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Thesis Abstract 
 

Neospora caninum is a cyst-forming apicomplexan parasite, responsible for economic 

and reproductive losses to cattle industries worldwide, and represents a serious 

neurological disease in canines. Although discovered over three decades ago, progress 

towards treatment and control strategies against neosporosis, remains stagnant. Currently, 

common practices to combat the disease include passivity, or expensive culling of 

seropositive dams. However, vaccination represents a cost-effective and efficacious 

option, especially using live, attenuated isolates.  

Members of the Apicomplexa consist of populations that vary enormously in their 

disease-causing potential, where in vivo experiments have demonstrated pathogenic 

variability between N. caninum isolates. The underlying question therefore, is what is the 

genetic basis of virulence within the species, and consequently, how can such information 

be exploited in vaccine development? Thus far, conventional techniques have been 

employed to study the intraspecies genetic diversity associated with N. caninum, 

generally involving PCR-based approaches targeting repetitive elements. However, a 

direct causal relationship between such diversity and important parasite phenotypes such 

as virulence, is yet to be established.  

Alternatively, burgeoning next generation sequencing (NGS) technologies and in-

silico tools have provided new opportunities to perform genome-wide scans in such 

organisms. Hence the objective of this body of work was to compare the genomes and 

transcriptomes of two distinct N. caninum isolates, using NGS data and bioinformatics 

workflows, to identify sequence variants in coding and non-coding DNA. Annotation of 

variable regions would reveal potential virulence markers distinguishing isolates of this 

species. Challenges accompanying such research include the lack of optimisation and 



 xii 

standardisation of NGS analysis tools for non-model organisms such as pathogenic 

Protozoa. This is compounded by the dubious accuracy of the N. caninum reference 

genome, as well as the disturbingly large number of proteins described as ‘hypothetical’ 

or ‘uncharacterised’.  

This body of research represents a thesis by compilation, consisting of four 

publications, and one chapter under review. Each chapter represents an independent 

study, which collectively address the research objective and current gaps in the literature. 

The results present polymorphic “hotspots” in concentrated windows of the N. caninum 

genome, where there is a correlation between hypervariable regions within protein-coding 

genes, and non-coding regions. Furthermore, an in-silico pipeline is developed to 

annotate uncharacterised proteins, subsequently identifying a subset of proteins 

potentially implicated in crucial parasite mechanisms, conducive to N. caninum’s success. 

It is trusted that this thesis contributes vital knowledge pertaining to N. caninum 

intraspecies diversity, aiding in the quest to develop a vaccine against neosporosis.
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Exegesis 
Neospora caninum is a protozoan parasite of economic and veterinary significance. Despite 

it being a close relative of the well-studied, ubiquitous, model apicomplexan, Toxoplasma 

gondii, the current understanding of genetic drivers of phenotypic diversity between isolates 

of N. caninum, leaves much to be desired. The main objective of this body of research, which 

represents a thesis by compilation, focused on elucidating unexplored sources of genetic 

diversity amongst isolates of N. caninum, and determining genotypic and phenotypic 

relationships of biologically significant variable loci. Each chapter of this thesis is an 

independent sub-study with relevant literature, methodologies, results, and discussions, 

where collectively they address the principal, multi-faceted research objective: 

  Chapter 1 presents a literature review of the current status of Next Generation 

Sequencing (NGS) data analysis, with a focus on the identification and exploitation of 

sequence variants. The ever increasing availability, throughput, and affordability of NGS 

technology, has afforded new ways to explore and compare the genomes of organisms, with 

applications in population genetics, disease, and evolutionary diversity. However, 

advancements in bioinformatics and in-silico workflows designed to analyse such data in a 

biologically significant context, are plagued with limitations and challenges, especially for 

non-model organisms such as pathogenic Protozoa. This review provides recommendations 

on implementing and optimising available workflows for parasitic Protozoa, and emphasises 

how such data can and has been exploited. 

 Chapter 2 focuses on elucidating the presence and impact of small sequence variants 

located within protein-coding genes of N. caninum. This research used RNA-Seq data from 

two distinct N. caninum isolates, for in-silico variant detection, the results of which were 

validated through laboratory analysis, and visualised in the context of the N. caninum 

genome. This work was also extended to additional Neospora isolates which differ by host, 



 
 

xiv 

reported pathogenicity and/or geographical distribution, to explore underlying population 

genetics distinguishing members of this genus. 

 Chapter 3 extends the results of the preceding chapter, by exploiting Whole Genome 

Sequencing (WGS) data to explore the contribution of variable non-coding DNA and introns 

to N. caninum parasite diversity. This research reports the intersection of SNP-dense coding 

and non-coding regions, and annotates genes within these distinct, prioritised genomic 

windows. The first assembled and annotated apicoplast genome for N. caninum is also 

presented, where this essential organelle is shown to be highly conserved within N. caninum 

and related Coccidia. Overall, this work presents additional sources contributing to the 

intraspecies genetic diversity in N. caninum, and highlights the importance of non-coding 

DNA when studying biologically significant phenotypes such as virulence. 

 Chapter 4 describes an in-silico workflow for the annotation and prioritisation of 

hypothetical or uncharacterised proteins for N. caninum. This work was prompted by the 

challenges associated with the previous research chapters, with respect to inferring the 

biological implications and functional impact of genomic and transcriptome variation 

identified between isolates. This workflow not only identified a subset of previously 

uncharacterised N. caninum proteins potentially contributing to crucial parasite mechanisms, 

but also has applicability for other non-model organisms that lack complete, adequate, or 

robust genome annotations. 

 Finally, Chapter 5 contains a cohesive discussion reviewing the main findings of 

each research chapter independently and as they relate to one another, and contextualises the 

results against the backdrop of the current state of N. caninum research. It also suggests 

potential future avenues for research to combat, treat, and control neosporosis. In summary, 

this chapter highlights how this unified body of work contributes novel, timely, and vital 

research towards illuminating potential new targets for control options against neosporosis. 
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ABSTRACT 

Neospora caninum is a cyst-forming coccidian parasite of veterinary and economical 

significance, affecting dairy and beef cattle industries on a global scale. Comparative 

studies suggest that N. caninum consists of a globally dispersed, diverse population of 

lineages, distinguished by their geographical origin, broad host range, and phenotypic 

features. While intraspecies diversity, and more specifically pathogenic variability, has 

been experimentally demonstrated in a myriad of studies, the underlying contributors and 

sources responsible for such diversity have remained nebulous. However, recent large 

scale sequence and bioinformatics studies have aided in revealing intrinsic genetic 

differences distinguishing isolates of this species, that await further characterisation as 

causative links to virulence and pathogenicity. Furthermore, progress on N. caninum 

research as a non-model organism is hindered by a lack of robust, annotated genomic, 

transcriptomic, and proteomic data for the species, especially compared to other 

thoroughly studied Apicomplexa such as Toxoplasma gondii and Plasmodium species. 

