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Abstract Active assistive systems for mobility aids are largely restricted to environ-
ments mapped a-priori, while passive assistance primarily provides collision mitiga-
tion and other hand-crafted behaviors in the platform’s immediate space. This paper
presents a framework providing active short-term assistance, combining the freedom
of location independence with the intelligence of active assistance. Demonstration
data consisting of on-board sensor data and driving inputs is gathered from an able-
bodied expert maneuvring the mobility aid around a generic interior setting, and used
in constructing a probabilistic intention model built with Radial Basis Function Net-
works. This allows for short-term intention prediction relying only upon immediately
available user input and on-board sensor data, to be coupled with real-time path gen-
eration based upon the same expert demonstration data via Dynamic Policy Program-
ming, a stochastic optimal control method. Together these two elements provide a
combined assistive mobility system, capable of operating in restrictive environments
without the need for additional obstacle avoidance protocols. Experimental results
in both simulation and on the University of Technology Sydney semi-autonomous
wheelchair in settings not seen in training data show promise in assisting users of
power mobility aids.
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Fig. 1: University of Technology Sydney (UTS) semi-autonomous wheelchair.

1 Introduction

The global population is ageing quickly, with predictions that the worldwide propor-
tion of people aged 60 and over is expected to double by 2050 [1]. As mobility aids
promote independence and self-esteem in elderly and frail users, there is a strong
motivation to develop intelligent systems capable of providing improved assistance
to these groups [2]. One aim is to thus develop an assistive framework that can be
incorporated into power mobility devices (PMDs) such as the one shown in Fig. 1.
As devices such as power wheelchairs are large, heavy and powerful machines it is
common for prospective users to meet a strict set of conditions before prescription is
approved [3] even if they are otherwise capable of independently performing other
routine tasks. In this light, the target end users of this work are those who are still
capable of independence apart from mobility rather than those requiring constant
oversight from a carer due to more complex healthcare and lifestyle needs.

Assistance for sensor-equipped PMDs can be broadly divided into two dominant
flavors, referred to as reactive or active assistance. Most reactively assistive systems
keep the user significantly in the loop, only intervening the user’s input commands
when collision is imminent or autonomous takeover is momentarily required, for ex-
ample, in traversing a particularly narrow passage. In active assistance, the user is
mostly removed from the control loop; their command signals are used to infer an in-
tended destination, to which autonomous navigation algorithms then guide the PMD.

Reactive assistance primarily aims to mitigate collisions, as well as possibly ac-
commodating hand-tooled heuristic behaviors such as driving parallel to walls. Ear-
lier systems such as the Bremen Autonomous Wheelchair [4] or NavChair [5] pro-
vided safety mechanisms such as nullifying potentially hazardous input signals or
incorporating obstacle avoidance behaviours adapted from algorithms developed for
autonomous robots, e.g. the Vector Field Histogram [6] used recently in [7]. A more
recent approach in reactively assistive PMDs is the weighted fusion of robot com-
mand signals with that from the user, as investigated by [8–10] among others. These
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Fig. 2: An example of a reactive planner causing the platform (gray) to be trapped in
local minima. Orange crosses represent a forward projection of user input, and blue
crosses are navigational control points from the Dynamic Window Approach.

frameworks utilise a measure of “goodness” from the user’s behaviours to allocate
authority over the final command signal, typically a weighted sum between the user’s
input and command signals inferred from another algorithm. This measure typically
considers metrics such as obstacle proximity, user input fluidity or navigational task
relevance. The authors believe however that it is inherently safer for the user to merely
provide suggestions to a system that is in total control at all times, as there is little
promise of safety in the combined command signal even if both may be safe in iso-
lation. The primary disadvantage to reactive assistance is that the user’s intended
destination in most implementations is not considered. As a result the system is un-
able to actively assist the user in areas where pure obstacle avoidance would become
trapped in local minima.

Active assistance tends to rely on a-priori maps of spaces that the system oper-
ates in. An early instance of this can be seen again on the NavChair [11], which seeks
to change between modes such as doorway navigation and wall-following depend-
ing on its location and observed surroundings. Given data obtained from end-users
or demonstrators, later works have approached inference of the likeliest intended tar-
get as a classification exercise. Such long-term “global” destination inference has
already been previously addressed by several means including Hierarchical Hidden
Markov Models [12], Gaussian Processes [13] and various Bayesian frameworks [14,
15] among other heuristic approaches [16–18]. Once an intention is deemed suffi-
ciently probable, semi-autonomous navigation typically commences.

