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Abstract 
 

Recently, measurements of sun-induced chlorophyll fluorescence (SIF) has become a 

new approach to estimate vegetation photosynthetic activity and detect vegetation stress. 

However, the environmental factors controlling SIF largely remain unknown for different 

vegetation biome types. In addition, SIF measured at the top of canopy (TOC) is 

confounded by interactions between solar radiation and vertical canopy structures. Hence, 

development of three-dimensional (3-D) radiative transfer models, capable of simulating 

SIF, would be of immense benefit to test and verify various hypothesises. 

The goal of this thesis is to develop a new 3-D SIF model and apply it to assess the 

relationship between SIF and plant photosynthetic activity across different spatial and 

temporal scales. Specifically, I (1) developed a new SIF module for FLiES (Forest Light 

Environmental Simulator) model (FLiES-SIF) and validated it with SIF observations at 

the seasonal scale; (2) partitioned SIF signals to overstory and understory layers by using 

FLiES-SIF, and then analysed the impact of solar radiation and canopy structure on 

understory SIF; (3) normalized the OCO-2 SIF dataset at nadir, hotspot and darkspot 

viewing directions by using the FLiES model, and assessed the relationship between SIF 

and GPP; and (4) identified that SIF observed at the top of canopy was strongly influenced 

by understory reflectance and canopy structure. 

Results showed (1) the TOC SIF simulated by FLiES-SIF was closely correlated with SIF 

observations at a forest test site, and its performance was better than a 1-D model (Soil 

Canopy Observation, Photochemistry and Energy fluxes, SCOPE) and 3-D model 

(Discrete anisotropic radiative Transfer, DART); (2) the SIF emitted from understory 

contributed more than 51 % to the total SIF in the wet season of a tropical savanna site, 

however, it only accounted for less than 10% of total SIF in an evergreen forest site; (3) 

SIF was most correlated with GPP in the hotspot direction, and the normalised SIF yield 

could better explain the variations of light use efficiency (LUE); (4) compared to canopy 

structure and leaf properties, the understory reflectance was the primary factor 

influencing the observed SIF at the top of the canopy.  

This thesis highlights the advantage of FLiES-SIF in capturing vegetation photosynthetic 

activities of ecosystems with complex canopy structures. This will significantly improve 
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our understanding of vegetation responses to climate change, and this model can be 

implement for numerous related purposes. 
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Chapter 1. Introduction 
  



2 

1.1. Research background 

1.1.1. Global carbon cycle under climate change 

1.1.1.1. Carbon cycle 
The carbon cycle plays a significant role in our environment (Braswell et al. 1997; Cao 

& Woodward 1998). There are five primary carbon pools: atmosphere, ocean, biosphere, 

soil organic matter and lithosphere (Dixon et al. 1994). Carbon is cycled among those 

pools. Atmospheric carbon dioxide (CO2) turns into carbohydrates by the process of 

photosynthesis in vegetation (Figure 1.1). CO2 is produced by animals and 

microorganisms through the consumption and oxidation of carbohydrates, via respiration, 

which will return to the atmosphere.  

 

Figure 1.1. The global carbon cycle (https://www.sciencelearn.org.nz/resources/689-the-

ocean-and-the-carbon-cycle, 2019) 

Terrestrial ecosystems account for one-third of the earth’s surface, and a large amount of 

carbon is absorbed from the atmosphere to vegetation by the process of photosynthesis 

(Falkowski et al. 2000). About half of the absorbed carbon is released to the atmosphere 

by vegetation’s respiration function.  

The carbon sink is the accumulation and storage of carbon-containing chemical 

compounds. Globally, forests constitute most of the main carbon sink which mainly 

happens in the terrestrial ecosystem, accounting for almost 80% of the aboveground 

https://www.sciencelearn.org.nz/resources/689-the-ocean-and-the-carbon-cycle
https://www.sciencelearn.org.nz/resources/689-the-ocean-and-the-carbon-cycle
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carbon sink and 40% of the belowground carbon sink (Dixon et al. 1994). The remaining 

carbon sink occurs in croplands, wetlands, grasslands and savannahs (Watson et al. 2000). 

In recent years, global climate warming has become an emergency issue for human beings. 

The concentration of CO2 dramatically increased to 414.83 parts per million (ppm) in 

2019 from 285 ppm in 1850 (Dong et al. 2019). Consequently, land surface temperature 

has risen 0.8 °C above the global annual average. The high concentration of CO2 and 

climate warming will bring extreme events and lead to the rising of sea levels and melting 

glaciers (Rosenzweig et al. 2001). Furthermore, it will impact people’s health and living 

environment. 

1.1.1.2. GPP in the global carbon budget 
Gross primary productivity (GPP) is the amount of carbon biomass which is generated by 

primary producers. It is used to estimate the carbon sequestration capacity of the 

terrestrial ecosystems during photosynthesis (Beer et al. 2010; Magnani et al. 2007; 

Schimel et al. 2015). GPP impacts how much energy can be produced by vegetation, 

however, GPP cannot be measured directly, and thus eddy covariance data is used to 

partition GPP, as in the following formula: 

𝐺𝑃𝑃 = 𝑁𝐸𝐸 − 𝑅𝑒𝑐𝑜 (1-1) 

Net ecosystem exchange of carbon dioxide (NEE) is used for measuring carbon exchange 

between ecosystem and the atmosphere (Turner et al. 2006). When NEE value is negative, 

it means carbon dioxide uptake, while positive NEE value indicates CO2 release to the 

atmosphere. The 𝑅𝑒𝑐𝑜  term refers to the respiration of the ecosystem. With the 

development of eddy covariance studies, almost 500 flux sites have already been 

implemented worldwide to monitor the variation of CO2, temperature, precipitation and 

windy days and nights (Baldocchi et al. 2001; Reichstein et al. 2007). The network of 

flux site covers all of the vegetation functional types. 

Besides the field measurement approach, GPP data can also be obtained by MODIS 

(Moderate Resolution Imaging Spectroradiometer) satellite surface reflectance and 

Biome-BGC (biome biogeochemical cycles) models (Running et al. 2004). It offers an 

efficient way to estimate and evaluate GPP across the various temporal and spatial 

resolutions (Zhao, Running & Nemani 2006). However, some studies showed that 

MODIS GPP underestimated GPP when compared to the eddy covariance GPP in a highly 

productive area, and overestimated in a lower productive area (Turner et al. 2006; Turner 
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et al. 2003). Hence, vegetation photosynthesis models (VPM) were developed to estimate 

GPP by using vegetation indexes and temperature, showing excellent performance in 

forests and overcoming the shortage of the MODIS GPP (Zhang, Xiao, et al. 2017). 

GPP can be presented by using the light use efficiency model, which simplifies the 

process of photosynthesis (Monteith 1972; Monteith 1977). It assumes photosynthesis is 

related to the light condition. Hence, GPP can be presented as follows, 

𝐺𝑃𝑃 = 𝐿𝑈𝐸𝑝 × 𝑓𝑃𝐴𝑅 × 𝑃𝐴𝑅 (1-2) 

𝐿𝑈𝐸𝑝  means the light use efficiency for photosynthesis, 𝑃𝐴𝑅  represents the 

photosynthetic active radiation and 𝑓𝑃𝐴𝑅  is the fraction of absorbed photosynthetic 

active radiation. This equation presents how much APAR (absorbed photosynthetic active 

radiation, 𝐴𝑃𝐴𝑅 = 𝑓𝑃𝐴𝑅 × 𝑃𝐴𝑅 ) can be transferred to photosynthesis. 𝑃𝐴𝑅  can be 

measured from the satellite data, 𝑓𝑃𝐴𝑅  is retrieved from surface reflectance by an 

empirical model (Running et al. 2000; Wang et al. 2001). 𝐿𝑈𝐸𝑝 varies according to the 

vegetation functional types (Sims et al. 2008), growing season and environmental stresses, 

which makes 𝐿𝑈𝐸𝑝 estimation difficult (Nakaji et al. 2007). 𝐿𝑈𝐸𝑝 at the canopy scale is 

related to the latent heat flux, net radiation, carbon flux and water flux. Researchers also 

tried to use vegetation index, e.g. photochemical reflectance index ( 𝑃𝑅𝐼 =

(𝜌531 − 𝜌570) (𝜌531 + 𝜌570)⁄ ), to estimate 𝐿𝑈𝐸𝑝 (Drolet et al. 2008; Garbulsky et al. 

2011; Penuelas, Filella & Gamon 1995). Although PRI can track the seasonal change of 

𝐿𝑈𝐸𝑝 , the coarse temporal resolution of satellite products produced PRI estimates 

divergent from previous studies, and besides, it needs further validation (Gamon et al. 

2016; Nakaji et al. 2014; Stöckli et al. 2008). In addition, PRI’s estimates, which explains 

LUE changes and is also varied within vegetation functional types, showed the best 

performance when analysed together with vapour deficit pressure (Nakaji et al. 2014). 

In summary, eddy covariance measurements are the most accurate approach for 

estimating GPP. Due to the limited flux tower network in the world, it cannot estimate 

GPP globally using interpolation methods. Thus, light use efficiency models are more 

commonly applied and are currently the most reliable method to estimate vegetation 

productivity. However, there is still much uncertainty that needs to be addressed and 

results that need to be validated.  
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1.1.2. Photosynthesis and Chlorophyll fluorescence  

1.1.2.1. Photosynthesis 
Photosynthesis impacts the global carbon cycle and plays a critical role in supplying 

energy to life (Frank et al. 2015; Mercado et al. 2009). It takes place in the chloroplasts 

and converts CO2 utilising light with water to sugar and oxygen (Figure 1.2). This process 

consumes greenhouse gas and releases the O2 for supporting almost all life on Earth. 

Photosynthesis is prone to be influenced by climate change and extreme events, such as 

flooding, heat waves and drought (Fay et al. 2008; Heimann & Reichstein 2008), hence, 

it is a good indicator of vegetation responses to environmental stress. Gurney et al. (2008) 

suggested that global terrestrial photosynthesis can be used to identify the global 

terrestrial carbon sinks and sources and its estimation was consistent with long-term 

measurements of CO2. 

 

Figure 1.2. The process of photosynthesis (Rasmussen & Minteer 2014) 

At the leaf level, there are three primary factors impacting photosynthetic activities: 

irradiance, carbon dioxide concentration and temperature (Bassow & Bazzaz 1998). At 

stable temperatures, the carbon assimilation relies on the variation of irradiance. The 

positive correlation between irradiance and carbon assimilation is reported, but carbon 

assimilation saturates at high levels of irradiance (LONG 1991). At low irradiance, the 

temperature affects the ability of the leaf to assimilate carbon. The positive patterns of 

carbon assimilation and temperature are reported at high irradiance levels (Beer et al. 

2010). 
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However, photosynthesis at the canopy scale is affected by canopy structure (Ryu, Berry 

& Baldocchi 2019). The canopy density decides how much radiation can be absorbed by 

leaves and penetrate the canopy directly. The canopy interception can be presented as 

below, 

𝑖0 = 1 − 𝑒𝑥𝑝 [−
𝐿𝐴𝐼Ω(𝜃)𝐺(𝜃)

cos(𝜃)
] (1-3) 

where LAI is the leaf area index (the dimensionless quantity that characterises the density 

of plant canopies), Ω(𝜃)  is the clumping index at a giving angle, 𝐺(𝜃)  is the leaf 

projection at a giving angle, and 𝜃 is the solar zenith angle. In order to calculate the 

canopy interception, LAI, leaf angle distribution and clumping index are essential 

(Myneni, Ross & Asrar 1989; Stenberg, Mõttus & Rautiainen 2016). LAI data can be 

provided by MODIS, but its sensors degradation brings difficulties for long-term analysis 

(Zhang, Song, et al. 2017). In addition, the non-conformity between MODIS LAI and 

GLOMAP LAI contributes to uncertainties for remote sensing studies using LAI (Jiang 

et al. 2017; Liu, Liu & Chen 2012). Fang et al. (2012) reported that the relative uncertainty 

of global LAI products is higher than twenty percent in forest environments. The various 

leaf angle distributions also increase the difficulties for modelling LAI (Knyazikhin et al. 

1998).  

In recent decades, LiDAR (Light Detection And Ranging) remote sensing has been used 

to successfully map LAI and canopy interception, because its high spatial resolution and 

cloud points provide accurate quantification of the leaf angle distribution and LAI (Bailey 

& Mahaffee 2017). However, the scan time cannot meet the requirements of the field 

studies. The clumping index varies with viewing angle and leaf density (Ryu et al. 2010). 

Different patterns of clumping index and viewing angle are reported in mature forests and 

sparse vegetation areas (Chen, Menges & Leblanc 2005).  

1.1.2.2. Chlorophyll fluorescence 
When sunbeams reach the surface of the leaves, part of the light photon is absorbed by 

their pigment system, and leaf emits the fluorescence (Meroni et al. 2009; Moya et al. 

2004). The reemitted light is called sun-induced chlorophyll fluorescence (SIF). SIF is 

very weak and accounts for only about 1% of the total reflected sunlight. The SIF 

spectrum ranges from 650 nm to 800 nm. It has two peaks, one is at the 685 nm (red SIF), 
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which presents the information of photosystem II (PSII) (Iermak et al. 2016). The other 

peak is at 740 nm, which carries the information of both photosystems I (PSI) and II.  

Chlorophyll fluorescence transferring from leaf cells to canopy level is a complex process 

(Porcar-Castell et al. 2014). First, excitation energy transfers between leaf pigments inter 

antenna (IA), outer antenna (OA), core and reaction centre (Engel et al. 2007). During the 

photochemistry process, part of the energy is excited as chlorophyll fluorescence and lost 

as heat. Second, at the photosystem scale, the photochemical and non-photochemical 

processes decide the quantum yield of fluorescence (Figure 1.3). 

 

Figure 1.3. The generation of fluorescence from leaf to canopy scale (Porcar-Castell et al. 

2014). 

The fluorescence spectrum relies on the chlorophyll-protein and antenna structures. When 

we review at the chloroplast scale, both photosystem I and photosystem II affects the 

fluorescence signal, but their impacts on the spectral property and fluorescence quantum 

yield are non-uniform (Shinkarev & Govindjee 1993). Third, the leaf has its own 

mechanism which controls cell and chloroplasts to maximize the absorbed light usage for 
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photosynthesis. Lastly, at the canopy scale, the light intensity vertically influences the 

reemitted fluorescence. 

From the energy aspect, light usage excitation and consumption keep unity (Frankenberg 

& Berry 2018). At the initial period of photosynthesis, chlorophyll molecules can process 

solar energy. The dedicated proteins can convert a part of this energy (𝜙𝑃) and use it for 

photochemistry (Schlau-Cohen & Berry 2015). A fraction of energy, 𝜙𝐹, is reemitted as 

fluorescence. Part of the energy (𝜙𝐷) is wasted and lost when photochemical centres are 

damaged by light saturation. The 𝜙𝑃  does not increase with light increases. Unused 

energy is not dissipated as 𝜙𝐷 because the leaf has its own mechanism to manage the 

excess through a regulatory process called nonphotochemical quenching (NPQ) (Fig.4.). 

This part of energy (𝜙𝑁) is dissipated as heat. Because of the energy balance, energy 

usage and consumption can be written as, 

𝜙𝑃 + 𝜙𝐹 + 𝜙𝑁 + 𝜙𝐷 = 1 (1-4) 

The fluorescence quantum yield (𝜙𝐹) can be calculated as, 

𝜙𝐹 =
𝐾𝐹

𝐾𝑃 + 𝐾𝐹 + 𝐾𝑁 + 𝐾𝐷
 (1-5) 

where 𝐾  represents photosynthesis ( 𝐾𝑃 ), fluorescence ( 𝐾𝐹 ), NPQ ( 𝐾𝑁 ) and heat 

dissipation (𝐾𝐷). Normally, the fluorescence quantum yield accounts for a very small 

amount of the total energy (1%), so the sum of 𝜙𝑃, 𝜙𝑁, and 𝜙𝐷 is about one hundred fold 

of 𝜙𝐹. This explains why fluorescence is weak and is hard observe. Every quantum yield 

is not constant, and they vary with the environmental stresses (heat or drought) (Schlau-

Cohen & Berry 2015). One can see from Figure 1.4 that light is mostly converted to 

photosynthesis (almost 80 %) in leaves that are deeply shaded. However, with the increase 

of light intensity, 𝜙𝑃  declines and 𝜙𝑁  increases. These estimates suggest that 

photosystems cannot fully use light under drought conditions. Also, 𝜙𝐹 can reflect the 

plant stress status even given the tiny fraction of total energy usage.  
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Figure 1.4. The fluorescence quantum yield (Schlau-Cohen & Berry 2015) 

1.1.2.3. The link between photosynthesis activity and chlorophyll 

fluorescence 
In the light use efficiency model, SIF can be represented as, 

𝑆𝐼𝐹 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝐿𝑈𝐸𝑓 × 𝑓𝑒𝑠𝑐  (1-6) 

where 𝐿𝑈𝐸𝑓 is the light use efficiency for fluorescence and 𝑓𝑒𝑠𝑐  is the escape ratio of 

fluorescence. When combined, equations 1-2 and 1-6, clearly show the relation between 

SIF and GPP: 

𝐺𝑃𝑃 = 𝑆𝐼𝐹 ×
𝐿𝑈𝐸𝑝

𝐿𝑈𝐸𝑓
× 𝑓𝑒𝑠𝑐

−1 (1-7) 

Equation 1-7 illustrates how the relationship between SIF and GPP is related to the 

radiation, canopy structure and leaf biochemical parameters. Because chlorophyll content 

is mainly absorbed by APAR, SIF is better at predicting APAR, and presents a good 

correlation with GPP in crops and grasslands (Guanter et al. 2014b). SIF escape ratio (𝑓𝑒𝑠𝑐) 

is important for monitoring SIF in areas with a complex canopy structure. Because it 

shows the high probability of collision in the needle forest, Yang & van der Tol (2018) 

used the SCOPE (Soil canopy observation, photochemistry and energy fluxes) model to 

build a database of simulations and found that 𝑓𝑒𝑠𝑐  is related to the reflectance, however, 

contribution of this method to correcting SIF is still uncertain.  
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Figure 1.5. The relationship between SIF and photosynthesis (Gu et al. 2019a)  

The relationship between SIF and GPP was found to vary with vegetation functional types 

and environmental factors (Frankenberg et al. 2011; Sun et al. 2017) (Figure 1.5). For 

example, the relationship of SIF and GPP is temporally diverse across the growth stage, 

the light conditions, fraction of cloud cover and temperature (Miao et al. 2018; Yang, 

Ryu, et al. 2018). Additionally, SIF was found to mainly carry the information of APAR, 

but cannot adequately explain the variation of 𝐿𝑈𝐸𝑝, hence, these findings do not support 

SIF as a proxy for photosynthesis (Wieneke et al. 2018c; Wohlfahrt et al. 2018b). The 

relationship between SIF and GPP is also present across cropland, grassland and forest 

(Damm et al. 2015b).  

Sunny and cloudy days influence the relationship between SIF and GPP. Photosynthesis 

is prone to be saturated during high PAR for croplands, but this phenomenon does not 

appear in more complex canopy structures (Yang et al. 2015b). GPP on a cloudy day is 

slightly higher than on a sunny day in forests (Gu et al. 2003), indicating that high levels 

of diffuse radiation may increase fluorescence ability. 

Although SIF presents a close relationship with photosynthetic activities, there are still 

some uncertainties in using SIF to estimate GPP (Ryu, Berry & Baldocchi 2019). For 

example, the field-measured and remotely sensed SIF contain errors, associated with the 

various retrieving methods for SIF retrieval and the calibration of the spectrometer. There 

is still a lack of tools to validate SIF and GPP across different scales. Even with 

established SIF field sensors, the limited field of view (FOV) cannot reveal the true 

relationship of SIF and GPP at the canopy scale. Airborne SIF data can minimise the gap 

between the coarse spatial resolution and directly validate with the satellite SIF 
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(Frankenberg et al. 2018; Rascher et al. 2015). The relation between 𝐿𝑈𝐸𝑝 and 𝐿𝑈𝐸𝑓 is 

not clear for various temporal scales and vegetation functional types. Sunlit and sunshade 

leaves’ contribution total SIF are under discovery. Due to the light transmission at the 

canopy layers, within the depth of the canopy, the lower leaves emit less SIF compared 

to the illuminated leaves, but the vertical SIF distribution is still not completely known. 

Satellite SIF presents the instantaneous SIF, but how to scale the instantaneous SIF to the 

daily SIF considering the variations in light conditions remains a challenge (Zhang et al. 

2016). 

1.1.2.4. Remote sensing of SIF 
The first global SIF map was provided by the Japanese Greenhouse Gases Observing 

Satellite (GOSAT) satellite in 2011 (Frankenberg et al. 2011; Guanter et al. 2012). The 

spectrometer of GOSAT is TANSO-FTS and covers the 755-775 nm region, with spectral 

resolution of 0.025 nm (Frankenberg et al. 2011). It can extract SIF signal by using 

Fraunhofer line at the 757 and 770 nm. However, its spatial resolution is 10.5 km, and 

observations are not continuous. In 2012, Joiner et al. (2012) retrieved global SIF signal 

at 866 nm from SCIAMACHY (SCanning Imaging Absorption SpectroMeter for 

Atmospheric CHartographY) satellite data based on CaII Fraunhofer line. Köhler, 

Guanter & Joiner (2015) retrieved global spatially continuous SIF data at 740 nm from 

SCIAMACHY data (Köhler, Guanter & Joiner 2015b). After the launch of the Global 

Ozone Monitoring Experiment–2 (GOME-2) by the European Space Agency, SIF studies 

have become much more convenient. GOME-2 provides four channels, and the fourth 

channel can cover 590 – 790 nm and its spatial resolution is 40 km * 80 km. However, 

from July 2013, the GOME-2 sensor MetOp-A’s spatial resolution increased to 40 km * 

40 km. Also, Joiner et al. (2016) used SCIAMACHY and GOME-2 SIF data to retrieve 

the red SIF for mainlands and oceans. 

Due to the coarse spatial resolution of previous mentioned SIF satellite products, studies 

of the SIF distribution in finer spatial resolutions are still lacking. OCO-2 (Orbiting 

Carbon Observatory-2) was launched in July 2014 and provided high spectral resolution 

in 757 – 775 nm. Its FWHM (full width at half maximum) is 0.042, while the spatial 

resolution is 1.3 km * 2.25 km. The disadvantage of OCO-2 is that its observations are 

spatially discontinuous, which brings difficulties for long-term analysis (Frankenberg et 

al. 2014). TROPOMI (TROPOspheric Monitoring Instrument) is the newest SIF satellite 

and provides SIF data from the end of 2017. The medium spatial resolution (7 km * 3.5 
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km) and almost daily observations will make TROPOMI become the most powerful SIF 

satellite in the future (Guanter et al. 2015; Köhler, Frankenberg, et al. 2018) (Figure 1.6, 

Error! Reference source not found.). 

 

Figure 1.6. Comparison between TROPOMI, GOME-2, and OCO-2 SIF in the Nile 

region (Köhler, Frankenberg, et al. 2018) 

Satellite SIF datasets are widely used to identify vegetation responses to environmental 

stress. Lee et al. (2013) used GOSAT SIF to identify SIF variations with the water supply 

in the Amazon. He and his collaborators found the both SIF and water supply decreased 

in the dry season, and that SIF presented a positive pattern with GPP. Sun et al. (2015) 

used GOME-2 SIF to monitor the significant drought in North America and found that 

SIF can be used to reflect the vegetation responses to extreme droughts. Yoshida et al. 

(2015) studied SIF variations in the Russian drought of 2010, and their results showed 

that SIF did not decline in croplands and forests, which was inconsistent with previous 

studies. 

Remote sensing of SIF has also been used in phenology studies. Phenology is used to 

identify the seasonality of vegetation activity (Jeong et al. 2017). It is a significant 

indicator of vegetation responses to climate change (DRAGONI et al. 2011; Richardson 
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et al. 2010). Phenology is dependent on the greenness of the leaf, leaf chlorophyll content 

and environmental factors. Some studies have been pointing to an earlier onset of the 

growing stage than before, due to climate warming. For example, Piao et al. (2008) 

showed that the variation of phenology will prolong the growing stage and increase the 

rate of photosynthesis and respiration. The accurate extraction of the vegetation 

phenology is helpful for understanding and predicting the global carbon cycle (Bauerle et 

al. 2012). 

Table 1.1. Summary of SIF satellite data available 

 SCIAMACHY GOME-2 GOSAT OCO-2 TROPOMI 

Data 

availability 

Aug 2002 – 

Mar 2012 

Aug 2007 - 

present 

Oct 2009 - 

present 

Sep 2014 - 

present 

Nov 2017 - 

present 

Overpass time 10.00 LST 9.30 LST 13.30 LST 13.30 LST 13.30 LST 

Nadir pixel 

size 
30 km * 60 km 

40 km * 40 

km 
10.5 km  

1.3 km * 2.25 

km 
7 km * 3.5 km 

Swath width 960 km 1920 km 705 km 10.3 km 2600 km 

Revisit time 6 days 1.5 days 3 days 16 days Almost daily 

Spectral 

coverage 
604 – 805 nm 590 – 790 nm 755 – 773 nm 757 – 775 nm 640 – 784 nm 

Spectral 

resolution 
0.48 nm 0.5 nm 0.025 nm 0.042 nm 0.38 nm 

Signal-to-

noise ratio 
< 3000 < 2000 > 300 < 1000 < 5000 

 

Traditionally, vegetation indices (VI) have been used in phenology for the few last 

decades, but they can only express a static greenness observation of the vegetation and 

cannot reflect the photosynthesis activity (Jeong et al. 2017; WHITE et al. 2009). Due to 

the high correlation between SIF and GPP, SIF has great potential for phenology studies. 

SIF contains the information of radiation and fluorescence quantum yield which can be 

used for detecting canopy stress. Joiner et al. (2014) used GOME-2 SIF to extract the 

phenology matrix for deciduous broadleaf forests, mixed forests and croplands. They 

found the growing stage was shorter than that obtained using the MODIS 𝑓𝑃𝐴𝑅 product.  

Moreover, the SIF extracted phenology is much closer to the measurements from eddy 

covariance towers. Compared to VI, far-red SIF does not experience the saturation issue 

in high productivity areas (Guanter et al. 2014a; Yang et al. 2015b), hence, SIF can be an 



14 

efficient indicator to estimate APAR (Koffi et al. 2015). It implies that SIF can reflect the 

difference in photosynthesis rates when greenness is stable, for example; the vegetation 

responses to drought are related to the fluorescence yield for croplands, grasslands, and 

forests (Sun et al. 2015a; Yoshida et al. 2015). Compared to the variation in chlorophyll 

content, SIF presents higher correlation with water supply in the Amazon forest (Lee et 

al. 2013). Walther et al. (2016) used GOME-2 SIF to extract the phenology matrix for the 

northern evergreen forests, and results showed that the start of the season was one month 

earlier than in the Enhanced Vegetation Index (EVI) data (Walther et al. 2016). Jeong et 

al. (2017) used GOME-2 SIF and GOSAT SIF to extract the phenology for the northern 

forests, and found that the growing season was shorter than that obtained from the 

Normalized Difference Vegetation Index (NDVI). By analysing the relationship between 

SIF, NDVI, GPP and temperature, they showed SIF could better reflect the GPP 

variations. 

1.1.2.5. Field measurements of SIF 
Many spectrometers with control system are used to measure and retrieve fluorescence in 

the field. Normally, SIF systems are installed to monitor SIF and evaluate the relationship 

between fluorescence and GPP. These systems include: FluoSpec, FluoSpec2 and SIF-

Sys (Miao et al. 2018; Yang, Ryu, et al. 2018; Yang et al. 2015b). Nowadays, the 

spectrometers have developed higher spectral resolution. The most widely spectrometer 

is provided by the Ocean Optics Company (HR2000+, HR4000, QE Pro and USB4000) 

(Cogliati et al. 2015; Daumard et al. 2012; Garzonio et al. 2017; Yang et al. 2015a). 

Normally, devices are installed 10 meters above the canopy. The sensor, FloX, is designed 

to measure fluorescence under natural light condition and is coupled with the QE Pro 

spectrometer (Cogliati et al. 2015). A similar system is FluoSpex 2, which contains two 

spectrometers: QE Pro and HR2000+. Another system named FluoNet has been set up 

for monitoring grasslands, forests and croplands (Yang, Shi, et al. 2018). SIF detectors 

have also been mounted on UAVs (unmanned aerial vehicle) (Calderón et al. 2013; 

Zarco-Tejada, González-Dugo & Berni 2012), Piccolo Doppia is the most famous UAV-

SIF system (MacArthur et al. 2014). It consists of a QE Pro spectrometer and two fibres 

which are used to measure the upward and downward radiance. UAV-SIF systems are 

helpful to understand the effects of multi angles on SIF retrievals. 

Extractions of SIF signal include two methods: one is based on the radiance, and another 

one is based on the reflectance. The method based on the reflectance is retrieved as an 
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index (a ratio) for SIF, not a physical quantity. This method consists of three components: 

reflectance ratios, derivatives and infilling index. The ratio method is used widely because 

it is between two reflectances, using wavelengths (680 or 740 nm) which are affected by 

fluorescence and to remove the information from related reflectance. The most widely 

used ratios are 𝑅690 𝑅600⁄  and 𝑅740 𝑅800⁄  (Dobrowski et al. 2005). 

The radiance method is based on Plascyk’s Fraunhofer Line discrimination (FLD). The 

standard FLD needs the inside and outside wavelength in the Fraunhofer line and assumes 

these two regions are close to each other. SIF and radiance are almost the same in these 

two regions. Hence, SIF can be presented as, 

𝑆𝐼𝐹 =  
𝐼𝑜𝑢𝑡𝐿𝑖𝑛−𝐼𝑖𝑛𝐿𝑜𝑢𝑡

𝐼𝑜𝑢𝑡−𝐼𝑖𝑛
  (1-8) 

In equation 1-8, 𝐼𝑖𝑛 and 𝐼𝑜𝑢𝑡 means solar irradiance inside and outside of Fraunhofer line, 

respectively.  

Although the FLD method is a straightforward approach, the SIF and reflectance from 

inside and outside of the Fraunhofer line are not constant, hence, many retrieving methods 

based on FLD have been developed. For example, 3FLD and cFLD are based on 

multispectral data, while iFLD, eFLD, pFLD and SFM (Spectral Fitting Method) are 

based on hyperspectral data (Alonso et al. 2008; Meroni et al. 2010; Meroni & Colombo 

2006). 3FLD is more accurate when compared to the FLD method, and much more stable 

compared to iFLD. Meroni et al. (2010) used simulated data to compare SIF estimates 

from the SFM with FLD methods. They found the performance of SFM is better than the 

traditional FLD method, hence, FLEX project choose SFM as the standard method for 

SIF retrieval (Rascher, Gioli & Miglietta 2008).  

Currently, SIF signals can be extracted from ground-based measurements, airborne and 

space observations (Aasen et al. 2019). The ground-based measurements uses the O2-A 

and O2-B bands because the atmospheric scattering can be ignored between the sensor 

and the target, and the sensor is not disturbed by re-absorption issues. When retrieving 

SIF signals from space, the Fraunhofer line has usually been adopted, but as the width of 

the Fraunhofer line is narrow, hyperspectral data is needed for retrieving SIF. 

1.1.2.6. Modelling of SIF 
Models are an efficient tool to study SIF and can help researchers to understand SIF 

photon transference and distributions. At the leaf scale, there are several famous theories: 
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Beer’s law theory, Kubelka-Munk theory, Stochastic theory and Monte Carlo simulations 

(Emmel 2000; Emmel & Hersch 1998; Ganapol et al. 1998; Pedrós et al. 2010). 