This review explores the current body of knowledge on intra-species diversity 

within N. caninum. This includes the contribution of sequence variants in both coding 

and non-coding regions, the presence of polymorphic hotspots in specific genomic 

windows, and the identification of non-synonymous mutations. The implications of such 

diversity on important parasite phenotypes such as pathogenicity and population structure 

are also discussed. Lastly, the identification of potential virulence factors from both in-

silico and next generation sequencing studies is examined, offering new insights into 

potential avenues for future research on neosporosis. 

Keywords: Apicomplexa; Genomics; Transcriptomics; Population genetics; 

Hypothetical protein; Virulence 
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1. Introduction

Neospora caninum is a ubiquitous cyst-forming Apicomplexan parasite that presents a 

risk to bovine industries worldwide. Since its initial discovery, neosporosis has been 

identified as the leading cause of bovine reproduction failure worldwide, as well as a 

serious neurological disease of canids such as dogs (Dubey et al., 1988a; Dubey and 

Lindsay, 1996; Reichel and Ellis, 2002; Reichel et al., 2007). It is estimated that 

neosporosis collectively costs the Australian and New Zealand dairy and beef cattle 

industries over $110 million per year in losses (Miller et al., 2002; Reichel and Ellis, 

2002), and approaching US $546 million in the USA (Reichel et al., 2013). Neospora 

caninum infects a wide host range, the lifecycle of which contains several infectious 

stages including intracellular tachyzoites and bradyzoites (tissue cysts) found in 

intermediate hosts, and environmentally impervious oocysts shed by definitive hosts such 

as dogs (Dubey et al., 2006; Dubey et al., 2007). 

While neosporosis as a disease has been recognised for over 30 years, treatment and 

control options remain inadequate and limited. Of the current strategies available, the 

balance between effectiveness, economic feasibility, and on-farm applicability is of 

paramount importance. Reichel and Ellis (2006) compared available options for cost and 

effectiveness, and concluded that for within-herd prevalences <18% for N. caninum 

infections, inaction was the optimal economic decision over a one year period. 

Contrastingly for within-herd infection prevalences >18%, vaccination was considered 

the most economic strategy. While vaccination with a killed tachyzoite has been 

described as highly successful in rodent models (Liddell et al., 1999), it is estimated to 

be only 50% efficacious in cattle, as well as costly (Romero et al., 2004). However, more 

successful vaccines, such as those utilising live attenuated tachyzoites, could eliminate 

the risk of an entire herd aborting, reducing the cost of controlling N. caninum to 
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vaccination alone, and hence offering a more viable option to passivity (Guy et al., 2005; 

Miller et al., 2005; Williams et al., 2007).  

 With all things considered, there is clearly a need for and immense value in 

investigating and elucidating potential vaccine candidates and therapeutic targets against 

neosporosis, to which molecular biology, next generation sequencing (NGS) data, and 

bioinformatics has much to offer. This review takes a look at the current body of evidence 

that lends to our understanding of N. caninum virulence, intraspecies diversity, and 

population genetics, as well as the challenges and limitations associated with conducting 

and building on such research. 

 

2. Biological and genetic diversity of N. caninum 

Significant levels of variation within N. caninum populations exist, as genotypic and 

phenotypic features aren't rigorously conserved within the species (Al-Qassab et al., 

2010b). Such diversity is expected due to the broad intermediate host range, worldwide 

distribution, and the capacity for sexual reproduction. While only minor differences may 

exist in ultrastructure, N. caninum isolates appear to vary in their biological and genetic 

characteristics, of which many studies have reported differences (Atkinson et al., 1999; 

Barber et al., 1995; Barr et al., 1991; Lindsay and Dubey, 1989; McInnes et al., 2006; 

Rojo-Montejo et al., 2009b). Vertical transmission, and more specifically endogenous 

transplacental transmission, in cattle and other ruminants during pregnancy is considered 

not only the predominant route of transmission, but also essential for parasite 

maintenance within in a herd (Gonzalez-Warleta et al., 2018; Trees and Williams, 2005; 

Williams et al., 2009). Furthermore, the importance and frequency of sexual reproduction 

in definitive hosts to parasite biology, epidemiology, and evolution remain unclear, 

although the presence of dogs on cattle farms are consistently reported as a risk factor for 
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bovine neosporosis (Dijkstra et al., 2001; Ribeiro et al., 2019; Robbe et al., 2016). What 

still requires attention therefore, is a better understanding of the major, underlying 

contributors responsible for reported genetic diversity, and their relevance to important 

parasite phenotypes such as virulence and population genetics.  

 

2.1. Distinguishing isolates of N. caninum by their biological behaviours 

One of the earliest observations suggesting the existence of heterogeneity within N. 

caninum, was based on in vitro growth rate experiments. Schock et al. (2001) assessed 

relative growth rates of six N. caninum isolates by measuring 3[H]uracil uptake, and 

reported significant differences. NC-Liverpool demonstrated significantly faster growth 

rates in comparison to the other isolates investigated, being twice as fast as NC1, whereas 

the Swedish bovine isolate, NC-SweB1, was the slowest. A subsequent study 

demonstrated a lower tachyzoite yield and viability rate of a Spanish isolate of low 

virulence, NC-Spain 1H, compared to NC1, which also more extensively destroyed the 

cell monolayer (Rojo-Montejo et al., 2009b). 

 Initial observations and comparisons in mice and cattle also indicated that isolates 

of this species exhibit biologically distinct behaviours. NC-Liverpool for example, has 

been thoroughly studied in murine models, where infection leads to characteristic, clinical 

neosporosis of weight loss, lethargy and eventual death (Atkinson et al., 1999). Atkinson 

et al. (1999) reported the presence of moderate to extreme necrotic brain lesions in almost 

all experimental mice infected with NC-Liverpool, as well as hindlimb paralysis and 

disco-ordinated movement. This was in contrast to mice infected with NC-SweB1 that 

presented with a milder meningoencephalitis and less severe symptoms. Subsequently, 

Miller et al. (2002) showed that the NC-Nowra isolate was low in virulence due to the 

absence of clinical signs of infection in the calf from which it was isolated. Successively, 
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live NC-Nowra tachyzoites were used to vaccinate mice prior to pregnancy, the result of 

which reduced transplacental transmission of a challenge strain by 80-90% (Miller et al., 

2005). Subsequent inoculation of the tachyzoites into cattle prior to pregnancy conferred 

very high levels of protection against foetal loss, following a challenge by the NC-

Liverpool isolate (Weber et al., 2013; Williams et al., 2007). 

