

and filenotes data sets, respectively. The higher the PMI score, the more the agreement

with human-judged topic coherence [Newman et al.2011]. Based on the PMI scores with

the phonecalls data set, SHMTM performs better than LDA, particularly when the number

of topics is greater than 20. In addition, the PMI scores with the filenotes data set show

improvement in most cases. These figures also illustrate the variation of the PMI score
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Figure 5.2: A sample set of words and their relations in the transition matrix. The relations
have been created using 200 prior topics on the phonecalls data set.

Figure 5.3: PMI score with the phonecalls data set for the SHMTM model using 1) the top
words of prior topics (SHMTM topwords) and 2) all the words in the collection (SHMTM
all words), and for the LDA model with Gibbs sampling using 3) the top words only (LDA
Gibbs topwords) and 4) all the words in the collection (LDA Gibbs all words)

with the number of topics. With the phonecalls data set, the PMI scores get more stable

when the number of topics gets to around 30; for the filenotes data set, around 20.
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Figure 5.4: PMI score with the filenotes data set for the SHMTM model using 1) the top
words of prior topics (SHMTM topwords) and 2) all the words in the collection (SHMTM
all words), and for the LDA model with Gibbs sampling using 3) the top words only (LDA
Gibbs topwords) and 4) all the words in the collection (LDA Gibbs all words)

Table 5.1: Top words from four topics for SHMTM using only the top words or the whole
dictionary with the phonecalls data set

SHMTM-top
gp work voc taxi

loec rtw employment travel

report back job work

solicitor pain appointment drive

psych recovery voc provider approval
attend treatment work appointment
treatment physio job seeking physio

impairment gp pay driving

appointment weeks income transport

decision long attend assist

SHMTM-all
solicitor rtw voc taxi

loec treatment job travel

impairment recovery work work

report holistic employment ankle

provider followup voc provider rtw
gp back job seeking drive

assessment time loec foot

decision physio service unable

psych gp voc service approval
cease work provider physio

Tables 5.1 and 5.2 present the top words for four topics (out of a total of 35) of each

model with the phonecalls data set. Although some topics of the different models look

similar in terms of top words, words of topics in SHMTM-all and SHMTM-top are more
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Table 5.2: Top words from four topics for LDA using only the top words or the whole
dictionary with the phonecalls data set

LDA-top
gp rtw voc taxi

report treatment loec travel

solicitor assist job medcert
impairment recovery voc provider work

injury time employment appointment
back support capacity review
med left work drive

decision holistic job seeking hospital

psych gp service rtw
time issue voc service transport

LDA-all
solicitor pain loec taxi

pay treatment voc travel

impairment rtw employment service
back psych income home
report recovery job approval
psych week voc provider appointment
cso weeks work assist

followup gp capacity drive

retraining back job seeking support
jme holistic cease weeks

topically-related than from the other two models. For example, words “training” and “re-

training” appear as top words in the first topic of LDA-all, but the topic also contains

unrelated words such as “solicitor”, “loec” (loss of earning compensation) and “impair-

ment” as other top words. This is also shown by Fig. 5.3, where the SHMTM-all model

proves to be the most accurate among all models (for numbers of topics greater than 20),

followed by SHMTM-top, LDA-top and LDA-all.

5.2 Cluster based topic learning

In this section we present a novel topic learning approach that is heavily reliant on

clustering. Figure 5.5 shows a synopsis of the proposed approach which consists of the

following steps:

1. (Preprocessing) Includes removal of stop-words, sparse terms and common names.

2. (Topic-words matrix) Using a sample set of n-grams from the text corpus, a word

embedding and a clustering approach, calculates the topic-word matrix.
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Figure 5.5: Overall process of the cluster-based topic learning.

3. (Document-topic matrix) Determines the document-topic matrix by scanning the text

corpus and sampling from the topic-word matrix.