With the development of SIF knowledge, the focus of modelling SIF has been transferred 

from the leaf to the canopy scale. The first SIF model at the canopy scale was the Olioso 

model, developed in 1992 (Olioso, Méthy & Lacaze 1992). The Olioso model assumed 

that light flux followed the Lambert-beer law. This model can only calculate the direct 

solar radiance and generate the radiance in the viewing direction. It can also simulate the 

background reflection of the incident photon and downward emitted radiation. The 

fluorescence consists of these three conditions. 

The FLSAIL model combined the previous SAILH model and the canopy geometry 

(Rosema et al. 1991; Verhoef 1998). This model was developed based on the SAIL model, 

and added a module which can simulate the hot spot effect in a single scattering 

contribution. FLSAIL assumed that the canopy layer is homogeneous and adapts a leaf 

scale fluoresce model based on the Kubelka-Munk theory. The input parameters for 

FLSAIL includes viewing zenith angle, viewing azimuth angle, hot spot parameter, LAI, 

relative leaf thickness, fluorescence quantum efficiency, chlorophyll content and soil 

reflectance. 

In 2002, the ESA (European space agency) started a FluoMOD research plan. This project 

planned to develop leaf scale and canopy scale fluorescence models based on the radiative 

transfer theory. At the leaf scale, Pedrós et al. (2010) developed the FluoMODleaf model 

based on the PROSPECT model and coupled leaf parameters including leaf structure with, 

chlorophyll content, carotenoid content, dry matter and water thickness. This model also 

considered the electron transfer rate and the ratio between solar energy absorption and 

contribution for photosystems I and II. Fluorescence, reflectance and transmittance 

between 400 and 700 nm could be simulated by the FluoMODleaf model. The canopy 

fluorescence model can consider how much radiation can be intercepted by the leaf and 

radiation distribution at vertical layers. Verhoef (1998) developed the FluoSAIL model 

based on the SAIL model. This model coupled with the MODTRAN model to simulate 

the photon transference in the atmosphere. FluoSAIL adapted the output of FluoMODleaf 

and can simulate the fluorescence spectrum between 400 and 1000 nm at 1 nm spectral 

resolution. Zarco-Tejada et al. (2006) developed the user interface software (FluoMOD) 

by combining FluoMODleaf and FluoSAIL. Currently, the FluoMOD fluorescence model 
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can only simulate the fluorescence of vegetation in a non-stressed state and has levels of 

uncertainty when simulating the C4 vegetation under stress conditions.  

SCOPE, as the newest and most widely used radiative transfer model and energy balance 

model, can simulate the reflectance and transmittance at the top of the canopy, 

fluorescence at any given viewing angles and vegetation photosynthesis conditions (Van 

der Tol et al. 2009). This model improves the current understanding of canopy 

photosynthesis and supports the simulation of vegetation’s fluorescence under stress 

conditions. 

SCOPE, FluoSAIL and PROSPECT models are one-dimensional and assume vegetation 

is homogeneous in vertical and horizontal dimensions. However, vegetation presents 

obvious heterogeneity of structure and biochemical properties (Ryu, Berry & Baldocchi 

2019). Usually, a forest system consists of several distinguishable layers, including 

canopy, bush and grass layers. Hence, one-dimensional models cannot meet the 

requirements for proper vegetation properties simulation. This has led to the development 

of three-dimensional fluorescence models.  

The DART (Discrete anisotropic radiative transfer) model integrated with the 

fluorescence module developed by CESBIO (Gastellu-Etchegorry et al. 2017) can 

simulate radiative transfer in a three-dimensional scene. In this model, all objects of 

vegetation and buildings are represented as a matrix of parallelepiped cells, each with its 

own optical properties (reflectance and transmittance). Moreover, the DART model 

allows for fluorescence emission to be simulated in different directions. FluorFLIGHT 

and FluorWPS are new 3D models that can simulate fluorescence at the top of the canopy 

(Hernández-Clemente et al. 2017; Zhao et al. 2016). DART, FluorWPS and 

FluorFLIGHT are all based on the Monte Carlo method and have their own ray-tracing 

frames. They use the FLUSPECT model to generate the Excited Fluorescence Matrices 

(EF-matrix) for PSI and PSII and simulate the fluorescence emission. FluorWPS has been 

used to simulate SIF signal for row crops, and FluorFLIGHT was used to study the 

physiological conditions of forests and found that SIF signal was influenced by canopy 

structure (Hernández-Clemente et al. 2017; Zhao et al. 2016), however, these models have 

not been validated with long-term, seasonal SIF measurements. Also, this model is not 

open source, and users cannot modify the model parameters according to their 

requirements. This increases the difficulties for implementation and understanding of the 

model. 
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The FLiES (Forest light environmental simulator) model is a powerful and open sourced 

three- dimensional radiative transfer model (Kobayashi & Iwabuchi 2008). It is based on 

the Monte Carlo method and a ray-tracing frame. The model generates a large number of 

photons at the beginning of the simulation and uniformly distributes them above the 

simulation area. The model generates the direction of each photon and uses a random 

method to generate the scattering direction when photons collide with objects in the 

simulation area. By repeatedly simulating large numbers of photons, the model produces 

more realistic results. In this study, I will develop a SIF module for the FLiES model and 

validate it with field-measured SIF. Additionally, I will apply the FLiES model to resolve 

issues that field measurements cannot address. 

1.2. Objectives and research questions 

The overall goal of this thesis was to build a three-dimensional fluorescence radiative 

transfer model and use it to interpret the photosynthetic activities of vegetation. The thesis 

objectives were addressed using remotely sensed data, the machine learning method and 

statistical tools. More specifically, I retrieved the key parameters for modelling from 

Sentinel-2 and Landsat surface reflectance data by using Gaussian progress regression 

methods. Field-measured SIF data coupled with remotely-sensed SIF data, including 

observations from GOME-2 and OCO-2 satellites, were used to validate the simulations 

and objectives. Furthermore, I retrieved vegetation structural parameters from LiDAR 

data. The objectives and research questions of this thesis are described below, by chapter; 

Chapter 1: This is the introduction of this thesis. Firstly, I described the significance of 

the global carbon cycle to human beings and the environment, and the relationship 

between GPP and carbon cycle. Then I provided fundamental concepts about SIF and its 

relationship with photosynthesis. I also presented a comprehensive literature review on 

the remote sensing of SIF, field measurements of SIF and existing SIF models. 

Additionally, I pointed out the drawbacks of the current SIF models. Lastly, I listed the 

objectives and research questions of each chapter of this thesis. 

Chapter 2: One-dimensional models assume homogeneous vegetation structure in the 

horizontal dimension, hence, they cannot fully depict the vertical distribution of radiation 

and fluorescence radiance. In order to fill this gap, I integrated the excited fluorescence 

matrices (EF-matrices) and a three-dimensional radiative transfer model (FLiES) based 

on the Monte Carlo method and the photon tracing frame. Vegetation structure and 
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biochemical parameters, including chlorophyll and water content, were retrieved from 

LiDAR data and Landsat surface reflectance by the Gaussian Processes Regression (GPR) 

method, respectively. I aimed to (1) retrieve vegetation structural parameters from 

LiDAR data; (2) retrieve the vegetation biochemical parameters from satellite surface 

reflectance using a machine learning method, and identify their seasonal changes; (3) 

develop a SIF module for the FLiES model; (4) validate a new SIF model with field-

measured SIF in a field site in the United States (Harvard Forest) and compare it to a one-

dimensional and a three-dimensional model; (5) use the newly develop SIF model to 

separate the SIF signal as emitted SIF and scattered SIF, and analyse the relationship 

between these two signals and GPP. This work is useful for understanding the relationship 

between SIF and photosynthetic activities, and offers a robust approach for long-term SIF 

simulations. 

Chapter 3: Although devices deployed on the top of the canopy and SIF satellite data 

(GOME-2 and OCO-2) provide continuous SIF observations, they cannot reveal the 

dynamic change of understory SIF and how it contributes to the local ecosystem carbon 

dynamics. Radiative transfer models have been developed to study SIF emissions, 

however, the one-dimensional models assume the vegetation is homogeneous, and they 

lack the vertical spatial distribution of SIF. A three-dimensional model (FLiES) with the 

a SIF module can study SIF emissions from the overstory and understory layers, and 

improve our understanding of the vertical SIF dynamics within the vegetation. In this 

chapter, I aimed to (1) identify the patterns of SIF emission in overstory and understory 

layers among open shrublands, tropical savannas and evergreen broadleaf forests; (2) 

estimate the GPP of different vegetation types, partition the contribution from overstory 

and understory, and determine how it varies seasonally; (3) examine the factors affecting 

the overstory and understory SIF emissions. This research will be useful for 

understanding how SIF varies across the different vegetation layers and canopy cover 

gradients across several biomes. 

Chapter 4: Under different light conditions (limiting to saturating), SIF and LUE exhibit 

positive or negative patterns for sunlit and sun-shaded leaves and also, variations of sun 

position and viewing angle bring additional uncertainties for the relationship of GPP and 

SIF, SIF yield and APAR, and SIF yield and LUE. In this chapter, I aimed to investigate 

the bidirectional reflectance distribution function (BRDF) effects on the SIF:GPP and SIF 

yield:LUE relationships, and discuss factors that impact SIF emissions from the sunlit 
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and sunshade crown area. The objectives were to (1) identify SIF variations with the view 

zenith angle and view azimuth angle for mixed forests, deciduous broadleaf forests and 

evergreen needleleaf forests at the site level; (2) examine the relationship between SIF 

and GPP for different viewing geometries, and normalise SIF at hotspot and dark spot 

directions to represent sunlit and sunshade crown area, respectively; (3) identify the 

relative importance of environmental factors (vapour pressure deficit, radiation, soil water 

content, etc.) contributing to nadir, hot spot and dark spot groups. This research will be 

useful for understanding sunlit and sunshade SIF variations and their sensitivity to 

environmental factors. 

Chapter 5: SIF is sensitive to environmental stressors, such as heat and water deficit, 

however, SIF and GPP present a strong correlation in dense canopy areas, but a weak 

correlation in areas of sparse vegetation. However, the factors that affect SIF emission 

and scattering within different canopy structural conditions are still unknown. In this 

chapter, I aimed to examine how understory affects observed SIF coupled with leaf 

properties and canopy structures. I implemented a novel SIF module for a three-

dimensional radiative model (FLiES) to generate a database covering 3150 conditions of 

varying of input parameters. Moreover, I tested the effects on the understory under two 

scenarios. Specific objectives were to (1) identify factors affecting the understory-

observed SIF and generate a database for examining different scenarios impact on the 

understory; (2) study the canopy structure, leaf properties and understory reflectance 

influence on SIF retrievals under certain scenarios; (3) apply the relationship between SIF 

parameters and retrievals to analyse implicit factors affecting SIF observations in sparse 

and dense vegetation areas. This research will be useful for understanding how the 

understory layer contributes to SIF variations. 

Chapter 6: This is the conclusion of this thesis. I summarised all findings, highlighted 

significant results and drew conclusions from each research chapter (Chapters 2 - 5). I 

also described the limitations of this thesis and the newly developed SIF model. 

Additionally, I suggested directions for future research in this field. 
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Chapter 2. Enabling the three-dimensional FLiES 

model to simulate seasonal scale sun-induced 

chlorophyll fluorescence  
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Abstract 

Sun-induced chlorophyll fluorescence (SIF) is an effective tool for monitoring terrestrial 

vegetation photosynthesis activities and detecting canopy stress. The close relationship 

between SIF and gross primary production (GPP) allows its use for measuring seasonal 

photosynthetic efficiency in response to environmental stress, including extreme heat and 

drought, and for studying the relationship among SIF, canopy structure and functioning. 

Although SIF can be measured from satellites (OCO-2, GOME-2), complex and multi-

layer vegetation canopy structures and optical interactions with non-vegetation landscape 

components hamper stress detection. Three-dimensional canopy models can potentially 

scale-up leaf-emitted SIF signals to the canopy level in heterogeneous environments, and 

thereby improve productivity retrievals from satellite SIF emissions.  

In this study, we used photon tracing and the Monte Carlo computational algorithms to 

integrate the excited fluorescence matrices (EF-matrices) with a three-dimensional 

radiative transfer model (Forest Light Environmental Simulator, FLiES). Vegetation 

structure parameters were retrieved from LiDAR data and biochemical parameters, 

including chlorophyll content and water content, were retrieved from monthly Landsat 

surface reflectances by the Gaussian Processes Regression (GPR) method. We validated 

the model with seasonal field measures of SIF at Harvard Forest, USA. The coefficient 

of determination (R2) was 0.8 (p-value < 0.001) and root mean square error (RMSE) was 

0.11 mW/m2/sr/nm. The models’ performance for simulating SIF was compared with the 

SCOPE model (one-dimensional) and the DART model (three-dimensional), and 

demonstrated the stable performance of the FLiES-SIF model. Lastly, we found the model 

effective in extracting emitted SIF in the far-red region, resulting in the emitted SIF 

significantly correlated with light use efficiency (LUE), R2 = 0.70 and 0.76 for sunny 

days and cloudy days, respectively. The FLiES-SIF model was found to be an accurate, 

robust and simplified approach for SIF simulation to improve our understanding of the 

coupling between SIF and photosynthesis activity.  

2.1. Introduction 

As a visible indicator, sun-induced chlorophyll fluorescence (SIF) is a new approach to 

study vegetation photosynthesis remotely (Berry 2018). SIF has two peaks, a red SIF 

signal at 680 nm and a far-red signal at 740 nm. The far-red SIF contains information of 

photosystem I and II (PSI, PSII) and is used widely to study photosynthesis activity due 
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to lower re-absorption rates (Poscar 2014). In recent studies, SIF has been used as an 

effective proxy to study vegetation responses to heatwaves and other stress (Song et al. 

2018b; Wieneke et al. 2018a; Wohlfahrt et al. 2018a; Wu, Xiao, et al. 2018). In addition, 

more and more continuing field measurements of SIF (Hu et al. 2018; Miao et al. 2018; 

Yang et al. 2017; Yang, Ryu, et al. 2018; Yang et al. 2015b) would improve the 

understanding of the relationship between SIF and photosynthesis across different 

temporal and spatial scales. 

Because of SIF’s strong correlation with photosynthesis activity, SIF can be used to 

estimate gross primary productivity (GPP). The combined use of SIF field measures with 

flux measurements has become more prevalent in SIF studies. Hence, some field devices 

(FluoSpec, FluoSpec2, SIF-Sys) have been set up to study the relationship of SIF and 

GPP, absorbed photosynthesis active radiation (APAR), and light use efficiency (LUE) 

among crops and evergreen broadleaf forest (Miao et al. 2018; Wieneke et al. 2018a; 

Yang, Ryu, et al. 2018; Yang et al. 2015b). Some studies have found the satellite observed 

SIF to be linearly related to eddy covariance GPP, and that SIF can better capture GPP 

seasonal changes (Frankenberg et al. 2011; Guanter et al. 2014b; Smith et al. 2018). SIF 

has been derived from many satellite platforms, such as GOSAT (Greenhouse Gases 

Observing Satellite) (Frankenberg et al. 2011; Guanter et al. 2014b), GOME-2 (Global 

Ozone Monitoring Instrument 2) (Joiner et al. 2013; Köhler, Guanter & Joiner 2015a) and 

OCO-2 (Orbiting Carbon Observatory 2) (Sun et al. 2017). But the coarse spatial 

resolution of GOME-2 (40 km * 40 km) and disperse temporal observations of OCO-2 

are major disadvantages. The newly launched TROPOMI (TROPOspheric Monitoring 

Instrument) (Köhler, Frankenberg, et al. 2018) might overcome these issues with 7 km * 

3.5 km pixels and daily revisit. 

The SIF signal can be simply divided into leaf emitted SIF and scattered SIF (equation 2-

1, 𝑆𝐼𝐹𝑠𝑐𝑎𝑡𝑡𝑒𝑟  is the scattered SIF, 𝑆𝐼𝐹𝑒𝑚𝑖𝑡𝑡𝑒𝑑  is the emitted SIF, which is observed by 

sensor without any collisions). The scattered SIF signal is affected by canopy structure 

(Damm et al. 2015a; Verrelst et al. 2016), where the scattered fluorescence signal loses 

energy during the scattering effect. The emitted SIF (we can treat it as "pure SIF") 

presents a closer relation with photonsynthesis activity. Due to the low re-absorption of 

leaf in the near-infrared region, far-red SIF would be more suitable to study the link 

between emitted and scattered SIF with photosynthesis. Sensors cannot separate the 

emitted SIF from scattered SIF, however models can fill this gap. 
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𝑆𝐼𝐹 = 𝑆𝐼𝐹𝑠𝑐𝑎𝑡𝑡𝑒𝑟 + 𝑆𝐼𝐹𝑒𝑚𝑖𝑡𝑡𝑒𝑑  (2-1) 

FluorMODleaf (Pedrós et al. 2010) and FluorSAIL (Miller et al. 2005) 1-dimensional 

models were developed to study the fluorescence at leaf and canopy levels, respectively. 

FluorSAIL is based on the SAIL model and simulates fluorescence by using inputs from 

FluorMODleaf. Relying on the FluorSAIL model, SCOPE (Soil Canopy Observation 

Photochemistry and Energy fluxes, 1-dimensional model) was developed to study the leaf 

fluorescence emission at the top of canopy (TOC) for homogeneous canopies (Van der 

Tol et al. 2009). However, these models are unable to be applied over complex vegetation 

canopies, especially for simulating vegetation with horizontal and vertical heterogeneity 

(Porcar-Castell et al. 2014). 

Advanced three-dimensional radiative transfer models for SIF simulation have been 

developed, including FluorWPS (Fluorescence model with Weighted Photon Spread 

method) (Zhao et al. 2016), DART (Discrete Anisotropic Radiative Transfer model) 

(Gastellu-Etchegorry et al. 2017) and FluorFLIGHT (Hernández-Clemente et al. 2017), 

all of which rely on the Monte Carlo method and based on the leaf model FLUSPECT 

(Van der Tol et al. 2009; Verhoef 2011; Vilfan et al. 2016) to generate Excited 

Fluorescence Matrices (EF-matrix) for PSI and PSII, separately. FluorWPS has been used 

to simulate the SIF signal for row crops, and FluorFLIGHT was used to study the 

physiological conditions of forest from which the SIF signal was found to be influenced 

by canopy structure (Zhao et al. 2016).  

However, these models have not been validated for SIF seasonal changes over long term 

periods, constrained by difficulties in providing seasonally-varying input parameters. The 

input biochemical parameters (leaf structure, chlorophyll content, leaf dry matter, leaf 

water, etc.) are critical to SIF variations, as leaf structure, chlorophyll and carotenoid 

content (N, Cab and Cca) influence EF-matrices and reflectance and transmittance 

properties in the PAR and near infrared spectral regions (Verrelst et al. 2016). Measuring 

these input parameters is difficult over seasonal periods, hampering long term SIF 

simulations.  

Machine learning applications offer the potential of seasonal parameter retrievals, with 

some studies successfully applying Gaussian Processes Regression (GPR) methods to 

retrieve total chlorophyll content, leaf area index (LAI) and fraction of vegetation cover 

(FVC) from Sentinel-2 satellite spectral bands with high precision results (Camps-Valls 
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et al. 2016; Verrelst et al. 2012). Machine learning methods offer new possibilities to 

apply 3D radiative transfer models to simulate SIF seasonality through improved 

retrievals of biochemical parameters and geometric shapes of vegetation structure across 

different spatial and temporal resolutions. The machine learning method also avoids the 

complex RTM (Radiation Transfer Model) model inversion and time-consuming 

construction of look-up tables (Kempeneers et al. 2008; Shiklomanov et al. 2016; Zhang 

et al. 2014).  

FLiES model (Forest Light Environmental Simulator) is a three-dimonsional radiative 

transfer model (Kobayashi & Iwabuchi 2008). Its robust ray-tracing frame makes possible 

expanding based on various purposes (Kobayashi et al. 2012). The goal of this study is to 

develop a SIF module for the three-dimensional FLiES model and use machine learning 

to retrieve biochemical parameters from satellite surface reflectances. The seasonal SIF 

simulations are validated with field measured SIF and the performance of the new SIF 

module is compared with other 3-D and 1-D models. The relationships between emitted 

and scattered SIF from the model with GPP are also analysed. This work is useful for 

understanding the relationships between SIF and photosynthesis activities, and offer an 

easy approach for simulating SIF in the long term. 

2.2. Study area and Data 

2.2.1. Study area 

Canopy SIF was measured in Harvard Forest, Petersham, Massachusetts, USA 

(42°32'06″N, 72°10'28″W). The plant function type is deciduous broadleaf forest and 

dominant tree species are red oak and red maple. The annual mean temperature of Harvard 

Forest is around 7.5 °C, and the annual precipitation is about 1200 mm. Snow covers the 

ground for several months during winter. We set a 30 m2 area for model simulations 

covered SIF measurements, and we assume tree species here are homogenous.  

2.2.2. LiDAR data 

We retrieved vegetation structure, shape and height, from the Light Detection and 

Ranging (LiDAR) data. LiDAR data is a remote sensing method that airborne laser is 

pointed at a targeted object on the ground, the beam of light is reflected by the surface it 

encounters. Hence, LiDAR consists of cloud points of vegetation on the ground. LiDAR 

data are provided by G-LiHT (https://gliht.gsfc.nasa.gov), they surveyed Prospect Hill in 
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June 2012. We assumed that vegetation in this area was mature and height and extreme 

crown changing could be ignored. 

A Canopy Height Model (CHM) (McGaughey 2009) is implemented to separate 

vegetation layer and ground layer. The vegetation layer contains the height of each cloud 

point. Then we use crown detect method to locate crown of each vegetation and extract 

each crown’s height, radius and positions. In summary, we get properties of each tree in 

study area. 

2.2.3. Landsat reflectance 

In order to analyse the seasonal change of biochemical parameters, Landsat-8 OLI surface 

reflectance data were gathered from 2013 to 2014. The Landsat 8 OLI launched on the 

11 February 2013 and has a 16 day temporal resolution and 30 m2 spatial resolution. The 

first seven bands (band 1 ~ band 7) of Landsat-8 OLI’s were used to retrieve biochemical 

parameters. Quality control was applied to the data and removed low-quality observations. 

Data extract and process were applied on Google earth engine 

(https://earthengine.google.com/). A total of 22 Landsat images covering two growing 

seasons were processed to surface reflectance (ten scenes for 2013 and twelve scenes for 

2014). 

2.2.4. Eddy covariance GPP  

Daily mean eddy covariance GPP (GPPEC) data was calculated for checking the 

relationship between GPPEC and different model simulations. The R package, REddyProc 

(Wutzler et al. 2018), was implemented to estimate daily mean GPP with hourly eddy 

covariance and meteorological data. This tool used the gap-filling and flux partitioning 

algorithms to partition net flux (NEE) into GPP and field ecosystem respiration 

(Reichstein et al. 2005). The hourly eddy covariance and meteorological data were 

collected from EMS (Environmental Measurements Tower) tower (1.4 km from SIF 

measurements), and we averaged the daily GPP from 6:00 AM to 6:00 PM and remove 

outliers. 

2.2.5. Measured Canopy SIF 

Field measurements of SIF at Harvard Forest were used for validating model simulations 

in this study. The canopy SIF was measured from 2013 to 2014 (Jun 2013 – Oct 2013, 
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May 2014 – Oct 2014). The FluoSpec system was developed to estimate SIF at 760 nm 

(SIFField) with 5 minutes interval in the field 5 m above the top of the canopy. We averaged 

SIF between 6:00 AM and 6:00 PM and removed outliers. Clear sky conditions were 

defined as diffuse radiation / (diffuse radiation + direct radiation) < 0.5. Diffuse radiation 

and direct radiation were measured at EMS tower. More details, please check Yang’s 

study (Yang et al. 2015b). 

2.3. Methodology 

This section briefly describes the framework of SIF simulation and a machine learning 

method used to retrieve biochemical parameters from remotely sensed data.  

2.3.1. FLiES SIF module 

FLiES (version 2.48) model is a three-dimensional radiation transfer model (Kobayashi 

& Iwabuchi 2008; Kobayashi, Suzuki & Kobayashi 2007). It is based on the Monte Carlo 

method and set a large number of photons uniformly distribute above the simulated area. 

The model generates the direction of each photon. Scattering occurs when photon 

collapsed with objects in the simulated scene, and model will calculate scattering 

direction and energy consumption during scattering. We assume that the leaf surface 

followed Lambertian concept. The random number generates scattering direction, 

including reflectance and transmittance. Normally, the ratio of reflectance and 

transmission’s time is 1:1. By repeated simulate large numbers of photons, the result is 

close to the reality. 

We developed the new SIF module for the FLiES model. Based on the original photon 

ray-tracing frame, we separated the photon as non-fluorescence and fluorescence photon. 

For the non-fluorescence photon, its simulation followed the original ray-tracing 

framework. However, for the fluorescence photon, the newly developed module would 

calculate each photon’s scatter direction, and emitted fluorescence which activated by the 

incoming non-fluorescence and fluorescence photon. Before simulation, we applied pre-

tracing progress for calculating the fluorescence correction factor and how much PAR 

reached leaf (Rosema et al. 1998; Zhao et al. 2016). Because the fluorescence correction 

factor changed by the incoming photosynthetic active radiation (PAR). 

The backward and forward emitted fluorescence are calculated as follows, 
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𝑄𝑓𝑏𝑎𝑐𝑘(𝜆𝑓) = ∫ {[𝑄𝑖𝑛(𝜆𝑒) +  𝑄𝑓𝑖𝑛(𝜆𝑒)] ∙ 𝑀𝑃𝑆𝐼(𝜆𝑒, 𝜆𝑓)
750

400

+ [𝑄𝑖𝑛(𝜆𝑒) +  𝑄𝑓𝑖𝑛(𝜆𝑒)] ∙ 𝜙𝑓 ∙ 𝑀𝑃𝑆𝐼𝐼(𝜆𝑒, 𝜆𝑓)} ⅆ𝜆𝑒 

(2-2) 

𝑄𝑓𝑓𝑜𝑟(𝜆𝑓) = ∫ {[𝑄𝑖𝑛(𝜆𝑒) +  𝑄𝑓𝑖𝑛(𝜆𝑒)] ∙ 𝑀𝑃𝑆𝐼(𝜆𝑒, 𝜆𝑓)
750

400

+ [𝑄𝑖𝑛(𝜆𝑒) +  𝑄𝑓𝑖𝑛(𝜆𝑒)] ∙ 𝜙𝑓 ∙ 𝑀𝑃𝑆𝐼𝐼(𝜆𝑒, 𝜆𝑓)} ⅆ𝜆𝑒 

(2-3) 

In these two equations, 𝑄𝑖𝑛  and 𝑄𝑓𝑖𝑛  are incoming non-fluorescence and fluorescence 

flux, separately. 𝑀 is the EF-Matrix, 𝜙𝑓 is the correction factor, which is dependent on 

the incident PAR, 𝑄𝑓𝑏𝑎𝑐𝑘 and 𝑄𝑓𝑓𝑜𝑟 is the backward and forward emitted fluorescence, 

separately. Because the fluorescence yield of PSI generally remains constant under 

illumination, so fluorescence correction factor only multiplied with PSII fluorescence 

yield. Hence, the emitted fluorescence can be calculated as, 

𝑄𝑓𝑒𝑚𝑖𝑡(𝜆𝑓) = 𝑓𝑒𝑠𝑐 × {
𝑄𝑓𝑏𝑎𝑐𝑘(𝜆𝑓) × |𝑛𝑑 ∙ 𝑛𝑙|,          (𝑛𝑑 ∙ 𝑛𝑙)(𝑛′ ∙ 𝑛𝑙) < 0

𝑄𝑓𝑓𝑜𝑟(𝜆𝑓) × |𝑛𝑑 ∙ 𝑛𝑙|,            (𝑛𝑑 ∙ 𝑛𝑙)(𝑛′ ∙ 𝑛𝑙) > 0
 (2-4) 

The 𝑓𝑒𝑠𝑐  is used to check whether the fluorescence can be detected by sensor. If 

fluorescence can reach the sensor, 𝑓𝑒𝑠𝑐  = 1, and 0 otherwise. 𝑛𝑑, 𝑛𝑙 and 𝑛′is the vector for 

scattered direction, leaf surface and incident direction. 

For scattered fluorescence flux, we simply use leaf reflectance and transmittance to be 

multiplied with 𝑄𝑓𝑖𝑛. 

𝑄𝑓𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝜆𝑓) = 𝑓𝑒𝑠𝑐 × {
𝑄𝑓𝑖𝑛(𝜆𝑓) ×  𝑅 × |𝑛𝑑 ∙ 𝑛𝑙|,          (𝑛𝑑 ∙ 𝑛𝑙)(𝑛′ ∙ 𝑛𝑙) < 0

𝑄𝑓𝑖𝑛(𝜆𝑓) ×  𝑇 ×  |𝑛𝑑 ∙ 𝑛𝑙|,         (𝑛𝑑 ∙ 𝑛𝑙)(𝑛′ ∙ 𝑛𝑙) > 0
 (2-5) 

In this equation, 𝑅 and 𝑇 is leaf reflectance and transmittance, respectively. Then we set 

a virtual sensor at the top of canopy. Our model surveyed how much fluorescence flux 

this sensor could detect. 

𝐹(𝜆𝑓) =  
∑[𝑄𝑓𝑒𝑚𝑖𝑡(𝜆𝑓) + 𝑄𝑓𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝜆𝑓)]

𝜋𝐴𝑡𝑜𝑝 cos 𝜃0
 (2-6) 

In this equation, 𝐹(𝜆𝑓) is the scattered or emitted fluorescence flux can detected by the 

virtual sensor, 𝐴𝑡𝑜𝑝  is the simulation area, and 𝜃0 is the sensor zenith angle. Then we 

simulated the fluorescence from 640 nm to 850 nm with spectral resolution of 1 nm. 
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2.3.2. Machine learning 

In order to prepare the leaf reflectance, transmittance and EF-matrices for model input, 

we implemented PROSPECT (Feret et al. 2008) and FLUSPECT models coupled with 

the biochemical parameters (leaf structure (N), total chlorophyll content (Cab), carotenoid 

content (Cca), leaf water thickness (Cw), and leaf dry matter (Cd)). These five 

biochemical parameters are retrieved from the Landsat surface reflectance. We applied 

the Gaussian Process Regression (GPR) model to establish a relationship between the 

Landsat surface reflectance and biochemical parameters. Radial-Basis Function (RBF) 

was selected as the GPR’s kernel as below,  

𝑘(𝑥𝑖, 𝑥𝑗) = exp (− ∑
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
𝐵
𝑏=1 )  (2-7) 

where 𝜎 is the length scale, which controls the spread of the relations for the spectral band, 

B is the number of bands, 𝑥𝑖 is the spectrum reflectance in each band.  

Table 2.1. The R2 and RMSE of the training group and validation group, which predicted 

by GPR model 

 Training group  Validation group 

 R2 RMSE  R2 RMSE 

N 0.94 0.067  0.92 0.084 

Cab 0.91 6.7  0.90 6.76 

Cca 0.87 1.8  0.90 1.35 

Cw 0.93 0.0012  0.97 0.0014 

Cd 0.97 0.00067  0.94 0.0011 

 

We selected Angers (Angers 2003) (Jacquemound et al. 2003) and LOPEX (LOPEX 1993) 

(Hosgood et al. 1995) leaf database for GPR generating the prediction model. These two 

databases contain a variety of plant species’ leaf spectrum and bio-parameters (Zhang et 

al. 2014). We divided 80% of Angers leaf database as training group and 20% as a 

validation group and applied ten folds cross-validation to get the prediction model with 

the lowest Root Mean Square Error (RMSE). The Error! Reference source not found. 

shows the training results and validation results. All prediction results’ significants are 

below 0.001. 
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Based on the established relationship between reflectance and biochemical parameters, I 

used the band 1-7 of Landsat reflectance data as the input bands for the prediction model, 

so the model can generate the biochemical parameters. 