A motivating example for active assistance can be seen in Figure 2. User inputs
are projected forward over a brief temporal window, yielding an approximate navi-
gational goal for a reactive local controller; in this example, the Dynamic Window
Approach [19]. These algorithms consider both the goal and immediately available
sensor data to yield a safe control point and corresponding twist; however as they
are limited solely to determining the next platform control signal with no considera-
tion of longer-term path viability, the platform can become stuck in scenarios where
comprehensive path planning is necessary for ensuring reliable traversal.
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A significant limitation of active assistance is its restriction to working in areas
having up-to-date occupancy maps. Instead it is arguably more desirable for a system
to provide assistance ‘anywhere’, like reactively assistive frameworks are capable
of, without the need for map-building by only relying upon immediately available
on-board sensor data. In this “local” space one can infer immediate short-term des-
tinations being points of interest that the user wishes to pass through or stop at at a
given instant, to which short-term path planning can take place. It is these short-term
destinations which are defined as intentions for the purpose of this work. The limited
physical range of these short-term destinations in comparison to the long-term des-
tinations in the aforementioned literature is not a significant issue, given user inputs
and sensor data are readily available over the entire duration of travel. Although such
an approach does not guarantee global long-term optimality, as postulated in [20] a
destination inference and its corresponding path only have to be accurate for a brief
portion of travel until the next path is available, resulting in an overall route that is an
overall concatenation of many fragments of these short-term paths. While the afore-
mentioned classification methodologies can function solely on low-dimensional pose
information when considered alongside user input data, applying such an approach
directly to sensor data is meaningless as there is little correlation between long-term
destination and the immediately observable scene. However, the high dimensionality
of typical mobile robot sensor data has, to the best of the authors’ knowledge, made
short-term active assistance a largely unexplored area.

The contribution of this work in the literature covering shared control of PMD
devices is in short-term intention estimation without depending upon a a-priori map,
for enabling subsequent robot path planning and navigation in a non-reactive man-
ner. As these intentions can encompass difficult locations such as doorways for which
heuristics are designed to handle in reactively assistive systems, the inference of in-
tentions allows the merging of collision avoidance and selective interaction with arte-
facts, bypassing the need for situational behaviors found in systems based upon ob-
stacle avoidance. Our work was originally published as a conference paper [21]. This
manuscript expands upon this preliminary work with the following additions:

1. Consideration of additional metrics [22,23] for a more thorough framework eval-
uation.

2. A human-centric analysis of the simulator used in both works against the real
wheelchair.

3. Further experimentation in simulation with a larger user pool in a more complex
test environment, and on the UTS wheelchair with a disabled volunteer.

4. A quantitative a-posteriori evaluation of the framework’s predictive accuracy on
driving data by able users.

The remainder of this paper is arranged as follows. Section 2 documents a method-
ology to capture the local intention inference and path planning behaviors of able ex-
perts. Section 3 presents new experiments undertaken to evaluate the assistive frame-
work both in simulation and on an instrumented mobility aid (Fig. 1), with a discus-
sion of results and outcomes following in Section 4. Section 5 closes with conclusions
and future work.
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Fig. 3: Overview schematic of assistive framework.

2 Methodology

This section details the modelling of local intention estimation and path planning, as
summarized in Figure 3. Training data comes from an able demonstrator driving the
PMD around a simulated interior space while position, expert joystick inputs and sen-
sor measurements from a planar laser scanner, are logged. A simulated environment
is used here to allow for flexibility in creating environments suited to the capture of
expert behaviours. As demonstrated in Section 3.1, the simulation behaves acceptably
closely to the real PMD for data collection and user interaction.

For intention estimation a behavioural model is built yielding a likelihood dis-
tribution across discrete points in a moving window centralised around the PMD,
trained only upon sensor data and user input. Fitting with the proposed definition of
a destination as a point which the user intends to traverse to or through, this distri-
bution then allows the likeliest destination point to be inferred. This is covered in
Section 2.2.

From the same training data, a methodology for the learning of short-term path
planning behaviors and user compliance is also proposed and detailed in Sections 2.3-
2.4. Short local paths are combined with sensor data as a reward surface, which is
then refined online via Dynamic Policy Programming (DPP) [24], a stochastic opti-
mal control method. The final output of this planner is taken as the local path to be
followed to its terminus, or user compliance indicates a loss of alignment with their
true intention.