Our assumptions for topic-word and document-topic are the same as the LDA model,

i.e. each topic is a mixture of words, and each document is a mixture of topics. However,

the topic-word distribution does not need to follow a Dirichlet distribution. The same

applies to the document-topic distribution, i.e. it may not necessarily follow the Dirichlet

distribution.

5.2.1 Topic-word learning

Hereafter we describe an approach for calculating the topic-word matrix using n-grams.

In the LDA, the topic-word distribution follows a Dirichlet distribution, and the ensuing

problem is that the word semantics is not taken into account. To amend this issue, we

use n-grams and word embeddings to incorporate word semantics in the model. To do

so, word vectors are calculated using a word embedding technique such as Word2Vec on

large-scale data (they can be external data). A random sample set of n-grams form the

text corpus is selected and is partitioned into K clusters using, for example, the k-means

algorithm. As each n-grams is also a set of words, each n-gram can be represented as an

average vector with the same dimension as the individual words’ vectors. The closeness

of the vectors to the clusters’ centers is then calculated and is used as cluster-word or
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topic-word matrix. The idea behind this is that each n-gram can carry only one topic;

therefore each cluster (a collection of n-grams) represents only one topic. The closeness

of the vectors to the centers represents the topic-word matrix; therefore each topic is a

mixture of words. Below we describe the steps of the algorithm to calculate the topic-

word matrix.

Algorithm 16: Topic-word matrix.

Input: External text corpus, text documents X and number of topics K.
Output: Topic-word matrix φ .

1. (Word vector representation) Compute word vectors by using a word
embedding technique on a large collection of documents.

2. (Build n-grams) Select r random samples of n-grams from the text corpus.
Convert the n-grams to vectors of the same dimension as the individual
words’ vectors using a weighted average of the corresponding word vectors.

3. (Clusters of n-grams) Cluster the n-grams with a clustering algorithm such as
k-means.

4. (Topic-word mixture) Given φ = [φ1, · · · ,φk] = [φi j] where φi j is the weight
of ith word in jth cluster, the lth topic is calculated as:

φl = (φ1l,φ2l, · · · ,φV l)
T , φvl = ‖wv − cl‖

where ‖.‖ is the Euclidean norm, wv the v-th word and cl is the center of the
lth cluster calculated in Step 3..

5.2.2 The document-topic matrix

To determine the document-topic matrix or distribution, one can use matrix factoriza-

tion by considering the fact that X = θφ , where X is the document-term matrix (e.g.

tf-idf), φ the topic-word weights (or topics) described in 5.2.1, and θ the document-topic

matrix. In a real situation the equality condition is mitigated to X ≈ θφ , and it is equiva-

lent to minimizing the following criteria:

min
θ

‖X −θφ‖ s.t. θ ≥ 0. (5.4)

Adding a regulariser, Eq. (5.4) is equivalent to minimising the following:

f (θ) = ‖X −θφ‖2
2 +λ‖θ‖2

2. (5.5)
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where λ is a scalar parameter. Although minimisation of (5.4) is similar to non-negative

matrix factorization (NMF), [Arora et al.2012b], for topic modelling, our proposal only

deals with the document-term matrix, θ ; thus, it is different from NMF.

One can solve the optimization problem of (5.5) based on an optimization approach. An

alternative to the optimization procedure is to use a heuristic semi-supervised approach,

where sampling from the topic-word matrix can be used for determining the document-

topic matrix. In both methods, the aim is to find the document-topic matrix, θ . The quality

of the solution can be examined using the objective function (5.5). The process can be

progressively repeated by iteratively increasing the number of topics and calculating the

document-topic matrix each time, until no progress is achieved.

The heuristic approach consists of simply scanning all the documents and assigning

topics to words by sampling from the topic-word matrix. This is the approach we have

used to date; using an incremental optimization procedure for solving (5.5) is our future

work. The main steps of the algorithm for determining the document-topic matrix are as

follows:

Algorithm 17: Document-topic matrix.

Input: Text documents D and topic-word matrix φ .
Output: Document-topic matrix θ = [θ i

j], i = 1 : m, j = 1 : K.