2.3.3. Model simulations 

Table 2.2. Settings for FLiES, SCOPE and DART model 

Variable FLiES DART SCOPE 

Simulation area 30 m2 30 m2 - 

Solar zenith angle, 

view zenith angle 

30°, 0° 30°, 0° 30°, 0° 

PAR Field measured Field measured Field measured 

LAI Field measured Field measured Field measured 

Biochemical 

parameters 

GPR model GPR model GPR model 

EF-matrix FLUSPECT model FLUSPECT model FLUSPECT model 

Fluorescence 

quantum 

efficiency for PSI 

and PSII (fqeI, 

fqeII) 

0.002, 0.01 0.002, 0.01 0.002, 0.01 

Leaf angle 

distribution 

Uniform distribution Uniform distribution Uniform 

distribution 

Crowns shape ellipsoid ellipsoid - 

Metrological data - - Field measured 

Aerodynamic data - - Field measured 

 

We applied three models to simulate SIF at 760 nm: FLiES model with new developed 

SIF module (FLiESSIF), a three-dimensional model DART (DARTSIF) and a one-

dimensional model SCOPE (SCOPESIF). Table 2.2 shows the simulation scheme for three 

models. Before simulation, we applied the GPR model to retrieve biochemical parameters 

from the Landsat surface reflectance. Then the interpolation method was used to generate 

daily biochemical parameters. FLUSPECT model coupled with biochemical parameters 

generated forward and backward EF-Matrices for PSI and PSII. PROSPECT model was 
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implemented to generate leaf spectrum (reflectance and transmittance). EF-matrix and 

leaf spectrum were used for models simulations (Figure 2.1). In the end, we validate 

model simulations with field measured SIF. 

 

Figure 2.1. Flowchart of simulations 

2.3.3.1. FLiES-SIF model 
There are two main steps for FLiES model setting. First, the simulation landscape is 

defined as a space of 30 * 30 m2. It consists of four layers, atmosphere layer, vegetation 

layer, floor layer and soil layer. In the vegetation layer, crowns and trunks are defined as 

geometric shapes. We use the cylinder to represent the vegetation’s trunk and ellipsoid 

for the crowns. The height of trunk and radius of crowns are retrieved from LiDAR data.  

Second, we used FLiES SIF module to simulate SIF at 760 nm, and compare model 

simulation results with SCOPE model, DART model and field measured canopy SIF 

(Figure 2.1). Regarding the previous study (Wu, Kobayashi, et al. 2018), we set 106 

photons for simulation, and it can let the simulation results close to reality.  

2.3.3.2. DART model 
The DART model is a comprehensive physically based, three-dimensional radiative 

transfer model (Gastellu-Etchegorry et al. 1996). We implement it to simulate SIF at 760 

nm and validate FLiES model performance. The DART model can simulate radiance 

distribution and radiative budgets in different scenes, such as forest, crops, and urban. 
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DART model (version 5.7.1) offers a simulation of SIF in the 3D scene using the 

FLUSPECT model, which calculates the EF-matrix the same as used in the FLiES and 

SCOPE models. 

Vegetation structure was retrieved from the LiDAR data as described in section 2.2. In 

the DART model we set the crown shape sphere the same as the vegetation model of 

FLiES, and the ratio of relative height and crown height equal to 1. Leaf angle distribution 

is set uniform distributions. The parameters of FLUSPECT model is predicted by using 

the GPR model. Iteration times are set to five, in order to get the valid results. Irradiance 

value is collected from the EMS tower as same as set in FLiES and SCOPE model. 

Remaining parameters are kept as the default value. 

2.3.3.3. SCOPE model 
SCOPE is a simulation model for radiative transfer, photosynthesis and energy fluxes in 

vegetation and soil (version 1.7). It is a one-dimensional model and treats the simulation 

area as homogeneous. Inputs of SCOPE model included meteorological data (incoming 

shortwave radiation and longwave radiation, air temperature, vapour pressure, wind speed 

and CO2 concentration), leaf biochemical data and canopy-level data (LAI and vegetation 

height and leaf inclination). Meteorological data and LAI are available from Harvard 

forest dataset. Vegetation height is retrieved from the LiDAR data and leaf inclination 

was assumed a uniform distribution. Chlorophyll content (Cab) is retrieved from Landsat 

data (Section 3.2). The maximum carboxylation capacity (Vcmax) is set to 57.7 as the 

plant function type (deciduous broadleaf forest) of the study area (Zhang et al. 2016). 

Other input parameters, including leaf thermal reflectance and transmittance, are set to 

default values. Based on above settings, we used SCOPE to simulate SIF at 760 nm. 

2.3.4. Statistical Analysis 

Root mean square error (RMSE) is used to assess the performance of the new developed 

SIF module. The index is defined as follows, 

RMSE =  √∑ (xmea,i−xsim,i)
2𝑁

𝑖=1

N
  (2-8) 

Where xmea,i and xsim,i are the SIF for the measured and simulated, respectively, and N 

is the number of measured SIF days. Then, we use the coefficient of determination to 

check the relationship between simulated SIF and measured SIF at temporal scale. Data 
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processing, statistical analysis and visualisation are conducted in R scientific computation 

environment (R core team version 3.4) and associated packages obtained from the 

comprehensive R archive network (http://cran.r-project.orj). 

2.4. Results 

2.4.1. Retrieved biochemical parameters in two years 

 

Figure 2.2. Seasonal and annual changes in retrieved biochemical parameters for years 

2013 and 2014. N is the leaf structure, Cab is the total chlorophyll content, Cca is the 

carotenoid content, Cd is the dry matter of leaf and Cw is the leaf water content. 

Figure 2.2 shows the five retrieved biochemical parameters for the 2013 and 2014 

growing seasons by using the GPR method (see section 3.2). These biochemical 

parameters showed significant seasonal trends in both 2013 and 2014 (Figure 2.2). Their 
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values were highest around July and decreased in mid-August, which was similar with 

their vegetation phenology (Klosterman et al. 2014). However, a major difference 

between these two years was the shorter peak season period of these biochemical 

parameters in 2013 compared to 2014. 

The yearly average and range (2013 and 2014) of N, Cab, and Cca was 1.3±0.24, 

49.3±10.99 ug/cm2 and 11.02±1.79 ug/cm2, respectively. Because dynamic changes of 

SIF are sensitive to the canopy chlorophyll content, we further checked the correlation 

between retrieved Cab and the chlorophyll content index. MODIS (Moderate Resolution 

Imaging Spectroradiometer) surface reflectance data (MOD09A1, 500 m spatial 

resolution and eight days temporal resolution) was downloaded and used to calculate the 

green chlorophyll index (CIgreen = Rnir band / Rgreen band - 1), which is highly correlated with 

chlorophyll content (Gitelson et al. 2005). We used a linear regression model to check the 

correlation between retrieved Cab and CIgreen (Figure 2.3). As the coefficient of 

determination was 0.9 and p-value < 0.01, we confirmed that the GPR model-predicted 

Cab could be used as a key parameter for model simulations. In the next section, we 

generated daily biochemical parameter and EF-matrices through interpolation and applied 

these for model simulation.  

 

Figure 2.3. Correlation between the green chlorophyll index, CIgreen, and total 

chlorophyll content. 
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2.4.2. Comparison of simulated SIF with field measured canopy SIF 

under different sunlit & cloudy light conditions 

 

Figure 2.4. The seasonal change of field measured canopy SIF, with FLiESSIF, DARTSIF 

and SCOPESIF at 760 nm from 2013 to 2014. 

Daily field measured SIF was compared with FLiESSIF, DARTSIF and SCOPESIF SIF 

retrievals at 760 nm from 2013 to 2014 under different light conditions (Figure 2.4). 

Cloudy-day field measurements were mainly taken in 2013. All simulated SIF agreed 

well with the measured canopy SIF from 2013 to 2014 and they showed an obvious 

seasonal trend. Model simulated SIF decreased from July 2013 until the end of that year 

and the start of the season was from May 2014. In the middle of June 2014, all simulated 

SIF reached the peak at the same time as SIFField and commenced to drop again around 

September 2014. In sunny days of 2013, DARTSIF was lower than SIFField, while FLiESSIF 

and SCOPESIF showed similar patterns with the SIFField. However, DARTSIF and FLiESSIF 

agreed well with the SIFField in both sunny and cloudy days of 2014, and SCOPESIF was 

a little higher than the field SIF measurements during the sunny days in 2014. The yearly 

average of FLiESSIF was 0.51±0.25 mW/m2/sr/nm, DARTSIF was 0.37±0.17 
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mW/m2/sr/nm, SCOPESIF was 0.59±0.21 and SIFField was 0.5±0.24 mW/m2/sr/nm as 

shown in Figure 2.5 The range of FLiESSIF and SCOPESIF was similar to the SIFField in 

both sunny days and cloudy days.  

 

Figure 2.5. Box plot for SIF annual mean and range of SIFField, FLiESSIF, DARTSIF and 

SCOPESIF. 

The correlation between model-simulated SIF and field measured SIF was checked using 

linear regression (Figure 2.6). The coefficient of determination of FLiESSIF (R2 = 0.8, p 

< 0.001) was higher than other model simulated (R2 = 0.76, 0.56 for DART and SCOPE 

model, respectively), which presented strong correlation with field measured SIF. The 

RMSE of FLiESSIF (RMSE = 0.12 mW/m2/sr/nm) was lower than DARTSIF and 

SCOPESIF (RMSE = 0.17 and 0.2 mW/m2/sr/nm, respectively). 
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Figure 2.6. The correlation between SIFField and FLiESSIF, DARTSIF, SCOPESIF. (a) 

Correlation between FLiESSIF and SIFField. (b) Correlation between DARTSIF and 

SIFField. (c) Correlation between SCOPESIF and SIFField. The red dash line is the 1:1 

symmetric line, all p-value < 0.001. 

Due to SIF sensitivity with PAR, we further checked the SIF simulation for sunny and 

cloudy days. Normally, SIF will increase with increasing irradiance, however SIF will 

also change slightly when light becomes saturating. Hence, simulating SIF for different 

light condition is critical to the understanding of the SIF mechanism. The results as Table 

2.3 showed all models were highly correlated with the SIFField for both sunny and cloudy 

days. Interestingly, the correlation of simulated and measured SIF for clear sky was 

weaker than for cloudy days. The RMSE for cloudy days from each model yielded the 

same weaker correlation. Even for the SCOPE model, the R2 and RMSE for the cloudy 

days have better performance than total simulated and sunny day SIF. This implies 

modelling SIF should consider the light saturation. 

Table 2.3. Correlation of determination of FLiES model, DART model, and SCOPE 

model simulated SIF with field measured SIF for sunny days and cloudy days, all p-value 

are less than 0.001. 

 FLiES SIF760   DART SIF760  SCOPE SIF760 

 R2 RMSE  R2 RMSE  R2 RMSE 

Total 0.80 0.11  0.76 0.17  0.56 0.20 

Sunny days 0.74 0.12  0.68 0.17  0.47 0.21 

Cloudy days 0.80 0.10  0.76 0.16  0.62 0.14 
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2.4.3. The correlation between GPPEC and SIF in sunny or cloudy days 

Figure 2.7 shows the correlations between daily GPPEC with model simulated SIF and 

measured SIF at 760 nm for different light conditions from 2013 to 2014. SIF simulated 

by three-dimensional models were highly correlated with the GPPEC, R2 of FLiESSIF = 

0.73 and DARTSIF = 0.69 (all p-value < 0.001), respectively. Compared with the 

correlation of SIFField and GPPEC (R2 = 0.67), the results were similar. All measured or 

simulated SIF in cloudy days showed a slightly stronger correlation with the GPPEC than 

in sunny days. In sunny days, FLiESSIF presented the highest R2 with GPPEC (R2 = 0.78); 

in cloudy days, DARTSIF showed the highest R2 with GPPEC (R2 = 0.85). Interestingly, 

the SIF from FLiES and DART models estimated higher GPP values for cloudy days than 

for sunny days (Figure 2.7 (a), (b)). 

 

Figure 2.7. The correlation between daily GPPEC and model simulated daily SIF under 

different light conditions (a) – (d). Black lines, red lines and blue lines are regression line 

for total SIF, SIF in sunny days and cloudy days, respectively. Red points mean 
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measurement in sunny days, blue points mean measurement in cloudy days. All p values 

are less than 0.001. 

2.5. Discussion 

2.5.1. Model sensitivity 

Simulated SIF was primarily affected by vegetation structure and light conditions. Figure 

2.8 shows the correlation matrix between FLiESSIF, biochemical parameters and 

vegetation structure. Among different factors, FLiESSIF is mostly correlated with APAR 

(R2 = 0.919), suggesting that SIF is mainly driven by APAR, which is consistent with 

previous findings (Yang et al. 2015b). FLiESSIF is also highly correlated with biochemical 

parameters, especially chlorophyll content (R2 = 0.658). Within certain limits, SIF 

increased with higher chlorophyll contents until SIF saturated at higher chlorophyll 

contents (Porcar-Castell et al. 2014; Yang et al. 2015b), thus inhibiting stronger SIF 

correlations with chlorophyll content. 

 

Figure 2.8. Correlation matrix between FLiESSIF and other factors, all p-values are less 

than 0.001. 

LAI influences on SIF simulation were weaker (R2 = 0.67) than meteorological and 

biochemical factors. Normally, with increasing PAR, the field or satellite sensor should 

detect the SIF signal more easily, but this situation is more complicated across the 

different growth phases (PAR~LAI, R2 = 0.37, Figure 2.8). For example, during the 2014 

growing season PAR reached its maximum value in May, but the green leaf phenology 
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of vegetation at Harvard forest just started with chlorophyll content and LAI changing 

rapidly, while the SIF signal was still very weak (SIF < 0.4 mW/m2/sr/nm, PAR = 2000 

µmol/m2/sec, LAI = 3) (Figure 2.9). Therefore, SIF is more correlated with leaf structure 

(LAI) than radiation (PAR) during the growing season. At the peak of the growing season 

(July – August 2014), LAI was stable while PAR started to decrease and SIF gradually 

decreased (Figure 2.9). Hence, at this stage, PAR replaced LAI as the main controlling 

factor of SIF. In summary, at the seasonal scale, different driving factors affected SIF 

over different growth phases for this deciduous broadleaf forest.  

 

Figure 2.9. Time series of PAR, APAR, LAI and field measured SIF from 2013 to 2014. 

PAR, APAR, LAI and SIF are all from field measurements. 

2.5.2. The relationship between GPP and scattered vs emitted SIF 

The difference of fluorescence observed from leaf and canopy is that SIF consists of 

emitted and scattered SIF at the canopy scale, while the SIF signal only contains emitted 

SIF at the leaf scale. This is particularly true for far-red SIF at 760 nm, due to much lower 

re-absorption compared with the red SIF, where the scattering effect is more easily 

observed. As SIF760 contains information from both PSI and PSII (Baker 2008), it is 

critical to understand which part of the far-red SIF signal is more correlated with 

photosynthesis activity under different light conditions. 
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SIF yield and LUE were positively correlated (Figure 2.10 (a)), especially in sunny days. 

Schlau-Cohen & Berry (2015) indicated that SIF yield increased under clear sky and 

photosynthesis capacity also increased. Similarly, we can see a significant correlation 

between scattered and emitted SIF under clear sky (Figure 2.10 (b), (c). R2 = 0.34 and 

0.25, respectively). In cloudy days, SIF yield, scattered and emitted SIF presented non-

significant patterns with LUE (p-value > 0.05). (Miao et al. 2018) indicated that SIF yield 

was positively correlated with LUE in cloudy days at seasonal scale, but limited 

observations of days, growing phase and different vegetation types may impact on its 

correlation (Pearcy 1990). In our study, it can be seen that SIF yield showed higher values 

in cloudy days than in sunny days and SIF yield increased with increasing diffuse 

radiation (Gu et al. 2003). SIF yield contains less information of LUE and APAR because 

the fluorescence yield represents a small portion, about 1%, of the total quantum yield, 

and the complex relationship between SIF yield and LUE needs further research (Schlau-

Cohen & Berry 2015). 

For far-red SIF, the SIF yield showed a weak relationship with APAR (R2 = 0.12), 

however, both scattered and emitted SIF showed significant correlations with APAR (R2 

= 0.64 and 0.72 for scattered SIF and emitted SIF, respectively) (Figure 2.10 (e), (f)). A 

strong APAR can trigger leaves to emit more fluorescence to some extent and increase 

fluorescence scattering. Scattered SIF in the far-red region is positively affected by 

canopy structure (Migliavacca et al. 2017; Yang & Van Der Tol 2018). The relationship 

of emitted SIF in sunny days was higher than on cloudy days (R2 = 0.72 and 0.64, 

respectively). In summary, the higher APAR leads to higher SIF yield for deciduous 

broadleaf forest. The total SIF yield showed a positive relationship with APAR (Figure 

2.10 (d)), which was also found in other vegetation types: soybean and grass (Miao et al. 

2018; Verma et al. 2017). 

Total SIF better captured GPP dynamics than scattered and emitted SIF (Figure 2.10 (g), 

(h), (i)). Relationships between scattered and emitted SIF with GPP did not show any 

obvious differences, as they were both strongly correlated with GPP under both sunny 

and cloudy days. We note that SIF more quickly responded to GPP for cloudy days than 

for sunny days (Figure 2.10 (g)) due to the SIF correlation with photosynthesis under 

higher diffuse radiation (Meroni et al. 2009). This implies that remotely sensed observed 

SIF may not provide a complete measure of the true relationship of SIF with GPP due the 

poor data quality under cloudy skies.  
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Figure 2.10. At the seasonal scale, the relationship between and each part of FLiES 

simulated SIF, LUE and APAR. Correlation of LUE and (a) daily SIF yield, (b) scattered 

SIF, (c) emitted SIF. Correlation of APAR and (d) daily SIF yield, (e) scattered SIF, (f) 

emitted SIF. Correlation of GPPEC and (g) field measured SIF, (h) scattered SIF, (i) 

emitted SIF. Red points mean measurement in sunny days, blue points mean 

measurements in cloudy days. The black line is the total regression line, red and blue line 

means the sunny and cloudy regression line, respectively. 

2.5.3. Uncertainties of seasonal SIF simulations 

Models can give us more information about SIF dynamic changes at seasonal and diurnal 

scales. One dimensional models focus on the flux changes and how multiple ecological 

factors influence SIF simulations, but ignore the complex and heterogeneous vegetation 

structures. Simulations from 3-D models can overcome these issues and potentially better 
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inform vegetation photosynthetic states and health through more realistic vegetation 

canopy modelling. The FLiES model as an open source and the three-dimensional 

radiative transfer model with a ray-tracing framework can be easily extended. The 

performance of FLiES-SIF model is stable and simulation results are with low RMSE 

compared with field measured data. 

Comparisons of 1D model and 3D model running times and complexity of parameter 

settings would increase the difficulty of model usability. For the FLiES model, it only 

concerns radiative transfer and cannot support simulations of flux exchange and radiation 

balance. In other words, the progress of photosynthesis is not only related to the radiation 

and biochemical parameters, but also to temperature, leaf level photochemical processes, 

soil water content and meteorological impacts (Baker 2008). Extreme changes of these 

factors would result in vegetation stress with impacts on the photosynthesis capacity. 

Hence, modelling SIF for vegetation stress detection with 3-dimensional structure should 

consider the entire local environment in the future. 

Moreover, we note that seasonal changes of SIF from the understory also contributes to 

the ecosystem photosynthesis (Kato et al. 2016), especially grass growth may be earlier 

than vegetation in the overstory layer and more sensitive to temperature and precipitation. 

Because of the lack of field measurements, we set the reflectance and transmittance from 

the understory layer to default values during the simulation, which may introduce 

uncertainties. On the other hand, although PAR light level dependence model coupled 

with a light correction factor (𝜙𝑓) is applied in the model (Rosema et al. 1998), we still 

should consider complex light and plant health conditions impact on fqeI and fqeII 

(Schlau-Cohen & Berry 2015). In the future, retrieving fluorescence quantum efficiency 

will need to be applied in the simulations. 

In summary, the FLiES model performance was equivalent or better than with the other 

models by using our retrieving method, but we cannot state that the DART model and 

SCOPE model does not work well in long-term SIF simulations. In order to test our new 

SIF module, we limited the input parameters of the DART and SCOPE models in order 

to keep the same input parameters with FLiES model. This may generate a bias and be 

the main reason for the simulation differences of these three models found in this study. 

2.6. Conclusions 
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In this study, we developed a new SIF module for the FLiES model to enable 3-

dimensional SIF simulations of complex canopy structures at seasonal scales. We 

performed a first time validation of the model using field seasonal measurements of SIF 

over a two-year period and we further compared our results with other, 2- and 3-

dimensional models. Based upon validation with actual field measurements our newly 

developed SIF module and new parameter retrieval approach showed accurate and stable 

results in comparison with other models under both sunny and cloudy days. By retrieving 

biochemical parameters from Landsat data and vegetation structure from Airborne 

LiDAR data, this simulation framework provides an easy and accurate approach for 

simulating seasonal and long term SIF patterns, and for evaluating dynamic biochemical 

and radiation effects on SIF. Furthermore, we examined the relationship between "pure" 

SIF (emitted SIF) and scattered SIF with photosynthesis under different incoming 

radiation conditions, and found that the pure SIF could provide the information of 

photosynthetic function for different patterns of clear- and cloudy sky conditions. In the 

future, this model needs to be further evaluated and compared with SIF observations for 

different vegetation types, patterns of landscape heterogeneity, and multi-layer overstory/ 

understory vegetation structures. Further tests are also needed to assess model simulations 

of vegetation under extreme and stressed environments. 
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Chapter 3. Partitioning sun-induced chlorophyll 

fluorescence into overstory and understory layers 

by using a three-dimensional model 
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Abstract 

Sun-induced chlorophyll fluorescence (SIF) has been used as an indicator of vegetation 

photosynthesis. It is useful for measuring seasonal photosynthetic efficiency in response 

to environmental stress, such as extreme heat and drought. Although some SIF devices 

have been deployed at the top of the canopy, as well as satellites (GOME-2 and OCO-2) 

which can monitor SIF continually, they cannot reveal the dynamic changes of understory 

SIF and how these contribute to local scale ecosystem carbon dynamics. A radiative 

transfer model was developed to study SIF emissions, however, this one-dimensional 

model assumes vegetation is homogeneous, and is unable to provide the vertically spatial 

distribution of SIF. The three-dimensional FLiES model with a newly developed SIF 

module, is now able to study the SIF emission in both overstory and understory layers 

and can improve our understanding of the understory SIF dynamics. In this study, a 

machine learning method was implemented to retrieve biochemical parameters from 

Sentinal-2 surface reflectance and generate the excited fluorescence matrices (EF-Matrix) 

and leaf spectrum. LiDAR data was further used to extract vegetation structure and 

position. We then used the FLiES-SIF model to partition SIF emissions into overstory 

and understory layers over three flux tower sites: Ti Tree East (AU-TTE), Litchfield (AU-

LIT) and Cumberland Plains (AU-CUM) in Australia, representing shrubland, tropical 

savanna and evergreen forest, respectively. The results suggested that SIF from the 

understory layer contributed more than 51% of the total SIF in the wet season for the 

tropical savanna. However, the understory contribution was limited in the evergreen 

forest to only 10% of total SIF. We further examined the influence of canopy structure 

and incoming radiation on the SIF emission. The results showed that the understory SIF 

was highly correlated with PAR in sparse tree areas (R2 = 0.64 and R2 = 0.88 for AU-

TTE and AU-LIT, separately). Over the higher-density canopy area of AU-CUM, the 

canopy cover showed a weak correlation with SIF emission (R2 = 0.25). The relationships 

reported here will contribute to our understanding of how different layer’s SIF vary from 

sparse to dense canopy covered areas. 

3.1. Introduction 

Sun-induced chlorophyll fluorescence is light re-emitted by chlorophyll molecules during 

the photosynthesis process. SIF has two peaks, one is at 685 nm, and contains the 

information of photosystem II (PSII). The other peak is at 740 nm (far-red SIF), which 
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contains information of both photosystems I and II (PSII). The far-red SIF is widely used 

to study the photosynthesis efficiency, heatwaves and drought (Li, Xiao & He 2018b; Sun 

et al. 2015b; Wang et al. 2016; Wieneke et al. 2018a), because of the low absorption of 

the leaf at far-red region (Porcar-Castell et al. 2014). 

Recently, SIF has become a critical factor for determining the photosynthetic activity of 

vegetation. The strong relationship between SIF and gross primary productivity (GPP) 

has been confirmed by satellites (Joiner et al. 2013; Köhler, Guanter & Joiner 2015b) and 

field measurements (Miao et al. 2018; Nichol et al. 2019; Wieneke et al. 2018a; Yang et 

al. 2015b). OCO-2 data has been used to analyse the relationship between satellite SIF 

and eddy covariance GPP over 64 flux sites globally, and suggests that there is a nearly 

universal relationship between satellite SIF and GPP across a wide variety of biomes (Li 

et al. 2018). In addition, flux tower sites coupled with advanced devices (FluoSpec2, SIF-

Sys), which can be deployed in the field to measure SIF, found SIF was more correlated 

with APAR than GPP, and it demonstrated SIF carried APAR information. Even in 

different light conditions, SIF shows a different pattern with GPP across different 

vegetation types (Yang et al. 2015b). Thus we can predict GPP for overstory and 

understory by using the strong linear relationship between SIF and GPP. 

Normally, observations of SIF are concentrated on the top of canopy (TOC), and the 

seasonality of understory SIF remains uncertain. The lack of knowledge of seasonality 

change of understory SIF may underestimate the contribution of understory species to 

total ecosystem carbon dynamics (Kato et al. 2016). Hence, in order to better represent 

ecosystem function and predict ecosystem response to disturbances and future climate 

change, it would be advantageous to partition the energy flux into overstory and 

understory layers, and further investigate the response of the two vegetation layers to 

environment factors (Misson et al. 2007). 

Savannas as the classical tree-grass type, bring much focus about the energy flux from 

different layers (Walker & Gillison 1982). Furthermore, savannas play an essential role 

in the global carbon cycle. They accounted for 30% of GPP of all terrestrial ecosystem 

(Kanniah et al. 2009). This is especially evident in Australia, where savanna areas occupy 

one-quarter of the Australian continent (Hutley, O'grady & Eamus 2000). Savannas have 

a particular tree-grass structure. In the overstory layer, the canopy cover is sparse and 

discontinuous, however, the understory layer consists of shrub and grass and it usually 

can be defined as a continuous and heterogenous layer (Whitley et al. 2011).  
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Savanna productivity is primarily influenced by solar radiation, precipitation and fire 

(Beringer et al. 2003; Moore et al. 2016). Australian savanna areas receive a large amount 

of solar radiation. Whitley’s study showed the effectness of light interception on savanna 

GPP is a much more important influence than water supply (Whitley et al. 2011). 

However, to what extent the radiation contributes to the understory layer is still the 

remaining issue for savanna areas (Moore et al. 2016). Precipitation is also an essential 

factor that affects savanna vegetation. The C4 grasses in the understory layers grow 

rapidly in the wet season (Moore et al. 2016). Fire, when it occurs in savanna would 

reduce the growth of trees and affects carbon storage (Beringer et al. 2015; Beringer et al. 

2007).  

Based on the previous study, field measurements, satellite observations and models are 

the main research tools to study the partitioning energy into overstory and understory 

layers. Moore et al. (2016)  were the first to use two flux towers to separate GPP of tree 

and grass for a tropical savanna in Australia, and they found the understory contribution 

had strong seasonality and contributed more GPP in the wet season. Recently, they used 

the DIFFUSE model and remote sensing data to separate GPP of trees and grass for long-

term periods (Moore et al. 2018). Similarly, Whitley et al. (2011) used the SPA model to 

partition the energy flux into the overstory and understory layers, and they found the 

understory C4 grass contributed nearly 38% to total GPP. 

Field measured SIF has also been used to partition SIF emissions into different vertical 

layers. The upward measurements of the overstory SIF and understory SIF were 

examined in a cool temperate forest in Japan (Kato et al. 2018; Kato et al. 2016). The 

results showed a substantial contribution of the understory in upward SIF, which may 

indicate less photoinhibition relative to the overstory. However, the partitioning of SIF in 

overstory and understory layers for different biomes has remained mostly unexplored.  

In order to get a better understanding of SIF emissions under different environmental 

conditions, researchers have developed the one-dimensional model and three-

dimensional model to simulate SIF. The SCOPE (Soil Canopy Observation 

Photochemistry and Energy fluxes) model, as the most widely used and famous one-

dimensional model is used to simulate leaf fluorescence emission at TOC and energy flux 

for the homogeneous canopies (Van der Tol et al. 2009). However, this one-dimensional 

model cannot identify the SIF signal from the overstory or understory. It is also unable to 
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simulating SIF emission from vegetation with horizontal and vertical heterogeneity 

(Porcar-Castell et al. 2014). 

Advanced three-dimensional models can overcome the drawbacks of the one-dimensional 

model. The DART model, FluorWPS and FluorFLIGHT are three-dimensional radiative 

transfer models and are based on the Monte Carlo method and ray-tracing theory 

(Gastellu-Etchegorry et al. 2017; Hernández-Clemente et al. 2017; Zhao et al. 2016). 

They both relied on the FLUSPECT model generating excited fluorescence matrices (EF-

Matrix) for PSI and PSII. The DART model has been used to study the diurnal change of 

SIF for crops while the FluorWPS model studied the SIF emission for row crops. 

FluorFLIGHT coupled with classical 3D model FLIGHT has studied the health 

conditions for forests and found that SIF signal is influenced by canopy structure 

(Hernández-Clemente et al. 2017).  

The FLiES (Forest Light Environmental Simulator) model, as an open source, three-

dimensional and ray-tracing model can be extended and has been successfully applied in 

forest and savanna areas (Kobayashi & Iwabuchi 2008). In the previous chapter, we 

developed a SIF module for the FLiES model and a new method of retrieving key 

parameters by the machine learning method. We validated SIF simulation with 

observations in a temperate forest. The results showed that the performance of the new 

SIF module is excellent and with lower root mean square error (RMSE), and found a 

strong correlation with observed SIF in the far-red region. 

In this study, we aimed to use the finest resolution satellite surface reflectance to retrieve 

the critical biochemical data and used a three-dimensional model to partition the overstory 

and understory SIF. Our objectives were to (i) identify the pattern of SIF emissions in the 

overstory and understory layers among open shrubland, tropical savanna and evergreen 

broadleaf forest; (ii) estimate the GPP of different vegetation types, and partition them 

into overstory and understory, and discuss how they vary seasonally; (iii) examine the 

factors that would affect the overstory and understory SIF emissions. This research will 

be useful for understanding how different layer’s SIF vary and contribute to different 

canopy covers across several biomes. 

3.2. Study area and Data 
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3.2.1. Study area 

 

Figure 3.1 The land cover of three flux tower sites in Australia. The land cover data used 

MCD12C1. 

We chose three study sites that are around flux tower sites (Figure 3.1). One site, Ti-Tree 

east (AU-TTE), is located in the centre of Australia (22°17´S, 133°38´E) at an elevation 

of 553 m above sea level. AU-TTE is dominated by grassy mulga woodland and 

Corymbia savanna (Eamus et al. 2013). The average height of the canopies is 4.85 meters. 

The temperature and mean annual precipitation is around 35 degree Celsius and 443 mm, 

respectively. 

Litchfield (AU-LIT) is in the Litchfield National Park in the Northern Territory, Australia 

(13°10´S, 130°47´E). Its vegetation type is tropical savanna. The elevation of AU-LIT is 

220 m above sea level, and annual precipitation is 1737 mm. The understory is C4 grass. 

The third site is the Cumberland Plain (AU-CUM), which is located west of Sydney 

(33°36´S, 150°43´E). The elevation of this site is 20 m above sea level. The canopy is 

dominated by Eucalyptus moluccana and Eucalyptus fibrosa with an average height 20 
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meters at the canopy. The mean annual temperature and precipitation is 24 degree Celsius 

and 800 mm, respectively. The vegetation type is an evergreen broadleaf forest. 

The AU-TTE and AU-CUM sites were both activated in 2012 and AU-LIT was 

established in 2015. They provided measured ground heat flux, radiation, wind speed, 

barometric pressure, air temperature and open path CO2 and H2O exchanges. 