2.1 Defining Local Paths

In order to break down a continuous sequence of driving data, several criteria to
terminate paths are proposed in Figure 4.

– Loss of visibility from starting position or exiting local window of starting posi-
tion

– PMD turns ≥ 90◦ relative to starting orientation
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Fig. 4: Examples of local path termination along a path (black dashed line) taken
by the PMD (red rectangle with circle at origin). Grey polygons represent obstacles.
Termination condition from pose 1→2: Visibility loss due to obstacle. 2→3: PMD
rotates ≥ 90◦. 3→4: Inflection in forward joystick axis due to stop.

Fig. 5: Training data for the cell at the termination point (red circle in dashed PMD
footprint) along the path taken by the PMD (black dash) is recorded, consisting of the
expert joystick input at the origin (red circle in solid PMD footprint), and the range
of the laser scanner beam (blue line capped with blue circle) covering the termination
point. The grey line represents the edge of an obstacle perceived by the laser scanner,
and the local planning window is bounded in magenta.

– Inflection in forward/reverse joystick axis

The first criteria ensures paths are terminated once immediately available sensor
data can no longer provide information on the PMD’s future surroundings, whereas
the latter two indicate the user either intends to pursue a significantly different objec-
tive or they have reached their final destination.

In determining a suitable local window size for both the latter half of the first
termination criterion and the subsequent path planning, the spatial requirements of
typical PMDs are first considered. In Australia where this research was undertaken,
an open circulation space of approximately 2m square is a requirement for building
planners [25] for spaces such as landing areas near doors for disabled access bath-
rooms, so this is taken as a lower bound. On the basis that the framework is concerned
with only an immediate path to track, it follows that the usefulness of path points di-
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minishes as the path length increases; when the system is able to constantly replan
paths at a reasonable speed, there is no need to plan beyond challenges in the im-
mediate vicinity. Hence the requisite quantity of local space can be thought of as a
softly defined region, bounded between the requisite minimum of planning space as
implicated by the PMD’s physical characteristics and an upper limit beyond which a
path planning cycle becomes needlessly complex. In this work the front half of a 5m
square moving window centred at the PMD is taken, allowing for an acceptable path
planning time while also exceeding the lower bound for maneuvrability. With addi-
tional sensor coverage of the wheelchair’s rear, the framework would also be readily
applicable to reversing maneuvres.

2.2 Local Intention Estimation

Here, an intention within the local window around the PMD is defined as the discrete
cell with the highest likelihood of being a local path termination point. A cell size
of 0.05m square is taken to allow for an acceptable path planning time (Sec. 2.3).
Demonstration training data contains Cartesian pose information XXX1:N , expert ac-
tions YYY 1:N of 2D Cartesian joystick positions, and sensor data ZZZ1:N containing polar
co-ordinates (r,θ)1:|z|

n of obstacle points across an on-board laser scanner’s 180◦ hor-
izontal field of view. For all instances of training data a local path is obtained as per
the criteria above.

Rather than attempting to match instances of z1,...,N in their entirety to the new z∗

as this would be easily overfitted, individual laser scan beams are instead considered
in conjunction with user input. This is done with the aim of both mitigating effects
from the curse of dimensionality, and to allow for improved tolerance to large varia-
tion in environmental structure while retaining some information on the relationship
between ZZZ and the sense of space the expert afforded the PMD. For each path indexed
n = 1,2, ...,N a training data tuple for the cell corresponding to goal GGGn = [xg,yg], the
Cartesian point at which the path terminated, is recorded. A tuple consists of {YYY n,ri

n}
where i is the beam index determined by argmini=1,2,...,|zzz| ||θ i

n− arctan2(yg,xg)||. A
summary of nomenclature can be found in Table 5.

Only the edges of obstacles within the local window perceived by zzz are consid-
ered, to remove reliance upon obstacle points from future measurements. Each grid
cell then has its own one-class classifier built in the form of a Radial Basis Function
Network [26] utilising a strong 0 prior, as the data only contains positive examples.
Each classifier is designed to take a training tuple as input, and is trained to yield an
intention likelihood between 0 and 1 following the additive approach in [27]. Taking
all classifiers into consideration and normalizing across the grid cells thus yields an
intention likelihood estimate P(ggg∗|yyy∗,zzz∗) given new joystick input yyy∗ and laser range
information zzz∗. To reduce computational cost in experiments, only classifiers for cells
which recieved training data were queried. The final output of the intention estimator
is the position ggg∗ of the cell with the highest likelihood, which serves as an objective
in the subsequent path planning step.