 Additional studies have investigated fetal mortality rates in cattle infected with N. 

caninum, where for example the NC1 isolate was shown to induce fetal death in heifers 

(Dubey et al., 1988b; Dubey et al., 1992; Innes et al., 2001; Maley et al., 2003), whereas 

the low virulence NC-Spain 1H isolate does not (Rojo-Montejo et al., 2009a). However, 

virulent NC-Spain 7 also results in higher fetal mortality rates and IgG response in 

infected cattle, compared to cattle inoculated with NC1 (Caspe et al., 2012). Furthermore, 

a recent study examined early infection dynamics of heifers infected at mid-gestation, 

with low virulence NC-Spain 1H and high virulence NC-Spain 7 (Jimenez-Pelayo et al., 

2019). This study demonstrated that NC-Spain 7 tachyzoites reached the placenta earlier, 

and caused lesional development and fetal mortality following transmission, whereas in 

comparison, NC-Spain 1H tachyzoites were delayed in reaching the placenta, and lesion 

development and transmission was not observed during early infection. Based on the 

knowledge afforded by such comparative studies, elucidating the existence of underlying 

genetic variation between N. caninum isolates with marked phenotypic differences, 

presents an invaluable avenue of research warranting investigation. 

 

2.2. Characterising the underlying genetic diversity within the species 

A plethora of molecular methods over the last three decades have lent themselves to 

elucidating potential sources of biological diversity in N. caninum at the genetic level. 

These include randomly amplified polymorphic DNA PCR (RAPD-PCR) (Atkinson et 
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al., 1999; Davison et al., 1999; Schock et al., 2001; Spencer et al., 2000), multilocus mini- 

and microsatellite analysis (Basso et al., 2009; Regidor-Cerrillo et al., 2013; Regidor-

Cerrillo et al., 2006), and multiplex PCR (Al-Qassab et al., 2010a). Initially, various 

molecular techniques such as these were employed to study common molecular markers 

including internal transcribed spacer 1 sequence (ITS1), 18S ribosomal DNA, and the 

Nc5 repeat. However, little to no nucleotide variation was reported for many of these 

molecular targets studied using a range of isolates, varying in host species, geographical 

origin, and pathogenicity.  

 For example, no significant sequence variation was reported in various studies 

comparing 18S rDNA from NC-Liverpool, NC1, NC-SweB1, and four other bovine 

isolates (BPA1, BPA2, BPA3, and BPA4) (Barber et al., 1995; Holmdahl et al., 1997; 

Marsh et al., 1995; Stenlund et al., 1997). Such results show that this marker is conserved 

within N. caninum, since its evolutionary divergence from its closest ancestors such as T. 

gondii (Marsh et al., 1995). Furthermore, while the repetitive Nc5 sequence and ITS1 

region are the most commonly used markers for detection of N. caninum through PCR 

(Dubey and Schares, 2006), only some isolates exhibit minor sequence variation in these 

regions, and hence are not sufficient enough for differentiation purposes (Al-Qassab et 

al., 2010b; Gondim et al., 2004; Slapeta et al., 2002). Sequence analysis of the ITS1 

region however was useful in establishing that equine isolates of Neospora hughesi, the 

only other known species of the Neospora genus, were distinct from both bovine and 

canine N. caninum isolates (Dubey et al., 2001). 

 Initially, RAPD-PCR was used in various studies to distinguish N. caninum from 

related coccidia, including T. gondii, Sarcocystis species (Guo and Johnson, 1995; 

Schock et al., 2001), Hammondia heydorni (Sreekumar et al., 2003), Cryptosporidium 

parvum (Schock et al., 2001), and N. hughesi (Spencer et al., 2000). This technique was 
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then exploited to investigate intraspecies genetic diversity within the species, where 

Atkinson et al. (1999) was first able to generate distinct profiles for NC-Liverpool and 

NC-SweB1. After obtaining the first isolate of N. caninum from cattle in the UK, Davison 

et al. (1999) reported differences between this designated NC-LivB1 isolate, and NC-

Liverpool, NC1, and NC-SweB using RAPD-PCR techniques. Shortly after, Schock et 

al. (2001) analysed DNA from six N. caninum isolates from both bovine and canine hosts, 

as well as three strains of T. gondii, Sarcocystis sp., and C. parvum using RAPD-PCR 

techniques. A total of 222 of 434 markers were found to be conserved within the N. 

caninum isolates, however distinct from the other Apicomplexa studied. Furthermore, 54 

unique N. caninum markers exhibited sufficient variability to distinguish each isolate. 

The RAPD-PCR results also identified T. gondii as N. caninum’s closest neighbour, but 

failed to cluster the individual isolates based on either host or geography. 

 The markers and techniques discussed that were initially employed to explore 

genetic diversity within N. caninum, while of value at the time, in most cases failed to 

provide a significant level of genetic heterogeneity between isolates (Al-Qassab et al., 

2010b; Regidor-Cerrillo et al., 2006). Furthermore, results produced by RAPD-PCR 

experiments in particular, were to be interpreted cautiously, due to considerations such as 

DNA purity, primer selection, and extraneous DNA (Al-Qassab et al., 2010b; Gondim et 

al., 2004; Spencer et al., 2000). The lack of discriminatory power offered by these 

methods, also meant that epidemiological and intraspecies population structure analyses 

remained uncharted and unresolved for N. caninum.  

 Subsequently, the gold standard for assessing genetic diversity in N. caninum, 

became the analysis of polymorphic mini- and microsatellites (Al-Qassab et al., 2010b; 

Regidor-Cerrillo et al., 2006). Such repetitive elements offered a higher degree of 

discriminatory power compared to other routinely used phylogenetic markers, where 
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distinctive patterns exhibited by various isolates proved useful in distinguishing and 

characterising genetic diversity within the species. Mini- and microsatellite techniques 

have also been extensively used for genotyping other Apicomplexan species. For T. 

gondii, Ajzenberg et al. (2010) developed a simple genotyping method that incorporated 

15 microsatellite markers across 11 chromosomes in one multiplex PCR assay. These 

markers were validated for 26 T. gondii reference isolates, and were able to differentiate 

isolates both at the typing level (i.e. the three main clonal lineages compared to atypical 

isolates), and the fingerprinting level for distinguishing related isolates within lineages.  

