Analyses of canopy photosynthesis derived from three-dimensional model simulations of sun-induced chlorophyll fluorescence

Sicong Gao

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faulty of Science

University of Technology Sydney

January 2020

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This research is supported by Australian Government Research Training Program.

Production Note: Signature of student: Signature removed prior to publication.

Date: 31-01-2020

Acknowledgements

This research is supported by an Australian Government Research Training Program.

First of all, I would like to thank my principle supervisor Distinguished Professor Alfredo Huete for his support during my three and a half years of PhD study. My major was not remote sensing before I came to UTS. I truly appreciate Professor Huete's trust and guide to enter the remote sensing area. He offered a free research environment and his professional suggestions encouraged me to discovery scientific questions.

Secondly, I would like to say thank you to Dr. Hideki Kobayashi for providing the FLiES model and giving suggestions to my study, Professor Jim Tang for providing field measured SIF data at Harvard forest and Professor Elise Pendall for providing the LiDAR data.

Also, many thanks to Professor Qiang Yu, Professor Derek Eamus, Dr. James Cleverly, Dr. Xuanlong Ma, Dr. Zunyi Xie, Dr. Xiaolu Tang and Dr. Weiwei Liu for their help and share of their experience. Thanks to Jie He, Dr. Wenjie Zhang, Song Leng, Dr. Xunhe Zhang, Dr. Qinggaozi Zhu and Dr. Zheyuan Du, Minxi Zhang, Hong Zhang for their encouragement, delicious food and joyful mahjong parties. I am also grateful to my team members Dr. Rakhesh Devadas, Dr. Leandro Giovannini, Ekena Rangel, Dr. Nguyen Ngoc Tran, and Dr. Paras Sidiqui for their help and all my friends in China, Dr. Xin Li, Chao Zhang, Weihong Wang, and Dr. Xianghu Ji for encouraging me to finish my study.

Additionally, I would like to especially thank my wife Man Bao. Thank you for your love, trust, encouragement and 100% support. Every time when I am stressful, you always stay with me and give me confidence. And our pet Mascarpone (the cutest and most gorgeous cat in the world), thank you for waking me up early in the morning and being my motivation to work hard.

Lastly, I would like to deeply thank my parents for their cultivation and education. Your love gives me the courage to face all difficulties in my life and get through the tough times. And my brother and his wife, thank you for your support throughout my study.

Publications

Wu, J., Kobayashi, H., Stark, S.C., Meng, R., Guan, K., Tran, N.N., Gao, S., Yang, W., Restrepo-Coupe, N., Miura, T. and Oliviera, R.C., 2018. Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest. *New Phytologist*, *217*(4), pp.1507-1520.

Table of contents

Certificate of original authorship	I
Acknowledgements	II
Publications	III
Table of contents	IV
List of Figures	VIII
List of Tables	XIV
Abbreviations	XV
Abstract	XVIII
Chapter 1. Introduction	1
1.1. Research background	2
1.1.1. Global carbon cycle under climate change	2
1.1.2. Photosynthesis and Chlorophyll fluorescence	5
1.2. Objectives and research questions	
Chapter 2. Enabling the three-dimensional FLiES model to sin	nulate seasonal scale
1 0	
sun-induced chlorophyll fluorescence	
sun-induced chlorophyll fluorescence Abstract	21
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction	
 sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 	
 sun-induced chlorophyll fluorescence Abstract	
 sun-induced chlorophyll fluorescence Abstract	
 sun-induced chlorophyll fluorescence Abstract	21 22 22 22 22 25 25 25 25 26
 sun-induced chlorophyll fluorescence	21 22 22 22 25 25 25 25 25 26 26
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF	21 22 22 22 25 25 25 25 26 26 26 26 26 26 26 26
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF 2.3. Methodology	21 22 22 22 25 25 25 25 26 26 26 26 27
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF 2.3.1. FLiES SIF module	21 22 22 22 25 25 25 25 26 26 26 27 27
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF 2.3.1. FLiES SIF module 2.3.2. Machine learning	21 22 22 22 25 25 25 25 26 26 26 27 27 29
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF 2.3.1. FLiES SIF module 2.3.2. Machine learning 2.3.3. Model simulations	21 22 22 22 25 25 25 26 26 26 27 27 27 29 30
sun-induced chlorophyll fluorescence Abstract 2.1. Introduction 2.2. Study area and Data 2.2.1. Study area 2.2.2. LiDAR data 2.2.3. Landsat reflectance 2.2.4. Eddy covariance GPP 2.2.5. Measured Canopy SIF. 2.3.1. FLiES SIF module 2.3.2. Machine learning 2.3.3. Model simulations. 2.3.4. Statistical Analysis	21 22 22 22 25 25 25 26 26 26 27 27 27 29 30 32
sun-induced chlorophyll fluorescence	21 22 22 22 25 25 25 26 26 26 27 27 27 27 29 30 32 33