An illustrative example of the intention estimator is shown in Figure 6.
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(a) Simulated wheelchair (birds-eye view). (b) Resultant intention heatmap from forward joy-
stick input.

Fig. 6: Example of intention estimation. Fig. 6a shows a simulated PMD (red) with
a laser scan (green) observing nearby obstacles (black). Fig. 6b shows the resultant
intention probability distribution given a forward joystick input (purple arrow) on the
PMD, with perceived obstacles in white. Path planning continues in Fig. 8.

Fig. 7: Paths from training data sharing a similar endpoint orientation are gathered
(left); their resulting primitive can then be spatially scaled to arbitrary positions (right,
gray circles).

2.3 Local Path Planning

Due to our significantly truncated operating window and rapid rate of re-planning,
here path primitives are utilized for planning due to their simplicity and speed. This
is in contrast to the more exhaustively complete longer-term path planning algorithms
detailed in [28] and other literature.

Local paths from training data with similar endpoint orientations are gathered and
a primitive is obtained as a least-squares solution. As opposed to the velocity domain-
based arcs in [23], the primitives in this paper are in real space and are formulated
similarly to the approach in [29]. However the environment is not immediately con-
sidered, as the framework operates solely within visible space and considers the local
occupancy map later. In this work 17 discretized endpoint orientions are taken for
creating expert-styled path primitives; this number was determined as the limit be-
yond which no training data would be available for a given orientation. Then for a
goal point ggg∗, a path primitive is selected based on the nearest average end point and
spatially scaled (Fig. 7) to reach it for a natural baseline. As this inferred path is not
guaranteed to be safe, it instead serves as the basis for real-time path generation with
consideration to the local occupancy map.
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(a) Base path (light yellow, upwards along cen-
ter of figure).

(b) Final path from DPP (red, upwards along center
of figure).

(c) Resultant PMD movement from path tracking.

Fig. 8: Example of path planning with DPP, from the intention resultant from Fig. 6. A
path primitive (Fig. 8a) is set as the baseline policy with a high reward (light yellow)
while perceived obstacles (white) from the PMD’s point of view are inflated and
given a low reward (dark blue cells). Gradient ascent across the reward landscape
after DPP optimization yields the final DPP path (red) in Fig. 8b, with resultant PMD
movement shown in Fig. 8c.

2.3.1 Dynamic Policy Programming

Stochastic optimal control learns a Markov Decision Process (MDP) defined by a
5-tuple (S,A,T,R,γ). S is a finite set of states, A is a finite set of actions, T a

ss′ is
the transition probability from state s to state s′ under the action a, r a

ss′ = R(s,s′,a)
is the reward from state s to state s′ under the action a. S is defined as the local
window around the PMD discretized into a grid-world for path planning, and A as a
list of 9 actions that can be taken at each grid cell: moving to any of its 8 immediate
neighbors or remaining in place. γ ∈ (0,1) is the discount factor. The policy π(a|s)
denotes the probability of taking the action a under the state s. The value function

Vπ(s) = lim
k→∞

Eπ

[ K

∑
k=1

γ
k−1rst+k |st = s

]
is the expected return when the process starts in

s and the decision maker follows the policy π . The solution of MDP is an optimal
policy π∗ that attains the maximum expected reward:

π
∗ = argmax

π
∑

a∈A
s′∈S

π(a|s)Ta
ss′
(
ra

ss′ + γV ∗(s′)
)
,∀s ∈ S.

(1)
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DPP builds a new value function by adding the Kullback-Leibler divergence to
the reward function R as a penalty. The Kullback-Leibler divergence between the
policy π and the baseline policy π̄ , and the new value function V are defined as:

gπ
π̄(s) = KL(π‖π̄) = ∑

a∈A
π(a|s) log

(
π(a|s)
π̄(a|s)

)
, (2)

Vπ̄(s), lim
k→∞

Eπ

[ K

∑
k=1

γ
k−1

(
rst+k −

1
η

gπ
π̄(st+k−1)

)∣∣∣∣st = s
]

(3)

where Eπ denotes the expectation over transition model T and the current policy π .
η ∈ (0,1) is a constant that controls the Kullback-Leibler divergence term.