 Regidor-Cerrillo et al. (2006) first identified and analysed 12 microsatellites for 

nine N. caninum isolates of different host and geographical origin. Multi-locus 

microsatellite analysis revealed unique profiles for each isolate, where 11 of the 12 

markers were subsequently applied to clinical samples resulting in the detection of new 

alleles (Pedraza-Diaz et al., 2009). A larger subsequent study investigated 25 cultured N. 

caninum isolates and reported variation within repetitive sequences  of eight of the 27 

loci studied (Al-Qassab et al., 2009). A multiplex PCR assay was consequently developed 

incorporating three minisatellite and three microsatellite markers, presenting a simple, 

efficient, and informative method for genotyping and distinguishing new and existing N. 

caninum isolates (Al-Qassab et al., 2010a). 

 These genotyping techniques have also contributed to the study of epidemiology 

and population genetics within the species (Basso et al., 2009; Basso et al., 2010; Regidor-

Cerrillo et al., 2013; Regidor-Cerrillo et al., 2006). A large scale genotyping study 

evaluated nine microsatellite markers for a total of 108 reference and clinical N. caninum 

isolates, collected over a 10 year period from four countries and two continents (Regidor-

Cerrillo et al., 2013). A total of 96 microsatellite multilocus genotypes across seven loci 

revealed extensive levels of genetic diversity across the samples. Data analysis suggested 
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that these microsatellite markers were partially correlated with geographical origin, with 

sub-structuring present for each country population of samples. Genetically distinct 

clustering of microsatellite genotypes was also found to be associated with abortion, and 

the results of the study suggested a clonal propagation of microsatellite markers for 

Spanish N. caninum isolates in cattle.  

Basso et al. (2010) characterised DNA extracted from the brains of 18 foetuses 

infected with N. caninum from epidemic abortion storms, using ten microsatellite 

markers. The same microsatellite pattern was present in all foetuses from each abortion 

outbreak, and unique to each herd. These results, in conjunction with avidity analysis, 

provided evidence that infection had originated from a common source, and therefore that 

horizontal transmission was a determinant of epidemic abortions. Recently, Cabrera et al. 

(2019) reported that four isolated Uruguayan strains of N. caninum, represented three 

distinct genetic lineages, as determined by microsatellite typing. Phylogenetic analysis 

further revealed that three of these four strains clustered closely with strains from regional 

Argentina and Brazil. As the remaining Uruguayan strain was found to group with an 

unrelated cluster, this suggested that the local strains were from multiple origins. 

 

3. New perspectives: Elucidating the degree of sequence variation 

between N. caninum isolates 

The popular typing methods used in genetic diversity studies, as discussed in Section 2.2, 

commonly exploit repetitive elements such as mini- and microsatellites. While valuable, 

such techniques generally target non-coding sequences, and their influence on parasite 

biology and phenotype remains largely unknown. What still remains to be addressed is 

whether a relationship exists between genetic markers, and heterogeneity in clinical 

manifestations in infected hosts (Al-Qassab et al., 2010b; Goodswen et al., 2013). 



 

 
 

73 

Alternatively, investigating variation present within protein-coding genes of a species can 

expand our understanding of whether such mutations alter gene function, and 

consequently an organism’s phenotype.  

 Until recently, the presence of polymorphisms, including single nucleotide 

polymorphisms (SNPs) and insertions and deletions (indels), within coding sequences of 

N. caninum isolates remained unexplored, representing a gap in knowledge that has been 

extensively studied in related apicomplexan parasites. For example based on genome-

wide SNP studies, the within-lineage variation distinguishing three of the four major 

lineages of T. gondii in the Northern Hemisphere, is <0.01%, compared to an estimated 

1-3% variation present between lineages (Boyle et al., 2006). Furthermore, extensive 

research has revealed that only a limited number of sexual recombination events within 

the feline definitive host of T. gondii, are sufficient to influence population structure and 

the evolution of pathogenic variability between linages (Boyle et al., 2006; Grigg et al., 

2001; Khan et al., 2011a; Khan et al., 2009). In the malaria causing Plasmodium 

falciparum, mutations in various molecular markers was identified as part contributors to 

the growing global threat of drug resistance. For instance, mutations in the propeller 

domain of the Kelch 13 gene were associated with artemisinin resistance, hence 

classifying this domain as a useful marker to monitor the emergence of resistance across 

South East Asia (Ariey et al., 2014). 

 

3.1. The identification and annotation of hypervariable gene hotspots in the N. 

caninum genome 

To address the important, and until now, neglected question of the impact of sequence 

variation in protein-coding genes on N. caninum diversity, Calarco et al. (2018) generated 

NGS data from the tachyzoite lifecycle stage to subsequently perform in-silico analyses. 
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RNA-seq data produced for NC-Liverpool and NC-Nowra isolates was used in a variant 

analysis pipeline (Figure 1), which resulted in the identification of more than 3,000 

differentiating SNPs. The allocation of this SNP callset within the N. caninum genome 

revealed their concentration within specific genomic windows on chromosomes VI, XI, 

and XII, comprising a total of 19 tachyzoite-associated SNP “hotspots” within 

transcriptionally active coding regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Variant analysis pipeline for detecting SNPs and indels, from raw high-

throughput sequencing data generation through to functional analysis of identified 

variants. Sequence reads produced by next generation sequencing (NGS) platforms, 

require initial quality control. This can involve trimming the ends of reads where base 

quality tends to decrease, discarding short sequences, and removing low quality base 
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calls. Groomed reads can then be aligned to a reference genome or transcriptome, where 

optimising default alignment parameters can help improve overall mapping quality, 

especially for non-model organisms such as N. caninum. Aligned reads can then be 

further processed to remove duplicate reads produced through PCR, followed by sorting 

and indexing BAM files, which are additional steps required by many variant callers. For 

multi-sample variant calling, an ‘mpileup’ file can subsequently generated from multiple 

aligned BAM files, which can then be fed into a variant calling algorithm to detect SNPs 

and indels, in comparison to a reference FASTA file. Filtered variants should then be 

visualised to assess their quality, and a subset of variants should be selected for 

confirmation through PCR and sequencing analysis. Annotating high-quality variant calls 

can consequently involve allocating them to coding and non-coding genomic regions, 

performing BLAST analyses to assign polymorphic loci to genes, and also identifying 

protein sequence domains and repeats, and gene ontologies to assign functional 

significance to variable loci.  

