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Abstract—This paper presents an adaptive neural network
control of two-degree-of-freedom (Two-DOF) manipulator driven
by electrohydraulic actuator. To restrict the system output in
a prescribed performance constraint (PPC), a weighted perfor-
mance function is designed to guarantee the dynamic and steady
tracking errors of joint angle in a required accuracy. Then a
Radial-Basis-Function neural network (RBFNN) is constructed
to train the unknown model dynamics of manipulator by tra-
ditional backstepping control (TBC) and obtain the preliminary
estimated model, which can replace the pre-known dynamics in
the backstepping iteration. Furthermore, an adaptive estimation
law is adopted to self-tune every trained-node weight and the
estimated model is online optimized to enhance the robustness of
the neural network controller. The effectiveness of the proposed
control is verified by comparative simulation and experimental
results with PID and TBC methods.

Index Terms—Two-DOF manipulator, Adaptive neural net-
work control, Prescribed performance constraint, Weighted per-
formance function, Adaptive estimation law.

I. INTRODUCTION

MANIPULATOR is a typical robotic plant that is widely
used in industrial, aeronautics and astronautics engi-

neering as it has a superior load-lifting capability and can
replace the human operation in high risk environment. Gen-
erally, manipulator has two types of driven modes, i.e., full-
actuated joints [1][2] and under-actuated joints [3]. The latter
is more difficult than the former since both kinematic and
dynamic constraints are integrated in the under-actuated mo-
tion system, which cannot directly adopt conventional Euler-
Lagrange method. Thus, model complexity [4] and uncertainty

Q. Guo is with the School of Aeronautics and Astronautics, University of
Electronic Science and Technology of China, Chengdu, 611731, China, and
with State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang
University, Hangzhou, 310027, China (e-mail: guoqinguestc@uestc.edu.cn).

Y. Zhang is with the School of Aeronautics and Astronautics, and with
Center for Information in BioMedicine, and with Key Laboratory for NeuroIn-
formation of Ministry of Education, School of Life Science and Technology,
University of Electronic Science and Technology of China, Chengdu 611731,
China. (e-mail: yi.zhang@uestc.edu.cn).

B. Celler is with the School of Electrical Engineering and Telecommuni-
cations, University of New South Wales, Sydney, NSW, Australia (e-mail:
b.celler@unsw.edu.au).

S. Su is with Faculty of Engineering and Information Technolo-
gy, University of Technology Sydney, Sydney, NSW, Australia (e-mail:
Steven.Su@uts.edu.au).

This work was supported by National Natural Science Foundation of
China (No. 51775089, No. 61305092, No. 51205045), the Fundamental
Research Funds for the Central Universities, China (No. ZYGX2015J118,
No. ZYGX2016J160), the Open Foundation of the State Key Laboratory of
Fluid Power & Mechatronic Systems (No. GZKF-201515), and the China
Postdoctoral Science Foundation funded project (2017M612950).
†Both of authors equally contribute to this work. ∗The corresponding author

(e-mail: yi.zhang@uestc.edu.cn).

degrade the controller robustness. To handle model constraint
and system uncertainty, neural network control are popular to
be used in discrete nonlinear systems [5], hypersonic flight
vehicle [6], mobile manipulators [7] and fixed-base manip-
ulators [8]. Karakaşoǧlu et al. [9] originated a supervised
learning scheme that employs a simple distributed updating
rule for the online identification and decentralized adaptive
control. Subsequently, Man et al. [10] proposed a robust
adaptive sliding mode control with RBFNN for rigid robotic
manipulators to achieve the robustness and asymptotic error
convergence. Yang et al. [11] investigated the teleoperated
robot systems and presented many novel control techniques
such as RBFNN, wave variable, and variable gain control
to eliminate the negative effects caused by communication
delays and dynamics uncertainties existing in robot systems
and human operators. Cao et al. [12] presented an approximate
optimal control integrating with neural network to realize
the path control of underactuated snake robots. Chen [13]
proposed a robust adaptive control based on dynamic neural-
fuzzy structure in a fixed-base manipulator to avoid the
problems of overfitting and underfitting existed in the trained
network. Subsequently, Wai et al. [14] presented a fuzzy-
neural-network controller with backstepping and sliding-mode
to improve the position tracking performance of a two-link
robotic manipulator driven by DC servomotor. Patiño et al.
[15] proposed a feedback adaptive neurocontroller for PUMA-
560 robot which combines feedforward neural networks with
adaptive and robust control techniques. The advantage of this
neuro-controller is that the parameter adaptation is faster than
that in the case where the learning capability of the full
neural network (NN) is used for the adaptation task. Yue et
al. [16] presented a NN with terminal sliding mode control
used in wheeled mobile robots. In this reference, the uncertain
ground friction model is identified according to the required
performance. Then He et al. [17][18] proposed an adaptive
NN control to estimate the unknown modelling uncertainty
and environmental disturbance. Chen et al. [19] presented an
adaptive neural control strategy for multiple input multiple
output nonlinear systems to handle the nonsymmetric input
nonlinearity and the constrained states. Meanwhile, Sun et al.
[20] employed an adaptive neural network in flexible robotic
manipulator to suppress vibrations. Yang et al. [21] adopted
adaptive RBFNN control to improve the position tracking per-
formance of the coupled motor drives system. Dutta et al. [22]
presented a single-network adaptive critic-based controller for
continuous-time systems with unknown dynamics in a policy
iteration framework. This control algorithm is verified in a
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commercial robotic manipulator experiment.
In order to constrain state and output of nonlinear systems,