2.4.2. Comparison of simulated SIF with field measured canopy SIF under different sunlit & clo	oudy
light conditions	35
2.4.3. The correlation between GPPEc and SIF in sunny or cloudy days	38
2.5. Discussion	39
2.5.1. Model sensitivity	39
2.5.2. The relationship between GPP and scattered vs emitted SIF	40
2.5.3. Uncertainties of seasonal SIF simulations	42
2.6. Conclusions	43
Chapter 3. Partitioning sun-induced chlorophyll fluorescence into overstory and	d
understory layers by using a three-dimensional model	45
Abstract	46
3.1. Introduction	46
3.2. Study area and Data	49
3.2.1. Study area	50
3.2.2. LiDAR data	51
3.2.3. GOME-2 SIF	51
3.2.4. Sentinel-2 reflectance	51
3.2.5. MODIS EVI data	52
3.2.6. Eddy covariance data	52
3.3. Methodology	53
3.3.1. FLiES SIF model	53
3.3.2. Machine learning	54
3.3.3. Structure of model simulations	55
3.4. Results	56
3.4.1. Compare model simulated SIF, MODIS EVI, eddy covariance GPP and GOME2 SIF	57
3.4.2. The relationship between GPPEC and overstory SIFFLies, understory SIFFLies	61
3.4.3. Predicted overstory GPP and understory GPP	63
3.5. Discussion	64
3.5.1. Vegetation structure and PAR effect SIF on overstory and understory layer for different	
vegetation types	64
3.5.2. Uncertainties of SIF simulation in overstory and understory layers	67
3.6. Conclusion	68
Chapter 4. OCO-2 sun-induced chlorophyll fluorescence normalised by a three	
dimensional radiative transfer model is better correlated with vegetation	
productivity	70

Abstract	71
4.1. Introduction	71
4.2. Study area and Data	74
4.2.1. Study area	74
4.2.2. OCO-2 SIF	75
4.2.3. MODIS data	75
4.2.4. LiDAR data	76
4.2.5. Eddy covariance data	76
4.3. Methodology	76
4.3.1. Definitions of OCO-2 observation directions	77
4.3.2. FLiES model	77
4.3.3. Normalised APAR and SIF yield	77
4.3.4. Structure of model simulations	78
4.3.5. Relative importance method	79
4.4. Results	79
4.4.1. OCO-2 SIF observations in multi-angles	79
4.4.2. The relationship between GPP and OCO-2 SIF over nadir, hot spot and dark spot	
observations	80
4.4.3. The correlation between normalised APAR and SIF for nadir, hot spot, and dark spot	
directions	82
4.4.4. The correlation between LUE and normalised SIF yield for the nadir, hot spot and dat	rk spot
viewing directions	83
4.5. Discussion	85
4.5.1. View zenith angle effects on the SIF variations	85
4.5.2. Normalised SIF of OCO-2 data	86
4.5.3. Relationship between environmental factors and SIF observations in different view	
observations	
4.5.4. Applications of remotely sensed SIF observations	90
4.6. Conclusion	92
Chapter 5. Sun-induced chlorophyll fluorescence is influenced by the unders	torv
reflectance based on two scenarios	
Abstract	94
5.1. Introduction	94
5.2. Definition for two scenarios	97
5.2.1. Scenario I	97
5.2.2. Scenario II	98