According to [24], the action preferences function [30] for all state action pairs
(s,a)∈ S×A in the k-th iteration are defined asΨk(s,a)= 1

η
log π̄k−1(a|s)+∑s′∈ST

a
ss′
(
r a

ss′
+

γV k−1
π̄

(s
′
)
)
. It represents the closed form of the optimal policy π∗ following:

V k+1
π̄

(s) =
1
η

log ∑
a∈A

exp(ηΨk(s,a)), (4)

π̄
k+1(a) =

exp
(
ηΨk(s,a)

)
∑a′∈A exp

(
ηΨk(s,a

′
)
) . (5)

The optimal action preferences function determines DPP’s optimal policy accord-
ing to Eq. (5). The update recursion of Ψ follows:

Ψk+1(s,a)=Ψk(s,a)−MηΨk(s)+∑
s′∈S

Ta
ss′
(
ra

ss′
+γMηΨk(s

′
)
)

(6)

where MηΨk(s) is the the Boltzmann soft-max operator:

MηΨ(s) = ∑
a∈A

exp
(
ηΨ(s,a)

)
Ψ(s,a)

∑a′∈A exp
(
ηΨ(s,a′)

) . (7)

Following Eq. (6), DPP updates the action preferences function Ψ to iteratively
improve its value function to the optimal one while considering the smoothness in
the policy update (controlled by η). A summary of nomenclature can be found in
Table 6.

2.3.2 Path Planning via DPP

In order to use the inferred local path within DPP, it is taken to serve as the baseline
reward (Eq. 5). Cells along the path receive increasingly positive reward, whereas
cells near obstacles perceived by the laser scanner receive an increasingly negative
reward. DPP then optimizes its policy grid-world with smooth updates giving con-
sideration to the baseline policy, and the resultant path drawn from the final policy is
then followed. An example of path planning can be seen in Figure 8.

Given initial action preferences Ψ0(·, ·), DPP parameters γ , η and the number of
iterations K, the process of the path generator is summarised in Algorithm 1.
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Algorithm 1: DPP path generator
input : Ψ0(·, ·), γ , η , K
/* DPP loop */
for k = 1,2,3, ...,K−1 do

for (s,a) ∈ S×A do
calculate s

′
, the next state of s under action a

TkΨk(s,a) = r a
ss′

+ γMηΨk(s
′
)

Ψk+1(s,a) =Ψk(s,a)+TkΨk(s,a)−MηΨk(s)

/* generate path */
i = 0; s0← position of occupancy grid origin
while si is within occupancy grid do

ai = argmaxa∈AΨk+1(s,a)
calculate si+1, the next state of si under action ai
i = i+1

output: path {s1,s2, ...,si−1}

2.4 User Path Compliance

Path tracking via Pure Pursuit [31] commences once a local path has been trans-
formed into global co-ordinates. This controller was chosen primarily for its simplic-
ity and speed, although it can be readily substituted by others such as DWA [19]. The
magnitude of joystick displacement scales the output linear and angular velocities,
allowing the user to always control the rate of PMD motion. Pure Pursuit derives
linear and angular velocities from a control point located a fixed lookahead distance
(0.8m for the UTS wheelchair) further ahead along the path. Given this point is al-
ways within the PMD’s reference frame, it serves as a suitable objective to gauge the
relevance of the remainder of the current tracking path against.

In a similar manner to the construction of the intention estimation model, a com-
pliance model is built for potential control points within the lookahead distance while
only considering joystick input, resulting in a compliance estimate in range (0,1)
given a control point and a∗. Either reaching the end of the path or insufficient com-
pliance results in a new path request.

3 Experiments

This section details the experiments undertaken in further evaluating the assistive
framework in both simulation and on the UTS wheelchair. Ethical approval 1 was
granted prior to experimentation, as was consent from all participants.

Training data was provided by an able expert in a Stage (wiki.ros.org/stage)
simulation of the UTS wheelchair driving inside the home environment depicted in
Fig 9. The driver was tasked with navigating throughout the entirety of the environ-
ment’s accessible space while maintaining safe distances to obstacles and walls. PMD
odometry, user input and simulated laser scanner data were logged at 10 Hz.

1 UTS HREC 2012000400: ”Applying Assistive Robotic Technology to Disabled Care Practice at
Greystanes Disability Services”



12 James Poon et al.

Fig. 9: Training data (red) from an able demonstrator in a 20×10m simulated home
environment.