Tee et al. [23][24] proposed Barrier Lyapunov Function (BLF)
to restrict system states in prescribed constraint domain. Then
Ren et al. [25] adopted BLF integrated with adaptive neural
controller to improve the dynamic behavior of strict-feedback
systems. Subsequently, He et al. [26] employed BLF to
restrict the tracking error in arbitrary accuracy of robotic
manipulator and improved the robustness of neural network
controller. Meanwhile, he also adopted adaptive neural control
and distributed parameter control in robotic manipulator [27].
The authors have successfully proposed novel adaptive NN
controllers for the robots with constraints [17][27][28], where
the stability of the closed loop system is also proved. Then
Yang et al. [29] constructed a prescribed tracking performance
requirement function integrated with BLF to guarantee both
transient and steady-state tracking performance of the dual-
arm robot. Zhang studied the multiloop integral controllability
of multiple-input single-output system [30] to guarantee de-
centralized unconditional stability under control loop failure as
well as to achieve offset-free tracking performance. Guo et al.
[31] derived an observer bandwidth constraint to compromise
between the dynamic performance and the maximal load
capability of EHS. However, the input constraint is not con-
sidered in control design, which may result into larger control
magnitude than traditional controller. In practice, perhaps the
input saturation is a serious problem, which should be avoided
in most physical systems. Thus, the designed controller has to
compromise between the dynamic response performance and
the input saturation, especially the initial dynamic response
with large state error.

On the other hand, to guarantee the tracking error with
convergence rate no less than a pre-specified value, Bechlioulis
et al. [32] proposed an adaptive control with prescribed perfor-
mance constraint to overcome the loss of controllability issue
with input saturation. Subsequently, Zhang et al. [33] adopted
prescribed performance constraint to restrict the angle-of-
attack of hypersonic vehicle, which can be more easily applied
to handle both static and time-varying constraints than the
BLF-based methods. The advantage of prescribed performance
constraint is that converts the original constrained system
into an equivalent one without constraints by a weighted
performance function. All the system states in the closed loop
are uniformly ultimately bounded while the prescribed output
constraints are held. Hence, the differences of two mentioned
constraint holding techniques are summarized as follows: 1)
The PPC is constructed by an adjustable weighted performance
function [32], which is positive and monotonically decreasing,
while the BLF is a clear logarithm function form [23];
2) Both techniques are suitable for both time-invariant out-
put/state constraint and the time-varying constraint [23][29].
The function derivation for time-varying constraint of PPC
is more convenient than the logarithm derivation of BLF.
Nevertheless, for time-invariant constraint, the difference of
structural complexity can be neglected; 3) Considering the
physical control saturation, the output constraint of PPC needs
low control magnitude by the appropriate design of weighted
performance function. 4) The initial output error of PPC can

be allowed in a larger scope and the negative effect to the
system stability is not relatively sensitive.

Thanks to the research development of motion control of
NN based manipulator control [34][35], the study is supplied
valuable intention. In this study, inspired by the adaptive
neural network control proposed in [28] and the prescribed
tracking performance function in [29], an adaptive neural
network control is used in Two-DOF manipulator driven by
electrohydraulic actuators. Different from these references, the
electrohydraulic actutor model is considered in the robotic
systems, which implies that the model order is increased from
two to three. In this condition, model uncertainties caused by
the mechanical structure are more obvious than that of without
actuator model, which will decline the output performance of
manipulator. Furthermore, to the best of the authors’ knowl-
edge, the robotic manipulator has not been driven by elec-
trohydraulic actuator with prescribed performance constraint
technique until now. Simultaneously, a RBFNN is adopted to
train the unknown model dynamics emerged in backstepping
iteration. Furthermore, considering the parametric uncertainty
existed in manipulator model, an adaptive estimation law
is designed to self-tune every trained-node weights of the
RBFNN to enhance the proposed controller robustness. The
comparison simulations and experimental results with the
other two common controllers have verified the effectiveness
of the proposed controller in terms of the tracking angle
performance and the control current output by the servo valve
of electrohydraulic actuator.

The remainder of this paper is organized as follows. The
manipulator plant is described in section II. The adaptive
neural network control is designed in section III including
prescribed performance constraint, traditional backstepping
control design, the model-training by RBFNN and the adaptive
estimation law of node weights. The simulation and experi-
mental results demonstrated on the joint motion of Two-DOF
robotic manipulator are given in section IV and section V
respectively. Finally, the conclusion is drawn in section VI.

II. PLANT DESCRIPTION

A Two-DOF robotic manipulator is comprised by an upper
arm, a forearm, a disc load and a fixed torso as shown as in
Fig. 1. The shoulder and elbow joints can be driven to rotation
by two electrohydraulic actuators (EHAs).

In the pressure loop of this EHA, the load pressure pL of
the hydraulic cylinder is controlled by the spool position xv of
servo valve. Since the cut-off frequency of servo valve is far
greater than the control system bandwidth, the valve dynamics
can be neglected in model construction [36] as follow:

xv = Ksvu, (1)

where Ksv and u are the gain and control current of servo
valve respectively.

Then the load pressure pL output by the hydraulic cylinder
[37] is given by:

pL
xv

=
a1s+ a0

s+ b0
, (2)

where a1, a0, and b0 are hydraulic model parameters.
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Fig. 1. The single-rod EHA control mechanism

Additionally, the driven joint torque [38] can be computed
by:

τi = pLiApli(qi), i = 1, 2 (3)

where li(qi) (i = 1, 2) are two dynamic force arms, and Ap
is the cylinder ram areas.