3.2.2. LiDAR data 

LiDAR data is used to retrieve vegetation structure and position on the spatial scale. 

LiDAR data is the surface reflection, a remote sensing method where an airborne laser is 

pointed at a targeted object on the ground, rapid pusles of light are fired and the beams of 

light are measured by the time they take to bounce back to the sensor (Jaboyedoff et al. 

2012). Hence, LiDAR consists of cloud points of vegetation on the ground. Aus Tern 

provides lidar data, and Litchfield was surveyed in 2013, Ti Tree East in 2014, and 

Cumberland Plain in 2015. We assumed that vegetation in these areas was mature and the 

extreme change of height and crown could be ignored. 

We used the Canopy Height Model (CHM) (Pitkänen et al. 2004) to separate vegetation 

layer and ground layer. The vegetation layer contains the height of each cloud point. Then 

we used the crown detect method to locate the crown of each vegetation and extract each 

crown’s height, radius and positions. 

3.2.3. GOME-2 SIF 

In this study, the GOME-2 data v27 level 3 chlorophyll fluorescence from MetOp-A 

(spatial resolution is 40 km) at 740 nm was used for validating the model simulations. 

The level 3 data have had filtering applied including cloud fractions of up to 30% and 

solar zenith angles of less than 70 degrees. Data was extracted at the coordinates of each 

flux site. 

3.2.4. Sentinel-2 reflectance 

The AU-TTE and AU-LIT sites are a mixture of tree and grass. Normally, the Landsat 

pixel (30 meters spatial resolution) and even more coarse data (MODIS) may hide 

seasonal tree and grass changes. Sentinel-2, as the finest spatial resolution sensor, is 

suitable and available to analyse tree-grass and minimise the influence from mixed tree-

grass pixels. 
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The Sentinel-2 satellite, launched in 2013, provides 13 spectral bands from visible and 

near-infrared to the shortwave infrared. The temporal resolution is usually around 15 days 

under cloud-free conditions (Drusch et al. 2012). 

We used Sentinel L1B reflectance data (ten bands, Band 1 to Band 9) to retrieve 

vegetation biochemical parameters, bands spatial resolutions were 10, 20 and 60 meters, 

respectively. Because the plant function type of pixels around the flux tower site are 

homogeneous, we assumed that the different spatial resolution of Sentinel-2 bands less 

impacted on the retrieving of biochemical parameters. As the reflectance of L1B was 

measured at the top of the atmosphere, we implemented the sen2cor tool to convert L1B 

to L2A level data and processing atmosphere correction. In order to keep the best quality 

of measurements, we constrained the cloud thickness equals to zero.  

3.2.5. MODIS EVI data 

Enhanced vegetation index (EVI) is widely used as proxies of canopy “greenness”, an 

effective factor indicating vegetation green leaf area, green foliage cover and leaf 

chlorophyll content (Huete et al. 2002). EVI data was collected from MOD13Q1 006 

from 2016 to 2017. The spatial resolution is 250 m, and the temporal resolution is 16 days. 

At each flux tower site, we extracted the pixels to match the footprint of the flux site. 

Quality control was implemented to remove the pixels contaminated by clouds or aerosols 

using quality flags. 

The equation defining EVI is: 

𝐸𝑉𝐼 = 𝐺 ∗  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝐶1∗𝑅𝐸𝐷−𝐶2∗𝐵𝐿𝑈𝐸+𝐿
  (3-1) 

Where, NIR, RED and BLUE represents near infrared band, red band and blue band, 

separately. Coefficients are including 𝐺 = 2.5, 𝐶1 = 6, 𝐶2 = 7.5 and 𝐿 = 1. 

3.2.6. Eddy covariance data 

The Eddy covariance data of each flux site are provided by the OZFLUX network 

(http://www.ozflux.org.au). The data processing included quality control assessment, 

removal outlier observations, correction for low turbulence periods and gap filling. We 

collected the daily GPP data in level 6, it calculated by Lloyd–Taylor respiration model 

(Lloyd & Taylor 1994). 

http://www.ozflux.org.au/
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𝑅𝑒𝑐𝑜 =  𝑅𝑟𝑒𝑓 exp (𝐸0 (
1

𝑇𝑟𝑒𝑓 −  𝑇0
 −

1

𝑇 −  𝑇0
)) (3-2) 

𝐺𝑃𝑃 = 𝑁𝐸𝐸 − 𝑅𝑒𝑐𝑜 (3-3) 

In equation 3-2, Tref = 10°C is the reference temperature, T0 = -46.04°C is the model 

parameter chosen by Lloyd and Taylor to fit their soil respiration data, Rref is the base 

respiration rate at the reference temperature, E0 is the activation energy and Reco is the 

ecosystem respiration, NEE is the net ecosystem exchange of carbon. Furthermore, 

downward incoming photosynthesis activated radiation (PAR) of each site was collect for 

model simulation. 

3.3. Methodology 

This section briefly describes the frame of SIF simulation and a machine learning method, 

which used to retrieve parameters from remotely sensed data.  

3.3.1. FLiES SIF model 

3.3.1.1. Vegetation structure 
The simulation scene was defined as a space of 30 * 30 m2. It consisted of four layers: 

atmosphere layer, vegetation layer, floor layer and soil layer. In the vegetation layer, 

crowns and trunks were defined as geometric shapes. We used a cylinder to represent the 

vegetation’s trunk and an ellipsoid for the crowns. The height of the trunk and radius of 

crowns were retrieved from LiDAR data. In the floor layer, we assume the distribution of 

grass is uniform. We defined that the vegetation height above one meter belonged to the 

overstory layer, below one meter was in the understory layer. 

3.3.1.2. Model frame 
FLiES model (version 2.48) is a three-dimensional radiation transfer model (Kobayashi 

& Iwabuchi 2008). It based on the Monte Carlo method and implemented a large of 

photons which distribute uniformly above the scene. Then the random method is used to 

generate each photon’s direction. When scattering occurred, the model will count how 

much energy is lost and absorbed by the leaf. 

We developed a new SIF module for the FLiES model as a previous chapter described. 

Based on the original photon ray-tracing frame, we separated the photon as non-

fluorescence and fluorescence photon. For the non-fluorescence photon, its simulation 
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followed the original ray-tracing framework. However, for the fluorescence photon, the 

newly developed module would calculate each photon’s scatter direction, and emitted 

fluorescence which was activated by the incoming non-fluorescence and fluorescence 

photon. Before the simulation, we applied pre-tracing progression for calculating the 

fluorescence correction factor and how much PAR reached leaf (Rosema et al. 1998; Zhao 

et al. 2016), because the fluorescence correction factor changes by the incoming 

photosynthetic active radiation (PAR). 

3.3.2. Machine learning 

In order to retrieve biochemical parameters, including total chlorophyll content, 

Carotenoid content, water content, dry matter content and leaf structure (Cab, Cca, Cw, 

Cd, N), machine learning is implemented to build a connection between biochemical 

parameters and reflectance. The finest resolution of Sentinel-2 MSI was used in building 

the relationship. We extracted ten bands B1 to B9 (443 – 945 nm), resolution ranging 

from 10 m to 60 m. We applied the Gaussian Process Regression (GPR) model to 

establish a relationship between the Sentinel-2 surface reflectance and biochemical 

parameters. Radial-Basis Function (RBF) was selected as the GPR’s kernel as below,  

𝑘(𝑥𝑖, 𝑥𝑗) = exp (− ∑
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
𝐵
𝑏=1 )  (3-4) 

where 𝜎 is the length scale, which controls the spread of the relations for the spectral band, 

B is the number of bands, 𝑥𝑖 is the reflectance of each spectrum.  

Table 3.1. GPR trained and validated results 

 Training group Validation group 

 R2 RMSE R2 RMSE 

N 0.95 0.089 0.98 0.028 

Cab 0.92 3.5 0.97 2.764 

Cca 0.92 2.3 0.91 1.7 

Cw 0.93 0.003 0.91 0.003 

Cd 0.91 0.0018 0.95 0.0012 

 

We selected Angers (Angers 2003) (Jacquemound et al. 2003) and LOPEX (LOPEX 1993) 

(Hosgood et al. 1995) leaf database for GPR to generate the prediction model. These two 
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databases contain a variety of plant species’ leaf spectrum and bio-parameters (Zhang et 

al. 2014). We divided 80% of the leaf database as training group and 20% as a validation 

group and applied a ten fold cross-validation to get the prediction model with the lowest 

RMSE. Error! Reference source not found. showed the training results and validation 

results. All prediction results significants are below 0.001. 

3.3.3. Structure of model simulations 

Before simulation, we overlayed a 3 * 3 net, which contained nine pixels and each pixel 

was 30 * 30 m2, over each flux tower site, with the flux tower site at the centre of the net. 

Also, we chose a pixel around the net with no canopy cover and defined it as a grass pixel. 

The retrieved results were used in the model as the understory layer. 

Table 3.2. Settings for FLiES-SIF model 

Variable FLiES model settings 

Simulation area 30 m2 

Solar zenith angle Calculate as the local time 9:30 am 

PAR Field measured 

LAI MODIS 

Biochemical parameters GPR model 

EF-matrix FLUSPECT model 

Fluorescence quantum efficiency for PSI and PSII 

(fqeI, fqeII) 

0.002, 0.01 

Leaf angle distribution Uniform distribution 

Crowns shape ellipsoid 

 

Our simulation consists of two steps (Figure 3.2); one is preparing input parameters; the 

other step is deploying the model. Regarding the preparation of input parameters, firstly 

we retrieved shapes of the targeted vegetation from LiDAR data in each sample pixel. 

Secondly, we extracted each sample pixel’s Sentinel-2 reflectance and used the GPR 

model to predict five bio-parameters. Then, we used five bio-parameters to generate leaf 

spectrum, including reflectance and transmittance, using a Prospect-5 model and EF-

matrices from a Fluspect model. Last but not least, we used the FLiES SIF model to 

simulate SIF in AU-TTE, AU-CUM and AU-LIT, and compared model simulation results 
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with remote sensing data and eddy covariance data. The input parameters for the FLiES 

model are listed in Table 3.2. 

Linear regression was used to generate a prediction function of total SIF and GPP. 

Because of the high correlation between GPP and SIF, we used the prediction function to 

predict overstory GPP and understory GPP from overstory SIF and understory SIF, 

respectively. 

Regarding deployment of the model, we set 1000000 photons for each simulation, as it 

provides simulation results close to reality. Also, we set the sensor at the nadir view to be 

the same as the GOME-2 observations, in order to compare the results between model 

and satellite. We used MODIS LAI (MOD15A2H) data as the scale factor for adjusting 

canopy area (Wu, Kobayashi, et al. 2018). Settings of atmosphere layer for FLiES model 

were used default values (Kobayashi & Iwabuchi 2008). 

 

Figure 3.2. Flowchart of simulations. 

3.4. Results 

We simulated SIF (SIFFLiES) from 2016 to 2017 by the FLiES model coupled with the 

newly developed SIF module and compared results with GPPEC, MODIS EVI and 

GOME-2 SIF (SIFGOME-2). We also checked the correlation between GPPEC and SIFFLiES 

for different layers. Finally, we predicted GPP by SIF. 
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3.4.1. Compare model simulated SIF, MODIS EVI, eddy covariance 

GPP and GOME2 SIF 

Figure 3.3 (a) – (c) shows model simulated SIF, MODIS EVI, eddy covariance GPP and 

GOME2 SIF for AU-TTE, AU-LIT and AU-CUM from 2016 to 2017. AU-TTE, SIFFLiES 

showed a similar pattern of seasonality with EVI and GPPEC (Figure 3.3 (a)). From 

December 2016, SIFFLiES started increasing at the same rate as EVI and GPPEC. They both 

reached the peak in February 2017 (SIFFLiES = 0.35 mW/m2/sr/nm, GPPEC = 5 g C/m2/day 

and EVI = 0.19), then they dropped until the end of 2017. SIFFLiES and GPPEC kept stable 

from July 2017 to December 2017. We could see the SIFGOME-2 fluctuated between 2016 

to 2017 (ranging from 0.09 to 0.6 mW/m2/sr/nm), implying that the coarse spatial 

resolution would effect the representation of the true SIF situation. Interestingly, in the 

dry season (besides Jan 2017 to Mar 2017), the understory SIFFLiES was similar to 

overstory SIFFLiES. Hence, it indicated that vegetation in both overstory and understory 

contribute similarly to the local ecosystem in the dry season. 

AU-LIT, SIFFLiES, EVI, GPPEC and SIFGOME-2 presented similar seasonal patterns from 

2016 to 2017 (Figure 3.3 (b)). All factors increased gradually from October 2016 to 

January 2017. They both kept stable over the next two months and then started to decrease 

almost at the same time. In October 2017, GPPEC dropped to the lowest point (GPPEC = 

1.25 g C/m2/day) and started to increase and were followed by SIFFLiES, EVI and SIFGOME-

2. Compared to AU-TTE, the SIFGOME-2 trend is much smoother in AU-LIT because the 

vegetation is homogeneous in AU-LIT and the pixels of GOME-2 contain mostly the 

same vegetation types. The overstory SIFFLiES and understory SIFFLiES showed a different 

pattern in both dry and wet seasons. The trend of the overstory SIFFLiES was flat and the 

value ranged from 0.1 to 0.2 mW/m2/sr/nm. The understory SIFFLiES ranged from 0.01 to 

0.28 mW/m2/sr/nm. In the wet season, the overstory SIFFLiES and understory SIFFLiES were 

close to each other, but in the dry season, the understory SIFFLiES retained much lower 

values than the overstory SIFFLiES. 

AU-CUM, GPPEC displayed weak seasonality (Figure 3.3 (b)) because of its vegetation 

type is an evergreen broadleaf forest. EVI fluctuated from 2016 to 2017, however, the 

range was limited to 0.312 and 0.39. Even EVI showed an inverse trend, which compares 

to SIFGOME-2 between January 2017 and December 2017. The understory SIFFLiES was 

lower than the overstory SIFFLiES and the trend was stable. It did not present an obvious 
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seasonal pattern. Hence, in this site, overstory SIFFLiES were mainly contributing to the 

GPP. Total SIFFLiES ranged from 0.12 to 0.82 mW/m2/sr/nm between 2016 to 2017, 

SIFGOME-2 ranged from 0.1 to 0.81 mW/m2/sr/nm. 

Compared to AU-CUM, the model simulated SIF showed clear seasonality in AU-TTE 

and AU-LIT. At the season of the peak, SIFFLiES in AU-CUM (SIF = 0.85 mW/m2/sr/nm) 

was higher than SIFFLiES in AU-TTE and AU-LIT. AU-TTE and AU-LIT, EVI showed a 

similar pattern to SIF; however, the pattern of EVI fluctuated and there was difference in 

the GPPEC in AU-CUM (Figure 3.3 (c)). This implies that SIF might replace EVI as an 

indicator of phenology in evergreen forest. However, EVI and SIF were both sensitive to 

the seasonal change in GPP in the savanna area. 
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Figure 3.3. Time series of FLiES model simulated SIF, MODIS EVI, eddy covariance 

GPP and GOME2 SIF from 2016 to 2017 for (a) AU-TTE, (b) AU-LIT and (c) AU-CUM. 

3.4.2. The relationship between GPPEC and overstory SIFFLiES, 

understory SIFFLiES 

Figure 3.4 presents the correlation between GPPEC and model simulated total SIFFLiES, 

overstory SIFFLiES, understory SIFFLiES for AU-TTE, AU-LIT and AU-CUM. Overstory 

and understory SIFFLiES are highly correlated with GPPEC in AU-TTE (Figure 3.4 (a), R2 
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= 0.78 and 0.75, respectively). This indicates that both these two layers are the primary 

source, contributing to GPP.  

 

 

Figure 3.4. Correlation between GPP and total SIFFLiES, overstory SIFFLiES, understory 

SIFFLiES for (a) AU-TTE, (b) AU-LIT and (c) AU-CUM. The blue, brown and green 

points represent the total SIF, overstory SIF and understory SIF, respectively. The line is 

the linear regression line. All p-values are less than 0.0001. 

In AU-LIT, understory SIFFLiES was more highly correlated with GPPEC than was 

overstory SIFFLiES (Figure 3.4 (b), R2 = 0.67 and 0.41, respectively). Although understory 

SIFFLiES showed a non-significant pattern with GPPEC in the dry season, it still mainly 

contributed to GPP. The less variation of overstory SIFFLiES led to the weak correlation 

with GPPEC. 
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In AU-CUM, overstory SIFFLiES and understory SIFFLiES showed a similar coefficient of 

determination (Figure 3.4 (c), R2 = 0.52 and 0.49, respectively). Even though the 

understory SIFFLiES was rather lower than overstory SIFFLiES; it was still positively 

correlated with GPPEC. 

Among these three sites, total SIFFLiES, overstory SIFFLiES and understory SIFFLiES of AU-

TTE were more correlated with GPPEC than in the other sites. AU-LIT’s overstory 

SIFFLiES was correlated the weakest with GPPEC, and AU-CUM’s understory SIFFLiES was 

correlated the weakest with GPPEC. 

3.4.3. Predicted overstory GPP and understory GPP 

 

Figure 3.5. Prediction of GPP for AU-TTE, AU-LIT and AU-CUM from 2016 to 2017. 

Based on the linear relationship between GPPEC and total SIFFLiES, we predicted overstory 

GPP and understory GPP based on overstory SIFFLiES and understory SIFFLiES for AU-
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TTE, AU-LIT and AU-CUM (Figure 3.5). Between January 2017 and March 2017, the 

overstory GPP was higher than understory GPP in AU-TTE. Apart from this period, the 

understory GPP was similar to the overstory GPP. For AU-LIT, overstory GPP fluctuated 

from 3 to 4.1 g C/m2/day over the duration of this study. However, the understory GPP 

was almost the same as overstory GPP in the wet season (December 2016 to February 

2017). Hence, overstory GPP was the main contributor in the dry season. The understory 

vegetation contributed approximately 45% to total GPP and accounted for 51% of total 

GPP in 2017. It is consistent with Whitley’s study (Whitley et al. 2011). In AU-CUM, 

the understory GPP was stable at around 2.75 g C/m2/day during the study period. Total 

GPP mainly consisted of overstory GPP. Furthermore, the RMSE of total GPP and GPPEC 

was checked for each site. The RMSE is 0.65 g C/m2/day for AU-TTE, 0.91 g C/m2/day 

for AU-LIT, 0.41 g C/m2/day for AU-CUM. 

3.5. Discussion 

3.5.1. Vegetation structure and PAR effect SIF on overstory and 

understory layer for different vegetation types. 

We examined the meteorology and canopy structure factors that would have an effect on 

SIF emissions in the different layers. Firstly, we found that SIF was strongly correlated 

with PAR in both overstory and understory layers (R2 = 0.89 and 0.51, respectively. P-

value < 0.0001) in acacia woodlands (AU-TTE). Because the tree distribution is sparse 

and canopy cover is rather low (mean canopy cover is 14%) in this area, sunlight can 

reach the understory layer with minimal obstruction from objects in the overstory layers. 

This is the main reason that PAR in the understory layer is larger than in the overstory 

layer (Figure 3.6 (a)). The correlation between PAR and SIF emission in AU-LIT was 

different from AU-TTE. SIF from the understory layer is positively correlated with GPP 

(R2 = 0.88, p-value < 0.0001), however, overstory SIF showed no significant pattern with 

GPP (R2 = 0.04, p-value = 0.0008) (Figure 3.6 (b)). Overstory SIF was less variable over 

our study period (Figure 3.6 (b)), and overstory LAI was stable and constant (Whitley et 

al. 2011). It indicated that PAR seasonal changes affected overstory SIF less than 

understory SIF in the tropical savanna. Compared to AU-TTE and AU-LIT, understory 

SIF in AU-CUM showed a weak relationship with PAR (R2 = 0.37, p-value < 0.0001). 

Because the canopy cover is high (mean canopy cover is 52%) a less direct beam, which 
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is the main trigger for SIF emission, can reach the understory layer. This is consistent 

with measurements made by (Kato et al. 2016). 

 

 

Figure 3.6. Correlation between SIF and PAR in overstory and understory layers for (a) 

AU-TTE, (b) AU-LIT and (c) AU-CUM 

Secondly, we checked the relationship between SIF and canopy cover for these three sites 

(Figure 3.7). The correlation for AU-TTE and AU-LIT showed the high coefficient of 

determination of SIF and canopy cover (R2 = 0.67 and 0.48, respectively, p-value < 

0.0001). This implies the contribution from understory SIF could not be ignored because 

of the lower canopy cover. The relationship between SIF and canopy cover is lower in 

AU-CUM (R2 = 0.26, p-value < 0.0001). The reason is that the dense canopy cover 

reduces the light reaching the understory layer and the canopy cover changes less in an 



66 

evergreen forest. In summary, SIF can be detected more in the smaller overstory canopy 

cover area. 

 

Figure 3.7. Correlation between SIF and canopy cover for AU-TTE, AU-LIT and AU-

CUM. The line means a linear regression line. All p-value is less than 0.0001. 

Table 3.3. The PAR, SIF and Canopy cover for overstory and understory in AU-TTE, 

AU-LIT and AU-CUM. 

  PAR  SIF  Canopy cover 

  µmol/m2/sec %  mW/m2/sr/nm %  % 

AU-

TTE 

overstory 108.06±85.26 34.31%  0.052±0.057 54.9%  - 

understory 206.88±45.54 65.69%  0.044±0.041 45.1%  - 

total 314.95±107.85 -  0.096±0.097 -  14.27±9.82% 

AU-

LIT 

overstory 167.66±62.91 51.22%  0.133±0.418 63.18%  - 

understory 159.63±147.39 48.78%  0.077±0.085 36.82%  - 

total 327.29±97.18 -  0.210±0.120 -  30.71±8.34% 

AU-

CUM 

overstory 337.94±187.54 78.95%  0.449±0.229 89.2%  - 

understory 90.05±82.22 21.05%  0.054±0.028 10.8%  - 

total 427.99±160.57 -  0.504±0.256 -  51.55±8.85% 
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Based on our results, Figure 3.8 shows a generalised pattern of relationship between SIF 

and PAR, canopy cover for overstory and understory layers. For the overstory layer, the 

pattern between PAR and SIF is similar to that of the canopy cover. They both increase 

under the dense canopy cover area. This suggests the higher canopy cover leads to more 

leaf emitted SIF and the canopy can receive more PAR. For understory layers, the 

situation is different from overstory layers. With the increase of canopy cover, less PAR 

reaches the understory and it leads to the lower SIF emission from grass or shrubs. In 

addition, the understory PAR accounted for two-thirds of total incoming radiation in AU-

TTE, but the understory SIF stood for nearly half of total SIF (Table 3.3). The reason may 

relate to the fluorescence efficiency of the overstory layer being higher than the 

understory.  

 

Figure 3.8. Generalised pattern from our results: (a) the relationship between overstory 

SIF and PAR, canopy cover; (b) the relationship between understory SIF and PAR, 

canopy cover. The arrows indicate values from low to high. 

3.5.2. Uncertainties of SIF simulation in overstory and understory 

layers 

We used a 3D model to simulate SIF emission from overstory and understory for 

shrubland, savanna forest and evergreen forest. However, there are uncertainties in 

partitioning the SIF into two layers. 

The radiative transfer model concerns the radiation distribution, but it cannot simulate 

ecological flux exchange. SIF may be related to many factors, including temperature, soil 

water content and environmental stress (Baker 2008). Hence, simulating SIF in overstory 

and understory layers should concern only the local ecological environment. In savanna, 
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precipitation and radiation influences a plant’s productivity (Kanniah 2010), hence, the 

cloud cover and diffuse radiation may affect the understory SIF emission. We note that 

retrieving biochemical parameters relied on the satellite observations, so that we cannot 

simulate SIF in cloudy days directly. With continuing precipitation, the grass would grow 

rapidly and its structure would change as well, hence, if we want to know more about the 

understory layer change, field observations should also be employed. 

Another issue is that the fluorescence quantum efficiency for photosystem I and II (fqeI, 

fqeII) was set as the default value (fqeI = 0.002, fqeII = 0.01) for AU-TTE, AU-LIT and 

AU-CUM. The fqe varies among different vegetation species (Porcar-Castell et al. 2014), 

because each type of plant has its own unique ability to use light efficiently. Even though 

PAR adjustment was implemented in the FLiES model, retrieving fqeI and fqeII is still 

needed for precise modelling. 

In the understory layer, vegetation included both shrub and grass. Photons have complex 

interactions with overstory layer. Because our method relied on satellite observations, we 

treated the vegetation as homogenous over one pixel of observation. For example, the 

understory layer contains many species, including Psydrax latifolia and Thyridole psis 

michelliana (Eamus et al. 2013), in AU-TTE, hence researchers should distinguish 

different vegetation species in future study. 

3.6. Conclusion 

In this study, the FLiES model coupled with a newly developed SIF module was used to 

partition the SIF signal into overstory and understory layers at an interannual time scale. 

LiDAR data was used to build a three-dimensional model of complex vegetation structure 

for open shrubland, tropical savanna and evergreen forest. We retrieved biochemical data 

from Sentinel-2 surface reflectance data using the GPR method. Results presented 

different seasonal patterns of SIF distribution in AU-TTE, AU-LIT and AU-CUM. The 

simulated SIF model showed a similar seasonal pattern with GPPEC and GOME-2 SIF. In 

open shrubland (AU-TTE), overstory and understory SIF showed a strong relationship 

with PAR and GPP. For tropical savanna (AU-LIT), overstory SIF showed less variation, 

but understory SIF accounted for 50% of the total SIF in the wet season. In the evergreen 

forest, the contribution of understory SIF was less than overstory SIF, and it showed a 

weak relationship with canopy cover. Hence, the incoming radiation is not the primary 

reason leading to less SIF emission. In shrubland and tropical savanna, SIF was more 
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sensitive to canopy cover. In the future, we would discuss further to what extent 

understory SIF is affected by other ecological factors. 
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Chapter 4. OCO-2 sun-induced chlorophyll 

fluorescence normalised by a three dimensional 

radiative transfer model is better correlated with 

vegetation productivity 
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Abstract 

Sun-induced chlorophyll fluorescence (SIF) is one of the most effective indicators that 

can be used to show vegetation photosynthetic activities. Variable scale measurements 

from leaf level to space have been implemented to find strong correlations between SIF 

and gross primary production (GPP). SIF yield and LUE (light use efficiency) can exist 

in positive or negative relationships under different light conditions (limiting or saturating) 

and dependent on sunlit and sun shaded leaves. In addition, variations of sun position and 

viewing angle bring uncertainties to the relationships of GPP and SIF, SIF yield and 

APAR (Absorbed Photosynthetically Active Radiation), and SIF yield and LUE. With 

the help of the OCO-2 (Orbiting Carbon Observatory-2) satellite sensor, which provides 

special geometric measurement modes (nadir, glint and target mode), we collected and 

analysed SIF emissions at nadir, hot spot and dark spot directions over three flux tower 

sites (US-PFa, US-WCr and US-NR1). We found that SIF in the hot spot direction was 

better correlated with GPP (R2 = 0.95, 0.95 and 0.88 for US-PFa, US-WCr and US-NR1, 

respectively) than at other geometrical directions. Furthermore, we implemented a three-

dimensional radiative transfer model (FLiES) coupled with solar position, viewing angle 

and LiDAR-based vegetation structure retrievals to simulate the relative photosynthetic 

active radiation for three viewing conditions. Our results were used to normalise the far-

red OCO-2 SIF and this resulted in SIF yields better correlated with APAR and LUE in 

the hot spot and dark spot directions, compared with the original SIF observations. The 

coefficient of determination of SIF yield and LUE was improved from 0.39 to 0.48 at all 

three sites normalized by the model. Lastly, statistical analysis suggested that PAR 

(Photosynthetically Active Radiation) was the most critical factor (34.06%) explaining 

the SIF observations from the hot spot observations, while air temperature was the most 

relative importance factor (42.51%) for SIF variations in dark spot geometries. Our 

findings will help lead to a better understanding of view angle influences on sunlit and 

sun shade SIF retrievals. 

4.1. Introduction 

Sun-induced chlorophyll fluorescence (SIF) is a weak signal, but it can indicate a plant’s 

photosynthetic efficiency (Baker 2008). It mainly exists from 650 to 850 nm and has two 

peaks at 680 and 740 nm, respectively. The fluorescence at 685 nm, normally regarded 

as red SIF, only contains photosystem II (PSII) information, while the 740 nm 
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fluorescence, regarded as far-red SIF, contains both photosystems I and II (PSII) 

information (Porcar-Castell et al. 2014). Because of the low absorption of far-red SIF 

(Yang & Van Der Tol 2018), it is common to use as a proxy to study the relationship 

between SIF and abilities of vegetation’s photosynthesis. The SIF signal is similar to the 

reflectance, it is also influenced by the viewing angles (bidirectional reflectance 

distribution function effects, BRDF) (Liu et al. 2016). Different view positions and sun 

positions might lead to variable results of SIF. 

Over the past ten years, many satellites were launched for monitoring SIF at different 

spatial and temporal resolutions. GOME-2 (Global Ozone Monitoring Experiment-2) 

started its observation from 2007 and provided a new approach to detect how vegetation’s 

photosynthetic activities respond to climate change (Guanter et al. 2012; Joiner et al. 

2013). The level 3 data of GOME-2 offers monthly SIF data, but the coarse spatial 

resolution (40 * 40 km) and the degradation of sensors brings uncertainties and difficulties 

for the long-term time series analysis (Zhang, Joiner, Gentine, et al. 2018). Compared to 

GOME-2, OCO-2 (Orbiting Carbon Observatory-2) provides fine spatial resolution (1.3 

km * 2.25 km), however, the disperse soundings, discontinuous spatial coverage and a 16 

day revisit dataset, creates the need to interpolate for large scale studies (Frankenberg et 

al. 2014; Sun et al. 2017). Some studies used a machine learning method to create OCO-

2 SIF products, GOSIF, CSIF and 𝑆𝐼𝐹𝑂𝐶𝑂2_005 at 0.05° spatial resolution (Li & Xiao 2019; 

Yu et al. 2019; Zhang, Joiner, Alemohammad, et al. 2018). In addition, TROPOMI 

(TROPOspheric Monitoring Instrument) is the newest launched satellite (data available 

from March 2018). It provides medium spatial resolution (7 km * 3.5 km) and a high 

frequency revisit (almost daily) dataset (Guanter et al. 2015; Köhler, Frankenberg, et al. 

2018). In time, TROPOMI will be the most popular SIF satellite for analysis of vegetation 

photosynthetic activities. 

As contrast to the other satellites, OCO-2 has three different measurement modes: Nadir, 

Glint and Target mode (Frankenberg et al. 2014). The Nadir mode is the sensor which 

collects the data at the nadir view directions. Glint mode observations are made when the 

solar zenith angle at the apparent glint spot is less than 75 degrees. OCO-2 has been 

validated in many places, globally. When the satellite passes by these places, OCO-2 

activates a target mode and collect thousands of observations. At this time, the solar zenith 

angle and solar azimuth angle are assumed to be fixed, hence, OCO-2 contributes to 

analysis of how variations of viewing angle effects the SIF value. 
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Guanter found that GOME-2 SIF was significantly correlated with eddy covariance GPP 

(gross primary production) for cropland (Guanter et al. 2014a). GOME-2 SIF also was 

used to detect the plants responding to heat events and drought (Song et al. 2018a; Sun et 

al. 2015b). Li analysed the relationship between GPP and OCO-2 SIF for 64 flux sites 

globally and found there was an existing universal relationship of GPP and SIF for a wide 

variety of vegetation (Li et al. 2018). Additionally, SIF devices (FluoSpec, FluoSpec2 

and SIF-sys) have been set up to monitor diurnal and seasonal SIF variations (Miao et al. 