5.3. Theoretical basis	
5.3.1. Incident radiation on canopy and understory	98
5.3.2. Formula description for the scenario I	99
5.3.3. Formula description for Scenario II	99
5.4. FLiES SIF simulation method	100
5.4.1. FLIES SIF model and ray-tracing frame	100
5.4.2. Database generation	101
5.5. Results	102
5.5.1. The variation of SIF with Cab, dleaf, ρu and FVC	
5.5.2. Environmental factors effects on red and far-red SIF for scenarios I and II	105
5.5.3. Canopy layer's properties affect SIF at the scenario I and II	109
5.5.4. Regression model for SIF and vegetation structures	114
5.6. Discussion	116
5.6.1. Scattering SIF and soil SIF	116
5.6.2. Soil effects in savanna	117
5.6.3. Understory reflection effects in mature forest	118
5.6.4. Applications for remote sensing	118
5.7. Conclusion	119
Chapter 6. Conclusions	
6.1. Summary of key methodology and conclusions	121
6.1.1. The development and validation of the new three-dimensional SIF model	121
6.1.2. Partition SIF signal to tree and grass layers	122
6.1.3. Normalized OCO-2 SIF by 3D SIF model	
6.1.4. SIF signal affected by understory layer	123
6.2. Research limitations and future research directions	
6.3. Conclusions	125
Chapter 7. Bibliography	

List of Figures

Figure 1.1. The global carbon cycle (https://www.sciencelearn.org.nz/resources/689-the-
ocean-and-the-carbon-cycle, 2019)2
Figure 1.2. The process of photosynthesis (Rasmussen & Minteer 2014)5
Figure 1.3. The generation of fluorescence from leaf to canopy scale (Porcar-Castell et al.
2014)7
Figure 1.4. The fluorescence quantum yield (Schlau-Cohen & Berry 2015)9
Figure 1.5. The relationship between SIF and photosynthesis (Gu et al. 2019a)10
Figure 1.6. Comparison between TROPOMI, GOME-2, and OCO-2 SIF in the Nile
region (Köhler, Frankenberg, et al. 2018)12
Figure 2.1. Flowchart of simulations
Figure 2.2. Seasonal and annual changes in retrieved biochemical parameters for years
2013 and 2014. N is the leaf structure, Cab is the total chlorophyll content, Cca is the
carotenoid content, Cd is the dry matter of leaf and Cw is the leaf water content33
Figure 2.3. Correlation between the green chlorophyll index, CIgreen, and total chlorophyll
content
Figure 2.4. The seasonal change of field measured canopy SIF, with FLiESsiF, DARTSIF
and SCOPEsiF at 760 nm from 2013 to 2014
Figure 2.5. Box plot for SIF annual mean and range of SIFField, FLiESSIF, DARTSIF and
SCOPEsif
Figure 2.6. The correlation between SIFField and FLiESsIF, DARTSIF, SCOPESIF. (a)
Correlation between FLiESsIF and SIFField. (b) Correlation between DARTSIF and SIFField.
(c) Correlation between SCOPEsIF and SIFField. The red dash line is the 1:1 symmetric
line, all p-value < 0.001