According to triangle geometry rule, the corresponding
force arm li(qi) is computed by: ci(qi) =

√
κ2
i + ς2i − 2κiςi cos(qi + εi)

li(qi) = κi sin(arccos((κ2
i + c2i − ς2i )/2κici))

, (4)

where ci(qi) is the dynamic cylinder length, κi and ς are
installing locations of two cylinders, and εi is the bias angle
of cylinder for i = 1, 2.

Definition 1: For convenient expression, two operators ’�’
and ’�’ are defined as follows:

β � γ = [β1, β2, . . . , βn]T � [γ1, γ2, . . . , γn]T

= [β1γ1, β2γ2, . . . , βnγn]T ,

β � γ = [β1, β2, . . . , βn]T � [γ1, γ2, . . . , γn]T

= [β1/γ1, β2/γ2, . . . , βn/γn]T .

The dynamic model of Two-DOF robotic manipulator [39]
is described as follows:

H(q)q̈ + C(q, q̇)q̇ +G(q) + fv(q)� l(q) = τ, (5)

H(q) =

[
n1 + n2 + 2n3 cos q2 ?

n2 + n3 cos q2 n2

]
,

C(q, q̇) =

[
−n3q̇2 sin q2 −n3(q̇1 + q̇2) sin q2

n3q̇1 sin q2 0

]
,

G(q) =

[
n4g cos q1 + n5g cos(q1 + q2)

n5g cos(q1 + q2)

]
,

(6)



n1 = m1Lc2 +m2L1 +mfL
2
1

n2 = m2L
2
c2 + I2 +mfL

2
2

n3 = m2L1Lc2 +mfL
2
2

n4 = m1Lc2 +m2L1 +mfL1

n5 = m2Lc2 +mfL2

, (7)

where q = [q1, q2]T , q̇, q̈ are the angular position, velocity and
acceleration, τ = [τ1, τ2]T are the joint torque provided by two
EHAs, fv(q) = µ[sgn(ċ1(q1)), sgn(ċ2(q2))]T is the viscous
resistance, µ is the viscous coefficient of hydraulic oil, H(q)
is the symmetric positive definite inertia matrix, ’?’ denotes
the same transpose element of H , C(q, q̇)q̇ is the Coriolis
force element, G(q) is the gravitational force, m1 is the upper
arm mass including cylinder, m2 is the forearm mass, mf is
the disc load mass, Li is the corresponding link length, Lc1
is the distance from shoulder joint to the centre of mass of
upper arm, Lc2 is the distance from elbow joint to the centre of
mass of forearm, Ii is the moment of inertia rotating respective
centre of mass of i link, and g is the gravity constant.

From (1)-(5), if these states are defined as x1 =
[x11, x21]T = [q1, q2]T , x2 = [x12, x22]T = [q̇1, q̇2]T , and
x3 = [x13, x23]T = [pL1, pL2]T , then the state space model of
this manipulator system is given by:

ẋ1 =x2

ẋ2 =H−1(x1)(x3 � l(x1)Ap − fv(x1, x2)� l(x1)

− C(x1, x2)x2 −G(x1))

ẋ3 =v − b0x3

,

(8)
where v = Ksv(a1u̇ + a0u) is considered to be the indirect
control variable of this manipulator system.

Remark 1: Without loss of generality, some model parame-
ters in (8) such as ni (i = 1, . . . , 5) and µ are usually uncertain
or inaccurate, which can be handled by NN learning in control
design.

Property 1: [39] Since H(q) is symmetric positive definite
matrix, the matrix Ḣ(q)− 2C(q, q̇) is skew-symmetric.

Problem 1: Considering the dynamic model (8) of manipu-
lator with parametric uncertainty mentioned in Remark 1, an
adaptive neural network controller is designed to guarantee the
output state x1 tracking the demand input x1d. Furthermore,
the tracking error x1 − x1d is restricted in a prescribed
performance.

III. CONTROL DESIGN

The proposed controller is designed based on the tradi-
tional backstepping control method together with the output
constraint holding technique and the node weights adaptive
estimation law of RBFNN trained-model.

A. Prescribed Performance Constraint

Different from the Barrier Lyapunov function, the tracking
error constraint is realized by a designed weighted perfor-
mance function ρ(t), which can guarantee the control variable
u not beyond required saturation.

The two tracking errors of this manipulator are defined as:

ei(t) = xi1(t)− xi1d(t), i = 1, 2. (9)

If xi1 is constrained in xi1(t) ∈ (xi1 min, xi1 max), and xi1d
has a definite boundary xi1dmin ≤ xi1d ≤ xi1dmax, then

ki < ei(t) < k̄i i = 1, 2, (10)
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where ki = xi1 min − xi1dmax < 0, and k̄i = xi1 max −
xi1dmin > 0 are two constants.

Definition 2: [40] A smooth function ρ(t) = (ρi(0) −
ρi(∞))e−λt + ρi(∞) is called a weighted performance func-
tion if

(I) ρ(t) is positive and monotonically decreasing;
(II) lim

x→∞
ρ(t) = ρ∞ > 0;

(III) ρ(∞) < ρ(0) < 1.
Lemma 1: [32] If a weighted performance function ρ(t) is

designed such that

ki < ei(t)/ρi(t) < k̄i, (11)

then ei(t) is constrained in (ki, k̄i).
In fact, if ei(t) ≥ 0, then ei(t) ≤ ei(t)/ρi(t) < k̄i. On the

other hand, if ei(t) < 0, then ki < ei(t)/ρi(t) < ei(t).
Thus from Lemma 1, the prescribed performance constraint

kiρi(t) < ei(t) < k̄iρi(t) can be used to define the system
state errors as follows:

zi1(t) = T−1(
ei(t)

ρi(t)
) = ln(

k̄i(ki − ei/ρi)
ki(k̄i − ei/ρi)

), i = 1, 2 (12)

where T (·) is a smooth function, T−1(·) is its inverse function.
Theorem 1: [33] The smooth function T (·) is monotonically

increasing, and holds the following properties:

ki <T (zi1) < k̄i T (0) = 0

lim
zi1→−∞

T (zi1) = ki lim
zi1→+∞

T (zi1) = k̄i
.