2018; Wieneke et al. 2018b; Yang, Ryu, et al. 2018). Researchers have found that the 

relationship of SIF:GPP in finer temporal resolution (half-hourly) was much weaker than 

at the seasonal scale, and SIF was primarily driven by APAR (absorbed 

photosynthetically active radiation) (Yang, Ryu, et al. 2018; Zhang et al. 2016). In 

addition, a significantly positive correlation between GPP and SIF under a clear sky and 

cloudy sky was found at the seasonal scale for deciduous broadleaf forests (Yang et al. 

2015b). 

In order to remove the APAR effects on SIF and GPP, and discover the exact relationship 

between SIF and GPP, researchers have partitioned SIF yield and LUE (light use 

efficiency) to GPP (Damm et al. 2015a). 

𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑 =
𝑆𝐼𝐹

𝐴𝑃𝐴𝑅
  (4-1) 

𝐿𝑈𝐸 =
𝐺𝑃𝑃

𝐴𝑃𝐴𝑅
 (4-2) 

Equations 4-1 and 4-2 explains that SIF and GPP both contain the APAR. SIF yield can 

be treated as the emitted SIF per photon absorbed (light use efficiency for fluorescence). 

LUE can be treated as how much light is used for photosynthesis. The previous study 

confirmed that the SIF is more correlated with APAR than photosynthesis (Yang, Ryu, et 

al. 2018), and some researchers have found that the pattern of LUE and SIF was negative 

across the diurnal and seasonal scale for soybean (Miao et al. 2018), which was contrary 

to Yang and Verma’s study in a deciduous temporal forest and C4 grass (Verma et al. 

2017; Yang et al. 2015b). It might due to different vegetation types and different growing 

seasons. Miao suggested that the relationship of SIF yield and LUE varied with the light 

conditions. While vegetation is under saturating light, the SIF yield is positive with LUE, 

and negative when the light is limited (Van der Tol et al. 2014). However, this pattern on 

sunlit (light easily saturating) and sun shade leaves (light limiting) have not been 
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confirmed at the site scale. Sunlit and sun shade leaves might exhibit different patterns of 

SIF:GPP and SIF yield: LUE. When a hyperspectral camera was involved in SIF study, 

it showed the sunlit SIF is two-fold that of sun shade SIF (Pinto et al. 2016). It implied 

that the light conditions of sunlit leaf and sun shade leaf might be different. 

The SIF signal is similar to reflectance, as it is affected by the direction of the view. Some 

researchers have already used models to demonstrate when SIF reached a peak at the hot 

spot direction (Van der Tol et al. 2014; Zhao et al. 2016). The field measurement 

furthermore confirmed SIF at O2-A band has clear BRDF affection (Liu et al. 2016). 

Satellite observations also confirmed this issue: normalised GOME-2 SIF at hot spot 

direction was strongly correlated with sunlit GPP (He et al. 2017). However, the coarse 

spatial resolution of GOME-2 data makes it challenging to validate at the site scale. In 

addition, Zhang indicated that OCO-2 data is prone to being affected by viewing angles. 

In this study, we aimed to check the BRDF effects on the relationships of SIF:GPP and 

SIF yield:LUE, and discuss essential factors that would have an impact on SIF from the 

sunlit and sun shade crown areas. Our objectives were to (i) identify SIF value variance 

with view zenith angle and view azimuth angle for mixed forest, deciduous broadleaf 

forest and evergreen needle forest at the site level; (ii) examine the relationship between 

SIF and GPP for various view observations, and investigate the utility of a normalised 

SIF at the hotspot and dark spot directions to represent sunlit and sun shade crown area, 

respectively; (iii) investigate the relative importance of environmental factor 

contributions for the nadir, hot spot and dark spot observations. This research will be 

useful for understanding how sunlit and sun shade SIF values vary and their sensitivity to 

environmental factors. 

4.2. Study area and Data 

4.2.1. Study area 

We selected three sites for this study, Park falls, Willow Creek and Niwot ridge forests. 

Flux towers are implemented to enable measuring in these sites. Park falls (US-PFa) is 

located in the north of the USA (45°56' N, 90°16' W). The elevation of US-PFa is 470 m 

above sea level. The mean annual temperature and precipitation are 4.33 °C and 823 mm, 

respectively. This site is surrounded by forest and wetlands. The forest is mixed temperate 

forest and includes northern hard-woods, red pine and forested wetlands (Li et al. 2018). 
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The second flux site, Willow Creek (US-WCr, 45°48' N, 90°04' W), is near the US-PFa 

(21 km to the southeast). The elevation is 520 m above sea level. The mean annual 

temperature and precipitation are 4.02 °C and 787 mm, respectively. The land cover of 

this site is a deciduous broadleaf forest. The vegetation of US-WCr includes sugar maple, 

basswood and green ash (Cook et al. 2004). 

Niwot ridge forest (US-NR1) is located in the Rocky Mountains of Colorado, USA 

(40°01' N, 105°32' W). The elevation is 3050 m above sea level. The mean annual 

temperature and precipitation are 1.5 °C and 800 mm, respectively. The primary land 

cover is evergreen needle forest. The forest includes subalpine fir, lodgepole pine and 

Englemann spruce (Burns et al. 2016). 

4.2.2. OCO-2 SIF 

The Orbiting Carbon Observatory 2 (OCO-2) is used to study carbon dioxide distribution 

in the atmosphere from July 2014, and it also retrieves fluorescence from the O2-A band 

(Frankenberg et al. 2015). We obtained the SIF data from OCO-2 SIF product 

(OCO2_L2_Lite_SIF_V8r, 8100r). OCO-2 SIF’s temporal resolution is 16 days, and its 

spatial resolution is 1.3 km * 2.25 km. Each measurement, covers eight footprints, and 

the local passing time is 13:36.  

Although OCO-2 provided two bands of SIF (757 and 771 nm), we chose 757 nm for this 

study due to its better correlation with GPP (Li, Xiao & He 2018a). We collected 

instantaneous SIF retrievals at 757 nm for the area of 10 km * 10 km around each flux 

tower site from September 2014 to November 2018. We removed OCO-2 SIF retrievals 

in glint mode because it has been reported that it is of low quality and underestimates SIF 

(Sun et al. 2017). Nadir and target mode of SIF soundings were used in this study. OCO-

2 data is filtered by IGBP (International Geosphere-Biosphere Programme) index 

similarly as the vegetation type of each flux site. We did not aggregate instantaneous SIF 

into daily SIF because we aim to check immediately the SIF response to photosynthesis. 

4.2.3. MODIS data 

We used MODIS (Moderate Resolution Imaging Spectroradiometer) fPAR (fraction of 

Photosynthesis Active Radiation) for normalising APAR effects on SIF. fPAR is a factor 

that can present how much PAR was absorbed by vegetation for photosynthesis (𝐴𝑃𝐴𝑅 =

𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 ) (Myneni, Knyazikhin & Park 2016). MODIS fPAR is provided by 
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MOD15A2H (version 6) at the spatial resolution of 500 m from 2014 to 2018. We filtered 

raw data by the quality control method, which is recommended in their official 

documentation and extract the fPAR based on each flux site coordinates. Because the 

temporal resolution of MOD15A2H mismatches with OCO-2, we selected the closest date 

of fPAR to OCO-2 observations when calculating APAR. 

4.2.4. LiDAR data 

Light Detection And Ranging (LiDAR) data can calculate the distance between the sensor 

and measured objects by measuring the time a pulse of transmitted energy takes to return 

to the LiDAR sensor (Dubayah & Drake 2000). The LiDAR data of US-PFa and US-WCr 

are provided by GLiht (https://gliht.gsfc.nasa.gov/), and they were both surveyed in June 

2012. The LiDAR data of US-NR1 is provided by NEON (https://data.neonscience.org), 

and it was surveyed in September 2017.  

We implemented a Canopy Height Model (CHM) (Simard et al. 2011) to separate the 

canopy layer and ground layer and apply the crown detection method to identify each 

crown’s position, height and area. This information would be used in building a three 

dimensional canopy structure for the model simulation. 

4.2.5. Eddy covariance data 

Half hourly eddy covariance data of US-PFa, US-WCr and US-NR1 are provided by 

Ameriflux (https://ameriflux.lbl.gov/). PAR (Photosynthesis Active Radiation), VPD 

(Vapour Pressure Deficit), NEE (NET Ecosystem Exchange), SWC (Soil Water Content) 

and Ta (air temperature) were extracted from the dataset based on the OCO-2 passing 

time (approximate 13:30).  

Eddy covariance GPP (GPPEC) data was calculated for checking the relationship between 

GPPEC and SIF retrievals. The R package, REddyProc (Wutzler et al. 2018), was 

implemented to estimate GPP with half hourly eddy covariance and meteorological data. 

This tool used the gap-filling and flux partitioning algorithms to partition net flux into 

GPP and field ecosystem respiration (Reichstein et al. 2005). GPPEC is similarly extracted 

by OCO-2 overpass time. 

4.3. Methodology 
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This section briefly describes definitions of OCO-2 viewing directions and the framework 

of simulation for relative radiation.  

4.3.1. Definitions of OCO-2 observation directions 

We defined OCO-2 observations into three directions: nadir, hot spot and dark spot. The 

nadir direction contains the observations under the nadir measurement mode and the 

definition as: 

VZA = 0° (4-3) 

VZA means the view zenith angle. The hot spot is defined as an observation and solar 

directions are a coincidence (as equation 4-4 shows). In order to retrieve enough 

observations for statistics, we used a larger threshold for hot spot direction, 

{
|𝑆𝑍𝐴 − 𝑉𝑍𝐴| < 15°
|𝑆𝐴𝐴 − 𝑉𝐴𝐴| < 30°

 (4-4) 

where SZA means solar zenith angle, SAA means solar azimuth angle and VAA means 

view azimuth angle. The dark spot is defined as VAA is in the forwarding scattering 

direction as: 

{
|𝑆𝑍𝐴 − 𝑉𝑍𝐴| < 10°

||𝑆𝐴𝐴 − 𝑉𝐴𝐴| − 180°| < 5°
 (4-5) 

4.3.2. FLiES model 

FLiES (version 2.48) (Kobayashi & Iwabuchi 2008), a three dimensional radiation 

transfer model, was implemented to simulate the relative absorbed radiation from 

different solar positions and viewing angles. It based on the Monte Carlo method and ray-

tracing frame. A large number of photons were uniformly distributing above the 

simulation scene, then the random method was used to generate each photon’s direction. 

With a large number of repetition times, simulation results are close to reality. 

In order to build a three-dimensional vegetation structure, vegetation properties, including 

height, position and crown area, were extracted from the LiDAR data. We simply defined 

the simulation as two layers: the canopy layer and understory layer. 

4.3.3. Normalised APAR and SIF yield 

We calculated the APAR for different observation directions as: 
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{

𝐴𝑃𝐴𝑅𝑁𝑎𝑑𝑖𝑟 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅

𝐴𝑃𝐴𝑅𝐻𝑜𝑡 𝑠𝑝𝑜𝑡 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝑟𝑒𝑙𝑎𝑃𝐴𝑅𝐻𝑜𝑡 𝑠𝑝𝑜𝑡

𝐴𝑃𝐴𝑅𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝑟𝑒𝑙𝑎𝑃𝐴𝑅𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡

 (4-6) 

where 𝐴𝑃𝐴𝑅𝑁𝑎𝑑𝑖𝑟 , 𝐴𝑃𝐴𝑅𝐻𝑜𝑡 𝑠𝑝𝑜𝑡 and 𝐴𝑃𝐴𝑅𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡  are the APAR for nadir, hot spot 

and dark spot direction. We assumed 𝑓𝑃𝐴𝑅was uniformly distributed in the canopy layer. 

PAR was collected from each flux site and 𝑓𝑃𝐴𝑅 was collected from the MODIS dataset. 

𝑟𝑒𝑙𝑎𝑃𝐴𝑅𝐻𝑜𝑡 𝑠𝑝𝑜𝑡  and 𝑟𝑒𝑙𝑎𝑃𝐴𝑅𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡  was simulated by the FLiES model. The 

simulation method was that I counted the PAR value in canopy layer at the giving field 

of view, and then I calculated the ratio between PAR at the giving direction and total PAR. 

Hence, the SIF yield for different observations directions can be defined as followings, 

{

𝑆𝐼𝐹 𝑦𝑖𝑒𝑙ⅆ𝑁𝑎𝑑𝑖𝑟 = 𝑆𝐼𝐹𝑁𝑎𝑑𝑖𝑟 𝐴𝑃𝐴𝑅𝑁𝑎𝑑𝑖𝑟⁄

𝑆𝐼𝐹 𝑦𝑖𝑒𝑙ⅆ𝐻𝑜𝑡 𝑠𝑝𝑜𝑡 = 𝑆𝐼𝐹𝐻𝑜𝑡 𝑠𝑝𝑜𝑡 𝐴𝑃𝐴𝑅𝐻𝑜𝑡 𝑠𝑝𝑜𝑡⁄

𝑆𝐼𝐹 𝑦𝑖𝑒𝑙ⅆ𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡 = 𝑆𝐼𝐹𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡 𝐴𝑃𝐴𝑅𝐷𝑎𝑟𝑘 𝑠𝑝𝑜𝑡⁄
 (4-7) 

4.3.4. Structure of model simulations 

Figure 4.1 showed the flow chart of our methodology. Firstly, we separated OCO-2 

soundings as the nadir, hot spot and dark spot direction as our definitions (section 4.3.1). 

For each direction, we extracted every sounding from SZA, SAA, VZA and VAA. Their 

angles were coupled with the canopy structure, which processed by LiDAR data, were 

for FLiES model settings.  

For the FLiES model setting, we set 108 photons (as the model document suggests), the 

reflectance and transmittance for leaf, stem are set as default and leaf inclination is 

uniformly distributed. In our simulation area, the distribution of trees is dense and less 

photon reflection from the underground layer can reach the virtual sensor, and we only 

considered the canopy layer radiation distribution, so we set the reflectance and 

transmittance of the underground as default as well. To calculate the relative PAR for 

different directions, we used the same incident PAR and leaf density for every direction. 

Because the shape of the crown in these three sites is different, we set the crown shape as 

a cone for US-NR1 (evergreen needle forest) and ellipsoids for US-PFa and US-WCr, 

respectively. We can then get the relative PAR from each simulation, and retrieve SIF 

yield for nadir, hot spot and dark spot direction based on equation 4-7. 



79 

 

Figure 4.1. Flow chart of simulation methods. 

4.3.5. Relative importance method 

In order to evaluate environmental factors affecting each viewing direction, the partial 

correlation method (Chevan & Sutherland 1991) was applied in this study. We used R 

package relaimpo (Grömping 2006) to calculate the ranks of the environmental factors 

for viewing different SIFs in terms of their unique contribution to SIF retrievals. This 

method would be of benefit to understand each environmental factors contribution to 

different angles’ SIF variations. 

4.4. Results 

4.4.1. OCO-2 SIF observations in multi-angles 

Figure 4.2 shows the polar coordinate results for OCO-2 observations in a single day at 

the target measurement mode. In order to see the variation of SIF values clearly, the OCO-

2 observation angle was resampled to one degree. The hot spot effect is obviously shown 

in Figure 4.2 (a)-(b). The SIF was higher when the sensor direction was coincidental to 

the sun angle than in other directions (SZA = 30°, SAA = 223° for Figure 4.2 (a), VZA = 

32°, VAA = 225° for Figure 4.2 (b)). At the dark spot direction, SIF observations were 

lower than at other angles (Figure 4.2 (c), VZA = 43°, VAA = 21.5°), but were not the 

lowest. It suggested that SIF from the sun shade canopy area is lower than the sunlit area 
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and a, prior study found the SIF values measured from sunlit leaf was two-fold that of 

SIF from sun shade leaf (Pinto et al. 2016). But for SIF observations in 2017-04-21 

(Figure 4.2 (d)), the SIF values (mean SIF = 0.22 mW/m2/sr/nm) were similar at different 

angles. The reason may be that the leaves were not growing as April was earlier than the 

growing season (Li, Xiao & He 2018a). Comparisons of the SIF values at a different time 

of the year (Figure 4.2 (a), (c)), SIF as a whole was higher in June 2018 than September 

at US-WCr, suggesting the SIF has seasonality (Guan et al. 2015). 

 

Figure 4.2. (a) – (d). Instantaneous OCO-2 SIF observations at 757 nm in different days. 

(a) and (b) shows the hot spot effect, (c) and (d) shows the dark spot effect. The red five-

point star identifies the sun position at OCO-2 passing time. The numbers inside the circle 

are zenith angle. The numbers on the outermost circle represent the azimuth angle. 

4.4.2. The relationship between GPP and OCO-2 SIF over nadir, hot 

spot and dark spot observations 

Figure 4.3 presents the relationship between GPPEC and OCO-2 SIF at 757 nm in the 

nadir, hot spot and dark spot directions for US-PFa, US-WCr and US-NR1. All these sites 

exhibited the same pattern: SIF was highly correlated with GPPEC in the hot spot group 

(R2 = 0.95, 0.95 and 0.88 for US-PFa, US-WCr and US-NR1, respectively). However, 
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the p-value of US-NR1 was more than 0.05 due to the limited SIF observations in the hot 

spot group. The stronger correlation implies that the SIF, observed from the sunlit crown 

area, can better explain the GPPEC changes than in other viewing directions.  

 

Figure 4.3. The relationship between eddy covariance GPP and OCO-2 SIF in nadir, hot 

spot and dark spot views for (a) US-PFa, (b) US-WCr and (c) US-NR1. Coloured lines 

mean the linear regression line. 

In US-PFa, the coefficient of determination between SIF and GPPEC was 0.73 in the nadir 

group (Figure 4.3 (a)), which was higher than observed in the dark spot group (R2 = 0.38, 

p-value < 0.01), but their slopes were close to each other. SIF observations in the dark 

spot group were mainly from the sun shade crown area. It suggested that sun shade SIF 

had a weak relationship with GPPEC in US-PFa. However, for SIF soundings in US-WCr 

and US-NR1 (Figure 4.3 (b), (c)), the correlation between SIF and GPPEC was almost 

same for the nadir and dark spot directions, the R2 of SIF and GPPEC in the dark spot 
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direction was slightly higher than in the nadir direction (All p-value < 0.01). SIF value 

and GPPEC in US-NR1 were lower than in other sites. 

4.4.3. The correlation between normalised APAR and SIF for nadir, 

hot spot, and dark spot directions 

APAR mainly drives SIF, so we checked the relationship between OCO-2 SIF and 

normalised APAR at US-PFa, US-WCr and US-NR1 for the nadir, hot spot and dark spot 

directions (Figure 4.4 (a) – (c)). In the nadir direction, an obvious pattern existed for SIF 

and APAR. R2 were 0.68, 0.64 and 0.25 for US-PFa, US-WCr and US-NR1 (all p-value 

< 0.01), respectively. We noted that APAR is the original APAR based on the nadir 

direction definition as equation 4-6 shows. In the hot spot direction, SIF was more 

strongly correlated with normalised APAR (R2 = 0.79, 0.91 and 0.88 for US-PFa, US-

WCr and US-NR1, respectively) than in other directions. The R2 increased distinctly 

when compared with the nadir direction (R2 mean increased 0.34). It suggests that the SIF 

from the sunlit crown area is primarily driven by APAR, which is consistent with previous 

studies (Yang, Ryu, et al. 2018; Yang et al. 2015b). However, the p-value of the hot spot 

SIF and APAR in US-NR1 is larger than 0.05, and its pattern was not significant due to 

limited OCO-2 observations (Figure 4.4 (c)). Compared to the hot spot direction, the 

explanation of APAR by SIF from the dark spot direction was weak in all three sites and 

was even weaker than the nadir direction. The coefficients of determination were 0.52, 

0.6 and 0.11 for US-PFa, US-WCr and US-NR1, respectively. It suggested that the SIF 

variation from the sun shade crown area was not driven by APAR and we should consider 

other environmental factors that would impact SIF in the sun shade crown area (Pinto et 

al. 2016). It is noticed that the slope for different view directions is not consistent among 

the three study sites. An explanation might be that SIF has its own response speed to 

APAR in different varied light area conditions. In other words, SIF in the hot spot 

direction was more sensitive to the APAR variations than SIF observed in the nadir and 

dark spot directions. 
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Figure 4.4. The relationship between normalised APAR and OCO-2 SIF at 757 nm in 

nadir, hot spot and dark spot views for (a) US-PFa, (b) US-WCr and (c) US-NR1. 

Coloured lines mean the linear regression line for each direction. 

4.4.4. The correlation between LUE and normalised SIF yield for the 

nadir, hot spot and dark spot viewing directions 

In order to minimise the APAR effects on GPP and SIF, we calculated the LUE (𝐿𝑈𝐸 =

𝐺𝑃𝑃 𝐴𝑃𝐴𝑅⁄ ) to check the relationship between SIF yield and LUE in the nadir, hot spot 

and dark spot directions for US-PFa, US-WCr and US-NR1 (Figure 4.5 (a) – (c)). In the 

nadir direction, SIFyield showed high correlation with LUE (R2 = 0.43, p<0.01) at US-PFa 

but patterns of SIFyield and LUE were not significant in US-WCr and US-NR1 (R2 = 0.07 

and 0.1, respectively). In the hot spot direction, SIFyield was significantly positively 

correlated with LUE in US-PFa and US-WCr (R2 = 0.58 and 0.71, respectively), but for 
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US-NR1, the correlation was negative and the p-value was more than 0.5. For the dark 

spot direction, the relationship of SIFyield and LUE had a larger R2 than the nadir direction 

in US-WCr and US-NR1, but this was less than in the hot spot direction (US-WCr). 

Compared to non-normalised SIFyield and LUE in the nadir direction, normalised SIFyield 

from the hot spot direction can more easily explain the 15% and 64% of LUE change in 

US-PFa and US-WCr, respectively (Figure 4.5 (a)-(b)). Considering that the observed 

SIF at the nadir direction consisted of both sunlit and sun shade crown areas, it suggested 

that the pattern of SIFyield and LUE are not the same in sunlit and sun shade crown areas, 

and sunlit SIFyield might be more sensitive to variations of LUE than other view directions. 

 

Figure 4.5. The relationship between LUE and normalised OCO-2 SIF yield in the nadir, 

hot spot and dark spot directions for (a) US-PFa, (b) US-WCr and (c) US-NR1. Coloured 

lines mean the linear regression line for each view direction. 
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4.5. Discussion 

4.5.1. View zenith angle effects on the SIF variations 

Based on our findings, different VZA of OCO-2 observations leads to different patterns 

of SIF:GPP and SIF:APAR. We used the three dimensional radiation transfer model, 

FLiES-SIF (see chapter 2 for more details), to simulate the SIF at the 767 nm in different 

view zenith angles with fixed SZA and SAA (Figure 4.6). Simulation results suggested 

that the SIF signal was similar to reflectance, as it had BRDF effects. At the solar principal 

plane, SIF reached the peak when VZA is coincidental to SZA (VZA = -20°). At the nadir 

direction (VZA = 0°), SIF was lower than SIF viewed at the hot spot direction and was 

higher than the dark spot direction (VZA = 20°), however, the SIF value was not the 

lowest at the dark spot direction. This finding can explain that OCO-2 SIF retrievals are 

higher at the hot spot and lower at the dark spot direction (Figure 4.2 (a), (c)) and it shows 

similar properties to reflectance. The results are consistent with the field measurements 

and one dimensional model simulations (Liu et al. 2016; Van der Tol et al. 2009). 

 

Figure 4.6. FLiES-SIF model simulated SIF at 757 nm at the solar principal plane, and 

solar zenith angle was set to 20°. SIF value has been scaled from 0 to 1 mW/m2/sr/nm. 
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Negative values of the VZA mean a backward direction, the positive values signify a 

forward direction. 

4.5.2. Normalised SIF of OCO-2 data 

In order to minimise the different SZA positions influencing SIF observations, we 

normalised the SIF by SZA (𝑆𝐼𝐹𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑆𝐼𝐹 cos 𝑆𝑍𝐴⁄ ) (Köhler, Guanter, et al. 

2018). We found the relationship between SIFnormalised and GPPEC decreased slightly when 

compared to non-angular normalization of SIF and GPPEC (Figure 4.7 (a), (b)). The 

coefficient of determination was decreased by 0.03. This insignificant change means the 

method, which normalised SIF by SZA, does not effectively influence the relationship 

between SIF and GPPEC. The dataset mainly consisted of SIF retrievals from the nadir 

direction and dark spot direction, and limited change of SZA (36±12°), and fixed OCO-

2 local overpass time had less effect on the correlation of this pattern. In other words, 

normalizing SIF by SZA can not remove too many angle effects from solar positions.  

 

 

Figure 4.7. (a) The correlation between OCO-2 SIF and GPPEC for three study sites. (b) 

The correlation between GPP and normalised SIF by SZA for three study sites. The black 

line means the linear regression line. 

In addition, we checked the relationships between LUE:SIFyield and normalised LUE and 

SIFyield for the total SIF retrievals in our study sites (Figure 4.8 (a), (b)). The results 

showed that the normalised SIFyield was better correlated with the LUE than the original 

SIFyield (R2 = 0.39 and 0.48 for normalised and non-normalised SIFyield, respectively).  
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In the previous study, the relationship between SIFyield and LUE could be positive or 

negative under different light conditions or other environmental stresses (Demmig & 

Björkman 1987), hence, the relationship between LUE and SIFyield might be different 

under light-saturating or light-limiting conditions. These conditions could be varied with 

a different ecosystem and species, and we found normalised SIFyield is positively 

correlated with LUE for these vegetation types (R2 = 0.39, 0.17 and 0.11, p-value < 0.05, 

for mixed forest, deciduous broadleaf forest and evergreen needle leaf forest, 

respectively). 

In the hot spot direction, the light easily saturates vegetation before midday on a sunny 

day. The positive pattern of LUE: SIFyield is consistent with an earlier study (Alton, North 

& Los 2007). Because of light saturation, with the increase of the PAR, the LUE and 

SIFyield both tend to decrease, hence, the positive pattern of LUE and SIFyield appeared in 

the hot spot direction. Furthermore, even though light conditions are strongest in the 

midday, the positive correlation of LUE and SIFyield still was confirmed (Figure 4.7 (a)). 

This is consistent with the previous study (Wieneke et al. 2018a), and Van de tol 

suggested that this relationship can be positive when light is saturated (Van der Tol et al. 

2014). In addition, based on diurnal SIF measurements for crops(Pinto et al. 2016), 

SIFyield normally would experience three periods in a day: increasing capacity, downwards 

regulation and recovery. During the increasing capacity period, which happens in the 

morning, SIFyield increases dramatically and LUE decreases with the increase of PAR, 

hence, the correlation between SIFyield and LUE is negative. During the period of 

downward regulation, in vegetation experiencing light saturation before PAR reaches the 

peak, the correlation of SIFyield and LUE is positive (SIFyield decreases with light saturation 

and LUE decreases with the increasing PAR). However, during the recovery period, the 

pattern would turn to negative vaues because SIFyield drops slightly, and LUE tends to 

increase due to the decrease of PAR, hence, OCO-2 observation overpass time may 

belong to the down regulation period. It contributed to the weak but positive correlation 

between SIFyield and LUE. Other findings also suggested that the vegetation could adjust 

their structural and physiological functions to adapt to light saturate conditions (Schlau-

Cohen & Berry 2015).  

The diffuse PAR can be detected much more in dark spot directions than in hot spot 

directions. Based on Yang’s study for the deciduous broadleaf forest, the LUE and SIFyield 

both increased while diffused PAR fractions accounted more in total incident of PAR 
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(Yang et al. 2015b), hence, the pattern of LUE and SIFyield was also significantly positive 

for all sites in the dark spot direction. In addition, the measuring time of OCO-2 SIF 

guarantees high diffuse PAR from the shaded crown area (solar intensity is strong at 

midday), the pattern of LUE and SIFyield would change to negative in the light-limiting 

time (early morning or late afternoon) (Van der Tol et al. 2014). Due to PAR dropping 

while the light is limited in the afternoon, and SIFyield decreasing as well, but LUE 

increasing, the relationship would change to negative (Miao et al. 2018). This 

phenomenon suggests that more studies should check the relationship over diurnal and 

seasonal scales (Guan et al. 2018). Even when considering the path of photons through 

the canopy, lower incident radiation leads to lower SIF emission, so the SIF from the deep 

shaded leaf are is lower than SIF from the top and middle shaded layers (Pinto et al. 2016).  

 

 

Figure 4.8. (a) The correlation between OCO-2 SIF yield and LUE for three study sites. 

(b) The correlation between normalised LUE and normalised SIF yield by APAR for three 

study sites. The black line means the linear regression line. 

4.5.3. Relationship between environmental factors and SIF 

observations in different view observations 

We checked the relative contribution from environmental factors (VPD, Ta, SWC, PAR, 

and NEE) to different SIF view directions in US-PFa, US-WCr and US-NR1 (Figure 4.9). 

In the nadir direction, the NEE contributed nearly a half (47.97%) to the SIF variation. 

Air temperature accounted for 29.81% which was less than NEE. Interestingly, PAR is 
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not the significant factor which effects SIF in the nadir direction (only 8.65%, the third 

in order). 

In the hot spot direction, the PAR contributed the most to the sunlit SIF (34.06%). The 

apparent results suggested that PAR was the main contributor to the SIF variation for the 

sunlit crown area. Because the leaves are exposed to the the direct sunlight, the SIF is 

mainly driven by direct PAR. The strong direct PAR leads to higher SIF emission (Damm 

et al. 2015a). Sunlit leaf contributes mostly to GPP, but the NEE is less prominent in the 

hot spot direction (19.11%). It can be seen that sunlit SIF is highly correlated with GPP 

(Figure 4.3). With the high temperature and VPD at midday, the respiration is low and 

the ability of leaf stomatal conductance decreases, so the Reco is limited at the sunlit 

crown area (Reddy, Baker & Hodges 1991). However, in the meantime the GPP increases, 

so the negative pattern between NEE and Reco may lower the importance of Reco to the 

variation of sunlit SIF (𝑁𝐸𝐸 = 𝐺𝑃𝑃 + 𝑅𝑒𝑐𝑜). 

In the dark spot direction, without the direct PAR effects, the air temperature and VPD 

might replace PAR as the main factors that affect SIF variation. Ta appeared to be the 

most crucial factor of the SIF variation (42.51%). NEE and VPD similarly contributed to 

the SIF change (24.55% and 26.03%, respectively). PAR contributed less to sun shade 

SIF variation when compared with the hotspot spot direction. It implied the PAR does not 

dominate the SIF variation for sun shade leaves. As the most important factor, Ta 

dominated the SIF variation in the dark spot and this may because the sun shade crown 

area avoids the effects of light-saturation. Hence, SIF variation in the sun shade crown 

area might be more sensitively responsive to the Ta and VPD because strong positive 

correlation between SIF and VPD (R2 = 0.69) was found (Shan et al. 2019). In addition, 

Van der tol used the SCOPE model to simulate the temperature from the sun shade area 

and found Ta was cooler than the sunlit area in the dense tree area (Van der Tol et al. 

2009), hence, cooler temperatures may influence the variations of SIF in the sun shade 

area. 

As with Shan’s findings, SIF and VPD both decreased at the midday at the diurnal scale. 

Because the canopy stomatal conductance was much more sensitive to the variation of 

VPD, and influenced by the SIF variations (Shan et al. 2019). It is possible that before 

SIF was affected by light saturation, the stomatal conductance might already respond to 
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the high temperatures and constrain the plant transpiration. This is worth further 

investigation and more experiments to should be carried out in future. 

Finally, it should be noted that the soil water content is the factor which is the weakest 

factor influencing SIF variation in all viewing directions. It suggests that SWC does not 

directly or timely affect SIF for the deciduous broadleaf forest, mixed forest and 

evergreen needle leaf forest. 

 

Figure 4.9. Relative importance of VPD, Ta, SWC, PAR and NEE for SIF viewing in 

nadir, hot spot and dark spot direction. 

4.5.4. Applications of remotely sensed SIF observations  

Normally, the SIF satellite (GOME-2 and TROPOMI) observes at the nadir direction. 