Figure 2.7. The correlation between daily GPPEc and model simulated daily SIF under
different light conditions (a) $-$ (d). Black lines, red lines and blue lines are regression line
for total SIF, SIF in sunny days and cloudy days, respectively. Red points mean
measurement in sunny days, blue points mean measurement in cloudy days. All p values
are less than 0.001
Figure 2.8. Correlation matrix between FLiESsIF and other factors, all p-values are less
than 0.001
Figure 2.9. Time series of PAR, APAR, LAI and field measured SIF from 2013 to 2014.
PAR, APAR, LAI and SIF are all from field measurements
Figure 2.10. At the seasonal scale, the relationship between and each part of FLiES
simulated SIF, LUE and APAR. Correlation of LUE and (a) daily SIF yield, (b) scattered
SIF, (c) emitted SIF. Correlation of APAR and (d) daily SIF yield, (e) scattered SIF, (f)
emitted SIF. Correlation of GPPEc and (g) field measured SIF, (h) scattered SIF, (i)
emitted SIF. Red points mean measurement in sunny days, blue points mean
measurements in cloudy days. The black line is the total regression line, red and blue line
means the sunny and cloudy regression line, respectively42
Figure 3.1 The land cover of three flux tower sites in Australia. The land cover data used
MCD12C1
Figure 3.2. Flowchart of simulations
Figure 3.3. Time series of FLiES model simulated SIF, MODIS EVI, eddy covariance
GPP and GOME2 SIF from 2016 to 2017 for (a) AU-TTE, (b) AU-LIT and (c) AU-CUM.
Figure 3.4. Correlation between GPP and total SIFFLies, overstory SIFFLies, understory

SIFFLiEs for (a) AU-TTE, (b) AU-LIT and (c) AU-CUM. The blue, brown and green

points represent the total SIF, overstory SIF and understory SIF, respectively. The line is Figure 3.5. Prediction of GPP for AU-TTE, AU-LIT and AU-CUM from 2016 to 2017. Figure 3.6. Correlation between SIF and PAR in overstory and understory layers for (a) Figure 3.7. Correlation between SIF and canopy cover for AU-TTE, AU-LIT and AU-Figure 3.8. Generalised pattern from our results: (a) the relationship between overstory SIF and PAR, canopy cover; (b) the relationship between understory SIF and PAR, Figure 4.2. (a) - (d). Instantaneous OCO-2 SIF observations at 757 nm in different days. (a) and (b) shows the hot spot effect, (c) and (d) shows the dark spot effect. The red fivepoint star identifies the sun position at OCO-2 passing time. The numbers inside the circle are zenith angle. The numbers on the outermost circle represent the azimuth angle......80 Figure 4.3. The relationship between eddy covariance GPP and OCO-2 SIF in nadir, hot spot and dark spot views for (a) US-PFa, (b) US-WCr and (c) US-NR1. Coloured lines Figure 4.4. The relationship between normalised APAR and OCO-2 SIF at 757 nm in nadir, hot spot and dark spot views for (a) US-PFa, (b) US-WCr and (c) US-NR1. Figure 4.5. The relationship between LUE and normalised OCO-2 SIF yield in the nadir, hot spot and dark spot directions for (a) US-PFa, (b) US-WCr and (c) US-NR1. Coloured