 

 Annotation of these hypervariable genes, many of which contained non-

synonymous mutations, revealed their implication in protein-protein interactions, 

transcription and translation processes, protein binding, ribosomal subunit formation, 

kinase activity, and protein phosphorylation. Moreover, sequence annotation of the 

hotspot genes revealed noteworthy protein superfamilies and domains such as WD40 

repeat containing (IPR036322), ARM-like helical (IPR011989), P-loop containing 

nucleoside triphosphate hydrolase (IPR027417), ABC transporter (IPR036640), EF-hand 

calcium binding domain (IPR018247), AAA+ ATPase domain (IPR003593), and 

tetratricopeptide repeat (TPR; IPR019734).  
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 The SNP-dense protein-coding genes identified in this study, many of which were 

characterised as non-synonymous mutations, could represent transcriptionally active, 

novel determinants of tachyzoite virulence, that distinguish N. caninum isolates with 

reported differences in pathogenicity. Upon further sequence analysis, various hotspot 

genes also contained transmembrane (TM) domains and/or a signal peptide (SP), 

indicating the presence of structural sequence features often associated with proteins that 

are located in the membrane or excreted/secreted that may be potential vaccine 

candidates. 

 Interestingly, also reported in this study was almost a complete absence of sequence 

polymorphisms located within routinely used genotyping markers for T. gondii, including 

surface antigens (SAG1 and SRS2), dense granule proteins (GRA; GRA6), and rhoptry 

proteins (ROP; ROP30 and ROP37). These results supported previous studies 

investigating such markers, where Marsh et al. (1999) reported complete sequence 

conservation in genes encoding SAG1 and SRS2, between five N. caninum isolates from 

different continents and host species. Similarly, Walsh et al. (2001) compared GRA6 and 

GRA7 gene sequences between four bovine and canine isolates, and found no nucleotide 

differences.  

 

3.2. The contribution of non-coding SNPs to N. caninum intraspecies genetic 

diversity 

The metabolically expensive presence and hence potential functional importance of non-

coding DNA has been a topic of growing debate and contention. While initially deemed 

“junk DNA”, non-coding sequences are being elevated in status as potential contributors 

to the evolutionary diversity and protein repertoire of various species (Fedorova and 

Fedorov, 2003; Gilbert, 1985; Irimia and Roy, 2008). Furthermore, it was suggested that 
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sequence polymorphisms within non-coding DNA have the potential to influence  

genotype-phenotype relationships and gene expression (Cooper, 2010).  

Calarco and Ellis (2020) exploited both genomic and transcriptomic data to 

investigate SNPs located within non-coding and intron regions between isolates. In-silico 

variant analysis was performed using NC-Nowra genomic reads, aligned against the NC-

Liverpool reference genome from ToxoDB. The results suggested that the N. caninum 

genome was largely monomorphic, however hypervariable regions were identified on 

chromosomes VI and XI. Within the variable hotspots, more than half of the identified 

SNPs on chromosome VI were located within introns, and approximately 70% of SNPs 

on chromosome XI were in either introns or non-coding genomic regions. The annotation 

of these hypervariable genes containing SNP-dense introns, revealed gene ontologies 

(GOs) related to transcription and translation processes, protein kinase activity, ATP 

binding and ATPase activity, transmembrane transport, and ion binding. There was also 

a distinct overlap of and correlation between genes containing SNP-dense introns and 

coding regions. Prioritisation based on SNP density within their respective introns, 

resulted in the identification of a set of functionally significant genes located on 

chromosomes VI and XI, including an ABC transporter involved in transmembrane 

transport and ATP binding (NCLIV_015830), a calcium-activated ion channel protein 

with eight TM domains and a SP (NCLIV_015820), and a kinesin-like protein involved 

in microtubule movement (NCLIV_056770).  

Further to the topical discussion on non-coding DNA, the role of introns in 

evolutionary diversity through mechanisms of alternative splicing (AS) is gaining 

momentum and attracting debate. This includes the impact of phenomena such as exon 

shuffling, intron retention, mRNA surveillance, transcriptional regulation of gene 

expression, and recombination (Duret, 2001; Fedorova and Fedorov, 2003; Gilbert, 1985; 
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Lynch and Richardson, 2002). With respect to protozoan parasites, approximately 22% 

of protein-coding genes in T. gondii (Yeoh et al., 2015), and 16% in Plasmodium species 

(Iriko et al., 2009) are estimated to undergo AS, where studies suggest that AS 

mechanisms can generate distinct, functionally significant transcripts in Apicomplexan 

parasites, where such gene products are also considered as prospective vaccine candidates 

(Agarwal et al., 2011; Delbac et al., 2001; Gabriel et al., 2015; Kern et al., 2014).  

By implementing in-silico structural variant identification pipelines, Calarco and 

Ellis (2020) reported 315 and 503 deletions by the Pindel and BreakDancer algorithms 

respectively, spanning more than 50bp between RNA-seq reads generated from NC-

Liverpool and NC-Nowra tachyzoites. Many of these predicted deletions were 

subsequently identified as introns, present in transcripts from NC-Liverpool, however 

absent from, and likely removed through splicing in, NC-Nowra transcripts. The 

corresponding genes containing these introns, presented GOs for RNA processing, 

protein binding, proteolysis, methyltransferase activity, and oxidation-reduction process, 

where many also contained TM domains and/or a SP.  

In addition, many predicted in-silico deletions were instead in regions either just 

before or after a gene sequence (i.e. non-coding or intergenic sequences). Annotations for 

such genes including those putatively encoding microneme proteins (MIC3, 

NCLIV_010600; MIC8, NCLIV_062770), a protein kinase (NCLIV_050650), and a 

translation initiation factor subunit protein (NCLIV_011760). It was suggested that these 

deletions may belong to regulatory elements that influence gene expression, or 

alternatively that reference gene sequence annotations are inaccurate. With respect to 

functionally important micronemes, following the discovery of the N. caninum MIC8 

protein, which shows a high similarity to that of its homologue in T. gondii, this protein 

was reported to play a critical role in host-cell invasion, and also to form a complex with 
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NcMIC3, most likely during transportation (Wang et al., 2017). Subsequently, Zhang et 

al. (2019) demonstrated that immunising mice with recombinant NcMIC3 and NcMIC8, 

provided at least part protection against neosporosis following a challenge with N. 

caninum tachyzoites, with mice also exhibiting a lower parasite burden in brain tissue. 

Such studies demonstrate the importance of microneme proteins in not only host cell 

invasion and interaction, but also as vaccine candidates against neosporosis. 

Overall, these studies revealed and characterised the contribution of variable, non-

coding and intron DNA, to the intraspecies diversity reported for N. caninum. Such 

research improves upon our understanding of the underlying genetic forces occurring in 

this species. It also suggests that mechanisms of alternative splicing, specifically intron 

retention in transcripts, distinguish isolates of this species, and may play a larger role in 

the context of parasite biology, than previously thought. By collating these new studies, 

we start to gain a clearer picture of the underlying, intrinsic genetic differences occurring 

in isolates of N. caninum.  