Based on our findings, it might underestimate the SIF: GPPEC relationship (Figure 4.3 

(a)-(c)). In addition, our finding suggests that VZA influence on the pattern of SIF and 

GPPEC is limited (Figure 4.7). SIF: GPPEC relationship is prone to influence by the sensor 

view positions. 
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Previous study normalised OCO-2 and GOME-2 incident PAR and SIF bands, and the 

results showed the times series of these two satellite agrees well (Köhler, Guanter, et al. 

2018). However, SIF variation changes dramatically over the course of a day and the 

correlation between SIFyield and LUE also changed under light condition variations, so 

satellite observations may hide the SIF responding to environmental stress. Some studies 

suggested scaled SIF, from instantaneous to daily by a multiplied scale factor, would also 

miss the changing of clouds, temperature and other environmental factors (Zhang, Xiao, 

et al. 2018). 

At OCO-2 local overpass time, sunlit SIFyield decreases due to the light saturation, and 

sun shade SIF yield may also under recovery because of the high VPD and low canopy 

stomatal conductance, therefore, decreasing LUE leads to a positive pattern. If the satellite 

local overpass time is before the light saturation of the vegetation, the pattern should be 

different. For example, the GOME-2 overpass time is at 9:30, the SIF yield would be 

increased but LUE would decrease because of the increasing of PAR, however, the coarse 

spatial resolution of GOME-2 data would minimise or ignore this pattern. 

Considering the field measurement, the BRDF effect will influence the SIF retrieval. 

Because of the fixed angle of the sensor, with the movement of the solar and limited field 

of view (FOV), the sensor would monitor the area with both sun shade leaf and sunlit leaf 

in a day, their different patterns would affect the results, and their NPQ (Non-

photochemical quenching) would be different (Schlau-Cohen & Berry 2015). These 

issues bring uncertainties to field measurements, for example; at the leaf level, sunlit 

leaf’s NPQ is higher than that of the shaded leaf (Majer et al. 2014). Hence, the 

fluorescence yield of the sunlit leaf is less than that of the sun shade leaf under the same 

weather conditions, therefore identification as to whether the leaf is a sunlit or sun shade 

leaf would be important. Furthermore, it is important to note the bidirectional effects of 

SIF. At the canopy level, vegetation itself can adapt to the variation of light conditions, 

for example, the soybean can adjust their leaves’ inclination to respond to the direction 

and intensity of sunlit (Miao et al. 2018). Also, while the plants suffer stress, the SIF from 

sunlit leaf might show a stronger performance than a sun shade leaf because it is natural 

for a sunlit leaf to experience light saturation and this might hide the main stress. Hence, 

SIF from sun shade might be more suitable for studying the plant response to 

environmental stress. Further field measurements are needed to explore this issue. 
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4.6. Conclusion 

In this study, we found there existed a strong relationship between SIF and GPP at the 

hot spot direction for all three sites, US-PFa, US-WCr and US-NR1 (R2 = 0.95, 0.95 and 

0.88, respectively). This suggests that the hot spot SIF can better explain GPP changes 

than SIF from other viewing directions. We also utilized a 3-D radiative transfer model, 

FLiES, to calculate the relative APAR for the different view observations. The results 

showed that correlations between SIF and normalised APAR, normalised SIFyield and 

LUE (at all viewing directions) become stronger than the non-normalized SIFyield (R2 

increased from 0.39 to 0.48 for SIFyield:LUE). We also found a positive relationship 

between SIFyield and LUE at both hot spot and dark spot directions. It implies the positive 

pattern existing in light-saturating or light-limiting conditions. Moreover, the flux data 

was used to check the relative importance for SIF in the nadir, hot spot and dark spot 

directions. PAR and Ta are the primary contributors to the SIF variations in the hot spot 

direction and dark spot direction, respectively. Soil water content contributed less to these 

three directions. In summary, these findings will be of benefit to the study of the BRDF 

effect on the SIF variations. Also, the normalised method will be useful to study the 

relationship between SIFyield and LUE at the regional scale. 

  



93 

Chapter 5. Sun-induced chlorophyll fluorescence 

is influenced by the understory reflectance based 

on two scenarios 
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Abstract 

Sun-induced chlorophyll fluorescence (SIF) has been widely used to explore the 

relationship with plant photosynthesis activity and to estimate gross primary productivity 

(GPP). SIF is sensitive to environmental stress, such as heat and water deficit stress. 

However, SIF and GPP have presented strong correlations in dense canopy areas, but 

weaker correlations have been found over sparsely vegetated areas (R2 is lower than 0.2). 

Hence, it is important to identify factors that affect SIF emission and scattering amidst 

variations of canopy structures as well as possible impacts of the canopy understory. In 

this study, we investigated two scenarios that potentially may affect the transfer of 

fluorescence photons; (1) SIFSI: emitted fluorescence photons reflected by the understory 

and (2) SIFSII: reflected photons from the active understory leaves to emit photons. 

Moreover, a database was generated to cover 3150 conditions of five variable factors, 

including fractions of vegetation cover (FVC), understory reflectance (𝜌𝑢), leaf density 

(dleaf), total chlorophyll content (Cab) and leaf structure (N). A three-dimensional model, 

FLiES-SIF, was applied to the database to conduct SIF simulations following the rules of 

the two understory scenarios. The results showed that 𝜌𝑢  was the critical factor that 

impacted both SIFSI and SIFSII. Understory reflectance also influenced canopy SIF, 

especially in sparse vegetation areas. Leaf structure did not significantly affect SIF for 

the two scenarios. A strong correlation between SIFSI+SII and all five factors was found 

(R2 = 0.42 and 0.49 for red and far-red SIF, respectively). This latest study will improve 

our understanding of fluorescence transfer between overstory and understory layers and 

the analysis of error and uncertainties in observed SIF measurements. 

5.1. Introduction 

Sun-induced chlorophyll fluorescence (SIF) is the latest approach to detect photosynthetic 

activities from the leaf on a global scale (Frankenberg & Berry 2018; Porcar-Castell et al. 

2014; Ryu, Berry & Baldocchi 2019). The fluorescence is generated during the 

photosynthesis (part of the energy escapes to space as fluorescence) (Schlau-Cohen & 

Berry 2015). Usually, the fluorescence quantum yield accounts for only 1% of the total 

energy (Frankenberg & Berry 2018). Spectrum SIF (chlorophyll a and b) mainly exists 

between 640 and 850 nm (Gu et al. 2019b), which covers the red and far-red spectrum. 

The shape of the SIF spectrum contains two peaks; one is at 685 nm (red SIF), another is 

at 740 nm (far-red SIF). The far-red SIF contains information of both photosystem I (PSI) 
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and photosystem II (PSII), and the red SIF only carries the information of photosystem II 

(Yang et al. 2015b). With the distinctive characteristics of the red spectrum and far-red 

spectrum, SIF is similarly inherits its specification, which suggests red SIF is prone to be 

absorbed by leaves (Damm et al. 2015a; Van Wittenberghe et al. 2015). This trait 

contributes to the distinctive scattering effect of red SIF and far-red SIF.  

As the newest approach for detecting photosynthetic activity, SIF has several applications 

spatially and temporally. Due to the close relationship between photosynthetic activity 

and SIF, SIF is used to estimate gross primary productivity (GPP) (Guanter et al. 2014a; 

Sun et al. 2018). Researchers have found there is an existing universal linear regression 

of GPP and SIF among diverse vegetation function types (Li et al. 2018). Wang found 

SIF can be used to study the phenology and accurately confirm the status of vegetation 

growing seasons in northern Australia (Wang et al. 2019). Additionally, SIF can be used 

to estimate the crop’s productivity and reflect the vegetation health conditions relative to 

extreme events (Song et al. 2018a).  

Many satellites have been launched to monitor SIF from space. GOME-2 as the most 

popular SIF satellite provides two bands of SIF (687 and 760 nm) in 40 km2 (Joiner et al. 

2013; Joiner et al. 2016). The coarse spatial resolution cannot present the “true” 

relationship between SIF and GPP in sparse vegetation areas and errors occur in pixels 

that include several vegetation types. In addition, the degradation of the GOME-2 sensor 

makes it not suitable for long-term observations. OCO-2 provides SIF data in 740 nm 

from 2014 (Sun et al. 2017), and its spatial resolution is 1.29 km × 2.25 km, but the 

discontinued observations cause difficulties for time series analysis. TROPOMI is the 

latest launched SIF satellite (Guanter et al. 2015; Köhler, Frankenberg, et al. 2018), and 

provides almost daily revisits and acceptable spatial resolution (7 km × 3.5 km). However, 

monitoring from space brings many uncertainties. First, SIF varies dramatically over a 

day (Paul-Limoges et al. 2018; Pinto et al. 2016; Wieneke et al. 2018a; Yang, Ryu, et al. 

2018), scaling the instantaneous SIF to daily SIF cannot reveal the true conditions of the 

vegetation. Second, the mixed multi-vegetation types are prone to involve errors which 

would impact long-term analysis (Aasen et al. 2019; Magney et al. 2019). 

Currently, some models can simulate the SIF for various purposes. The SCOPE (Soil 

Canopy Observation, Photochemistry and Energy fluxes) model is the most widely used 

one-dimensional radiative transfer model (Tol et al. 2009). Due to the complex vegetation 

structures, it cannot reveal the distribution of photons vertically. FluorWPS and 
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FluorFlight as the newly developed three-dimensional models can simulate SIF for 

heterogeneous vegetation (Hernández-Clemente et al. 2017; Zhao et al. 2016). They are 

both based on the Monte Carlo and ray-tracing methods and adapted excite-fluorescence 

matrix (EF-Matrix). However, FluorWPS has been validated for crops, but it currently 

awaits development to be able to validate different vegetation types, and neither model 

analyses the effects from the canopy understory. 

SIF is not only influenced by leaf properties (chlorophyll content and leaf structure) but 

also affected by environmental factors, such as radiation, air temperature and vapour 

pressure deficit (VPD) (Shan et al. 2019). The chlorophyll content of leaf has been 

confirmed that it affects both red and far-red SIF. The SIF signal is primarily affected by 

absorbed photosynthetically active radiation (APAR), which is a proper proxy for APAR 

in the deciduous broadleaf forest (Yang et al. 2015b), but is not suitable for evergreen 

needle forest (Magney et al. 2019). The canopy structure (LAI) showed a positive 

correlation with the SIF emission (Yang et al. 2017). 

Many SIF studies were focused on canopy structure and environmental factors, but the 

understory effects on SIF observations have been ignored by researchers. Yang used the 

SCOPE model to identify the relationship between reflectance and the fraction of 

scattering SIF, and he assumed the no photons were reflected from the understory (Yang 

& Van Der Tol 2018). This assumption might lead to misunderstanding in the case of 

sparsely vegetated areas. Similarly, Zeng assumed the soil was non-reflective when he 

was studying the escape ratio (Zeng et al. 2019). Additionally, when monitoring the 

understory SIF, researchers found that the understory SIF also contributed to the total 

observed SIF but with less seasonal variations (Kato et al. 2018). This implies the 

understory SIF contribution still needs exploration. 

In this study, we aimed to examine how the canopy understory influences observed SIF 

coupled with leaf properties and canopy structures. We implemented a new developed 

SIF module for a three-dimensional radiative model (FLiES) to generate a database 

covering 3150 conditions. Moreover, we checked understory influences based on two 

scenarios. Our objectives were to (i) identify scenarios which would affect the observed 

SIF from the understory and generate a database for examining different conditions, (ii) 

study the canopy structure, leaf properties and understory reflectance influences on 

certain scenarios, (iii) summarize the relationships between the effects and factors, and 

apply the relationship to analysis of implicit factors affecting the SIF observation in sparse 
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and dense vegetation areas. This research will be useful for understanding how the 

understory layer contributes to the SIF variations. 

5.2. Definition for two scenarios 

In this section, we described two scenarios which was set up for studying how understory 

layer affects SIF. One is that a fluorescence photon has left the leaf, and is observed when 

it is reflected by the understory layer. It is observed by the sensor at the top of the canopy 

(TOC). The other scenario is when the non-fluorescence photon is reflected from the 

understory layer and activates the leaf to emit fluorescence. We used SIFSI to present the 

SIF observation based on the rule of scenario I, SIFSII a represented the SIF observation 

based on the rule of scenario II (Figure 5.1). 

 

Figure 5.1. Descriptions for scenario I and II. 

5.2.1. Scenario I 

Based on the rule of scenario I, a fluorescence photon’s energy is less than the 

fluorescence emitted from the canopy because of the reflection from the understory. 

However, the incoming fluorescence is complex as for the emitted fluorescence may 

come from the leaf from a backwards or forwards direction which is generated by the 

backward and forward EF-Matrix. The scattering fluorescence may be reflected by leaf 

or stem and transmit from the thin leaf. Note, fluorescence is a variant spectrum. The red 

fluorescence may reach the understory less due to the high absorption of the leaf. 

Compared to the red fluorescence, the scattered far-red fluorescence reflected by the 

understory may be more easily observed by the sensor. 
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5.2.2. Scenario II 

For scenario II, fluorescence is activated by the non-fluorescent photon from the 

understory (we assumed no fluorescence was emitted from the understory). After 

reflecting from the understory, deeper leaves of the canopy (close to the ground) are prone 

to be illuminated by the reflected photon and have a lower chance of experiencing light-

saturation because of the energy consumption from reflection at the understory. When 

considering the multiple scattering at the understory layer, the first-ordering of photons 

carried much more energy than multiply scattered photons, and they contribute to the 

more considerable fluorescence which are activated by the 1-ordering of a photon at the 

leaf level. Due to the fact that this scenario does not involve the scattering effect of a 

fluorescence photon, the observation of the red fluorescence and far-red fluorescence is 

not distinct. 

In addition, canopy structure and leaf properties would affect SIF in these two scenarios. 

For example, under the high fraction of vegetation cover (FVC), the canopy intercepting 

(𝑖0) would lower the probability of a photon being reflected from the understory layer. 

The lower canopy chlorophyll content (𝑐𝑎𝑏) will decrease the fluorescence emission and 

reflectance. Furthermore, it will impact on the fluorescence transferrance in both 

scenarios, hence, we will use a three-dimensional model to simulate SIF under these two 

scenarios and examine the fluorescence effected by the understory. 

5.3. Theoretical basis 

5.3.1. Incident radiation on canopy and understory 

Fluorescence is mainly activated by photosynthesis active radiation (PAR), which ranges 

from 400 to 750 nm. Based on our defined scenarios, incidental PAR comes from direct 

sunbeams without any collision with leaf or stem or being reflected by the understory, 

hence, the incidental PAR for the scenario I and II can be written as equation 5-1 and 5-

2, respectively. 

𝐸𝑐(𝜆) = 𝑖0𝐸(𝜆) (5-1) 

𝐸𝑢(𝜆) = (1 − 𝑖0)𝐸(𝜆)𝜌𝑢(𝜆) (5-2) 

𝑖0 is the intercepting canopy, it varies with the FVC, leaf density (total one side leaf area 

per unit volume) and leaf inclination. 𝐸(𝜆) presenteds incidental irradiance for spectrum 
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𝜆. The incidental irradiance from the understory layer (𝐸𝑢(𝜆)) is multiplied by understory 

reflectance (𝜌𝑢(𝜆)). 

Fluorescence from the canopy to understory can be written as the summary of emitting 

fluorescence (𝑓𝑒(𝜆𝑓)) and scatter fluorescence (𝑓𝑠(𝜆𝑓)) at the wavelength 𝜆𝑓. 𝑓𝑒 equals to 

the backward and forward excited-fluorescence matrix ( 𝑀𝑓, 𝑀𝑏 ) multiplied by the 

incidental radiation. We used the symbol 𝑀 to present the summary of 𝑀𝑓 and 𝑀𝑏. 

𝑓𝑐(𝜆𝑓) = 𝑓𝑒(𝜆𝑓) + 𝑓𝑠(𝜆𝑓) (5-3) 

𝑓𝑒(𝜆𝑓) = 𝐸𝑙(𝜆𝑓) ∫ [𝑀𝑓(𝜆𝑓, 𝜆𝑒) + 𝑀𝑏(𝜆𝑓, 𝜆𝑒)]
750

400

ⅆ𝜆𝑒 = 𝐸𝑙(𝜆𝑓)𝑀(𝜆𝑓) (5-4) 

𝑓𝑠(𝜆𝑓) = 𝑓(𝜆𝑓)𝜌𝑝+ + 𝑓(𝜆𝑓)𝜏𝑝− (5-5) 

𝐸𝑙(𝜆) = 𝐵𝑠𝑃𝑠𝐸(𝜆) (5-6) 

𝐸𝑙(𝜆) means the radiation at the leaf level and the given observation direction. 𝐵𝑠 means 

whether the fluorescence can be observed by the sensor (𝐵𝑠 = 1 means be observed, 0 

means not). 𝑃𝑠  means the projection of the leaf in the view direction. 𝑝+  means the 

probability of fluorescence reflection, 𝑝−  means the probability of fluorescence 

transmission. 

5.3.2. Formula description for the scenario I 

Based on the description of scenario I, the fluorescence radiance (𝑓𝑆𝐼(𝜆𝑓)) can be written 

as, 

𝑓𝑆𝐼(𝜆𝑓) = [𝑓𝑒(𝜆𝑓) + 𝑓𝑠(𝜆𝑓)]𝑃𝑆𝐼𝜌𝑢(𝜆) 𝐵𝑜 (5-7) 

It means the fraction of downward fluorescence reflected by the understory can be seen 

by the sensor. 𝐵𝑜 = 1 means reflected fluorescence can be captured by the sensor, 𝐵𝑜 =

0 means it is hindered by a canopy. 𝑃𝑆𝐼 means the fraction of fluorescence downwards to 

the understory. Hence, the 𝑓𝑆𝐼 is mainly affected by understory reflectance and 𝑃𝑆𝐼. 𝑃𝑆𝐼 is 

varied with the FVC. 

5.3.3. Formula description for Scenario II 

The fluorescence (𝑓𝑆𝐼𝐼(𝜆𝑓)) which is activated by reflected photons from the understory 

is shown in the following formula 
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𝑓𝑆𝐼𝐼(𝜆𝑓) = 𝐸𝑢(𝜆)𝑓𝑒(𝜆𝑓)𝑃𝑆𝐼𝐼𝐵𝑜 (5-8) 

𝑓𝑆𝐼𝐼(𝜆𝑓) = 𝐸𝑢(𝜆)𝑃𝑆𝐼𝐼𝐵𝑜𝑃𝑠  ∫ [𝑀𝑓(𝜆𝑓, 𝜆𝑒) + 𝑀𝑏(𝜆𝑓, 𝜆𝑒)]
750

400

ⅆ𝜆𝑒 

                = 𝐸𝑢(𝜆)𝑃𝑆𝐼𝐼𝐵𝑜𝑃𝑠𝑀(𝜆𝑓) 

(5-9) 

Where 𝑃𝑆𝐼𝐼 is the fraction of reflected fluorescence which can reach the canopy. Hence, 

𝑓𝑆𝐼𝐼 is primarily affected by canopy interception, understory reflectance and Cab. 

5.4. FLiES SIF simulation method  

We examined these two scenarios with the FLiES-SIF model and generated a database 

which covered a large number of variations of canopy structure, understory reflectance 

and leaf properties. For each scenario, we saved the results of first-order interactions and 

multiple interactions in order to identify the fluorescence’s energy consumption with 

increasing interactions. Red and far-red fluorescence (685 and 740 nm, respectively) were 

selected to check their variations with different situations. These two fluorescence bands 

are widely used in applications for detecting canopy stress (Köhler, Frankenberg, et al. 

2018). 

5.4.1. FLIES SIF model and ray-tracing frame 

The FLiES-SIF model is a newly developed SIF module (see Chapter 2 for more details) 

for the three-dimensional radiative transfer model FLiES (Forest Light Environmental 

Simulator, version 2.48) (Kobayashi & Iwabuchi 2008). The FLiES model, based on 

Monte Carlo and ray tracing method, is suitable to identify the travelling condition of 

fluorescence in the 3D scene. Based on the setting of the FLiES model, it consists of four 

layers: atmosphere, canopy, understory and soil. Before the simulation, a large number 

of photons are uniformly distributed at the top of the 3D scene. Processed by the 

atmosphere model, every photon carries its weight and travels in a given direction. When 

a photon collision with the leaf in canopy layers occurs, the SIF module will check the 

photon’s wavelength, and calculate excited fluorescence based on the incident photon’s 

weight, direction, backward or forward EF-Matrix and normalisation of the leaf surface. 

The newly generated fluorescence photons will be pushed to a stack and their information 

stored. Later, they will be simulated when a current non-fluorescence photon escapes the 

scene or consumes all its weight by reflection, transmission and absorption. The 
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fluorescence in the stack will be transferred, which follows the ray tracing rules of a 

standard photon in the 3D scene until its weight is consumed or it escapes out of the scene. 

In order to simplify the simulation, we assumed the understory vegetation layer could not 

emit fluorescence when a photon reaches this layer. The reflectance of the understory 

layer and soil layer was set at the same value. Whether a reflected fluorescence or non-

fluorescence photon returns to the canopy depends on the FVC and the direction it is 

reflected. 

5.4.2. Database generation 

The input database for FLiES-SIF model consists of 3150 conditions (Table 5.1). It 

includes 15 combinations of leaf properties and 42 combinations of canopy structures 

(FVC and dleaf). We set the PPFD (Photosynthetic photon flux density), solar zenith angle 

and azimuth angle as the default. The viewing mode is from nadir. In order to present the 

variations of FVC in the 3D scene, we randomly distributed trees in a 30×30 m2 area 

based on fractions to present the FVC varying from 5% to 100%. The shape of the crown 

is set to cone, and the radius of the crown ranges from 3 to 6 meters. The height of the 

trees is the same. The leaf inclination is a uniform distribution. 

Table 5.1. Database for FLiES-SIF model simulations 

Parameter Explanation Values Unit 

N Leaf structure parameter 1, 1.5, 2 - 

Cab Chlorophyll a and b content 5, 10, 20, 40, 80 µgcm-2 

Ccar Carotenoid content One quarter of Cab µgcm-2 

Cw Water thickness 0.02 cm 

Cm Dry matter 0.01 gcm-2 

FVC Fraction of vegetation cover 
0.05, 0.1, 0.2, 0.4, 0.6, 

0.8, 1 
- 

𝜌𝑢  Understory reflectance 0.1, 0.2, 0.3, 0.4, 0.45 - 

dleaf Leaf density 0.1, 0.2, 0.4, 0.6, 0.8, 1 m2/m2 

θs Solar zenith angle 30 degree 

θa Solar azimuth angle 0 degree 

PPFD 
Photosynthetic photon flux 

density 
600 

µmolm-2s-

1 
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The reflectance and transmittance of the leaf and EF-Matrix were generated with 

biochemical parameters (N, Cab, Ccar, Cw, Cm) by the PROSPECT (Feret et al. 2008) and 

FLUSPECT models (Vilfan et al. 2016), respectively. The fluorescence radiance 

contribution to Scenario I and II will be saved during the simulation. 

5.5. Results 

5.5.1. The variation of SIF with Cab, dleaf, 𝝆𝒖 and FVC 

Figure 5.2 shows the SIF variation with total chlorophyll content at 680 nm and 740 nm. 

We can see that total SIF, scatter SIF and emit SIF at 680 nm decreased with the 

increasing of Cab because of the high absorption of leaves for the red SIF. In addition, a 

lower Cab of the leaf can lead to high reflection of fluorescence because of the negative 

correlation between Cab and reflectance at the red spectrum light (Shiklomanov et al. 

2016). The total SIF mainly consisted of the emitting SIF at Cab ranging from 40 to 80 
µgcm-2. 

Compared to the red SIF, the far-red SIF presented a positive pattern with Cab. The scatter 

SIF showed a similar pattern to emitting SIF, however, they reached the peak and kept 

stable from 40 µgcm-2 of Cab. The value of scattered SIF at the far-red region was much 

more than the red SIF hence, the influence that Cab had on both red and far-red SIF was 

between 5 to 40 µgcm-2.  

 

Figure 5.2. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the 

variation of total chlorophyll content at (a) 680 nm and (b)740 nm. 
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Figure 5.3 shows the SIF variation with the leaf density at 680 and 740 nm. Red SIF and 

far-red SIF showed the same trend with increases in leaf density. They increased with the 

lower leaf density to dense leaf of the canopy. Scatter SIF stood for a tiny fraction of total 

SIF at 680 nm. Oppositely, scatter SIF accounted for one-third of the far-red total SIF. 

Hence, Figure 5.3 suggested that the observed red and far-red fluorescence was higher at 

the leaf dense area. 

 

Figure 5.3. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the 

variation of leaf density at (a) 680 nm and (b) 740 nm. 

 

Figure 5.4. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the 

variation of understory reflectance at (a) 680 nm and (b) 740 nm. 
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Compared to the leaf density and Cab influences on SIF, the effects of the understory 

reflectance were less on both red and far-red total SIF. The variation of red SIF was 

0.19±0.04 mW/m2/sr/nm, 0.28±0.08 mW/m2/sr/nm for far-red SIF. 

Among several factors (Cab, leaf density, understory reflectance, and FVC), FVC is the 

factor which mostly influences SIF variations in both red and far-red SIF (Figure 5.5). 

The variation of red SIF was 0.21±0.26 mW/m2/sr/nm, 0.32±0.4 mW/m2/sr/nm for far-

red SIF. At the lower vegetation cover area, it suggested that there was less leaf emissions 

of fluorescence by light activation. At the dense canopy area, more leaf can be illuminated 

by the sun, and more fluorescence can be observed by sensor. However, we noted the 

scatter SIF at 680 nm was slightly raised with the increase of the FVC (Figure 5.5 (a)). It 

suggested that red scatter SIF is limited even though more red SIF was emitted at the 

dense canopy area. This phenomenon is helpful for studying the total SIF due to the large 

ratio of the emit SIF and total SIF at 680 nm. 

In summary, scattered SIF and emitted SIF responded in a similar fashion to the variation 

of the structure and leaf properties in the far-red region, however, the red scattered SIF 

cannot explain the change in these factors due to the high absorption of the leaf. Moreover, 

red SIF has a negative pattern with the leaf chlorophyll content. 

 

Figure 5.5. FLiES-SIF model simulated total SIF, scatter SIF, emit SIF based on the 

variation of total chlorophyll content at (a) 680 nm and (b)740 nm. 
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5.5.2. Environmental factors effects on red and far-red SIF for 

scenarios I and II 

In this section, we examined the understory effects on SIF in scenarios I and II for 

variations of understory reflectance, the fraction of vegetation cover, leaf density and total 

chlorophyll content. We focused on the changing of the scattered SIF in the scenario I, 

because the observed fluorescence photon, which is reflected from the soil, belongs to the 

scatter SIF. However, for scenario II we only checked the emitted SIF due to the reflected 

photon from the soil that activated leaf to emit SIF. 

5.5.2.1. Understory reflectance effects on red and far-red SIF  
Figure 5.6 presents the understory reflectance effects on the observed SIF in scenario I 

and scenario II. For scenario I, the reflected red and far-red SIF increased with the 

increase of understory reflectance, however, the fraction of red SIF and far-red SIF 

showed different results. We saw that red SIF is about half of the total observed scattered 

SIF. It suggested that the understory reflected red SIF and this contributed to almost three-

quarters of the total scattered SIF and one-fifth of the total SIF when understory 

reflectance was high (understory reflectance = 0.45, Figure 5.6 (e)). Compare to the red 

SIF, the far-red SIF in scenario I stood at only 30% (understory reflectance = 0.45, Figure 

5.6 (f)) of the total scattered SIF. It suggested that the scattered far-red SIF, was emitted 

mainly from the canopy, not from the understory. In scenario II, with the increasing of 

the understory reflectance, both red and far-red SIF was increased (Figure 5.6 (c), (d)), 

which showed a similar pattern. Moreover, the mean fraction of emitting SIF was rather 

low (Figure 5.6 (g), (h)). 
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Figure 5.6. The scenario I and II’s understory reflectance influence on the SIF variation 

(a)-(d) and its proportion of total and emit SIF (e)-(h) at 680 nm and 740 nm. 

5.5.2.2. Fraction of vegetation cover effects on red and far-red SIF  
In scenario I, both red and far-red SIF increased when FVC was less than 40% and it kept 

stable until it was full covered by a canopy. At the sparse FVC area, the red scattered SIF 

accounted for 75% of the total scattered SIF and 18% of the total SIF (FVC = 10 %, 

Figure 5.7 (e)). However, the fraction of red and far-red SIF declined when the FVC was 

high. This may because the reflected fluorescence photons were hindered by the dense 

canopy area. The negative correlation between the scattered SIF and the fraction of 

scattered SIF suggests that more scattered SIF cannot be captured by the sensor even 

though the scattered SIF was higher in the dense area. In scenario II, the pattern of red 

and far-red SIF was the same with each other. Emitted SIF increased with FVC, however, 

the fraction of emitting SIF was low (almost 0% of the total emitted SIF, Figure 5.7 (g), 

(h)). It suggested that the FVC cannot explain the variation of the emitted SIF in scenario 

II. The reason may be because emitted SIF and the SIF was activated by understory 

reflected photon, so were both raised along with the increase of FVC. 
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Figure 5.7. The scenario I and II’s fraction of vegetation cover influenced on the SIF 

variation (a)-(d) and its proportion of total and emitted SIF (e)-(h) at 680 nm and 740 nm. 

5.5.2.3. Leaf density effects on red and far-red SIF  
Figure 5.8 (a)-(b), (e)-(f) presents how leaf density effects red and far-red SIF in scenario 

I. It can be seen that SIF increased slightly until leaf density reached 60%. The almost 

flat line of the portion of scattering SIF suggests the scattered SIF was reflected from the 

understory and the scattered SIF at the canopy both varied with the leaf density. In 

scenario II, the emitting SIF were affected by photons reflected from understory and 

presented the convex shape (Figure 5.8 (c)-(d)). When leaf density was less than 40%, 

the SIF showed a positive correlation with the leaf density, however, the pattern displayed 

a negative trend when leaf density exceeded 50%. We noted that the fraction of emitting 

SIF in scenario II showed an upward trend with the more dense leaf canopies (Figure 5.8 

(h), (g)). It suggested that emitted SIF from canopy primarily contributed to the total 

emitted SIF in low FVC. 
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Figure 5.8. The scenario I and II’s leaf density influenced on the SIF variation (a)-(d) and 

its proportion of total and emitting SIF (e)-(h) at 680 nm and 740 nm. 

5.5.2.4. Leaf chlorophyll total content effects red and far-red SIF  

 

Figure 5.9. Scenario I and II’s total chlorophyll content influence on the SIF variation (a)-

(d) and its proportion of total and emitted SIF (e)-(h) at 680 nm and 740 nm. 

Red SIF and far-red SIF presented different patterns with the variation of Cab (Figure 

5.9). The red SIF decreased with the growth of the Cab. The fraction of scattered red SIF 

reached almost 80% of the total scattered SIF (Figure 5.9 (e)), but it still accounted for 

less of the total SIF. This positive pattern cannot be seen for far-red SIF. Far-red SIF 

stopped increasing when Cab reached 40 µgcm-2. Moreover, the fraction of scattered far-



109 

red SIF kept at 26 percent and 18 percent for the total SIF in scenario I (Figure 5.9 (f)). 

In scenario II, the pattern of red and far-red emitted SIF was similar (Figure 5.9 (c), (d)).  

5.5.3. Canopy layer’s properties affect SIF at the scenario I and II 

In this section, we examined how overstory properties coupled with FVC impacts on the 

SIF variations in the scenario I and II. 

5.5.3.1. Leaf density effects on red and far-red SIF 
Figure 5.10 shows that leaf density did not effectively influence SIF until leaf density 

reached 40%. In general, the higher the leaf density and understory reflectance were, the 

higher SIF value was in scenario I for red SIF (Figure 5.10). Compared to scenario I, SIF 

variation in scenario II was higher when leaf density was equal to 0.4 m2/m2 but dropped 

when leaf density was equal to 1 m2/m2 because at higher FVC, fewer photons could reach 

the understory. Also, the understory reflectance is the efficiency factor that affect SIF in 

various conditions. 

