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Abstract— A supervised machine-learning based approach for 

faulted phase identification in bolted, low- and high-impedance 

line-to-ground faults using principal component analysis for 

feature extraction from multiple input signals is presented in this 

paper. DIgSILENT PowerFactory is used for simulating the 

underlying microgrid to obtain fault related data, while 

MATLAB is used for machine learning application. A 15-fold 

cross validation is applied to the training dataset for evaluation of 

different machine learning models and the results show supreme 

performance compared to previous methods. 

Index Terms— microgrid, protection, machine-learning, line-to-

ground fault, principal component analysis. 

I. INTRODUCTION 

With more concerns towards greenhouse gas emissions by 

conventional power plants in many countries including 

Australia and at the same time as the conventional power grid 

reaches its maximum capacity, more and more distributed 

generation (DG) sources will find their way within the modern 

distribution system to form a microgrid. 

While microgrid brings numerous benefits, it has also 

caused a number of concerns, among which electrical power 

protection is a major challenge. For many decades, most 

protection schemes at the distribution level in a radial system 

were originally designed for one-way flow of electric power. 

With bidirectional power flow due to distributed generation 

sources, coordination between fault protection devices such as 

fuses, auto-recloser, overcurrent relays etc., during islanded 

mode can be compromised [1]. Also correct selectivity and 

sensitivity to avoid nuisance tripping and to avoid protection 

blinding such as delayed tripping or undetected faults are few 

of the major challenges in the practical implementation of 

microgrid [2]. Traditional methods will no longer provide 

adequate protection in future. On the other hand, application of 

artificial intelligence can enable learning, thinking and fast 

decision-making capabilities in the microgrid. Additionally, 

efficient and accurate single- and double-pole tripping and 

auto-reclosing in distribution systems will be needed for future 

smart grids to increase overall resilience, besides economic 

benefits. To achieve this, correct classification of faults and 

reliable faulted phase detection (or selection) are required 

which will also reduce system instability, avoid tripping of 

healthy phase or phases in an unbalanced short-circuit event or 

needless tripping of all three phases [3, 4].  

Out of numerous faults in a three-phase system, more than 

70% are line-to-ground (LG) faults [5, 6], and therefore this 

study focuses on detection of faulted phase in such faults. After 

introduction, Section II gives an overview of earlier faulted 

phase detection methods. Section III introduces principal 

component analysis (PCA) for feature extraction. System under 

study and the simulation results for selected cases are presented 

in Section IV. Section V describes in detail the proposed 

method for faulted phase detection followed by results and 

analysis in Section VI. Conclusion is given in Section VII. 

II. OVERVIEW OF FAULTED PHASE DETECTION METHODS 

Most of phase selection methods have been proposed for 

transmission lines, where fault parameters largely differ from 

distribution systems with DGs. An approach based on the 

current travelling waves in transmission lines is presented in [3] 

to classify faults and for selection of faulted-phase. This 

approach is ineffective for the steady state conditions [7] and is 

also not feasible for short-distance lines in a distribution 

system. Wavelet transform (WT) is used for traveling wave 

extraction from post-fault signals. In [8], a discrete wavelet 

transform (DWT) based method for identification of faulty 

phase in transmission lines is proposed. Haar wavelet is used 

for decomposition of three phases and ground current signal 

into approximate and detail coefficients. A threshold value is 

then calculated using numerical coefficient for sampling 

frequency and detail coefficients. Approximate coefficient of 

ground current is used to distinguish between line-to-line (LL) 

and LG faults, and then comparison of threshold value with 

detail coefficients separates LG from line-to-line-to-ground 

(LLG) faults. Similarly in [9], [4] and [10], WT is used for 

feature extraction from different input signals to enable fault 

and faulted phase detection by either identifying largest 

variations among three phase signals or comparing with 

threshold values, neither of which is suitable for 

implementation in microgrid as continuous changes will not 
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allow a universal threshold value. In reference [11], fault 