Fig. 10: Real experiment in the UTS Data Arena, overlaid with a close-up of a 6-DOF
tracking marker on top of the wheelchair’s laser scanner.

Experimentation was conducted on an Intel i7 Ubuntu laptop with 16 GB RAM
and Nvidia 980M GPU. An average intention inference and path generation cycle
took 0.46± 0.06 seconds, excluding minor latencies arising from MATLAB/ROS
(www.ros.org) communications. For path planning a reward of -100 was allocated
to obstacle cells. Cells near obstacles received a negative reward from Gaussian blur-
ring of the obstacle reward map with a std. dev. of 2 cells when all other cells were
set to 0. Cells along the path were then allocated a linearly increasing reward from 10
to 100 from beginning to end. DPP learning parameters γ , η and K were set to 0.99,
0.001 and 100 respectively. The compliance threshold was set to 0.9.
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(a) Paths taken by users in simulation. (b) Paths taken by users in the UTS Data Arena.

Fig. 11: Resultant Figure-8 paths from simulation and in the UTS Data Arena. The
gray circles have a thickness of 0.5m.

Fig. 12: High level schematic of the UTS instrumented wheelchair.

3.1 Comparison of Simulation to Real PMD

Five able users drove around a 4m by 2m Figure-8 in both a computer simulation
and on the real PMD within the UTS Data Arena (Fig. 10), an augmented real-
ity/motion capture facility capable of real-time millimeter accuracy 6-DOF marker
tracking which serves as a localization ground truth. The UTS wheelchair (schematic
in Fig. 12) is an Invacare Roller M1 fitted with a Hokuyo UTM-30LX laser scanner,
shaft-mounted wheel encoders, and an Arduino to both read and write joystick sig-
nals. For additional information about modelling of the PMD’s control, see [32]. The
resultant paths are shown in Figure 11. The simulation GUI measured 26×13cm, and
the users were free to adjust the computer’s position before attempting the task. Driv-
ing metrics from these experiments are presented in Table 1. The closenesses in task
completion time and input magnitude, and the low path deviation, indicate a strong
similarity in both user performance and task relevance. A similar level of steering
entropy and angular jerk was also observed, representing a similar level of task ef-
fectiveness between both experiments. Given the similarities in the results from both
experiments the authors put forward that the simulation is a viable evaluation setting
for the wheelchair in terms of human factors. With other phenomena such as wheel
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slippage across varying ground surfaces beyond the scope of such evaluations, it can
be seen that users perform similarly in terms of task completion and efficiency.

Table 1: Driving metrics from the Figure-8 experiments.

Metric Simulated Real
Distance travelled (m) 13±0.4 12.7±0.8
Avg. path deviation (m) 0.05±0.01 0.07±0.006
Steering entropy 0.56±0.03 0.61±0.04
Avg. angular jerk (rad/s3) 0.01±0.01 0.02±0.01
Avg. forward joystick signal 0.46±0.1 0.41±0.1
Time taken (s) 42±8 46±6

3.2 Simulation Experiment

The assistive framework is first assessed in simulation with 10 able-bodied test users,
utilizing a course (Fig. 13) seen in [33]. This course significantly differs to the home
environment from which training data was gathered for model building purposes.

PMD users suffering from limb paresis or other motor skill losses may only be
able to provide rough indications [33] of desired direction. To imitate this coarseness
in able users, their joystick input signals were discretized amongst 5 evenly spaced
joystick orientations. Each test user drove around the test course twice with such
hampered input signals; without assistance, then with the assistive framework in op-
eration.

3.3 Real Experiment

A 63 year old female volunteered to evaluate the framework on the UTS wheelchair 2.
Due to complications from back injuries, she is unable to walk without heavy reliance
upon dual walking canes and has been considering PMD prescription. Her disabilities
in conjunction with relative inexperience pose a significant challenge in maneuvring
the PMD safely.

Experimentation took place on the publicly accessible campus of a college neigh-
boring UTS with which the volunteer was already familiar, following a 10 minute
acclimation period after which the test user deemed herself sufficiently confident. As
shown in Fig. 14, the route featured several doorways and narrow corridors, as well
as large open areas. Foot traffic at the time was sufficiently sparse that no moving
entities had an effect on the user or PMD behavior; this is reasonable given both the
tendency of pedestrians to avoid PMDs, and the framework’s significantly truncated
operating envelope.