We note the far-red SIF in the scenario I was higher than red SIF with different conditions. 

This might be caused by the EF-Matrix. With the same conditions, the far-red SIF would 

be higher than red SIF. When leaf density and FVC reached the maximum, the SIF 

increased to its peak (SIF = 0.75 mW/m2/sr/nm) in scenario I (Figure 5.12 (f)), but for 

scenario II, the maximum SIF (SIF = 0.3 mW/m2/sr/nm) appeared when the leaf density 

equalled 0.4 m2/m2 and FVC equalled 0.8 (Figure 5.12 (c)). 
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Figure 5.10. Variations of Red SIF as influenced by FVC, understory reflectance, and leaf 

density in scenario I. The points represent the average SIF value of given conditions. 

 

Figure 5.11. Variations of Red SIF as influenced by FVC, understory reflectance and leaf 

density in scenario II. The points represent the average SIF value of given conditions. 
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Figure 5.12. Variations of far-red SIF was influenced by FVC, understory reflectance, 

and leaf density in scenario I. The points represent the average SIF value of given 

conditions. 

 

Figure 5.13. Variations of far-red SIF was influenced by FVC, understory reflectance and 

leaf density in scenario II. The points represent the average SIF value of given conditions. 

5.5.3.2. Cab effects on red and far-red SIF 
Figure 5.14 and Figure 5.15 clearly show that red SIF decreased with the increase of Cab 

in both scenarios I and II. It was caused by the negative correlation between red SIF and 

chlorophyll content. We can see that the red SIF reached its peak (SIF = 0.06 

mW/m2/sr/nm) when understory reflectance was equal to 0.45, Cab equal to 5 µgcm-2 and 

FVC equal to 0.6 in scenario I (Figure 5.14 (a)). Similarly, the maximum of red SIF in 
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scenario II was 0.24 mW/m2/sr/nm with understory reflectance equal to 0.1, Cab equal to 

20 µgcm-2 and FVC equal to 0.4 (Figure 5.14 (a)). 

In regard to the far-red SIF, it did not increase under the variation of Cab in both scenarios 

I and II. When Cab exceeded 40 µgcm-2, far-red SIF stopped responding to the increasing 

of Cab. Scenario I’s Far-red SIF reached the maximum (SIF = 0.1 mW/m2/sr/nm) when 

Cab was equal to 80 µgcm-2, understory reflectance equal to 0.45 and FVC equal to 0.8 

(Figure 5.16 (e)). The maximum of far-red SIF in scenario II was 0.0005 mW/m2/sr/nm 

when understory reflectance was equal to 0.1, Cab equal to 20 µgcm-2 and FVC equal to 

0.4 (Figure 5.16 (e)). 

In summary, the relationship between SIF (scenario I and II), leaf density and FVC was 

not linear, however, red SIF negatively correlated with Cab, and far-red positively 

correlated with Cab when Cab was less than 40 µgcm-2. 

 

Figure 5.14. Variations of Red SIF was influenced by FVC, understory reflectance and 

total chlorophyll content in scenario I. The points represent the average SIF value of given 

conditions. 
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Figure 5.15. Variations of Red SIF as influenced by FVC, understory reflectance and total 

chlorophyll content in scenario II. The points represent the average SIF value of given 

conditions. 

 

Figure 5.16. Variations of far-red SIF as influenced by FVC, understory reflectance and 

total chlorophyll content in scenario I. The points represent the average SIF value of given 

conditions. 
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Figure 5.17. Variations of far-red SIF as influenced by FVC, understory reflectance and 

total chlorophyll content in scenario II. The points represent the average SIF value of 

given conditions. 

5.5.4. Regression model for SIF and vegetation structures 

Table 5.2 reports the correlation between SIF (total SIF of two scenarios in red and far-

red region) and scenario factors. There were no existing linear relationships between SIF: 

Cab, SIF: FVC, SIF: 𝜌𝑢 and SIF:dleaf for those scenarios. We noted that the leaf properties 

and canopy structure could not explain the variation of SIF in scenarios I and II. The 

maximum R2 of red and far-red SIF appeared (R2 = 0.45 and 0.42, respectively) when 

considering all factors (FVC, dleaf, 𝜌𝑢 , Cab and N). The coefficient of determination 

decreased with the removal of correlation factors. The R2 is higher for far-red SIF than 

red SIF. Moreover, the weakest correlation was SIF and leaf density (R2 = 0.03 and 0.03 

for red and far-red SIF, respectively), which suggested that leaf density does not affect 

these two scenarios. 

The relative importance (RI) of each factor is shown in Figure 5.18. 𝜌𝑢 was the most 

significant factor for the summary of scenario I and II (RI = 64.56% and 72.11% for red 

SIF and far-red SIF, respectively). This suggested FVC could mostly explain how SIF 

was affected by the underground layer. The RIs of dleaf and N were less than 2%, which 

indicated that they contribute less. However, 𝜌𝑢 is still the most critical factor (RI = 64.7% 

and 72.42% for red and far-red SIF, respectively) in the scenario I group. Because the SIF 

was mainly reflected by the understory layer in this group, hence the close relationship 
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between understory reflectance and observed SIF from the understory increased the 

importance of 𝜌𝑢. In the scenario II group, FVC controlled the how many photons could 

be reflected from the canopy layer, which led to the high RI (20.42%, 19.59% for red and 

far-red SIF, respectively.). 

Table 5.2. The regression model for SIF and canopy structures and understory properties. 

X indicates red SIF or far-red SIF. SIF was the total of scenario I and II. All the p-value 

was less than 0.01. 

Relation 
Red SIF Far-red SIF 

R2 R2 

X + Cab 0.1 0.05 

X + Cab + N 0.11 0.05 

X + FVC 0.02 0.04 

X + 𝜌𝑢 0.29 0.3 

X + dleaf 0.03 0.03 

X + FVC + dleaf 0.05 0.07 

X + FVC + 𝜌𝑢 0.31 0.35 

X + FVC + 𝜌𝑢 + dleaf 0.35 0.38 

X + FVC + dleaf + Cab 0.15 0.12 

X + FVC + dleaf + Cab + N 0.16 0.12 

X + FVC + 𝜌𝑢 + dleaf + Cab + N 0.45 0.42 
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Figure 5.18. Relative importance analysis for Scenarios I and II 

5.6. Discussion 

5.6.1. Scattering SIF and soil SIF  

The ratio of scattering SIF and emitting SIF has been studied by field measurements and 

model simulations (Yang & Van Der Tol 2018; Zeng et al. 2019). Yang used the SCOPE 

model to determine that there was an existing relation between reflectance and the ratio 

of scattering of SIF (Yang & Van Der Tol 2018). In simulations, he assumed the 

understory did not reflect any photons, however, our studies showed the contribution from 

understory SIF (SIFSI and SIFSII) could not be ignored as it accounted for almost 50% of 

the total observed SIF. Also, many more photons can be reflected from the understory 

due to the low light interceptions and sparse leaf distribution. Hence, Yang’s study would 

be suitable for a mature forest but might underestimate scattering SIF in sparse vegetation 

areas, such as savanna and young forest with the low FVC and light interception. The 

ratio of scattering SIF needs further field measurements to validate. 
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5.6.2. Soil effects in savanna 

SIF is highly correlated with GPP in various vegetation functional types, including 

evergreen broadleaf forest, deciduous broadleaf forest and cropland. However, that 

relationship is poor in central Australia (Alice Springs and Ti Tree East). Based on the 

previous study, the determination of coefficients are only 0.22 and 0.39 for OCO-2 and 

GOME-2 SIF with monthly eddy covariance GPP, respectively (Wang et al. 2019). 

However, MODIS EVI presented a better R2 than SIF (R2 = 0.49). In the central savanna 

area of Australia, the average Cab was almost 29±4µgcm-2, FVC is 14±9%. The dleaf was 

assumed to be at 60% in the wet season and 20% in the dry season. Dry soil has high 

reflectance (0.3), but the wet soil has low reflectance (0.12) (see Chapter 3). 

In wet seasons, the understory SIF reflectance in far-red region is higher than in dry 

seasons due to the more fluorescence is emitted by the larger vegetation area than the dry 

season (Walther et al. 2019). High understory reflectance leads to more SIF being 

reflected in the dry season. However, the less emission of the fluorescence during the dry 

season weakens the affection that higher reflectance of the dry soil. Based on scenario I, 

the high understory reflectance coupled with low FVC contributes to the large proportion 

of reflected SIF from the understory and total observed SIF (Figure 5.7 (e)). With the 

increase of SIF radiance from the understory, the correlation between SIF and GPP would 

be higher as expected. 

In dry seasons, the understory reflectance is lower than in the wet seasons, and leaf density 

is low as well, hence, the light can easily penetrate the canopy layer and reach the ground 

because of the low light interception. Vegetation growth is low during the dry season and 

the Cab is lower than 20 µgcm-2 (see Chapter 3) however, the low interception would 

result in a higher escape ratio of fluorescence photons and the low understory reflectance 

would weaken the reflected fluorescence photons, hence, the observed fluorescence is 

less in scenario I (20% far-red SIF was from the scenario I). Additionally, fewer photons 

can be reflected to the canopy layer from the understory to activate fluorescence photons 

(based on scenario II), therefore, the weak fluorescence would become weaker in the dry 

season, hence, the weak relationship between SIF and GPP is caused by the understory 

reflectance and FVC. 
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5.6.3. Understory reflection effects in mature forest 

Based on previous studies, SIF is highly correlated with GPP in mature forest, including 

evergreen broadleaf forest, deciduous broadleaf forest and needleleaf forest (Li et al. 

2018). We checked the data from the Cumberland Plains site, located in eastern Australia 

(AU-CUM). The vegetation type of AU-CUM is an evergreen broadleaf forest. The R2 of 

SIF and GPP was 0.5. FVC of AU-CUM is 51.55±8.85%, Cab is 28±6 µgcm-2, usually 

dleaf is more than 50% for the mature forest.  

Based on AU-CUM’s properties, the canopy is fully covered above the ground. It is 

difficult for photons to penetrate the canopy and be reflected from the underground. The 

ratio of SIFSI and total SIF is extremely low in this condition (Figure 5.7 (f)). The SIFSII 

was not affected by the FVC and even the lower position of leaf emitted SIFSII cannot be 

directly observed by the sensor due to the high clumping index and high leaf density 

(Köhler, Guanter, et al. 2018). The most significant difference between mature forest and 

savanna is that the SIF emission in the forest is much higher than from the savanna. The 

correlation between FVC and SIF is positive indicating that emitted SIF could be 

observed in mature forest and the relationship between SIF and GPP is stronger than in 

savanna. 

There are still uncertainties for SIFSI and SIFSII in mature forest for example, if there is 

an existing plant on the understory layer, a certain amount of fluorescence can be 

activated by the photons reaching the understory. Compared to SIF from the canopy layer, 

SIF is weaker from the understory layer, however, based on Chapter 3 studies, it cannot 

be ignored. This issue will strengthen the SIF observed in mature forest, even if it is more 

likely to be observed as scattered SIF than emitted SIF. Currently, the understanding of 

SIF emission from the understory layer is still unclear, so in order to understand the 

contributions of SIF from the understory, further field measurements are necessary. 

5.6.4. Applications for remote sensing 

Many studies aimed to discover the total emitted SIF from the canopy by using the escape 

ratio (φesc = observed SIF / total emit SIF). The far-red SIF can show a strong correlation 

with reflectance to estimate the φesc, but this does not hold for the red SIF. Our studies 

found that the red SIFSI accounted for 70% of the total scattering SIF under both low FVC 

and leaf density. Hence, we can adapt this finding in a savanna to predict the scattering 
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SIF, and furthermore estimate the total of the emitted red SIF. By adapting the 

relationship that we found in section 5.4, we can produce a global underground SIF effect 

calculator. This would contribute to improving the estimating GPP by SIF and minimising 

the errors in sparse vegetation areas. This relationship requires parameters of Cab, dleaf, 

FVC and 𝜌𝑢. The Cab can be predicted by chlorophyll index (CVI, WDVI and CIgreen) 

(Fernandez-Baco et al. 1998; Gitelson et al. 2005). FVC can be retrieved from the 

landcover data (Kottek et al. 2006; Rubel et al. 2017). The underground reflectance may 

be measured from the surface reflectance of non-vegetation covered satellite pixels. 

Lastly, the leaf density can be retrieved from the LAI data coupled with canopy height 

(Lalic & Mihailovic 2004). 

5.7. Conclusion 

In this study, we designed two scenarios to identify the effects on SIF from understory 

layers. The first was that emitted fluorescence was observed which was reflected from 

the understory layer, and the second is that photons reflected from understory activated 

leaf emitted fluorescence. We implemented a FLiES-SIF model and used the ray-tracing 

method to identify and calculate SIF emission and scattering effects. A database was built 

covering almost all realistic scenarios which contained 3150 conditions using variations 

of FVC, dleaf, 𝜌𝑢, Cab and N. Results suggested that the 𝜌𝑢 is the primary critical factor 

that would influence the SIFSI and SIFSII in both 680 and 740 nm. Compared to red SIF, 

far-red SIF presented a strong correlation with the five factors. A high correlation was 

found between SIFSI and SIFSII with those factors (R2 = 0.42 and 0.49 for red and far-red 

SIF, respectively). Our findings also analysed the SIF influenced by FVC and 𝜌𝑢 in sparse 

vegetation areas and mature forest and it suggested that observed SIF in sparse vegetation 

was much more influenced by the FVC and understory reflectance and furthermore 

contributes to underestimating the relationship between SIF and GPP. 

  



120 

Chapter 6. Conclusions 
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6.1. Summary of key methodology and conclusions 

Photosynthetic activity is key to study vegetation responses to global warming and 

environmental stress. SIF is a new approach that is able to estimate the vegetation 

photosynthetic activity, particularly when plants are impacted by environmental stress. In 

order to understand the relationship between SIF and GPP across multiple scales, a three-

dimensional model was developed to simulate SIF at various light conditions, vegetation 

structure and understory reflectance. It not only provides the trend of SIF in the long-term 

but also identifies the sensitivity of SIF under seasonal variations of environmental factors. 

In this thesis, I used SIF to interpret the photosynthetic variations for various vegetation 

types by using the FLiES-SIF model. I assessed the relationship between SIF and GPP 

for various vegetation functional types. Further, field measured SIF data was applied to 

validate model simulations. Biochemical parameters were derived from Sentinel-2 and 

Landsat surface reflectance for this study. Remotely sensed SIF data, including GOME-

2 and OCO-2, were used to validate the FLiES-SIF simulation and identify variations of 

SIF in multiple viewing angles. LiDAR data was also used to retrieve vegetation structure 

for modelling. 

In summary, I developed a SIF module for the FLiES model based on the FLiES original 

ray-tracing framework and then validated FLiES-SIF with field measured SIF data at 

Harvard forest from 2013 to 2014. I then applied FLiES-SIF to partition the SIF signal to 

tree and grass layers at three flux tower sites representing different vegetation types in 

Australia. In addition, I also used the FLiES-SIF model coupled with a database 

containing large variations of input parameters, to assess whether SIF observed at TOC 

was affected by understory reflectance and canopy structure. Lastly, I implemented the 

FLiES model to normalize the OCO-2 SIF data at various viewing angles. 

6.1.1. The development and validation of the new three-dimensional 

SIF model  

A SIF module for the FLiES model was developed and validated with field measured SIF 

at Harvard Forest. The module was based on the ray-tracing framework and the Monte 

Carlo method. It integrated with EF-matrix to calculate the SIF emission at the leaf scale 

and implemented a light adjusting model. I also applied a machine learning method, 

Gaussian Process Regression, to generate a model, which was used to predict the 
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biochemical parameters from Landsat surface reflectances. Vegetation structure was 

derived from the LiDAR data. I compared the field measured SIF with FLiES-SIF, 

SCOPE and DART model’s simulations from 2013 to 2014 in sunny days and cloudy 

days, which presented strong and weak light conditions. Lastly, I applied FLiES-SIF to 

separate the emitted SIF and scattered SIF. 

Our results showed (1) the trained model could predict biochemical parameters in an 

excellent performance, and the biochemical parameters presented the seasonality. 

especially, the CIgreen index showed the high correlation with predicted total chlorophyll 

content (R2 = 0.9); (2) all simulated SIF (FLiES-SIF, SCOPE and DART) well agreed 

with the measured canopy SIF from 2013 to 2014, they showed an obvious seasonal trend; 

(3) the range of FLiES-SIF simulations better approximated the field measurements, 

when compared with other model simulations; (4) the linear regression showed the R2 of 

FLiES-SIF and field measured SIF was higher than the other models (R2 = 0.8, 0.76 and 

0.56 for FLiES-SIF, DART and SCOPE, respectively); (5) the APAR was mostly 

correlated with FLiES-SIF (R2 = 0.92); (6) the emitted SIF was more correlated with LUE 

in sunny days.  

6.1.2. Partition SIF signal to tree and grass layers 

Observations of SIF are concentrated on top-of-canopy, however, the seasonality and 

influence of the understory SIF is still uncertain. This lack of knowledge about seasonality 

changes of understory SIF may underestimate the contribution of understory vegetation 

species to total ecosystem carbon dynamics. Hence, in order to better represent ecosystem 

function and predict their response to disturbances and future climate change, it would be 

advantageous to partition the energy flux into overstory and understory layers, and further 

investigate the response of the two vegetation layers to variations of environmental 

factors. I aimed to use the surface reflectance of the finest spatial resolution satellite to 

retrieve the critical biochemical data and then used the FLiES-SIF model to partition the 

overstory and understory SIF.  

Our results showed (1) different seasonal patterns of understory SIF existed among AU-

TTE, AU-LIT and AU-CUM; (2) model simulated SIF presented a similar seasonal 

pattern with EVI, GPPEC and GOME-2 SIF; (3) the radiation and canopy cover impacted 

the SIF emissions from tree or grass layers; (4) overstory and understory SIF showed a 

strong relationship with PAR and GPP in open shrubland (AU-TTE); (5) overstory SIF 
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showed less variation, but understory SIF accounted for 50% of the total SIF in the wet 

season for tropical savanna (AU-LIT); (6) in the evergreen forest, the contribution of 

understory SIF to total SIF was less than the overstory SIF, and it showed a weak 

relationship with canopy cover. Hence, the incoming radiation is not the primary reason 

leading to less SIF emission. In shrubland and tropical savanna, SIF was more sensitive 

with canopy cover. 

6.1.3. Normalized OCO-2 SIF by 3D SIF model 

The SIF signal, which is similar to reflectance, is affected by the direction of the viewing 

measurement. Satellite observations also confirmed this issue: normalised GOME-2 SIF 

at the hot spot direction was strongly correlated with sunlit GPP. However, the coarse 

spatial resolution of GOME-2 data makes it challenging to validate this at the site scale. 

OCO-2 data provided multiple viewing directions of SIF at finer resolution. Nadir, 

hotspot and darkspot groups were defined and used to filter SIF observations from the 

OCO-2 SIF dataset. The FLiES model was applied to normalized APAR and SIF yield. I 

assessed the BRDF effects on relationships of SIF:GPP and SIF yield:LUE, and discussed 

the essential factors that impact on SIF measurements from the sunlit and sunshade crown 

areas.  

The results showed (1) the hotspot effect was confirmed in OCO-2 SIF target observations; 

(2) there was a strong relationship of SIF and GPP at the hot spot direction for US-PFa, 

US-WCr and US-NR1 (R2 = 0.95, 0.95 and 0.88, respectively), and the hot spot SIF can 

explain more variations in GPP than in other defined viewing groups; (3) relationships of 

SIF and normalised APAR, normalised SIFyield and LUE converge and become much 

closer related than in the original data (R2 increased 0.08 for SIFyield:LUE) when 

normalised by the FLiES model; (4) a positive relationship between SIFyield and LUE at 

both hot spot and dark spot directions, suggesting that the positive pattern for SIFyield and 

LUE exists in light-saturating or light-limiting conditions; (5) PAR and Ta were the 

primary contributors to SIF variations in the hot spot group and dark spot group, 

respectively; (6) the SWC contributed less to these three groups.  

6.1.4. SIF signal affected by understory layer 

I aimed to identify that SIF observed at the top of canopy was mostly affected by 

understory reflectance and vegetation structure. Many SIF studies were focused on 
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canopy structure and light conditions which affected SIF, but how the understory affects 

SIF observations has been ignored by researchers. I generated a database for FLiES-SIF 

model to study this issue based on two scenarios. The database covered 3150 conditions 

by variations of FVC, dleaf, 𝜌𝑢, Cab and N.  

Our results showed (1) the understory reflectance was the primary critical factor 

influencing SIFSI and SIFSII in both 680 and 740 nm; (2) compared to red SIF, far-red SIF 

presented a strong correlation with the five factors (FVC, dleaf, 𝜌𝑢, Cab and N); (3) a high 

correlation was found for the total of SIFSI and SIFSII with those factors (R2 = 0.42 and 

0.49 for red and far-red SIF, respectively). 

6.2. Research limitations and future research directions 

Chapter 2 described the development and validation of a 3D SIF radiative transfer model. 

The model performance and robust simulation scheme would be helpful to simulating SIF 

for various purposes. Comparisons of 1D model and 3D model running times and 

complexity of parameter settings would increase the difficulty of model usability. In 

addition, the progress of photosynthesis is not only related to the radiation and 

biochemical parameters, but also to temperature, leaf level photochemical processes and 

meteorological impacts. Additionally, the FOV of field measurements only covered 

limited canopy area, while the simulations could be applied to a 30 * 30 m2 area. The 

mismatch of spatial resolutions needs to be assessed in the future. 

Chapter 3 presented the study for partitioning SIF signal to overstory and understory 

layers. This study would improve our understanding of how SIF variation of over- and 

understory layer’s in sparse or dense canopy cover areas. Radiative transfer model 

concerns the radiation distribution, but it cannot simulate ecological flux exchanges. 

Hence, simulating SIF in the overstory and understory layers should concern only the 

local ecological environment. In the savanna, precipitation and radiation influenced plant 

productivity, hence, the cloud cover and diffuse radiation may affect the understory SIF 

emission. I noted that retrieving biochemical parameters relied on the satellite 

observations, so that it cannot simulate SIF in cloudy days directly. With continuing 

precipitation, the grass would grow rapidly and its structure would change as well, hence, 

if we want to know more about the changes in the understory layer, field observations 

should also be employed. 
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Chapter 4 showed the study of the relationship between SIF and GPP in various viewing 

directions, and I found there existed a strong relationship of SIF and GPP at the hot spot 

direction for US-PFa, US-WCr and US-NR1 (R2 = 0.95, 0.95 and 0.88, respectively). 

However, there are still many uncertainties in this study. Firstly, in order to gather enough 

observations of OCO-2, I set a large threshold of for darkspot observation group. This 

added error as some observations only close to, and not exactly meeting the darkspot 

definition. Secondly, I did not partition the LUE for each viewing group due to the lack 

of an effective method for calculating the GPP at a fixed viewing direction. Hence, I only 

assessed the relationship for total LUE and SIF yield from each view group. 

Chapter 5 presented the study for fluorescence and non-fluorescence photons from the 

understory affecting the SIF observations. The model simulations showed that observed 

SIF over sparse vegetated areas was much more influenced by the FVC and understory 

reflectance. During the simulation, I set no SIF emission from the understory layer, 

however, it has been ascertained that understory SIF cannot be ignored in savanna due to 

the rapid growth of grass in the wet season. Hence, this needs further measurement to 

monitor SIF emission from both overstory and understory in order to identify the impact 

of understory reflectance for various vegetation functional types. 

6.3. Conclusions 

In this thesis, a three-dimensional radiative transfer SIF model was developed and 

validated. I used this model to assess the relationship between SIF and plant 

photosynthetic activity across different spatial and temporal scales. The outcomes of this 

research have helped to identify SIF variations with canopy structure, light conditions and 

viewing angles. This thesis highlights the advantage of FLiES-SIF in capturing vegetation 

photosynthetic activity of ecosystems with complex canopy structures. This will 

significantly improve our understanding of vegetation responses to climate change. 

 

  



126 

Chapter 7. Bibliography 
  



127 

Aasen, H., Van Wittenberghe, S., Medina, N.S., Damm, A., Goulas, Y., Wieneke, S., 

Hueni, A., Malenovský, Z., Alonso, L. & Pacheco-Labrador, J. 2019, 'Sun-

induced chlorophyll fluorescence II: Review of passive measurement setups, 

protocols, and their application at the leaf to canopy level', Remote Sensing, vol. 

11, no. 8, p. 927. 

Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López, J., Guanter, L., Calpe, J. 

& Moreno, J. 2008, 'Improved Fraunhofer Line Discrimination method for 

vegetation fluorescence quantification', IEEE Geoscience and Remote Sensing 

Letters, vol. 5, no. 4, pp. 620-4. 

Alton, P., North, P. & Los, S. 2007, 'The impact of diffuse sunlight on canopy light‐use 

efficiency, gross photosynthetic product and net ecosystem exchange in three 

forest biomes', Global Change Biology, vol. 13, no. 4, pp. 776-87. 

Bailey, B.N. & Mahaffee, W.F. 2017, 'Rapid measurement of the three-dimensional 

distribution of leaf orientation and the leaf angle probability density function 

using terrestrial LiDAR scanning', Remote Sensing of Environment, vol. 194, pp. 

63-76. 

Baker, N.R. 2008, 'Chlorophyll fluorescence: a probe of photosynthesis in vivo', Annu. 

Rev. Plant Biol., vol. 59, pp. 89-113. 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 

Bernhofer, C., Davis, K. & Evans, R. 2001, 'FLUXNET: A new tool to study the 

temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, 

and energy flux densities', Bulletin of the American Meteorological Society, vol. 

82, no. 11, pp. 2415-34. 

Bassow, S.L. & Bazzaz, F.A. 1998, 'HOW ENVIRONMENTAL CONDITIONS 

AFFECT CANOPY LEAF-LEVEL PHOTOSYNTHESIS IN FOUR 

DECIDUOUS TREE SPECIES', Ecology, vol. 79, no. 8, pp. 2660-75. 

Bauerle, W.L., Oren, R., Way, D.A., Qian, S.S., Stoy, P.C., Thornton, P.E., Bowden, J.D., 

Hoffman, F.M. & Reynolds, R.F. 2012, 'Photoperiodic regulation of the seasonal 

pattern of photosynthetic capacity and the implications for carbon cycling', 

Proceedings of the National Academy of Sciences, vol. 109, no. 22, pp. 8612-7. 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, 

C., Arain, M.A., Baldocchi, D. & Bonan, G.B. 2010, 'Terrestrial gross carbon 



128 

dioxide uptake: global distribution and covariation with climate', Science, vol. 329, 

no. 5993, pp. 834-8. 

Beringer, J., Hutley, L., Tapper, N., Coutts, A., Kerley, A. & O'grady, A. 2003, 'Fire 

impacts on surface heat, moisture and carbon fluxes from a tropical savanna in 

northern Australia', International Journal of Wildland Fire, vol. 12, no. 4, pp. 333-

40. 

Beringer, J., Hutley, L.B., Abramson, D., Arndt, S.K., Briggs, P., Bristow, M., Canadell, 

J.G., Cernusak, L.A., Eamus, D. & Edwards, A.C. 2015, 'Fire in Australian 

savannas: from leaf to landscape', Global change biology, vol. 21, no. 1, pp. 62-

81. 

Beringer, J., Hutley, L.B., Tapper, N.J. & Cernusak, L.A. 2007, 'Savanna fires and their 

impact on net ecosystem productivity in North Australia', Global Change Biology, 

vol. 13, no. 5, pp. 990-1004. 

Berry, J. 2018, '3.10 Solar Induced Chlorophyll Fluorescence: Origins, Relation to 

Photosynthesis and Retrieval'. 

Braswell, B., Schimel, D.S., Linder, E. & Moore, B. 1997, 'The response of global 

terrestrial ecosystems to interannual temperature variability', Science, vol. 278, no. 

5339, pp. 870-3. 

Burns, S., Maclean, G., Blanken, P., Oncley, S., Semmer, S. & Monson, R. 2016, 'The 

Niwot Ridge Subalpine Forest US-NR1 AmeriFlux site–Part 1: Data acquisition 

and site record-keeping, 2016', Geoscientific Instrumentation, Methods and Data 

Systems, vol. 5, p. 451. 

Calderón, R., Navas-Cortés, J.A., Lucena, C. & Zarco-Tejada, P.J. 2013, 'High-resolution 

airborne hyperspectral and thermal imagery for early detection of Verticillium 

wilt of olive using fluorescence, temperature and narrow-band spectral indices', 

Remote Sensing of Environment, vol. 139, pp. 231-45. 

Camps-Valls, G., Verrelst, J., Munoz-Mari, J., Laparra, V., Mateo-Jimenez, F. & Gomez-

Dans, J. 2016, 'A survey on gaussian processes for earth-observation data analysis: 

A comprehensive investigation', IEEE Geoscience and Remote Sensing Magazine, 

vol. 4, no. 2, pp. 58-78. 

Cao, M. & Woodward, F.I. 1998, 'Dynamic responses of terrestrial ecosystem carbon 

cycling to global climate change', Nature, vol. 393, no. 6682, p. 249. 



129 

Chen, J.M., Menges, C.H. & Leblanc, S.G. 2005, 'Global mapping of foliage clumping 

index using multi-angular satellite data', Remote Sensing of Environment, vol. 97, 

no. 4, pp. 447-57. 

Chevan, A. & Sutherland, M. 1991, 'Hierarchical partitioning', The American Statistician, 

vol. 45, no. 2, pp. 90-6. 

Cogliati, S., Rossini, M., Julitta, T., Meroni, M., Schickling, A., Burkart, A., Pinto, F., 

Rascher, U. & Colombo, R. 2015, 'Continuous and long-term measurements of 

reflectance and sun-induced chlorophyll fluorescence by using novel automated 

field spectroscopy systems', Remote Sensing of Environment, vol. 164, pp. 270-

81. 

Cook, B.D., Davis, K.J., Wang, W., Desai, A., Berger, B.W., Teclaw, R.M., Martin, J.G., 

Bolstad, P.V., Bakwin, P.S. & Yi, C. 2004, 'Carbon exchange and venting 

anomalies in an upland deciduous forest in northern Wisconsin, USA', 

Agricultural and Forest Meteorology, vol. 126, no. 3-4, pp. 271-95. 

Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., 

Eugster, W., Ammann, C. & Schaepman, M. 2015a, 'Far-red sun-induced 

chlorophyll fluorescence shows ecosystem-specific relationships to gross primary 

production: An assessment based on observational and modeling approaches', 

Remote Sensing of Environment, vol. 166, pp. 91-105. 

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., 

Eugster, W., Ammann, C. & Schaepman, M.E. 2015b, 'Far-red sun-induced 

chlorophyll fluorescence shows ecosystem-specific relationships to gross primary 

production: An assessment based on observational and modeling approaches', 

Remote Sensing of Environment, vol. 166, pp. 91-105. 

Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A., Olioso, A. & Moya, I. 

2012, 'Continuous monitoring of canopy level sun-induced chlorophyll 

fluorescence during the growth of a sorghum field', IEEE Transactions on 

Geoscience and Remote Sensing, vol. 50, no. 11, pp. 4292-300. 

Demmig, B. & Björkman, O. 1987, 'Comparison of the effect of excessive light on 

chlorophyll fluorescence (77K) and photon yield of O 2 evolution in leaves of 

higher plants', Planta, vol. 171, no. 2, pp. 171-84. 

Dixon, R.K., Solomon, A., Brown, S., Houghton, R., Trexier, M. & Wisniewski, J. 1994, 

'Carbon pools and flux of global forest ecosystems', Science, vol. 263, no. 5144, 

pp. 185-90. 



