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Abstact

Currently, most pure electric vehicles (EVs) in the commercial market are equipped

with a single-speed transmission. However, this configuration presents some disad-

vantages such as compromised driveability performance and lower overall efficiency

due to the limited freedom in determining optimal states for motor drives. There-

fore, using multi-speed transmission (MST) in EVs is regarded as a viable scheme

to improve the EV performance further. This thesis focuses on the control of a

dual motor-based multi-speed transmission. More specifically, the thesis centres on

the following three research topics: 1) powertrain modelling and model-based torque

observer design; 2) high-performance motor control including position/speed sensor-

less operation, controller and observer design under low pulse ratio, and closed-loop

control based on synchronized pulse width modulation; 3) gearshift control includ-

ing coordinated torque and speed control of two motors, speed synchronization and

active vibration damping control.

The first part of this thesis introduces the configuration of the studied MST, its

advantages and the issues need to be addressed. Additionally, the detailed transmis-

sion and motor models are developed for theoretical analysis and controller design.

The requirement of the motor drive in an EV involves more than the satisfactory

steady-state performance but also fast dynamic response and high battery-to-motor

efficiency. The control of motor drive is the fundamental based on which an EV can

be driven efficiently, comfortably and safely. Therefore, the second part of this thesis

work develops control schemes for the induction motor (IM) and permanent magnet

synchronous motor (PMSM) which are currently the main choices for EVs. The



xxviii

improved observers are designed to achieve position/speed sensorless control. The

impact of discrete-time implementation is investigated to ensure stability and fast

dynamic response under low pulse ratio. Simulation, experimental tests and com-

parative studies with the prior methods were carried out to validate the superiority

of the proposed methods. Finally, a closed-loop torque control scheme along with

active vibration damping is proposed to achieve high-quality gearshift. Considering

the measurement of shaft torque is not feasible in practical application, a discrete-

time sliding-mode torque observer is further designed to provide the feedback signal

for the proposed controller.

Owing to the sophisticated structure design and advanced control schemes, not only

the driving comfort but also the reliability and efficiency of the whole system can

be greatly improved. The feasibility and effectiveness of the proposed methods are

confirmed by simulation and/or experimental tests.
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