Proof. From (11), the inverse function of zi1 is described as:

T (zi1) =
ei(t)

ρi(t)
=
kik̄i(e

zi1 − 1)

kie
zi1 − k̄i

. (13)

Then the derivative of T (zi1) is given by:

dT

dzi1
=
ki(ki − k̄i)ezi1

k̄i(
ki
k̄i
ezi1 − 1)2

. (14)

Since ki < 0 and k̄i > 0, dT/dzi1 > 0. Hence, T (zi1) is
monotonically increasing. Furthermore, due to the prescribed
performance constraint kiρi(t) < ei(t) < k̄iρi(t), ki <
T (zi1) < k̄i is held. As zi1 → ±∞, T (zi1) approaches its
up and down boundary k̄i and ki respectively. If zi1 = 0 is
substituted into (12), then T (0) = 0.

Remark 2: From Theorem 1, the prescribed performance
constraint kiρi(t) < ei(t) < k̄iρi(t) of the tracking error
ei(t) can be transformed into the system state error arbitrarily
varying on the scale −∞ < zi1(t) < +∞.

B. Traditional Backstepping Controller

The other two state errors are defined as follows:

zi2 = xi2 − αi1
zi3 = xi3 − αi2

, i = 1, 2 (15)

where αij is the virtual control variable [41] emerged in
backstepping control design.

For convenient derivation, many 2-dimensional vectors are
defined as zj = [z1j , z2j ]

T (j = 1, 2, 3), αj = [α1j , α2j ]
T

(j = 1, 2), e = [e1, e2]T , and ρ = [ρ1, ρ2]T . Then the
candidate Lyapunov functions of (8) are given by:

V1 = zT1 z1/2

V2 = V1 + zT2 H(x1)z2/2

V3 = V2 + zT3 z3/2

. (16)

Step 1: From (11), the derivative of z1 is given by:

ż1 = R(x2 − ẋ1d − e� ρ̇� ρ), (17)

where R = diag(r1, r2) ∈ R2×2,

ri =
∂T−1

∂(ei/ρi)

1

ρi
=

k̄i − ki
(k̄i − ei/ρi)(ei/ρi − ki)ρi

, i = 1, 2.

If the virtual control α1 is designed as:

α1 = ẋ1d + e� ρ̇� ρ−R−1C1z1 (18)

where C1 = diag(c11, c21) ∈ R2×2 is a positive definite
constant matrix, then the derivative of V1 in (16) is given by:

V̇1 = −zT1 C1z1 + zT1 Rz2. (19)

Step 2: Substituting Property 1 into the derivative of V2, we
obtain that

V̇2 =V̇1 + zT2 H(x1)ż2 + zT2 Ḣ(x1)z2/2

=− zT1 C1z1 + zT2 (Rz1 + z3 � lAp + α2 � lAp
−Hα̇1 − fv � l − Cα1 −G)

.

(20)
If the virtual control α2 is designed as:

α2 = A−1
p (−Rz1+Hα̇1+fv�l+Cα1+G−C2z2)�l, (21)

where C2 = diag(c12, c22) is similar to C1, then

V̇2 = −zT1 C1z1 − zT2 C2z2 + zT2 z3 � lAp (22)

Step 3: The derivative of V3 is given by:

V̇3 =V̇2 + zT3 ż3

=− zT1 C1z1 − zT2 C2z2

+ zT3 (Apl � z2 + v − b0x3 − α̇2)

. (23)

If the final control variable v is designed as:

v = −C3z3 −Apl � z2 + b0x3 + α̇2, (24)

then

V̇3 ≤ −zT1 C1z1 − zT2 C2z2 − zT3 C3z3 < 0. (25)

Remark 3: From (16), (25), the control variable v (24)
integrated with the virtual controls α1 (18) and α2 (21) cannot
only guarantee all the system errors zij (i = 1, 2, j = 1, 2, 3)
asymptotic to zero but also restrict the dynamic errors e1 and
e2 in the prescribed performance constraint kiρi(t) < ei(t) <
k̄iρi(t).
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C. Adaptive Neural Network Controller

According to Remark 1, some parametric uncertainties exist
in the matrices H , C, G and fv , which lead to negative effect
in the virtual control α2 (21) and the final control variable v
(24). Thus, an adaptive neural network is adopted to handle
these unknown dynamics.

Definition 3: [28] A class of Radial Basis Function Neural
Network (RBFNN) is usually used to estimate an unknown
continuous function fi(X) as follows:

fi(X) = WT
i Si(X) + εi(X), i = 1, 2 (26)

where X is the input vector, Wi is weight vector with ki
nodes of RBFNN, Si(X) = [s1, s2, . . . , ski ]

T is Gaussian
basis function vector, and εi(X) is the estimation error of
RBFNN which is bounded by |εi(X)| < εmax for i = 1, 2,
and εmax is an unknown boundary.