classification method based on WT and fuzzy logic system 

(FLS) is proposed. DWT is used to extract energy features from 

current signals which are fed to FLS for classification of 

different fault types. This method does not identify the faulted 

phase. Contrary to this  reference, [12] proposes a WT and FLS 

based phase selection algorithm using only line current signals, 

on the other hand reference [7] proposed an approach for 

selection of faulted phase based on superimposed or 

incremental phase voltages and currents initiated by faults, 

whereas [13] has proposes using superimposed negative- and 

positive-sequence currents to identify the faulted phase. This 

technique is extremely susceptible to fault resistance. In 

contrast, authors in [14] propose to use negative- and zero-

sequence reactive power for fault classification and selection of 

faulted phase in single-circuit transmission lines. To determine 

the fault type in a microgrid, voltage angle-based and voltage 

angle and magnitude-based classifiers are proposed in [15]. 

Likewise, a fault identification and classification method for 

distribution systems with DGs, based on WT, is presented in 

[16], but the proposed method lacks identification of faulted 

phase.  

Contrary to most researchers who have used WT, in 

particular DWT, for extracting features to compare them with 

threshold value to identify faulted phase, application of PCA to 

obtain predictors for machine learning (ML) classifiers is 

instead proposed here, as selection of the optimal mother 

wavelet is one of the main challenges associated with WT. 

Application of different mother wavelets on the signal may lead 

to diverse results [8, 17-19]. Moreover, DWT is largely affected 

by type of selected mother wavelet, giving very different 

results. Sampling rate and fault inception angle strongly 

influence DWT response as well. Consequently, most DWT 

based protection methods are effective for a given set of 

parameters and can’t be generalized with the unchanged mother 

wavelet [20, 21]. PCA has the potential to overcome the 

shortcomings of WT in selection of an optimal mother wavelet 

basis function.  

III. PCA FOR FEATURE EXTRACTION 

PCA is a powerful means for pre-processing the data before 

using classification or regression algorithm. It is mainly applied 

to reduce dimensionality and the goal is to find out latent 

features that actually drive the patterns instead of selecting 

numerous features that increases processing time. In this study, 

PCA identifies the composite features or principal components 

of the three fault signals, line-to-line voltage (u1), phase voltage 

(u) and short-circuit current (Ishc) for each phase. The fault is 

applied at different instances and for different spans to have a 

variety of data for training the ML classifier. Only first two 

principle components are used. 

IV. SIMULATIONS 

The test microgrid shown in Fig. 1 uses voltage levels from 

Ausgrid for Bankstown area. Three different type of loads are 

used, that includes a 68% dynamic industrial load connected to 

11 kV Bus, unbalanced commercial load connected to Bus 3 

and unbalanced residential load connected to Bus 4. The DG 

sources include PV unit, wind and synchronous generators.  

Figure 1. Test Microgrid 

Figure 2. High impedance ground fault on phase A at 0.03 – 0.07 sec 

 

Three different cases, high impedance ground fault (400 Ω 

fault resistance), bolted ground fault (0 Ω fault resistance) and 

low impedance ground fault (0.01 - 5 Ω fault resistance) were 

simulated for five different fault inception instances and 

durations at 11 kV, Bus 11 and 400 V Bus 4. From numerous 

 

 

 

 



simulations, a few waveforms for u, u1 and Ishc are shown 

below; y-axis is in per-unit (pu) and x-axis in sec.  

As shown in Fig. 2, during a high impedance ground fault, 

there is negligible variations in line-to-line and phase voltages, 

and the magnitude of fault current is too low to be detected by 

traditional overcurrent relays. In contrast, it is visible in Fig. 3 

that due to high fault current, voltage for faulted phase is zero 

with noticeable variations in line-to-line voltage. Fig. 4 shows 

variations in voltage and current waveforms for a low 

impedance ground fault. 