2 Video available at http://youtu.be/EPjV2dCe46E.
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(a) Unassisted path.

(b) Assisted path.

Fig. 13: Comparison between unassisted and assisted paths (gray) of an able volunteer
with simulated input disability, driving counter-clockwise in a 21× 37m simulated
environment starting from the top-right corner. Additional details for each figure are
available in the captions of Figure 14.

4 Results

For quantitative comparison, all 20 simulated runs were ended upon re-entering the
starting ‘diamond’. From [22] several task metrics are evaluated (Table 2) that do not
consider deviation from some optimal route, to uphold the belief that users should
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(a) Unassisted path, with collision point(s) highlighted in red.

(b) Assisted path with this paper’s framework.

Fig. 14: Comparison between unassisted and assisted paths (gray) taken by the dis-
abled volunteer on the UTS wheelchair, with rectangular frames representing PMD
footprint. On the right, compliant DPP path points are drawn in green, with noncom-
pliant remainders of paths in red. The area shown in these figures measures approx.
97×58m. White regions represent free space, black regions represent perceived ob-
stacles and grey regions are unknown due to occlusions. PMD localization and map
building via Hector SLAM [34].
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not be penalized for particular driving preferences such as keeping to the right of
corridors.

Table 2: Driving metrics from simulation experiment.

Metric Unassisted Assisted
Avg. angular jerk (rad/s3) 0.07±0.03 0.03±0.02
Time taken (s) 166±25 146±16
Distance travelled (m) 96±1 97±2
Total collisions 5 0
Steering entropy 0.57±0.02 0.55±0.03

Table 3: Driving metrics from real experiment.

Metric Unassisted Assisted
Avg. angular jerk (rad/s3) 0.03±0.03 0.025±0.03
Time taken (s) 566 252
Distance travelled (m) 238 220
Total collisions 8 0
Steering entropy 0.57 0.6

The same metrics extracted from the real experiment follow in Table 3. From the
simulation experiments, the angular jerk decreased slightly with the assistive frame-
work; the paths taken by the PMD also appear smoother, particularly noticeably in
the slalom portions on the left sides of Figures 13a-13b. As the real test course largely
consisted of straight corridors, the improvements in platform jerk was less noticeable
in this experiment compared to the change seen in the simulated experiments.

The distances travelled in both experiments are similar with or without assistance,
however the course completion times taken by the users in simulation were noticeably
shorter with a reduction of over 10%. The difference in completion times is far larger
in the real experiment due to several factors. Firstly the user lost speed scraping along
the walls on several occasions, which also resulted in several stops for recovery. By
contrast, such contact is not handled by the simulator and no hindrance was incurred
as a result. Secondly when unassisted the user drove at an average linear velocity
of 0.6 m/s when moving freely compared to 0.85 m/s while assisted, whereas from
the simulation experiments less disparate average linear velocities of 0.59±0.07 and
0.67± 0.07 m/s were observed. There were also no collisions in both simulation
and real experiments when users drove with assistance, whereas without assistance
several collision events occurred.

4.1 Steering Entropy

Introduced in [35] to assess driver workload, steering entropy has also been taken as
a measure of task effectiveness [23]. For each input steering angle ut in a time series,
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an input prediction error et is taken as the difference between ut and a second order
Taylor approximation ût :

ût = ut−1 +(ut−1−ut−2)

+
1
2
(
(ut−1−ut−2)− (ut−2−ut−3)

)
. (8)

A frequency distribution P of all e is then discretized into 9 bins [35], of which the
Shannon entropy H is taken as the steering entropy of the user over the entire time
series:

H = ∑
i
−Pi× log9Pi. (9)

The steering entropy observed between the able users with simulated disabilities
and the disabled volunteer are very similar at approximately 0.57 (Tables 2-3), indi-
cating that the simulated disability provided a level of task impedance comparable
to the disabled volunteer’s various health issues. However this does not imply that
the her disabilities were accurately replicated; rather that the able users experienced
a similar difficulty in providing task effective inputs.

4.2 Assistive Framework Metrics

For evaluating predicted paths only an initial segment truncated by the path’s first
incompliant point is considered: given a path point p generated from time-step t,
PMD positions XXX∗1:T and user inputs YYY ∗1:T , incompliance is defined as the compliance
estimator falling below the experimental threshold for (p′,YYY ∗t:T ), where p′ is p w.r.t.
XXX∗t:T . Table 4 documents several metrics directly concerning predictive performance
from both simulated (14,664 samples) and real (2,517 samples) experiments. Paths
can be evaluated in isolation due to the lack of reliance upon past or expected future
data.