Figure 4.6. FLiES-SIF model simulated SIF at 757 nm at the solar principal plane, and solar zenith angle was set to 20°. SIF value has been scaled from 0 to 1 mW/m2/sr/nm. Negative values of the VZA mean a backward direction, the positive values signify a Figure 4.7. (a) The correlation between OCO-2 SIF and GPPEc for three study sites. (b) The correlation between GPP and normalised SIF by SZA for three study sites. The black Figure 4.8. (a) The correlation between OCO-2 SIF yield and LUE for three study sites. (b) The correlation between normalised LUE and normalised SIF yield by APAR for three Figure 4.9. Relative importance of VPD, Ta, SWC, PAR and NEE for SIF viewing in Figure 5.2. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the variation of total chlorophyll content at (a) 680 nm and (b)740 nm. 102 Figure 5.3. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the variation of leaf density at (a) 680 nm and (b) 740 nm.....103 Figure 5.4. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the variation of understory reflectance at (a) 680 nm and (b) 740 nm......103 Figure 5.5. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the variation of total chlorophyll content at (a) 680 nm and (b)740 nm.104 Figure 5.6. The scenario I and II's understory reflectance influence on the SIF variation (a)-(d) and its proportion of total and emit SIF (e)-(h) at 680 nm and 740 nm.106 Figure 5.7. The scenario I and II's fraction of vegetation cover influenced on the SIF variation (a)-(d) and its proportion of total and emitted SIF (e)-(h) at 680 nm and 740 nm. Figure 5.8. The scenario I and II's leaf density influenced on the SIF variation (a)-(d) and its proportion of total and emitting SIF (e)-(h) at 680 nm and 740 nm.108 Figure 5.9. Scenario I and II's total chlorophyll content influence on the SIF variation (a)-(d) and its proportion of total and emitted SIF (e)-(h) at 680 nm and 740 nm.108 Figure 5.10. Variations of Red SIF as influenced by FVC, understory reflectance, and leaf density in scenario I. The points represent the average SIF value of given conditions.110 Figure 5.11. Variations of Red SIF as influenced by FVC, understory reflectance and leaf density in scenario II. The points represent the average SIF value of given conditions. Figure 5.12. Variations of far-red SIF was influenced by FVC, understory reflectance, and leaf density in scenario I. The points represent the average SIF value of given conditions......111 Figure 5.13. Variations of far-red SIF was influenced by FVC, understory reflectance and leaf density in scenario II. The points represent the average SIF value of given conditions. Figure 5.14. Variations of Red SIF was influenced by FVC, understory reflectance and total chlorophyll content in scenario I. The points represent the average SIF value of given conditions......112 Figure 5.15. Variations of Red SIF as influenced by FVC, understory reflectance and total chlorophyll content in scenario II. The points represent the average SIF value of given

Figure 5.16. Variations of far-red SIF as influenced by FVC, understory reflectance and
total chlorophyll content in scenario I. The points represent the average SIF value of given
conditions
Figure 5.17. Variations of far-red SIF as influenced by FVC, understory reflectance and
total chlorophyll content in scenario II. The points represent the average SIF value of
given conditions
Figure 5.18. Relative importance analysis for Scenarios I and II

List of Tables

Table 1.1. Summary of SIF satellite data available 13
Table 2.1. The R2 and RMSE of the training group and validation group, which predicted
by GPR model
Table 2.2. Settings for FLiES, SCOPE and DART model
Table 2.3. Correlation of determination of FLiES model, DART model, and SCOPE
model simulated SIF with field measured SIF for sunny days and cloudy days, all p-value
are less than 0.001
Table 3.1. GPR trained and validated results 54
Table 3.2. Settings for FLiES-SIF model 55
Table 3.3. The PAR, SIF and Canopy cover for overstory and understory in AU-TTE,
AU-LIT and AU-CUM
Table 5.1. Database for FLiES-SIF model simulations 101
Table 5.2. The regression model for SIF and canopy structures and understory properties.
X indicates red SIF or far-red SIF. SIF was the total of scenario I and II. All the p-value
was less than 0.01

Abbreviations

1D	1 Dimensional
3D	3 Dimensional
APAR	Absorbed Photosynthetic Active Radiation
Biome-BGC	Biome BioGeochemical Cycles
BRDF	Bidirectional Reflectance Distribution Function
Cab	total chlorophyll content
Cca	Carotenoid content
Cd	leaf dry matter
СНМ	Canopy Height Model
CIgreen	green Chlorophyll Index
Cw	leaf water thickness
DART	Discrete Anisotropic Radiative Transfer
EF-matrix	Excited Fluorescence Matrices
ESA	European Space Agency
EVI	Enhanced Vegetation Index
FLD	Fraunhofer Line Discrimination
FLiES	Forest light environmental simulator
FluorWPS	Fluorescence model with Weighted Photon Spread method
FOV	Field Of View
fPAR	Fraction of Photosynthetically Active Radiation
fqeI	fluorescence quantum efficiency for photosystem I
fqeII	fluorescence quantum efficiency for photosystem II
FVC	Fraction of Vegetation Cover
GOME-2	Global Ozone Monitoring Experiment-2
GOSAT	Greenhouse Gases Observing Satellite
GPP	Gross Primary Productivity
GPR	Gaussian Processes Regression
IA	Inner Antenna
LAI	Leaf Area Index
IGBP	International Geosphere-Biosphere Programme