Figure 3. Bolted ground fault on phase B at 0.025 – 0.075 sec 

Figure 4. Low impedance ground fault on phase C at 0.01 – 0.03 sec 

V. PROPOSED PHASE-GROUND FAULT DETECTION 

METHOD  

Data for 0.1 sec window is recorded through 

electromagnetic transient (EMT) simulations for each of the 

cases mentioned earlier. A step size of 0.0001 sec is used to 

obtain more than 1000 values for each scenario. This data is 

then arranged in rows and labelled for supervised ML. Using 

all these values for training will increase processing time and 

introduce overfitting, whereas manual inspection to obtain 

combinations that give the largest variations when the fault 

occurs compared to the normal operation is not possible. 

Moreover, using multi-dimensional data on a complex 

classification algorithm can result in very high variance and 

extremely slow processing time. To overcome these issues, 

application of PCA is proposed to reduce the dimensionality of 

input features that will optimize the performance of 

classification algorithm.  

In this study, only the first and second principal components 

that capture the actual patterns in the data are used, whereas 

smaller principle components are ignored which just represent 

the noisy variations about those patterns. By choosing only the 

important principle components and ignoring the rest, it helps 

in reduction of any noise in the data. Also using only the first 

two principal components instead of actual values recorded, 

decreases the time required for classification.  

The initial step in PCA is to calculate the covariance matrix 

for a 3-dimensional data set (u, u1 and Ishc) given by: 

  𝐶 = [

𝑐𝑜𝑣 (𝑢, 𝑢) 𝑐𝑜𝑣 (𝑢, 𝑢1) 𝑐𝑜𝑣 (𝑢, 𝐼𝑠ℎ𝑐)
𝑐𝑜𝑣 (𝑢1, 𝑢) 𝑐𝑜𝑣 (𝑢1, 𝑢1) 𝑐𝑜𝑣 (𝑢1, 𝐼𝑠ℎ𝑐)

𝑐𝑜𝑣 (𝐼𝑠ℎ𝑐, 𝑢) 𝑐𝑜𝑣 (𝐼𝑠ℎ𝑐, 𝑢1) 𝑐𝑜𝑣 (𝐼𝑠ℎ𝑐, 𝐼𝑠ℎ𝑐)
]

  

where 𝑐𝑜𝑣 (𝑥, 𝑦)  =   
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

𝑛−1
 and �̅� and �̅� are the 

mean values of x and y respectively.  

For extraction of patterns, eigenvectors are calculated for 

the covariance matrix based on eigenvalues given by: 

 𝜆 =

[
 
 
 
 
𝜆1 0 . . 0
0 𝜆2 . . 0
. . . . .
. . . . .
0 0 0 0 𝜆𝑝]

 
 
 
 

  

 The first eigenvector corresponds to the eigenvalue; 

which has the highest variance. 

 The second eigenvector corresponds to the eigenvalue; 

which has the second highest variance. 

The resulting matrix corresponds to: 

 𝑉 = [𝑒𝑣1 𝑒𝑣2 . . 𝑒𝑣𝑝] 

First and second eigenvectors are selected and remaining 

are ignored to obtain first and second principal components: 

 𝑉′ = [𝑒𝑣1 𝑒𝑣2] 

 

 

 

 

 

 



The new features are represented as projection of the 

vectors on the new base consistent to the first and second 

principal components. 

 𝑝𝑐1,2 = 𝑉′. [𝑣𝑖 − �̅�]𝑇 

where 𝑝𝑐1,2 represents new features, whereas 𝑣𝑖 and 

𝑣 ̅, represent the variable and the mean vector of original data 

respectively for u, u1 and Ishc.  

Besides obtaining features by applying PCA, standard 

deviation (std) for u, u1 and Ishc is also used to increase the set 

of predictors for ML classifier training to detect faulted phase. 

 𝑠𝑡𝑑(𝑥) =   √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

(𝑛−1)
 

The obtained various predictors are fed to three different 

classifiers to compare the prediction precision. These include 

support vector machines (SVM), K-nearest neighbors (KNN) 

and bagged tree (BT). An iterative process is then applied to 

obtain the most accurate models. After trying different kernel 

functions for SVM, varying number of neighbors, distance 

metric and weight for KNN and changing number of learners 

and maximum number of splits for BT, models with high 

accuracy are obtained. Once the models are trained, test data is 

applied to check the accuracy of predictions. Steps for pre-

processing the data and extracting features, remains same for 

both training and testing. The complete process is presented in 

Fig. 5.  