The radial basis element sj of Si(X) is given by:

sj(X) = exp

(
−(X − µj)T (X − µj)

σ2
j

)
, j = 1, . . . , ki,

(27)
where µj is the center of the receptive field, and σj the width
of the Gaussian function [42].

If the input vector X of RBFNN is defined as X =
[x1, x2, α1, α̇1]T , then the RBFNN estimation WTS(X) can
be trained by sufficient sample data to approximate the fol-
lowing uncertain dynamic model:

WTS(X) + ε(X) =H(x1)α̇1 + C(x1, x2)α1

+G(x1) + fv(x1)� l(x1)

=F (X, δni, δµ)

, (28)

where F is the model uncertainty by model parameters ni (i =
1, . . . , 5) and µ mentioned in Remark 1.

Simultaneously, to enhance the robustness of the RBFNN
controller, an adaptive estimation law for the weight vector
Wi is designed as follows:

˙̂
Wi = −Γi(Si(X)z2i + ηiŴi), i = 1, 2, (29)

where Ŵi is the adaptive estimated value of the ideal weight
Wi, Γi > 0 and ηi > 0 are diagonal matrix and constant gains
of the adaptive estimation law.

Remark 4: The weight estimation Ŵi is online self-tuning
by (29) based on a preliminary training value Wi(0) of the
designed RBFNN, which can eliminate the negative effect of
parametric uncertainties existed in H , C, G and fv .

If the adaptive weight estimation law (29) is considered
in backstepping iteration, then the virtual control α2 (21) is
revised as follow:

α2 = A−1
p (−Rz1 +

2∑
i=1

ŴT
i Si(X)− C2z2)� l. (30)

Theorem 2: Consider the manipulator model (8), if the
RBFNN controller is designed as (18), (24), (28) and (30),
together with the adaptive weight estimation law (29), then
the system state errors (12) and (15) are all ultimate boundary

[43] and the error convergence domain is an hypersphere Hr,
i.e.,

Hr ∈


zT1 z1 + zT2 Hz2 + zT3 z3 +

2∑
i=1

W̃T
i Γ−1

i W̃i

= 2V3(0)e−λ
∗tf + 2δ/λ∗

 ,

(31)
where λ∗ and δ are positive constants, and V3(0) is the initial
system state error, ∀t > tf (tf is a finite time).
Proof. Consider the candidate Lyapunov functions of (8) as
follows:

V1 = zT1 z1/2

V2 = V1 + zT2 H(x1)z2/2 +

2∑
i=1

W̃T
i Γ−1

i W̃i/2

V3 = V2 + zT3 z3/2

, (32)

where W̃i = Wi − Ŵi is the self-tuning weight error of Wi.
Then the virtual control αi (i = 1, 2) and the final control

variable v can be also derived by the derivatives of Vi (i =
1, 2, 3).

Different from the backstepping iteration in section B,
substituting (28) into (20), the derivative V̇2 is given by:

V̇2 =V̇1 + zT2 H(x1)ż2 + zT2 Ḣ(x1)z2/2−
2∑
i=1

W̃T
i Γ−1

i
˙̂
Wi

=− zT1 C1z1 + zT2 (Rz1 + z3 � lAp + α2 � lAp

−
2∑
i=1

ŴT
i Si −

2∑
i=1

W̃T
i Si − ε)−

2∑
i=1

W̃T
i Γ−1

i
˙̂
Wi

(33)
By Young’s inequality, we can obtain:

zT2 ε ≤ (zT2 z2 + ‖ε‖2)/2

W̃T
i Wi ≤ (W̃T

i W̃i +WT
i Wi)/2

. (34)

Substituting the revised virtual control α2 (30), the adaptive
weight estimation law (29), and the Young’s inequalities (34)
into (33), the derivative V̇2 is given by:

V̇2 ≤− zT1 C1z1 − zT2 (C2 −
1

2
I2×2)z2 −

2∑
i=1

γi
2

∥∥∥W̃i

∥∥∥2

+
1

2
‖ε‖2 +

2∑
i=1

γi
2
‖Wi‖2 + zT2 z3 � lAp

(35)
Similar to Step 3, if the control variable v (24) is substituted

into the derivative of V3 in (32), then

V̇3 ≤− zT1 C1z1 − zT2 (C2 −
1

2
I2×2)z2 − zT3 C3z3

−
2∑
i=1

γi
2

∥∥∥W̃i

∥∥∥2

+
1

2
‖ε‖2 +

2∑
i=1

γi
2
‖Wi‖2

(36)

If a positive constant λ∗ is defined as:

λ∗ = min


2λmin(C1),

2λmax(C2 − 1
2I2×2)

λmin(H)
,

2λmin(C3), min
i=1,2

(
σi

λmax(Γ−1
i )

)

 , (37)
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Fig. 2. The block diagram of the adaptive neural network control scheme

then (36) becomes:

V̇3 ≤ −λ∗V3 + δ, (38)

where the positive constant δ = ‖ε‖2 /2 +
2∑
i=1

σi ‖Wi‖2/2.

When pre-multiply and post-multiply the inequality (38) by
eλ

∗t, the following equality holds:

d(V3e
λ∗t)

dt
= δeλ

∗t. (39)

Integrating (39) and the following inequality holds:

V3(t) ≤ (V3(0)− δ

λ∗
)e−λ

∗t +
δ

λ∗
≤ V3(0)e−λ

∗t +
δ

λ∗
. (40)

Now substituting (32) into (40), and let t > tf , the error
convergence domain Hr in (31) is obtained. Furthermore, the
size of Hr mainly depends on the element δ/λ∗. Thus, the
increased control gains Ci (i = 1, 2, 3) and the parametric
estimation gains Γi (i = 1, 2) can arbitrarily shrink the size
of Hr as t→∞.