It is evident that regions on chromosomes VI and XI are highly polymorphic 

between isolates, in both transcriptionally active tachyzoite-associated genes, as well as 

intergenic and intron sequences. These data hence expand upon our understanding of the 

driving forces responsible for important parasite phenotypes and biological mechanisms, 

conducive to the species’ success. In a historical context for example, do these genetic 

diversity studies indicate that sexual recombination in definitive hosts plays a more 

important role that previously thought? Do the concentrated polymorphic regions 

identified point towards sex being of greater significance and influence in parasite 

evolution, epidemiology, and intraspecies diversity?  
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4. The evolution and heterogeneity of coccidian genomes 

How can we contextualise variation at the genetic and transcriptomic levels to establish 

its relationship with the population structure, epidemiology, and phylogeny of a species? 

Revealing the existence of a species’ underlying population structure can offer insight 

into the spread and determination of virulence factors, pathogenicity, and genotyping 

markers (Khan et al., 2011b). Recent efforts towards identifying genome-wide SNP 

markers for a range of parasite species, is providing a new framework based on population 

genetics, with implications in molecular evolution, species divergence, and association 

studies. 

 For example, initial genotyping studies for T. gondii, and their interpretation in 

terms of a clonal population structure for the species, were limited by the small number 

of isolates studied and their host and geographical origins (Darde et al., 1988; Howe and 

Sibley, 1995; Sibley and Boothroyd, 1992). However, subsequent studies incorporating 

multilocus techniques for a wider range of isolates, revealed the existence of a more 

genetically diverse species with a complex population structure (Ajzenberg et al., 2004). 

Large-scale sequencing efforts for T. gondii resulted in over 250 SNPs within random 

fragment length polymorphism (RFLP) markers, being observed between the three main 

clonal lineages (Khan et al., 2005). Based on genome-wide SNP studies, it was estimated 

that the polymorphism rate between the lineages is 0.65% (Boyle et al., 2006), which 

equates to approximately one variant per 100bp throughout almost all chromosomes 

(Khan et al., 2005). The three predominate lineages are also classified as either type I, II, 

or III SNPs (Boyle et al., 2006), with each exhibiting extensive bi-allelism (Grigg et al., 

2001; Khan et al., 2005). The distribution of these SNP types also suggests that types I 

and III represent first and second generation offspring, resulting from a cross between a 

type II strain and an ancestral strain (Boyle et al., 2006). 
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 It is well understood that diversification, duplication, and expansion of loci is 

ubiquitous and prevalent in apicomplexan genomes, where this is especially true of 

protein-coding genes found in a parasite’s secretory pathway, and/or expressed on their 

surface (Blank and Boyle, 2018). The SRS superfamily of surface antigens for example, 

has been identified as one of the most divergent and rapidly evolving protein families 

within this phylum (Jung et al., 2004; Manger et al., 1998; Reid et al., 2012; Wasmuth et 

al., 2009; Wasmuth et al., 2012). As a result, gene duplication and expansion events have 

been used to study the phenotypic differences and phylogenetic relationships between 

Apicomplexan species, and more specifically, within the Toxoplasmatinae subfamily, 

with implications in species divergence and evolution (Adomako-Ankomah et al., 2014; 

Lorenzi et al., 2016; Reid et al., 2012). The genome and transcriptome sequencing of 

related Coccidia such as T. gondii, N. caninum, and H. hammondi has revealed a high 

degree of conservation and genomic synteny between these species, with respect to size, 

protein-coding genes, GC content, and gene catalogue (Reid et al., 2012; Walzer et al., 

2013). However, the study of large structural variations at expanded loci have revealed 

sources of evolutionary divergence within this subfamily.  

 For example, more than double the number of SRS genes were reported for N. 

caninum by Reid et al. (2012) compared to T. gondii, where there was also a divergence 

in secreted virulence factors between the species, namely rhoptry kinases. These results 

suggested that a small set of genes implicated in host-parasite interactions, have 

influenced the ecological niches and pathogenic capabilities of these species. By 

comparing the genomes of 62 globally dispersed T. gondii isolates to N. caninum, H. 

hammondi, and S. neurona, Lorenzi et al. (2016) reported that these closely related, but 

phenotypically diverse, parasites could be distinguished based on the tandem 

amplification and diversification of secreted, pathogenic determinants. Duplicated genes 
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and copy number variation (CNV) events were specifically in T. gondii genes encoding 

ROPs, MICs, and SAG/SRS, many of which also showed evidence of positive selection 

based on non-synonymous mutation rates. Comparing the orthologous GRA, ROP, and 

SRS genes between related Coccidia, suggested that divergence within these genes may 

be responsible for phenotypic differences observed between these species, whereas MIC 

genes were highly conserved. Furthermore, Marsh et al. (1999) indicated that while the 

SAG1 and SRS2 protein sequences were conserved across six N. caninum isolates 

originating from different hosts and geographical regions, there was a 6% and 9% 

difference in these amino acid sequences respectively, when compared to N. hughesi. The 

variation within these protein-coding genes therefore represented additional molecular 

markers for the distinction of these two Neospora species. 

  

4.1 The influence of sequence diversity on N. caninum population genetics 

Through the in-silico identification and laboratory confirmation of a set of SNPs using 

NGS data, Calarco et al. (2018) developed a multilocus sequencing approach for nine N. 

caninum isolates, differentiated by geographical origin, host, and/or reported 

pathogenicity. This data elucidated a population structure consisting of two major clades, 

one of which included the virulent NC-Liverpool isolate, and the other containing the low 

virulence NC-Nowra isolate. Interestingly, the clustering of the isolates based on 

polymorphic loci did not appear to conform to a pattern based on their geographical 

segregation or host. Furthermore, the inclusion of N. hughesi in the multilocus sequence 

typing, bolstered support for the two-clade structure for N. caninum.  

 However, there are a limited number of studies documenting and comparing the 

pathogenicity of the N. caninum isolates investigated in this study, in both murine and 

bovine host models. While this limits the assumptions that can be drawn from such 
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results, it does highlight the value of SNP data in conjunction with population structure 

analyses, in enriching our understanding of intraspecies genetic diversity and important 

parasite phenotypes. These results emphasised that the two representative populations of 

N. caninum presented not only differ in their pathogenicity as previously demonstrated, 

but are also genetically distinct. Such knowledge can expedite the identification of novel 

virulence markers, and hence provide candidates for vaccine and drug development 

against neosporosis. 