 

Figure 5. Proposed training and testing process of ML classifier 

VI. RESULTS AND ANALYSIS 

A total of 27 predictors are obtained, including 9 for 

standard deviation (std) of 3 signals for 3 phases during fault, 9 

for the first principal component (pc1) of 3 signals for 3 phases 

during fault and 9 for the second principal component (pc2) of 

3 signals for 3 phases during fault. Using the 27 predictors, all 

the three ML classifiers accurately identified correct faulted 

phase, as presented in Table I.  

Different combination of features (or predictors) are then 

used in classification model to identify and remove features 

with low predictive power to reduce the processing time that is 

vital in fault identification. It is observed that only using pc1 

with std predictors results in 18 predictors; and further 

removing predictors for u1 ends up with just 12 predictors; and 

then using std and pc1 predictors for Ishc and pc1 predictor for 

u also results in accurate identification. On the other hand, only 

using pc1 and std predictors for Ishc slashes accuracy for SVM 

and BT. Alternatively only using pc1 and removing all std 

predictors results in reduced accuracy for all three ML 

classifiers, while using std and pc1 predictor for u and pc1 

predictor for Ishc, i.e. a combination of 9 predictors, leads to 

precise identification by SVM and KNN, whereas BT shows 

some errors.  

A 15-fold cross validation has been applied to the training 

dataset to test the accuracy of the classifiers. Usually 5- to 10-

fold cross validation is applied, but with the increase in the 

number of folds, variance of the resulting estimation decreases.  

TABLE I.  ACCURACY OF IDENTIFYING CORRECT FAULTED PHASE 

Bolted 1Φ to ground fault at Bus 4 ML Classifiers 

Predictors Used SVM KNN BT 

All 27 predictors 100% 100% 100% 

Different combination of 18 predictors 100% 100% 100% 

Different combination of 12 predictors 100% 100% 100% 

Different combination of 12 predictors 93.3% 100% 93.3% 

Different combination of 9 predictors 100% 100% 100% 

Different combination of 9 predictors 60% 86.7% 86.7% 

Different combination of 9 predictors 100% 100% 93.3% 

 

For less than 9 predictors, large inaccuracy is observed. 

Therefore, for further scenarios, pc2 is not used and a 

combination of 9-18 predictors with highest accuracy are 

presented. 

TABLE II.  ACCURACY OF IDENTIFYING CORRECT FAULTED PHASE 

Low Impedance Ground Fault at Bus 4 ML Classifiers 

Predictors Used SVM KNN BT 

All 18 predictors 100% 100% 100% 

Different combination of 12 predictors 100% 100% 100% 

Different combination of 9 predictors 100% 100% 100% 

 



TABLE III.  ACCURACY OF IDENTIFYING CORRECT FAULTED PHASE 

High Impedance Ground Fault at Bus 4 ML Classifiers 

Predictors Used SVM KNN BT 

All 18 predictors 100% 100% 93.3% 

Different combination of 12 predictors 100% 100% 100% 

Different combination of 9 predictors 93.3% 100% 100% 

TABLE IV.  ACCURACY OF IDENTIFYING CORRECT FAULTED PHASE 

Bolted 1Φ to ground fault at Bus 11 ML Classifiers 

Predictors Used SVM KNN BT 

All 18 predictors 100% 100% 100% 

Different combination of 12 predictors  100% 100% 93.3% 

Different combination of 9 predictors 93.3% 100% 100% 

 

From these results, it is evident that using standard deviation 

and PCA for extracting predictors yields accurate identification 

of the faulted phase for bolted, low- and high-impedance LG 

faults for different fault inception instances and durations and 

for multiple buses in a microgrid. It is also visible that KNN 

shows the highest overall accuracy for various scenarios and 

combination of predictors for this study. 