From (1), (2) and the indirect control variable v in (8), the
actual control current u of servo valve is given by:

u =
v

Ksv(a1s+ a0)
. (41)

Fig.2 shows the block diagram of the proposed adaptive
neural network control scheme. The RBFNN (28) is trained
by the system states x1, x2, the virtual control α1 and its
derivative α̇1 in the traditional backstepping iteration from
(18), (21), (24), which can obtain the preliminary weight value
Wi0 and the RBF Si(X) for i = 1, 2. Then the actual weights
Ŵi (i = 1, 2) are online self-tuning by the adaptive weight
estimation law (29), which compensates the inaccurate dy-
namic model in (8). According to the prescribed performance
constraint (11), the adaptive neural network controller u (41)
is constructed by (18), (30) and (24) to guarantee the dynamic
performance of the manipulator system (8).

IV. SIMULATION

To verify the proposed adaptive neural network controller
(ANNC) in simulation, some nominal mechanical and hy-
draulic parameters of this robotic manipulator are shown in

Tab. 1. The hydraulic parameters a1, a0 and b0 are simplified
from the linear load pressure model pL controlled by the valve
spool position xv [44].

TABLE I
SOME MECHANICAL AND HYDRAULIC PARAMETERS

Parameter Value Parameter Value
m1 6.012 kg m2 1.479 kg
mf 1.068 kg I1 0.118 kg ·m2

I2 0.017kg ·m2 Lc1 0.177 m
Lc2 0.114 m L1 0.438 m
L2 0.345 m κi 0.403 m
ςi 0.055 m ε1 6.1◦

ε2 13.8◦ b0 124
a1 7 a0 2.2× 108

µ 500 s/m Ap 4.91× 10−4m2

Ksv 0.125 mm/mA g 9.81 m2/s

The motion ranges of two joint angles are 29.84◦ ≤ q1 ≤
115.76◦, and 47.85◦ ≤ q2 ≤ 135.92◦. The prescribed perfor-
mance boundaries of two tracking errors k1 = k2 = −100◦

and k̄1 = k̄2 = 100◦. Three parameters of the weighted perfor-
mance function ρ(0) = [0.95, 0.95]T , ρ(∞) = [0.02, 0.02]T

and λ = 0.5. The control gains are designed as C1 =
diag{1, 1}, C2 = diag{10, 10}, and C3 = diag{2000, 2000}.
The approximate order of magnitude for these control gains
is determined by the virtual controls (18), (21) and the final
control (24). For the RBFNN estimation, 68 and 57 nodes are
used for each Si(X) with centers selected in the area of [-
1,1] with 8-dimensional grids. The variances of centers are
σ2
j = 1, (j = 1, . . . , ki). Two diagonal matrix gains of the

adaptive estimation law are Γ1 = 20×I68, and Γ2 = 20×I57,
where In denotes the n× n identity matrix, η1 = η2 = 0.02.
These matrix gains are well-tuned considering both the fast
convergent weights and the desirable tracking performance.

To illustrate the problem, the proposed adaptive neural
network controller based on (18), (30), (24) and (41) is
compared with the following two controllers:

1) Proportional-integral-derivative (PID) controller u =
kp(yd−x1)+ki

∫
(yd − x1)dt+kd(ẏd−x2), where the control

gains kp = 140, ki = 17 and kd = 7 have been well tuned to
guarantee fast responses of two robotic joint angles.

2) The traditional backstepping controller (TBC) based on
(18), (21), (24) and (41).

A. Comparison with PID control

Two sinusoidal demands of the joint angles are q1d =
33 sin(1πt) + 72.8◦ and q2d = 34 sin(2πt) + 91.9◦. The
comparison results of two controllers are shown in Figs. 3-
5. As the time t < 5 s, the dynamic tracking performances
∆qi (i = 1, 2) of PID are better than ANNC. However, the
two control currents ui (i = 1, 2) of PID controller are more
consumed than ANNC, which surpass 100 mA near the initial
zero time. Since the weighted performance function ρ(t) is
exponential attenuated, the dynamic tracking error of ANNC
is restricted in kiρi(t) < ei(t) < k̄iρi(t) mentioned in (11). As
two joint angles approach their steady states, the steady state
errors of ANNC |ei| < 2◦ (i.e., kiρi(∞) < ei < k̄iρi(∞)),
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Fig. 3. The comparison results with PID controller, q1 is the shoulder joint
angle, ∆q1 = q1d − q1 is the tracking angle error.

0 5 10 15 20
40

60

80

100

120

140

160

Time(s)

q 2
(◦
)

 

 
Demand
ANNC
PID

0 5 10 15 20
−100

−50

0

50

100

Time(s)

∆
q 2
(◦
)

 

 
ANNC
PID
k̄2ρ2

k2ρ2

12 13 14

−2

0

2

 

 

Fig. 4. The comparison results with PID controller, q2 is the elbow joint
angle, ∆q2 = q2d − q2 is the tracking angle error.
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Fig. 5. The comparison results with PID controller, u1 and u2 are the control
currents of two joint electro-hydraulic actuators.

which has better performances than PID as shown in Fig.
5. Certainly, the steady tracking error of PID can be further
reduced by increasing PID gains. However, the system stability
margin may be degraded.
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Fig. 6. The train results of two neural networks by (28).