Table 4: Framework metrics from both experiments.

Metric Simulated Real
Path compliance (%) 64±33 56±40
PMD path RMSE (m) 0.04±0.03 0.1±0.07

Although the observed percentage-wise path compliance and utilisation of each
path is arguably equal to or greater than in the work by [20], it is worth noting that this
does not necessarily translate into superior overall performance given that both works
can always provide new paths at a given instant. The RMSE between compliant path
points and PMD positions indicates reliable performance of Pure Pursuit.
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4.3 User Impressions

When asked about her experience, the disabled volunteer stated that she received
the impression that the PMD was “pulling” towards empty spaces, most noticeably
in restrictive areas, and felt more confident knowing her inputs were buffered. The
authors were also informed that the integrated joystick was awkwardly positioned,
and that she felt it negatively impacted her performance. This has been previously
documented in [36], and the authors are currently exploring alternatives.

4.4 Evaluation of Generalization in Path Prediction

In order to evaluate alignment between predicted paths and natural human behaviour,
the framework was run offline (Fig. 15) for all 10,948 driving samples from [13]
without retraining from the environment simulated in Figure 9. These samples were
collected from several able users freely driving the UTS wheelchair to various long-
term destinations. For each path point planned over the course of a single driving
sequence, an error is recorded as the minimum distance from the path point to the
nearest recorded PMD position in the sequence. In total 132,917 path points were
generated, with a mean error of 0.068±0.081m.

With a null hypothesis of an accuracy of 0.1m, p < 0.01 is obtained. 0.1m, equiv-
alent to the width of two cells in the path planning grid-world, is taken here as it is the
average path tracking error encountered during the real experiment. This result indi-
cates that the framework is capable of capturing user intentions, and can also produce
natural human-like paths under conditions not seen in training data.

5 Conclusions

Besides their amenability to be modelled upon demonstration data, a significant ad-
vantage of actively assistive mobility systems is the ability to naturally encompass
maneuvres which would fail under the strict collision avoidance protocols that form
a core component of passively assistive systems. This paper presents a framework
allowing for the utilisation of expert demonstration data to serve as the basis of short-
term intention estimation and path planning behaviors for users of sensor-equipped
powered mobility aids, in order to provide active navigational assistance in areas that
have not been explored and mapped a-priori.

Testing in environments not explored in training data by both a disabled volun-
teer on the UTS semi-autonomous wheelchair, and in simulation by able users sub-
ject to a comparable level of impedance, reveal strong correlations between desired
wheelchair behavior and predicted paths. Although trials with disabled individuals
were limited to a single user, the comprehensive testing with a typical end-user suited
for PMD prescription demonstrates how intelligent PMD assistance would have sig-
nificant benefits.

Avenues for further investigation include the application of deep learning method-
ologies towards both intention estimation and path planning as these techniques have



20 James Poon et al.

(a) Paths taken by experienced users on the UTS wheelchair.

(b) Examples of predicted paths along a route to each destination.

Fig. 15: 10,948 driving samples (left) were recorded from a range of experienced
users in [13]. The framework is then run offline for all samples (examples on right,
with additional details available in the caption of Figure 14) to evaluate the ability to
accurately plan paths close to those taken by experienced users driving freely. The
area shown in these Figures measures approx. 60×55m.
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been proven for building complex models given adequate data, as well as further
experimentation with a greater test user base.

Appendix: Nomenclature

Table 5: For Section 2.2.

Symbol Definition
XXX Cartesian PMD pose data
YYY 2D joystick input signal data
ZZZ polar planar laser scanner data
GGG termination points of local paths

Table 6: For Section 2.3.

Symbol Definition
S finite set of discrete states
A finite set of discrete actions
T a

ss′ transition likelihood from state s to s′ via action a
R(s,s′,a) reword obtained by transitioning from s to s′ via a

γ discount factor ∈ (0,1)
π(a|s) policy representing probability of a being performed at s
Vπ (s) expected reward returned from following π starting at s

K number of iterations
η parameter ∈ (0,1) controlling policy update smoothness

Ψk(s,a) action preference function at iteration k
MηΨk(s) Boltzmann softmax operator of Ψk at s for all a ∈A
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