 

4.2 Exploring non-nuclear DNA in apicomplexan parasites  

Another potential source of genetic variation recently investigated and reported for N. 

caninum was non-nuclear DNA, where Calarco and Ellis (2020) assembled and annotated 

the apicoplast genome for NC-Liverpool, based on NGS data. The apicoplast is a 

secondary plastid organelle unique to most species within the apicomplexan phylum, and 

while it lacks photosynthetic ability, it is essential for parasite survival (Gardner et al., 

1991; Howe, 1992; Williamson et al., 1994; Wilson et al., 1996). The published 

apicoplast genomes of P. falciparum (Wilson et al., 1996), T. gondii (EMBL accession 

number U87145), and Eimeria tenella (Cai et al., 2003) have been shown to be highly 

similar with respect to gene catalogue and structure. This includes an inverted repeat 

region containing duplicated small and large subunit ribosomal RNAs (SSU rRNA and 

LSU rRNA), and tRNA genes. The conservation of this organellar genome between genera 

also extends to the transcription of genes, where half of the apicoplast circle is transcribed 

in a clockwise direction, and the other half is transcribed counter-clockwise.  

 While most orthologous genes from these three coccidian species align to one 

another, with the exception of hypothetical open reading frames (ORFs), their sequences 

are divergent. Contrastingly, the apicoplast genomes of piroplasmids such as Theileria 
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parva (Gardner et al., 2005) and Babesia bovus (Brayton et al., 2007) do not contain an 

inverted repeat region, and most of their genes are single-copy and transcribed uni-

directionally. The sequencing of apicoplast genomes from various apicomplexan species 

is conducive to elucidating the evolution, phylogeny, population structure, and biological 

mechanisms of these parasites, which can subsequently contribute to our understanding 

of the epidemiology and pathogenicity within and between species.  

 For example, to address limitations associated with nuclear SNP barcodes, 

including a lack of geographic specificity, Preston et al. (2014) exploited the extra-

nuclear mitochondrial and apicoplast organelles for P. falciparum isolates. Sequencing 

data from a total of 711 isolates across 14 countries was used to identify high quality 

SNPs within these genomes, and subsequently analyse the geographic diversity and 

extent of recombination within the population. A total of 151 mitochondrial and 488 

apicoplast SNPs were documented, where variation within these combined non-nuclear 

genomes resulted in a 23-SNP barcode able to discriminate between the region of sample 

origin with an accuracy of 92%. High linkage disequilibrium between the catalogued 

SNPs supported the co-transmitted and non-recombining nature of the organelles, 

revealing novel haplotypes unique for different geographic regions.  

 Variant analysis of reads from NC-Nowra aligned to an assembled NC-Liverpool 

apicoplast genome, revealed that this organelle is highly conserved between these isolates 

with marked biological differences. Calarco and Ellis (2020) only reported three SNPs 

and one insertion three base pairs long present in NC-Nowra reads across the ~35kb 

apicoplast genome. The SNPs were located within RNA polymerase  subunit (rpoB), 

RNA polymerase ’ subunit (rpoC2.2), and ORF-F, and the insertion was positioned just 

before the start codon of the tufA gene. High sequence similarity was also reported 

between the NC-Liverpool apicoplast genes when aligned to closely related coccidia such 
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as T. gondii, H. hammondi, S. neurona, and Cryptosporidium suis, with identities between 

79-93%. The structure, gene content, and arrangement of the NC-Liverpool apicoplast 

genome was also highly similar between these related coccidia and Plasmodium species, 

suggesting the evolutionary conservation of this essential organelle. Figure 2 presents the 

NC-Liverpool N. caninum annotated apicoplast genome published by Calarco and Ellis 

(2020) (MK770339), as aligned to a reference apicoplast genome sequence from T. gondii 

(U87145), which highlights how the nucleotide sequence, and gene arrangement and 

catalogue of this organelle are highly conserved between these related species. 
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Figure 2. Comparison of the gene catalogue and structure of the N. caninum and T. gondii apicoplast genomes. The NC-Liverpool apicoplast 

genome (accession MK770339) was aligned to a T. gondii reference apicoplast genome (accession U87145) in Geneious Prime 

(www.geneious.com; version 2020.0.4). Genes are presented in yellow, rRNAs are in red, and tRNAs are shown in pink. The top consensus track 

shows the percentage identity between the two apicoplast nucleotide sequences, where the green represents 100% sequence similarity, yellow is 

between 30-100% sequence similarity, and red is <30% sequence similarity at each base. This figure highlights how the ~35 kb apicoplast genome 

is highly conserved between these two closely related species. 
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5. Neospora caninum as a non-model organism: What are we still 

missing? 

One of the greatest challenges currently plaguing the advancement of treatment and 

control strategies against neosporosis, is at least partly attributable to the status of N. 

caninum as a non-model organism. Consequently, there are limited resources available 

for the species, and for the data that has been generated, there is the question of the 

robustness, accuracy, and completeness of such records. This is further compounded by 

the lack of gene and protein annotations presented in reference resources and databases, 

where putative gene descriptions commonly stem from sequence homology with closely 

related and thoroughly studied Apicomplexa. Currently, more than 60% of genes 

predicted to comprise the N. caninum genome remain uncharacterised, and instead are 

described as coding for ‘hypothetical’ or ‘unnamed’ proteins (Calarco and Ellis, 2019).  

The SNP hotspot regions identified by Calarco et al. (2018) mostly contained 

genes that were simply labelled “hypothetical” or “unspecified”. Annotation using several 

in-silico tools, led to gene classification by homology, protein families, domains, and/or 

GO terms. However, one quarter of the SNP hotspot genes still remained unannotated 

after all methods were exhausted. This clearly highlights how such genetic diversity 

analyses are only as valuable as the annotation available for important loci identified, and 

hence overall for the organism under investigation. It also alludes to the disturbing and 

sizeable existence of uncharacterised, theoretically significant proteins that await 

description for N. caninum.  

 

5.1. Virulence factors of Apicomplexa 

Members of the Apicomplexa, whilst biologically specialized, share a plethora of cellular 

and molecular characteristics that are conducive to their success as intracellular parasites. 
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This includes chiefly an apical complex, and molecules that aid in parasite motility, host 

cell adhesion, and subsequent invasion (Huynh et al., 2014). Rhoptries, micronemes, and 

dense granules are the three secretory vesicles constituting the apical organelle, which 

release effector proteins essential for host cell recognition, invasion, and modification, 

and are therefore instrumental in the success of parasite virulence (Blackman and 

Bannister, 2001).  

 Rhoptry proteins (ROPs) are amongst the most comprehensively studied family of 

proteins in Apicomplexa, where many have been identified as key virulence factors 

(Talevich and Kannan, 2013). These include ROP18, which modulates parasite growth, 

and ROP5, which together play a role in impeding the host immune response (Behnke et 

al., 2012; Saeij et al., 2006; Talevich and Kannan, 2013). The microneme (MICs) family 

of proteins can be classified by the presence of TM domains, a SP, and adhesive motifs. 