For each document d in D:

(a) For each word w in d:
– Sample r random topics given the word weights in vector φ w.
– Select a topic, l, for word w as that with the highest frequency

among r topics.
– Set θ d

l = θ d
l +1.

(b) normalize θ d to add up to one.

In Algorithm 17, θ d corresponds to the weight vector of document d, θ d
l to the weight

of topic l in document d, and φ w to the topic vector for word w, i.e. φ = [φ 1, · · · ,φV ]T .

5.2.3 Evaluation of the proposed method for document classification

The data sets used in our implementation are from the TAC, an accident compensation

agency of the Victorian Government in Australia. They consist of phone calls between
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TAC clients and staff to address challenges and issues of the clients. Each observation

might contain several phone calls related to the same client. The data is annotated with a

class label of “yes” or “no” depending on weather it contains a challenge or not. We have

used different subsets of the data by random sampling, and trained various classifiers. We

have used 10-fold cross validation on each subset. A brief description of the data sets is

available in Table 5.3. Data sets D1 and D2 consist of short-length documents, ranging

from 20 words to 100 words per document, while data sets D3 and D4 are larger-size

documents ranging from 100 to 5,000 words each. M1 and M2 are the number of samples

from classes “yes” or “no”, respectively.

Table 5.3: Data set summary.
Datasets Dataset name M1 M2

D1 Short PCalls 1 1,789 2,887
D2 Short PCalls 2 3,098 5,000
D3 Long PCalls 1 1,789 2,887
D4 Long PCalls 2 3,098 5,000

The data have required pre-processing including: transforming to lowercase letters,

removing stop words and common words, and replacing synonyms. For example, “return

to work” and “back to work” are treated as the same words and need to be converted to a

single word, say for instance “rtw”.

We compare the proposed method with three baselines; 1) the tf-idf features, 2) the

weighted averages of word vectors and 3) features obtained from the LDA model. We

have used extreme gradient boosting (xgb) as a classifier [Chen and Guestrin2016].

Figures 5.6 and 5.7 show the average accuracy and its standard deviation over the 10-

fold cross validation for the short-length documents of data sets D1 and D2. Figures 5.8

and 5.9 show the same quantities for data sets D3 and D4. In these figures, “dtm” is the

document-term matrix, i.e. the tf-idf features, “doc2vec” the weighted averages of word

vectors, “lda” the features obtained from the LDA model and “tm cluster” the features

obtained by the proposed algorithm.

It can be observed from these figures that the standard deviations of all models are

in a similar range, and the differences do not seem consistent. For example, “lda” has

a lower standard deviation than the other techniques with data sets D3 and D4, while it
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Figure 5.6: Accuracy and standard deviation (%) of models for D1 using xgb classifica-
tion. The bar is for the accuracy and the line with dots shows the standard deviation.

Figure 5.7: Accuracy and standard deviation (%) of models for D2 using xgb classifica-
tion. The bar is for the accuracy and the line with dots shows the standard deviation.

Figure 5.8: Accuracy and standard deviation (%) of models for D3 using xgb classifica-
tion. The bar is for the accuracy and the line with dots shows the standard deviation.
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Figure 5.9: Accuracy and standard deviation (%) of models for D4 using xgb classifica-
tion. The bar is for the accuracy and the line with dots shows the standard deviation.

has a higher standard deviation with data sets D1 and D2. Similar observations can be

addressed to the other models. In terms of accuracy, the proposed method performs better

than the others overall (particularly for data sets D1, D2 and D4), followed by “dtm” and

“lda”, respectively. The “dtm” model produces very close results to the proposed model.

We also note that the accuracy results for large-sized documents are, in general, slightly

better than those for short-length documents. However, this might also depend on the

number of instances (the more the samples, the better the accuracy).