B. Comparison with TBC

The two joint angle demands are the same to Section A.
To realize the ANNC algorithm, the model (28) are trained
by two RBFNNs WT

i Si(X) (i = 1, 2). If two performance
goals are selected as 0.1 and 0.15, the model trained errors
are asymptotic convergence by the selected 68 and 57 network
nodes respectively as shown in Fig. 6. Then the well-trained
weights of two RBFNNs are obtained and used as the initial
value of the adaptive weight estimation law (29). Figs. 7-10
show the comparison results of ANNC with TBC. Since the
prescribed performance constraint is both considered by two
controllers, the dynamic and steady tracking errors of ANNC
is similar to TBC, which indicates the favorable optimal
performance of the model (28) by the RBFNN. After 5 s,
the tracking errors of two joint angles are restricted in 1◦.
However, the control current magnitude of TBC is still larger
than ANNC, which surpasses 20 mA as shown in Fig. 10.
Thus, the prescribed performance constraint (11) consumes
obvious control capability by TBC without adaptive weight
estimation law. The model estimation results by adaptive
neural network (28) and (29) are shown in Fig. 9. The model
estimation error about Hα̇1 +Cα1 +G+ fv � l includes two
elements, i.e., the RBFNN estimation error εi(X) and the self-
tuning weight error W̃i. From Fig. 9, the model estimation
error can be constrained in a satisfactory neighbourhood by
ANNC.

C. Comparative results with Parametric Uncertainty

To verify the robustness of ANNC, two sinusoidal demands
of the joint angles are chosen as q1d = 33 sin(1.3πt) + 72.8◦

and q2d = 34 sin(1.5πt) + 91.9◦. Some parametric uncertain-
ties are assumed as m′1 = 1.5m1, m′2 = 1.5m2, m′f = 1.5mf ,
L′1 = 1.3L1, L′2 = 0.7L2, I ′1 = 0.7I1, I ′2 = 1.3I2, and
µ′ = 1.5µ. The control current saturation is umax = ±20 mA.
Then the comparison results are shown in Figs. 11-13. The
dynamic and steady tracking errors can be also restricted in the
prescribed performance constraint (11) by TBC and ANNC.
However, the control saturation emerges in the shoulder joint
motion by TBC as shown in Fig. 13. Two control currents of
TBC u1 and u2 are larger than that of ANNC. Due to the
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Fig. 7. The comparison results with traditional backstepping controller, q1 is
the shoulder joint angle, ∆q1 = q1d − q1 is the tracking angle error.
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Fig. 8. The comparison results with traditional backstepping controller, q2 is
the elbow joint angle, ∆q2 = q2d − q2 is the tracking angle error.
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Fig. 9. The ANN estimation for model uncertainty, where Fi(X, δ) is the
model uncertainty and ŴT

i Si is the corresponding estimation of ANN.

parametric uncertainties injected in the manipulator system
(8), TBC consumed obvious control cost to compensate the
model error and to guarantee two tracking angle errors in the
prescribed performance constraint. However, it is necessary
for ANNC to adopt the adaptive NN estimation model (30)
rather than the uncertain model (21) by TBC. Even though
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Fig. 10. The comparison results with traditional backstepping controller, u1
and u2 are the control currents of two joint electro-hydraulic actuators.
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Fig. 11. The comparison results with traditional backstepping controller, q1
is the shoulder joint angle, ∆q1 = q1d − q1 is the tracking angle error.
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Fig. 12. The comparison results with traditional backstepping controller, q2
is the elbow joint angle, ∆q2 = q2d − q2 is the tracking angle error.

there exists modelling uncertainties, the dynamic and steady
tracking errors of two joint angles can be still restricted in the
prescribed performance constraint (kiρi(t) < ei(t) < k̄iρi(t)).
Furthermore, the control currents output by two servo valves
of EHAs are satisfactory as the adaptive weight estimation law
is adopted to self-tune every node weight as shown in Fig. 14.
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Fig. 13. The comparison results with traditional backstepping controller, u1
and u2 are the control currents of two joint electro-hydraulic actuators.
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Fig. 14. The weight estimations by (29), Ŵ1j (j = 1, . . . , 68) and Ŵ2j (j =
1, . . . , 57) are respective estimation of two numbers of nodes.

V. EXPERIMENT

The experimental bench of Two-DOF robotic manipulator
is set up as shown in Fig. 15 to verify the effectiveness
of the proposed ANNC. Two electrohydraulic actuators are
composed of two servo valves (FF-102/03021T240), two
cylinders (UG1511R25/16-80), a pump station (HY-36CC-
01/11kw), and two accumulators (NXQ1-L1.0/31.5H). Four
cylinder pressures are measured by the pressure transducer
(BD-Sensors-DMP-331). Two joint angles are measured by the
incremental encoder (HENGSILL ALN722R7LSDN13188).

The control implementation of this experiment is shown
in Fig. 16. The encoder and the pressure transducer data are
sampled by NI card as the feedback information. The control
algorithm is realized by Matlab/Simulink tool in the host PC
computer and the control demand is returned to NI card, which
drives the servo valve to regulate the cylinder pressure supplied
by the pump station. The interval of the whole algorithm
execution is 5 ms. Due to the variable load pressure, the
joint motion control of the robotic manipulator is driven by
this electrohydraulic actuator. The screen display shows the
measurement and computed signals in real-time.