VII. CONCLUSION 

This paper presented a supervised ML based approach to 

identify faulted phase in bolted, low- and high-impedance LG 

faults for various scenarios. Application of PCA for feature 

extraction has proven to be an excellent choice and shows that 

it has potential to overcome WT’s shortcomings in selection of 

an optimal mother wavelet basis function. A 15-fold cross 

validation has been applied to the training dataset for 

evaluation of different ML models, and the results have shown 

supreme performance compared to previous methods. Among 

the three classifiers used, KNN has showed the highest overall 

accuracy. Future work will include classification of various 

faults and identification of faulted phases in LLG and LL faults 

which are more common after LG faults, compared to other 

types. 

APPENDIX 

27 predictors used for ML training, for high impedance case at 

Bus 4 are presented in following tables.   

TABLE V.  PREDICTORS USED FOR FAULTED PHASE IDENTIFICATION 

Case: High Impedance 1Φ to ground fault at Bus 4 

pca1 

u1_A 

pca2 

u1_A 

pca1 

u1_B 

pca2 

u1_B 

pca1 

u1_C 

pca2 

u1_C 

0.99419 0.06255 -1.00423 -0.07167 1.01757 0.06766 

0.58247 0.15379 -0.55740 -0.14402 0.57800 0.14795 

0.78748 0.10790 -0.79320 -0.11543 0.77821 0.09653 

-0.24332 -0.48803 0.22796 0.51272 -0.17855 -0.50669 

-0.38328 -0.22677 0.42208 0.18310 -0.38919 -0.20549 

-0.32202 -0.36133 0.31402 0.37909 -0.33376 -0.33048 

-0.63984 0.37568 0.64174 -0.36716 -0.61756 0.30960 

-0.65281 0.41791 0.66490 -0.44149 -0.64846 0.41624 

-0.64939 0.40568 0.65271 -0.40314 -0.64444 0.40290 

0.82527 -0.04322 -0.84701 0.02792 0.86818 -0.02160 

0.43460 0.06963 -0.38776 -0.05663 0.41442 0.06508 

0.62540 0.01088 -0.63867 -0.02247 0.59522 0.00075 

-0.44369 -0.20511 0.40919 0.25435 -0.44015 -0.26941 

-0.43196 -0.18719 0.44212 0.13662 -0.47420 -0.14901 

-0.48309 -0.09238 0.45355 0.12823 -0.52527 -0.02403 

TABLE VI.  PREDICTORS USED FOR FAULTED PHASE IDENTIFICATION 

Case: High Impedance 1Φ to ground fault at Bus 4 

pca1 

u_A 

pca2 

u_A 

pca1 

u_B 

pca2 

u_B 

pca1 

u_C 

pca2 

u_C 

1.00650 -0.06281 -0.99298 -0.06741 1.01652 0.07159 

0.58775 -0.15316 -0.56723 -0.14944 0.56289 0.14319 

0.77939 -0.09790 -0.79429 -0.11677 0.78520 0.10521 

-0.20510 0.49223 0.25447 0.49910 -0.19023 -0.51627 

-0.37446 0.22812 0.40695 0.20408 -0.41313 -0.18322 

-0.33251 0.33484 0.31291 0.38253 -0.32439 -0.35353 

-0.62426 -0.33523 0.64886 -0.39057 -0.62603 0.32661 

-0.64616 -0.40840 0.66205 -0.43365 -0.65796 0.43365 

-0.64501 -0.40406 0.65355 -0.40547 -0.64798 0.40212 

0.84677 0.03418 -0.82545 0.03980 0.86827 -0.01883 

0.43657 -0.07100 -0.41021 -0.06277 0.38999 0.05763 