5.3 Conclusion

Two algorithms have been developed in this Chapter. The first is a semi-supervised

hidden Markov topic model using prior knowledge. The model consists of two stages

where the prior knowledge is accounted for in the first stage, and coherent topic models

are produced by the final model. In the model’s assumptions, the topic of a word not only

follows a Dirichlet distribution, but also depends on the topic of the previous word. The

topic dependency is decided using a binomial distribution and a transition probability ma-

trix obtained by an initial modelling of prior topics. Experiments on real text documents

(clients phone calls and file notes) from the TAC have given evidence to improvements of

the PMI score measure and topic coherence.

The second method uses n-grams for topic generation. A random sample of n-grams

are created from large corpus and are partitioned into clusters using k-means. Each cluster

is a collection of n-grams, so it is assumed as one topic. The distances of the words to
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the clusters’ centers are considered as the topic-word matrix. The document-topic matrix

is, then, computed by sampling from the topic-word matrix. The proposed features (the

document-topic matrix) have been evaluated via classification on four datasets from the

TAC, giving evidence to the effectiveness of the proposed document-topic matrix over

BoW, Doc2Vec (Word2Vec) and document-topic features from LDA.
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Conclusion

This thesis has presented word embedding-based techniques for text clustering and topic

modelling as two of the most important tools in text analytics and natural language pro-

cessing. One of the main focuses of this research has been incorporating word semantics

into account as well as addressing the curse of dimensionality.

Text clustering and topic modelling are very close subjects, since the aim of both is

to assign documents to clusters. Topic modelling can be considered as soft clustering,

where each document is a mixture of topics. I have tried to find relationships between

them and introduce algorithms that use the benefits of both. All methodologies developed

here have been examined on real case scenarios of an industry partner in the healthcare

domain. For clustering, I have developed three methodologies: 1) a maximum-margin

clustering approach for large-scale data, 2) an incremental document clustering technique

and 3) taxonomy-augmented based techniques. In the first methodology, a classic clus-

tering framework under the Euclidean norm has been approached by a novel algorithm

that leverages a) simulated annealing to escape local minima and b) a combination of

k−means++ and SVM to provide effective clustering. By exploiting a two-stage organi-

zation, the proposed algorithm has demonstrated to be able to mollify the computational

complexity of maximum-margin clustering and be suitable for large-scale data. In the

experiments, we have tested it on real-world datasets with number of points ranging from

thousands to millions. Therefore, we can argue that it suits application to text document

collections. The experimental results clearly demonstrate that the proposed method pro-

duces significantly improved results in comparison with de-facto standard clustering algo-
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rithms such as k-means++, mini-batch k−means++, a Dirichlet process Gaussian mixture

model and fuzzy c-means. In the second methodology, we have proposed an algorithm

– a modified global k-means – to improve the quality of the local solution for clustering

document collections in a reasonable amount of time without having to resort to parallel

processing. Thus, our main emphasis has been on a trade-off between high accuracy and

efficiency, with modest main memory consumption. The preliminary results are promis-

ing and further investigation is under evaluation. The last algorithm has been evaluated

for classification as well as semantic analysis for the industry partner. In the semantic

analysis, the industry partner can monitor clients’ behaviour with respect to their health

conditions over time. For topic modelling, I have developed two techniques: 1) a semi-

supervised hidden Markov topic model which takes word relations into account and 2)

a cluster-based topic modelling, where topics are constructed using n-grams. The semi-

supervised hidden Markov topic model has been designed to use prior knowledge. The

model consists of two stages, where prior knowledge is accounted for in the first stage

and used by the final model to produce human-judged coherent topics. The topic of a

word not only follows a Dirichlet distribution assignment, but it also depends on the topic

of the previous word. The topic dependency is decided using a binomial distribution

and a transition probability matrix obtained from the prior topics. Experiments on real

text documents (clients phone call notes) from the Transport Accident Commission have

demonstrated an improvement of the PMI-Score measure and topic coherence. The sec-

ond model uses a clustering technique to partition n-grams, and then, find the topic-word

distribution.

Overall, we have ground to believe that this thesis has provided a tangible contribution

to the areas of text document clustering and topic modelling, especially with emphasis

on the targeted application. We look forward to expanding the presented work in future

contributions.
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