Pump 
Station

Accumulator

Servo valve

Two-DOF Robotic 
Manipulator

Disc Load

Encoder

Hydraulic Cylinder

Pressure Transducer

Fig. 15. The experimental bench of the robotic manipulator driven by
electrohydraulic actuator.
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Fig. 16. The control implementation diagram of the robotic manipulator

A. Experimental Results of ANNC

Two joint angle demands are chosen as q1d =
33 sin(0.5πt) + 72.8◦ and q2d = 34 sin(πt) + 91.9◦. The
experimental results of ANNC are shown as Figs. 17-20. The
dynamic and steady tracking errors of two joint angles are
restricted in the prescribed performance constraint (kiρi(t) <
ei(t) < k̄iρi(t)). The steady tracking errors ∆qi (i = 1, 2)
are less than 4◦ as shown in Fig. 17-18. From Fig. 20, since
the load pressure of shoulder electrohydraulic actuator pL1 is
larger than that of elbow actuator pL2, the dynamic response
of shoulder angle is slower than the elbow angle. Thus, two
hydraulic accumulators are used to store energy and improve
the flow velocity in the hydraulic control loop. However, the
duration of energy storage integrated with pressure preparation
is approximate 2-5 seconds as shown in Fig. 20, which results
in the control current saturation ±20 mA in initial response
time of ANNC as shown in Fig. 19. After 10s, two joint angles
approach the steady state and the control current magnitudes of
two servo valves are periodically regulated to guarantee two
joint angles qi (i = 1, 2) track the corresponding demands
qid (i = 1, 2). Meanwhile, the cylinder chamber pressures pai
and pbi (i = 1, 2) of two electrohydraulic actuators are less
than 50 bar, which are constrained by the supply pressure ps
of the pump station.
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Fig. 17. The experimental results of ANNC, q1 is the shoulder joint angle,
∆q1 = q1d − q1 is the tracking angle error.
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Fig. 18. The experimental results of ANNC, q2 is the elbow joint angle,
∆q2 = q2d − q2 is the tracking angle error.
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Fig. 19. The experimental results of ANNC, u1 and u2 are the control
currents of two joint electrohydraulic actuators.

B. Comparison Results

Then two joint demands are chosen as q1d =
33 sin(0.8πt) + 72.8◦ and q2d = 34 sin(πt) + 91.9◦. The
experimental results of three controllers are shown as Figs. 21-
24. Although the steady tracking errors of PID are less than
the other two controllers, some angle chatters emerges in two

0 5 10 15 20 25 30 35 40
−50

0

50

100

Time(s)

Pr
es

su
re

(b
ar

)

 

 
pa1

pb1

pL1

0 5 10 15 20 25 30 35 40
−50

0

50

100

Time(s)

Pr
es

su
re

(b
ar

)

 

 
pa2

pb2

pL2

Fig. 20. The experimental results of ANNC, pai and pbi are two cylinder
chamber pressures, pLi = pai−pbi is the load pressure of the corresponding
electrohydraulic actuator for i = 1, 2.
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Fig. 21. The experimental results of three controllers, q1 is the shoulder joint
angle, ∆q1 = q1d − q1 is the tracking angle error.

joint responses as shown in Figs. 21-22. Of course, the control
gains of PID can be reduced to eliminate these angle chatters,
which may degrade the dynamic and steady performance. Two
steady errors of ANNC are less than 4◦, which has more
favorable performances than TBC. From Fig. 23, the control
current of elbow actuator approaches the control saturation
since the elbow motion frequency is larger than the shoulder.
Furthermore, some control chatters also emerges in PID rather
than the other two controllers. The model estimation results
ŴT
i Si(X) (i = 1, 2) by the ANN (28) and (29) are shown in

Fig. 24, which indicates the robustness of ANNC when two
joint demands vary with different motion frequency.

VI. CONCLUSION

In this study, an adaptive neural network control with
backstepping was proposed for Two-DOF manipulator driv-
en by the electrohydraulic actuator. Considering the output
constrained problem, a weighted performance function was
designed to restrict the tracking angle errors of two joints in
a prescribed performance constraint. To avoid the unknown
dynamics in model-based control design, a RBF neural net-
work was constructed to train the unknown model dynamics.
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Fig. 22. The experimental results of three controllers, q2 is the elbow joint
angle, ∆q2 = q2d − q2 is the tracking angle error.
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Fig. 23. The experimental results of three controllers, u1 and u2 are the
control currents of two joint electro-hydraulic actuators.
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Fig. 24. The ANN estimation for model uncertainty, where Fi(X, δ) is the
model uncertainty and ŴT

i Si is the corresponding estimation of ANN.

Although the network estimated model depended on different
training samples, the node weights of RBFNN can be self-
tuned by an adaptive estimation law according to the system
state errors. The comparison results with PID and traditional
backstepping controller indicated that the proposed ANNC had
three advantages as follows: 1) the unknown dynamic model

parameters need not to be pre-known. By the RBFNN learning,
the complicated nonlinear model can be well identified. 2)
the control sensitivity will be relaxed and the robustness is
improvement when some model dynamics and parametric
uncertainty exited in the robotic manipulator. 3) the controller
based on RBFNN will not easy to emerge chatters when the
demand frequency and magnitude increased and guarantee
the desirable tracking performance by PPC, which indicates
the adaptation capability of RBFNN to address uncertain
parameters and disturbance. To be honest, due to the control
saturation of the hydraulic actuator and the load pressure delay
caused by hydraulic pipe transmission, the control gains cannot
be big enough and the experimental dynamic response of the
proposed controller is certainly lower than the corresponding
simulation results. To further improve the performance of
this manipulator, the controller should consider the time-delay
model of electro-hydraulic actuator and the hydraulic elements
configuration may be optimized in the future.
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