Such structural features within these secreted proteins enable the parasite to interact with 

host cell receptors, thereby facilitating successful attachment to and invasion of host cells. 

In T. gondii, the MIC2 complex has been implicated in gliding motility and cell invasion 

(Jewett and Sibley, 2003), and has hence been acknowledged as a major virulence 

determinant in Toxoplasma infection, where MIC2-deficient parasites could be exploited 

in the development of a live attenuated vaccine. Furthermore, while MIC2 was initially 

described by Lovett et al. (2000), it remains listed as a “hypothetical protein’ in NCBI, 

UniProt, and ToxoDB reference databases. Following host cell invasion, dense granule 

(GRA) proteins are released and serve to modify the conditions of the parasitophorous 

vacuole membrane and environment, ensuring the successful intracellular maintenance 

and replication of the parasite (Cesbron-Delauw, 1994; Mercier et al., 2005; Mercier et 

al., 2002). A total of 12 GRA proteins have been identified in T. gondii, many of which 

contain a SP sequence between 25-30 amino acids, and/or TM domains, and as such are 
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classified as excretory/secretory antigens, associated with the secretory pathway of the 

parasite (Ahn et al., 2005; Cesbron-Delauw, 1994; Mercier et al., 2005; Michelin et al., 

2009; Rome et al., 2008). 

 Many key players contributing to crucial parasite mechanisms of invasion, motility, 

and adhesion, contain distinct sequence features that can be identified in-silico. For 

example, proteins containing TM domains are implicated in a range of crucial biological 

processes such as cell attachment, invasion, and molecule transport (Reynolds et al., 

2008), whereas proteins transported to secretory organelles commonly require an N-

terminal SP (Chen et al., 2008). Such aforementioned effector molecules implicated in 

parasite invasion, host-cell signaling modulation, and adhesion, generally contain 

important structural features such as these, and have hence been identified as potential 

vaccine candidates for apicomplexan parasites (Kim and Weiss, 2004). In terms of gene 

expansion and diversification in T. gondii, and its relevance to phenotypic diversity 

within and between species, Adomako-Ankomah et al. (2014) reported that a total of 42 

of 53 tandemly expanded loci identified were predicted to be part of the parasite’s 

secretory pathway, and 29 of these contained an N-terminal SP. Consequently, how can 

this body of knowledge facilitate the detection of crucial virulence factors buried within 

the N. caninum proteome, that still await identification? 

 
5.2. The value of bioinformatics in the quest to resolve the ‘hypothetical’ 

The advent of second and third generation sequencing technologies has seen the mass 

generation and availability of data for a wide range of organisms, increasingly so for N. 

caninum. To accommodate for this burgeoning field of technology, in-silico tools and 

pipelines are constantly being developed and optimised, to ensure researchers are able to 

process, analyse, and make such data publicly available. Many well studied and non-

model organisms have benefitted from in-silico analysis of hypothetical proteins. For 
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example, Oladele et al. (2011) identified several sequences that could represent 

biomarkers of malaria, through bioinformatics analysis of hypothetical P. falciparum 

proteins. Syn et al. (2018) presented an in-silico pipeline to identify T. gondii proteins 

influencing host cell epigenetic regulation. The tools used aimed to identify proteins 

secreted via classical and non-classical pathways, predict proteins localised to the 

nucleus, and prioritise proteins associated with epigenetic regulation. From a total of 8313 

proteins in the T. gondii proteome, 57 proteins were predicted to be involved in both 

secretory pathways, and epigenetic functions.  

 By combining current knowledge of conserved apicomplexan virulence factors 

and their sequence features, with suitable bioinformatics tools to facilitate their 

identification, Calarco et al. (2019) curated a list of proteins described as “hypothetical” 

or “unnamed” from reference resources. A total of 4,264 uncharacterised proteins were 

then subjected to a range of tools for classification by topology, sequence homology, 

adhesin-like properties, GOs, and protein domains. From this initial list, 125 

uncharacterised N. caninum proteins were predicted to contain TM domains and a SP 

sequence. After these protein sequences were submitted to a malarial adhesins predictor, 

a final set of 32 proteins were classified as adhesin-like TM proteins with a SP sequence. 

Following functional annotation of prioritised proteins, enriched GOs included cell 

adhesion, proteolysis, antigen binding, protein serine/threonine phosphatase complex, 

locomotion, and ATP binding. Various hypothetical proteins annotated through this 

workflow contained structural features known to be implicated in important parasite 

mechanisms, such as those described as MICs, GRAs, proteases, peptidases, and surface 

antigens.   

 The development of a bioinformatics workflow in this study, resulted in the 

prioritisation of all predicted, uncharacterised proteins within the N. caninum proteome, 
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based on sequence structure and features of known, conserved apicomplexan virulence 

factors. This resulted in the identification of a novel and focused subset of proteins, that 

are potentially involved in biological processes pertaining to parasite motility, adhesion, 

invasion, signalling, and interaction with host cells. Consequently, these proteins could 

be targeted in new avenues of investigation in the near future, for the development of 

treatment and control options against neosporosis. This includes comparing these proteins 

between N. caninum isolates with reported phenotypic differences, at both a molecular 

and biological level. This includes nucleotide and amino acid sequence diversity through 

variant detection, gene expression studies, gene knockout experiments, and 

immunoassays. 

 

6. Summary 

Extensive efforts have recently been made to reveal the key contributors to and major 

sources of, genetic diversity characterising isolates of the pathogenic protozoa, N. 

caninum. All avenues investigated thus far have provided evidence that N. caninum exists 

as a diverse, globally distributed population of isolates, that exhibit genetic and biological 

heterogeneity. Initial efforts dedicated to elucidating the genetic diversity between N. 

caninum isolates, consisted of analysing repetitive elements and popular phylogenetic 

molecular markers. However, these studies generally focused on non-coding genomic 

regions and hence failed to explain the relationship of such markers to important parasite 

phenotypes. As a result, recent new efforts have been dedicated to the identification of 

sequence polymorphisms within protein-coding genes, non-nuclear DNA, and introns, to 

reveal their contribution to and impact on the biological diversity reported between 

isolates.  
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Bioinformatics and in-silico analysis of sequencing data both original and 

publicly accessible, has the potential to reveal and contribute to our understanding of 

apicomplexan virulence factors and possible vaccine and drug targets. It is clear however, 

that the development of treatment and control options against neosporosis can only 

progress as fast as the improvement of gene and protein descriptions. Current analyses of 

the N. caninum genome, proteome, and transcriptome are only as valuable as the 

annotations available for such data, and hence efforts in the near future should be 

dedicated and prioritised as such.  
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