LiDAR	Light Detection And Ranging	
LUE	Light Use Efficiency	
MODIS	MOderate resolution Imaging Spectroradiometer	
Ν	leaf structure	
NEE	Net Ecosystem Exchange	
NDVI	Normalized Difference Vegetation Index	
NPQ	NonPhotochemical Quenching	
OA	Outer Antenna	
OCO-2	Orbiting Carbon Observatory-2	
PAR	Photosynthetic Active Radiation	
PRI	Photochemical Reflectance Index	
PPFD	Photosynthetic Photon Flux Density	
PSI	Photosystem I	
PSII	Photosystem II	
RBF	Radial-Basis Function	
RMSE	Root Mean Square Error	
RTM	Radiation Transfer Model	
SAA	Solar Azimuth Angle	
SCIAMACHY	SCanning Imaging Absorption SpectroMeter for Atmospheric	
	CHartographY	
SCOPE	Soil Canopy Observation, Photochemistry and Energy fluxes	
SFM	Spectral Fitting Method	
SI	Scenario I	
SIF	Sun-Induced chlorophyll Fluorescence	
SII	Scenario II	
SWC	Soil Water Content	
SZA	Solar Zenith Angle	
Та	air Temperature	
TOC	Top Of Canopy	
TROPOMI	TROPOspheric Monitoring Instrument	
UAV	Unmanned Aerial Vehicles	
VAA	View Azimuth Angle	
VI	Vegetation Indices	

Vmax	Maximum Carboxylation Velocity
VPD	Vapour Pressure Deficit
VPM	Vegetation Photosynthesis Models
VZA	View Zenith Angle

Abstract

Recently, measurements of sun-induced chlorophyll fluorescence (SIF) has become a new approach to estimate vegetation photosynthetic activity and detect vegetation stress. However, the environmental factors controlling SIF largely remain unknown for different vegetation biome types. In addition, SIF measured at the top of canopy (TOC) is confounded by interactions between solar radiation and vertical canopy structures. Hence, development of three-dimensional (3-D) radiative transfer models, capable of simulating SIF, would be of immense benefit to test and verify various hypothesises.

The goal of this thesis is to develop a new 3-D SIF model and apply it to assess the relationship between SIF and plant photosynthetic activity across different spatial and temporal scales. Specifically, I (1) developed a new SIF module for FLiES (Forest Light Environmental Simulator) model (FLiES-SIF) and validated it with SIF observations at the seasonal scale; (2) partitioned SIF signals to overstory and understory layers by using FLiES-SIF, and then analysed the impact of solar radiation and canopy structure on understory SIF; (3) normalized the OCO-2 SIF dataset at nadir, hotspot and darkspot viewing directions by using the FLiES model, and assessed the relationship between SIF and GPP; and (4) identified that SIF observed at the top of canopy was strongly influenced by understory reflectance and canopy structure.

Results showed (1) the TOC SIF simulated by FLiES-SIF was closely correlated with SIF observations at a forest test site, and its performance was better than a 1-D model (Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE) and 3-D model (Discrete anisotropic radiative Transfer, DART); (2) the SIF emitted from understory contributed more than 51 % to the total SIF in the wet season of a tropical savanna site, however, it only accounted for less than 10% of total SIF in an evergreen forest site; (3) SIF was most correlated with GPP in the hotspot direction, and the normalised SIF yield could better explain the variations of light use efficiency (LUE); (4) compared to canopy structure and leaf properties, the understory reflectance was the primary factor influencing the observed SIF at the top of the canopy.

This thesis highlights the advantage of FLiES-SIF in capturing vegetation photosynthetic activities of ecosystems with complex canopy structures. This will significantly improve

our understanding of vegetation responses to climate change, and this model can be implement for numerous related purposes.