0.60084 -0.00078 -0.64436 -0.02157 0.61409 0.01182 

-0.45248 0.23050 0.42196 0.21896 -0.41860 -0.27942 

-0.45685 0.17942 0.42446 0.16514 -0.46698 -0.12825 

-0.52099 0.03406 0.44929 0.13805 -0.49165 -0.07231 

TABLE VII.  PREDICTORS USED FOR FAULTED PHASE IDENTIFICATION 

Case: High Impedance 1Φ to ground fault at Bus 4 

pca1 

Ishc_A 

pca2  

Ishc _A 

pca1  

Ishc _B 

pca2 

Ishc_B 

pca1  

Ishc _A 

pca2  

Ishc _C 

-0.00065 0.00334 0.00188 0.00047 0.00178 0.00055 

-0.00165 -0.00057 -0.00051 -0.00416 0.00178 0.00055 

-0.00165 -0.00057 0.00188 0.00047 0.00016 -0.00380 

0.00396 -0.00180 0.00188 0.00047 0.00178 0.00055 

-0.00165 -0.00057 -0.00476 0.00194 0.00178 0.00055 

-0.00165 -0.00057 0.00188 0.00047 -0.00426 0.00166 

0.00649 -0.00013 0.00188 0.00047 0.00178 0.00055 

-0.00165 -0.00057 -0.00657 0.00036 0.00178 0.00055 

-0.00165 -0.00057 0.00188 0.00047 -0.00660 0.00028 

0.00085 0.00482 0.00188 0.00047 0.00178 0.00055 

-0.00165 -0.00057 -0.00196 -0.00449 0.00178 0.00055 

-0.00165 -0.00057 0.00188 0.00047 -0.00132 -0.00476 

0.00581 -0.00057 0.00188 0.00047 0.00178 0.00055 

-0.00165 -0.00057 -0.00500 0.00164 0.00178 0.00055 

-0.00165 -0.00057 0.00188 0.00047 -0.00578 0.00112 

TABLE VIII.  PREDICTORS USED FOR FAULTED PHASE IDENTIFICATION 

Case: High Impedance 1Φ to ground fault at Bus 4 

std 

u1_A 

std 

u1_B 

std 

u1_C 

std  

u_A 

std  

u_B 

std 

u_C 

0.79480 0.79724 0.79601 0.79479 0.79603 0.79723 

0.79466 0.79647 0.79693 0.79557 0.79511 0.79738 



0.79560 0.79632 0.79614 0.79573 0.79590 0.79644 

0.79480 0.79724 0.79601 0.79479 0.79603 0.79723 

0.79466 0.79647 0.79693 0.79557 0.79511 0.79738 

0.79560 0.79632 0.79614 0.79573 0.79590 0.79644 

0.79480 0.79725 0.79601 0.79479 0.79603 0.79724 

0.79466 0.79646 0.79693 0.79557 0.79511 0.79738 

0.79560 0.79632 0.79613 0.79572 0.79590 0.79643 

0.79545 0.79685 0.79575 0.79518 0.79628 0.79658 

0.79531 0.79607 0.79668 0.79596 0.79536 0.79673 

0.79625 0.79592 0.79588 0.79612 0.79615 0.79579 

0.79623 0.79639 0.79544 0.79565 0.79660 0.79580 

0.79610 0.79560 0.79636 0.79643 0.79568 0.79594 

0.79704 0.79546 0.79557 0.79659 0.79647 0.79500 

TABLE IX.  PREDICTORS USED FOR FAULTED PHASE IDENTIFICATION 

std  

Ishc_A 

std  

Ishc _B 

std  

Ishc _C 

0.00014 0.00000 0.00000 

0.00000 0.00017 0.00000 

0.00000 0.00000 0.00016 

0.00020 0.00000 0.00000 

0.00000 0.00022 0.00000 

0.00000 0.00000 0.00021 

0.00026 0.00000 0.00000 

0.00000 0.00028 0.00000 

0.00000 0.00000 0.00027 

0.00020 0.00000 0.00000 

0.00000 0.00021 0.00000 

0.00000 0.00000 0.00020 

0.00024 0.00000 0.00000 

0.00000 0.00023 0.00000 

0.00000 0.00000 0.00025 
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