130 

Dobrowski, S.Z., Pushnik, J.C., Zarco-Tejada, P.J. & Ustin, S.L. 2005, 'Simple 

reflectance indices track heat and water stress-induced changes in steady-state 

chlorophyll fluorescence at the canopy scale', Remote Sensing of Environment, 

vol. 97, no. 3, pp. 403-14. 

Dong, K., Jiang, H., Sun, R. & Dong, X. 2019, 'Driving forces and mitigation potential 

of global CO2 emissions from 1980 through 2030: Evidence from countries with 

different income levels', Science of The Total Environment, vol. 649, pp. 335-43. 

DRAGONI, D., SCHMID, H.P., WAYSON, C.A., POTTER, H., GRIMMOND, C.S.B. 

& RANDOLPH, J.C. 2011, 'Evidence of increased net ecosystem productivity 

associated with a longer vegetated season in a deciduous forest in south-central 

Indiana, USA', Global Change Biology, vol. 17, no. 2, pp. 886-97. 

Drolet, G., Middleton, E., Huemmrich, K., Hall, F., Amiro, B., Barr, A., Black, T., 

McCaughey, J. & Margolis, H. 2008, 'Regional mapping of gross light-use 

efficiency using MODIS spectral indices', Remote Sensing of Environment, vol. 

112, no. 6, pp. 3064-78. 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., 

Isola, C., Laberinti, P. & Martimort, P. 2012, 'Sentinel-2: ESA's optical high-

resolution mission for GMES operational services', Remote sensing of 

Environment, vol. 120, pp. 25-36. 

Dubayah, R.O. & Drake, J.B. 2000, 'Lidar remote sensing for forestry', Journal of 

Forestry, vol. 98, no. 6, pp. 44-6. 

Eamus, D., Cleverly, J., Boulain, N., Grant, N., Faux, R. & Villalobos-Vega, R. 2013, 

'Carbon and water fluxes in an arid-zone Acacia savanna woodland: An analyses 

of seasonal patterns and responses to rainfall events', Agricultural and Forest 

Meteorology, vol. 182, pp. 225-38. 

Emmel, P. 2000, Nouvelle formulation du modèle de Kubelka et Munk avec application 

aux encres fluorescentes. 

Emmel, P. & Hersch, R.D. 1998, 'Spectral colour prediction model for a transparent 

fluorescent ink on paper', Color and Imaging Conference, vol. 1998, Society for 

Imaging Science and Technology, pp. 116-22. 

Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., 

Blankenship, R.E. & Fleming, G.R. 2007, 'Evidence for wavelike energy transfer 

through quantum coherence in photosynthetic systems', Nature, vol. 446, p. 782. 



131 

Falkowski, P., Scholes, R., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., 

Hibbard, K., Högberg, P. & Linder, S. 2000, 'The global carbon cycle: a test of 

our knowledge of earth as a system', science, vol. 290, no. 5490, pp. 291-6. 

Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D. & Harper, C.W. 2008, 'Changes 

in grassland ecosystem function due to extreme rainfall events: implications for 

responses to climate change', Global Change Biology, vol. 14, no. 7, pp. 1600-8. 

Feret, J.-B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P., Ustin, 

S.L., Le Maire, G. & Jacquemoud, S. 2008, 'PROSPECT-4 and 5: Advances in 

the leaf optical properties model separating photosynthetic pigments', Remote 

sensing of environment, vol. 112, no. 6, pp. 3030-43. 

Fernandez-Baco, L., Figueroa, M., Luque, T. & Davy, A. 1998, 'Diurnal and seasonal 

variations in chlorophyll a fluorescence in two Mediterranean-grassland species 

under field conditions', Photosynthetica, vol. 35, no. 4, pp. 535-44. 

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M.D., Smith, P., 

Van der Velde, M., Vicca, S. & Babst, F. 2015, 'Effects of climate extremes on 

the terrestrial carbon cycle: concepts, processes and potential future impacts', 

Global Change Biology, vol. 21, no. 8, pp. 2861-80. 

Frankenberg, C. & Berry, J. 2018, 'Solar induced chlorophyll fluorescence: origins, 

relation to photosynthesis and retrieval'. 

Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, 

G.C., Butz, A., Jung, M. & Kuze, A. 2011, 'New global observations of the 

terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross 

primary productivity', Geophysical Research Letters, vol. 38, no. 17. 

Frankenberg, C., Köhler, P., Magney, T.S., Geier, S., Lawson, P., Schwochert, M., 

McDuffie, J., Drewry, D.T., Pavlick, R. & Kuhnert, A. 2018, 'The Chlorophyll 

Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from 

aircraft', Remote Sensing of Environment, vol. 217, pp. 523-36. 

Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R. & 

Taylor, T.E. 2014, 'Prospects for chlorophyll fluorescence remote sensing from 

the Orbiting Carbon Observatory-2', Remote Sensing of Environment, vol. 147, 

pp. 1-12. 

Frankenberg, C., Pollock, R., Lee, R., Rosenberg, R., Blavier, J., Crisp, D., O'Dell, C., 

Osterman, G., Roehl, C. & Wennberg, P. 2015, 'The Orbiting Carbon Observatory 



132 

(OCO-2): spectrometer performance evaluation using pre-launch direct sun 

measurements', Atmospheric Measurement Techniques, vol. 8, no. 1, p. 301. 

Gamon, J.A., Huemmrich, K.F., Wong, C.Y., Ensminger, I., Garrity, S., Hollinger, D.Y., 

Noormets, A. & Peñuelas, J. 2016, 'A remotely sensed pigment index reveals 

photosynthetic phenology in evergreen conifers', Proceedings of the National 

Academy of Sciences, vol. 113, no. 46, pp. 13087-92. 

Ganapol, B.D., Johnson, L.F., Hammer, P.D., Hlavka, C.A. & Peterson, D.L. 1998, 

'LEAFMOD: a new within-leaf radiative transfer model', Remote Sensing of 

Environment, vol. 63, no. 2, pp. 182-93. 

Garbulsky, M.F., Peñuelas, J., Gamon, J., Inoue, Y. & Filella, I. 2011, 'The photochemical 

reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem 

radiation use efficiencies: A review and meta-analysis', Remote Sensing of 

Environment, vol. 115, no. 2, pp. 281-97. 

Garzonio, R., Di Mauro, B., Colombo, R. & Cogliati, S. 2017, 'Surface Reflectance and 

Sun-Induced Fluorescence Spectroscopy Measurements Using a Small 

Hyperspectral UAS', Remote Sensing, vol. 9, no. 5, p. 472. 

Gastellu-Etchegorry, J.-P., Demarez, V., Pinel, V. & Zagolski, F. 1996, 'Modeling 

radiative transfer in heterogeneous 3-D vegetation canopies', Remote sensing of 

environment, vol. 58, no. 2, pp. 131-56. 

Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovský, Z., 

Al Bitar, A., Aval, J., Benhmida, S. & Qi, J. 2017, 'DART: Recent advances in 

remote sensing data modeling with atmosphere, polarization, and chlorophyll 

fluorescence', IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, vol. 10, no. 6, pp. 2640-9. 

Gitelson, A.A., Vina, A., Ciganda, V., Rundquist, D.C. & Arkebauer, T.J. 2005, 'Remote 

estimation of canopy chlorophyll content in crops', Geophysical Research Letters, 

vol. 32, no. 8. 

Grömping, U. 2006, 'Relative importance for linear regression in R: the package relaimpo', 

Journal of statistical software, vol. 17, no. 1, pp. 1-27. 

Gu, L., Baldocchi, D.D., Wofsy, S.C., Munger, J.W., Michalsky, J.J., Urbanski, S.P. & 

Boden, T.A. 2003, 'Response of a deciduous forest to the Mount Pinatubo eruption: 

Enhanced photosynthesis', Science, vol. 299, no. 5615, pp. 2035-8. 



133 

Gu, L., Han, J., Wood, J.D., Chang, C.Y.-Y. & Sun, Y. 2019a, 'Sun-induced Chl 

fluorescence and its importance for biophysical modeling of photosynthesis based 

on light reactions', New Phytologist, vol. 0, no. 0. 

Gu, L., Han, J., Wood, J.D., Chang, C.Y.Y. & Sun, Y. 2019b, 'Sun ‐ induced Chl 

fluorescence and its importance for biophysical modeling of photosynthesis based 

on light reactions', New Phytologist, p. 1. 

Guan, K., Miao, G., Suyker, A., Yelu, Z., Yang, X., Wu, G., Ryu, Y., Dechant, B., 

Arkebauer, T.J., Walter-Shea, E.A., Gamon, J.A., Hmimina, G., Avenson, T., 

Moore, R. & Kim, H. 2018, 'Structural and Physiological Effects on the 

Relationship between Solar-Induced Fluorescence and Gross Primary Production: 

A Comparison Study between Nadir and Hemispherical Fluorescence 

Observations', American Geophysical Union, Fall Meeting 2018. 

Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K.K., Sheffield, J., 

Wood, E.F. & Malhi, Y. 2015, 'Photosynthetic seasonality of global tropical 

forests constrained by hydroclimate', Nature Geoscience, vol. 8, no. 4, p. 284. 

Guanter, L., Aben, I., Tol, P., Krijger, J., Hollstein, A., Köhler, P., Damm, A., Joiner, J., 

Frankenberg, C. & Landgraf, J. 2015, 'Potential of the TROPOspheric Monitoring 

Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of 

terrestrial chlorophyll fluorescence', Atmospheric Measurement Techniques, vol. 

8, no. 3, pp. 1337-52. 

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, 

H. & Grainger, R.G. 2012, 'Retrieval and global assessment of terrestrial 

chlorophyll fluorescence from GOSAT space measurements', Remote Sensing of 

Environment, vol. 121, pp. 236-51. 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., 

Huete, A.R., Zarco-Tejada, P. & Lee, J.-E. 2014a, 'Global and time-resolved 

monitoring of crop photosynthesis with chlorophyll fluorescence', Proceedings of 

the National Academy of Sciences, vol. 111, no. 14, pp. E1327-E33. 

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., 

Huete, A.R., Zarco-Tejada, P. & Lee, J.-E. 2014b, 'Global and time-resolved 

monitoring of crop photosynthesis with chlorophyll fluorescence', Proceedings of 

the National Academy of Sciences, p. 201320008. 



134 

Gurney, K.R., Baker, D., Rayner, P. & Denning, S. 2008, 'Interannual variations in 

continental‐scale net carbon exchange and sensitivity to observing networks 

estimated from atmospheric CO2 inversions for the period 1980 to 2005', Global 

Biogeochemical Cycles, vol. 22, no. 3. 

He, L., Chen, J.M., Liu, J., Mo, G. & Joiner, J. 2017, 'Angular normalization of GOME‐

2 Sun ‐ induced chlorophyll fluorescence observation as a better proxy of 

vegetation productivity', Geophysical Research Letters, vol. 44, no. 11, pp. 5691-

9. 

Heimann, M. & Reichstein, M. 2008, 'Terrestrial ecosystem carbon dynamics and climate 

feedbacks', Nature, vol. 451, p. 289. 

Hernández-Clemente, R., North, P.R., Hornero, A. & Zarco-Tejada, P.J. 2017, 'Assessing 

the effects of forest health on sun-induced chlorophyll fluorescence using the 

FluorFLIGHT 3-D radiative transfer model to account for forest structure', 

Remote Sensing of Environment, vol. 193, pp. 165-79. 

Hosgood, B., Jacquemoud, S., Andreoli, G., Verdebout, J., Pedrini, G. & Schmuck, G. 

1995, 'Leaf optical properties experiment 93 (LOPEX93)', Ispra Italy’European 

Commission, Joint Research Centre Institute of Remote Sensing Applications. 

Hu, J., Liu, L., Guo, J., Du, S. & Liu, X. 2018, 'Upscaling Solar-Induced Chlorophyll 

Fluorescence from an Instantaneous to Daily Scale Gives an Improved Estimation 

of the Gross Primary Productivity', Remote Sensing, vol. 10, no. 10, p. 1663. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G. 2002, 

'Overview of the radiometric and biophysical performance of the MODIS 

vegetation indices', Remote sensing of environment, vol. 83, no. 1-2, pp. 195-213. 

Hutley, L., O'grady, A. & Eamus, D. 2000, 'Evapotranspiration from Eucalypt open‐

forest savanna of Northern Australia', Functional Ecology, vol. 14, no. 2, pp. 183-

94. 

Iermak, I., Vink, J., Bader, A.N., Wientjes, E. & van Amerongen, H. 2016, 'Visualizing 

heterogeneity of photosynthetic properties of plant leaves with two-photon 

fluorescence lifetime imaging microscopy', Biochimica et Biophysica Acta (BBA) 

- Bioenergetics, vol. 1857, no. 9, pp. 1473-8. 

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R. & 

Pedrazzini, A. 2012, 'Use of LIDAR in landslide investigations: a review', Natural 

hazards, vol. 61, no. 1, pp. 5-28. 



135 

Jacquemound, S., Bidel, L., Francois, C. & Pavan, G. 2003, 'ANGERS Leaf Optical 

Properties Database (2003)', Data Set. Available online: http://ecosis. org 

(accessed on 5 June 2018). 

Jeong, S.-J., Schimel, D., Frankenberg, C., Drewry, D.T., Fisher, J.B., Verma, M., Berry, 

J.A., Lee, J.-E. & Joiner, J. 2017, 'Application of satellite solar-induced 

chlorophyll fluorescence to understanding large-scale variations in vegetation 

phenology and function over northern high latitude forests', Remote Sensing of 

Environment, vol. 190, pp. 178-87. 

Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M. & Zhu, Z. 2017, 'Inconsistencies 

of interannual variability and trends in long-term satellite leaf area index products', 

Global Change Biology, vol. 23, no. 10, pp. 4133-46. 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A., Middleton, E., Huemmrich, 

K., Yoshida, Y. & Frankenberg, C. 2013, 'Global monitoring of terrestrial 

chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite 

measurements: methodology, simulations, and application to GOME-2', 

Atmospheric Measurement Techniques, vol. 6, no. 10, pp. 2803-23. 

Joiner, J., Yoshida, Y., Guanter, L. & Middleton, E.M. 2016, 'New methods for the 

retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: 

simulations and application to GOME-2 and SCIAMACHY', Atmospheric 

Measurement Techniques, vol. 9, no. 8. 

Kanniah, K., Beringer, J., Hutley, L., Tapper, N. & Zhu, X. 2009, 'Evaluation of 

Collections 4 and 5 of the MODIS Gross Primary Productivity product and 

algorithm improvement at a tropical savanna site in northern Australia', Remote 

Sensing of Environment, vol. 113, no. 9, pp. 1808-22. 

Kato, T., Kobayashi, H., Sakai, Y., Noda, H., Miyauchi, T., Nasahara, K., Akitsu, T., 

Murayama, S. & Muraoka, H. 2018, 'Bottom-up and top-down approach 

investigations on solar induced fluorescence for estimating the photosynthesis at 

ecosystem scale by both ground-based measurement and modeling', AGU Fall 

Meeting Abstracts. 

Kato, T., Tsujimoto, K., Nasahara, K., Akitsu, T., Murayama, S., Noda, H. & Muraoka, 

H. 2016, 'Detection of upward and downward Solar-induced chlorophyll 

fluorescence emissions at the forest floor in a cool-temperate deciduous broadleaf 

forest in Japan', AGU Fall Meeting Abstracts. 

http://ecosis/


136 

Kempeneers, P., Zarco‐Tejada, P.J., North, P.R., de Backer, S., Delalieux, S., Sepulcre‐

Cantó, G., Morales, F., Van Aardt, J., Sagardoy, R. & Coppin, P. 2008, 'Model 

inversion for chlorophyll estimation in open canopies from hyperspectral imagery', 

International Journal of Remote Sensing, vol. 29, no. 17-18, pp. 5093-111. 

Klosterman, S., Hufkens, K., Gray, J., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., 

Norman, R., Friedl, M. & Richardson, A. 2014, 'Evaluating remote sensing of 

deciduous forest phenology at multiple spatial scales using PhenoCam imagery'. 

Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Diner, D.J. & Running, S.W. 1998, 

'Synergistic algorithm for estimating vegetation canopy leaf area index and 

fraction of absorbed photosynthetically active radiation from MODIS and MISR 

data', Journal of Geophysical Research: Atmospheres, vol. 103, no. D24, pp. 

32257-75. 

Kobayashi, H., Baldocchi, D.D., Ryu, Y., Chen, Q., Ma, S., Osuna, J.L. & Ustin, S.L. 

2012, 'Modeling energy and carbon fluxes in a heterogeneous oak woodland: A 

three-dimensional approach', Agricultural and Forest Meteorology, vol. 152, pp. 

83-100. 

Kobayashi, H. & Iwabuchi, H. 2008, 'A coupled 1-D atmosphere and 3-D canopy 

radiative transfer model for canopy reflectance, light environment, and 

photosynthesis simulation in a heterogeneous landscape', Remote Sensing of 

Environment, vol. 112, no. 1, pp. 173-85. 

Kobayashi, H., Suzuki, R. & Kobayashi, S. 2007, 'Reflectance seasonality and its relation 

to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite 

data and radiative transfer analyses', Remote Sensing of Environment, vol. 106, no. 

2, pp. 238-52. 

Koffi, E., Rayner, P., Norton, A., Frankenberg, C. & Scholze, M. 2015, 'Investigating the 

usefulness of satellite-derived fluorescence data in inferring gross primary 

productivity within the carbon cycle data assimilation system', Biogeosciences, 

vol. 12, no. 13, pp. 4067-84. 

Köhler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J. & Landgraf, J. 2018, 

'Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: 

First Results and Intersensor Comparison to OCO‐2', Geophysical Research 

Letters, vol. 45, no. 19, pp. 10,456-10,63. 



137 

Köhler, P., Guanter, L. & Joiner, J. 2015a, 'A linear method for the retrieval of sun-

induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data', 

Atmospheric Measurement Techniques, vol. 8, no. 6, pp. 2589-608. 

Köhler, P., Guanter, L. & Joiner, J. 2015b, 'A linear method for the retrieval of sun-

induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data'. 

Köhler, P., Guanter, L., Kobayashi, H., Walther, S. & Yang, W. 2018, 'Assessing the 

potential of sun-induced fluorescence and the canopy scattering coefficient to 

track large-scale vegetation dynamics in Amazon forests', Remote Sensing of 

Environment, vol. 204, pp. 769-85. 

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006, 'World map of the Köppen-

Geiger climate classification updated', Meteorologische Zeitschrift, vol. 15, no. 3, 

pp. 259-63. 

Lalic, B. & Mihailovic, D.T. 2004, 'An empirical relation describing leaf-area density 

inside the forest for environmental modeling', Journal of Applied Meteorology, 

vol. 43, no. 4, pp. 641-5. 

Lee, J.-E., Frankenberg, C., Tol, C.v.d., Berry, J.A., Guanter, L., Boyce, C.K., Fisher, 

J.B., Morrow, E., Worden, J.R., Asefi, S., Badgley, G. & Saatchi, S. 2013, 'Forest 

productivity and water stress in Amazonia: observations from GOSAT 

chlorophyll fluorescence', Proceedings of the Royal Society B: Biological 

Sciences, vol. 280, no. 1761, p. 20130171. 

Li, X. & Xiao, J. 2019, 'A Global, 0.05-Degree Product of Solar-Induced Chlorophyll 

Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data', Remote 

Sensing, vol. 11, no. 5, p. 517. 

Li, X., Xiao, J. & He, B. 2018a, 'Chlorophyll fluorescence observed by OCO-2 is strongly 

related to gross primary productivity estimated from flux towers in temperate 

forests', Remote Sensing of Environment, vol. 204, pp. 659-71. 

Li, X., Xiao, J. & He, B. 2018b, 'Higher absorbed solar radiation partly offset the negative 

effects of water stress on the photosynthesis of Amazon forests during the 2015 

drought', Environmental Research Letters, vol. 13, no. 4, p. 044005. 

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A.R., Emmel, C., Hollinger, 

D.Y., Krasnova, A. & Mammarella, I. 2018, 'Solar ‐ induced chlorophyll 

fluorescence is strongly correlated with terrestrial photosynthesis for a wide 



138 

variety of biomes: First global analysis based on OCO ‐ 2 and flux tower 

observations', Global change biology, vol. 24, no. 9, pp. 3990-4008. 

Liu, L., Liu, X., Wang, Z. & Zhang, B. 2016, 'Measurement and analysis of bidirectional 

SIF emissions in wheat canopies', IEEE Transactions on Geoscience and Remote 

Sensing, vol. 54, no. 5, pp. 2640-51. 

Liu, Y., Liu, R. & Chen, J.M. 2012, 'Retrospective retrieval of long-term consistent global 

leaf area index (1981–2011) from combined AVHRR and MODIS data', Journal 

of Geophysical Research: Biogeosciences, vol. 117, no. G4. 

Lloyd, J. & Taylor, J. 1994, 'On the temperature dependence of soil respiration', 

Functional ecology, pp. 315-23. 

LONG, S.P. 1991, 'Modification of the response of photosynthetic productivity to rising 

temperature by atmospheric CO2 concentrations: Has its importance been 

underestimated?', Plant, Cell & Environment, vol. 14, no. 8, pp. 729-39. 

MacArthur, A., Robinson, I., Rossini, M., Davis, N. & MacDonald, K. 2014, 'A dual-

field-of-view spectrometer system for reflectance and fluorescence measurements 

(Piccolo Doppio) and correction of etaloning', Proceedings of the Fifth 

International Workshop on Remote Sensing of Vegetation Fluorescence, pp. 22-

4. 

Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., 

Grelle, A., Hari, P., Jarvis, P.G. & Kolari, P. 2007, 'The human footprint in the 

carbon cycle of temperate and boreal forests', Nature, vol. 447, no. 7146, p. 849. 

Magney, T.S., Bowling, D.R., Logan, B.A., Grossmann, K., Stutz, J., Blanken, P.D., 

Burns, S.P., Cheng, R., Garcia, M.A. & Kӧhler, P. 2019, 'Mechanistic evidence 

for tracking the seasonality of photosynthesis with solar-induced fluorescence', 

Proceedings of the National Academy of Sciences, vol. 116, no. 24, pp. 11640-5. 

Majer, P., Neugart, S., Krumbein, A., Schreiner, M. & Hideg, É. 2014, 'Singlet oxygen 

scavenging by leaf flavonoids contributes to sunlight acclimation in Tilia 

platyphyllos', Environmental and Experimental Botany, vol. 100, pp. 1-9. 

McGaughey, R.J. 2009, 'FUSION/LDV: Software for LIDAR data analysis and 

visualization', US Department of Agriculture, Forest Service, Pacific Northwest 

Research Station: Seattle, WA, USA, vol. 123, no. 2. 



139 

Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M. & Cox, 

P.M. 2009, 'Impact of changes in diffuse radiation on the global land carbon sink', 

Nature, vol. 458, no. 7241, p. 1014. 

Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J. & Verhoef, W. 2010, 

'Performance of Spectral Fitting Methods for vegetation fluorescence 

quantification', Remote Sensing of Environment, vol. 114, no. 2, pp. 363-74. 

Meroni, M. & Colombo, R. 2006, 'Leaf level detection of solar induced chlorophyll 

fluorescence by means of a subnanometer resolution spectroradiometer', Remote 

Sensing of Environment, vol. 103, no. 4, pp. 438-48. 

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R. & Moreno, 

J. 2009, 'Remote sensing of solar-induced chlorophyll fluorescence: Review of 

methods and applications', Remote Sensing of Environment, vol. 113, no. 10, pp. 

2037-51. 

Miao, G., Guan, K., Yang, X., Bernacchi, C.J., Berry, J.A., DeLucia, E.H., Wu, J., Moore, 

C.E., Meacham, K. & Cai, Y. 2018, 'Sun‐Induced Chlorophyll Fluorescence, 

Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally 

Continuous Measurements', Journal of Geophysical Research: Biogeosciences, 

vol. 123, no. 2, pp. 610-23. 

Migliavacca, M., Perez‐Priego, O., Rossini, M., El‐Madany, T.S., Moreno, G., van der 

Tol, C., Rascher, U., Berninger, A., Bessenbacher, V. & Burkart, A. 2017, 'Plant 

functional traits and canopy structure control the relationship between 

photosynthetic CO 2 uptake and far ‐ red sun ‐ induced fluorescence in a 

Mediterranean grassland under different nutrient availability', New Phytologist, 

vol. 214, no. 3, pp. 1078-91. 

Miller, J., Berger, M., Goulas, Y., Jacquemond, S., Loius, J., Mohammed, G., Moise, N., 

Moreno, J., Moya, I. & Pedrós, R. 2005, Development of a vegetation fluorescence 

canopy model, ESA Scientific and Technical Publications Branch, ESTEC. 

Misson, L., Baldocchi, D., Black, T., Blanken, P., Brunet, Y., Yuste, J.C., Dorsey, J., Falk, 

M., Granier, A. & Irvine, M. 2007, 'Partitioning forest carbon fluxes with 

overstory and understory eddy-covariance measurements: A synthesis based on 

FLUXNET data', Agricultural and Forest Meteorology, vol. 144, no. 1-2, pp. 14-

31. 



140 

Monteith, J. 1972, 'Solar radiation and productivity in tropical ecosystems', Journal of 

applied ecology, vol. 9, no. 3, pp. 747-66. 

Monteith, J.L. 1977, 'Climate and the efficiency of crop production in Britain', 

Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 

vol. 281, no. 980, pp. 277-94. 

Moore, C.E., Beringer, J., Donohue, R.J., Evans, B., Exbrayat, J.F., Hutley, L.B. & 

Tapper, N.J. 2018, 'Seasonal, interannual and decadal drivers of tree and grass 

productivity in an Australian tropical savanna', Global change biology, vol. 24, 

no. 6, pp. 2530-44. 

Moore, C.E., Beringer, J., Evans, B., Hutley, L.B., McHugh, I. & Tapper, N.J. 2016, 'The 

contribution of trees and grasses to productivity of an Australian tropical savanna', 

Biogeosciences, vol. 13, no. 8, pp. 2387-403. 

Moya, I., Camenen, L., Evain, S., Goulas, Y., Cerovic, Z.G., Latouche, G., Flexas, J. & 

Ounis, A. 2004, 'A new instrument for passive remote sensing: 1. Measurements 

of sunlight-induced chlorophyll fluorescence', Remote Sensing of Environment, 

vol. 91, no. 2, pp. 186-97. 

Myneni, R., Knyazikhin, Y. & Park, T. 2016, 'MOD15A2H MODIS Leaf Area 

Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land 

Processes DAAC'. 

Myneni, R.B., Ross, J. & Asrar, G. 1989, 'A review on the theory of photon transport in 

leaf canopies', Agricultural and Forest Meteorology, vol. 45, no. 1, pp. 1-153. 

Nakaji, T., Ide, R., Oguma, H., Saigusa, N. & Fujinuma, Y. 2007, 'Utility of spectral 

vegetation index for estimation of gross CO2 flux under varied sky conditions', 

Remote Sensing of Environment, vol. 109, no. 3, pp. 274-84. 

Nakaji, T., Kosugi, Y., Takanashi, S., Niiyama, K., Noguchi, S., Tani, M., Oguma, H., 

Nik, A.R. & Kassim, A.R. 2014, 'Estimation of light-use efficiency through a 

combinational use of the photochemical reflectance index and vapor pressure 

deficit in an evergreen tropical rainforest at Pasoh, Peninsular Malaysia', Remote 

sensing of environment, vol. 150, pp. 82-92. 

Nichol, C.J., Drolet, G., Porcar-Castell, A., Wade, T., Sabater, N., Middleton, E.M., 

MacLellan, C., Levula, J., Mammarella, I. & Vesala, T. 2019, 'Diurnal and 

Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal 

Scots Pine Canopy', Remote Sensing, vol. 11, no. 3, p. 273. 



141 

Olioso, A., Méthy, M. & Lacaze, B. 1992, 'Simulation of canopy fluorescence as a 

function of canopy structure and leaf fluorescence', Remote Sensing of 

Environment, vol. 41, no. 2, pp. 239-47. 

Paul-Limoges, E., Damm, A., Hueni, A., Liebisch, F., Eugster, W., Schaepman, M.E. & 

Buchmann, N. 2018, 'Effect of environmental conditions on sun-induced 

fluorescence in a mixed forest and a cropland', Remote Sensing of Environment, 

vol. 219, pp. 310-23. 

Pearcy, R.W. 1990, 'Sunflecks and photosynthesis in plant canopies', Annual review of 

plant biology, vol. 41, no. 1, pp. 421-53. 

Pedrós, R., Goulas, Y., Jacquemoud, S., Louis, J. & Moya, I. 2010, 'FluorMODleaf: A 

new leaf fluorescence emission model based on the PROSPECT model', Remote 

Sensing of Environment, vol. 114, no. 1, pp. 155-67. 

Penuelas, J., Filella, I. & Gamon, J.A. 1995, 'Assessment of photosynthetic radiation‐use 

efficiency with spectral reflectance', New Phytologist, vol. 131, no. 3, pp. 291-6. 

Pinto, F., Damm, A., Schickling, A., Panigada, C., Cogliati, S., Müller‐Linow, M., 

Balvora, A. & Rascher, U. 2016, 'Sun‐induced chlorophyll fluorescence from 

high‐resolution imaging spectroscopy data to quantify spatio‐temporal patterns 

of photosynthetic function in crop canopies', Plant, cell & environment, vol. 39, 

no. 7, pp. 1500-12. 

Pitkänen, J., Maltamo, M., Hyyppä, J. & Yu, X. 2004, 'Adaptive methods for individual 

tree detection on airborne laser based canopy height model', International 

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 

vol. 36, no. 8, pp. 187-91. 

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van der Tol, C., Flexas, J., Pfündel, E.E., 

Moreno, J., Frankenberg, C. & Berry, J.A. 2014, 'Linking chlorophyll a 

fluorescence to photosynthesis for remote sensing applications: mechanisms and 

challenges', Journal of experimental botany, vol. 65, no. 15, pp. 4065-95. 

Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., 

Drusch, M., Guanter, L., Hanus, J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, 

K., Kokkalis, P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller, O., 

Panigada, C., Pikl, M., Pinto, F., Prey, L., Pude, R., Rossini, M., Schickling, A., 

Schurr, U., Schüttemeyer, D., Verrelst, J. & Zemek, F. 2015, 'Sun-induced 



142 

fluorescence – a new probe of photosynthesis: First maps from the imaging 

spectrometer HyPlant', Global Change Biology, vol. 21, no. 12, pp. 4673-84. 

Rascher, U., Gioli, B. & Miglietta, F. 2008, 'FLEX—fluorescence explorer: a remote 

sensing approach to quantify spatio-temporal variations of photosynthetic 

efficiency from space', Photosynthesis. Energy from the Sun, Springer, pp. 1387-

90. 

Rasmussen, M. & Minteer, S.D. 2014, 'Photobioelectrochemistry: solar energy 

conversion and biofuel production with photosynthetic catalysts', Journal of The 

Electrochemical Society, vol. 161, no. 10, pp. H647-H55. 

Reddy, V., Baker, D. & Hodges, H. 1991, 'Temperature effects on cotton canopy growth, 

photosynthesis, and respiration', Agronomy Journal, vol. 83, no. 4, pp. 699-704. 

Reichstein, M., Ciais, P., Papale, D., Valentini, R., Running, S., Viovy, N., Cramer, W., 

Granier, A., Ogee, J. & Allard, V. 2007, 'Reduction of ecosystem productivity and 

respiration during the European summer 2003 climate anomaly: a joint flux tower, 

remote sensing and modelling analysis', Global Change Biology, vol. 13, no. 3, 

pp. 634-51. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, 

C., Buchmann, N., Gilmanov, T. & Granier, A. 2005, 'On the separation of net 

ecosystem exchange into assimilation and ecosystem respiration: review and 

improved algorithm', Global Change Biology, vol. 11, no. 9, pp. 1424-39. 

Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, 

D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., 

Munger, J.W., Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N., 

Tomelleri, E., Vargas, R. & Varlagin, A. 2010, 'Influence of spring and autumn 

phenological transitions on forest ecosystem productivity', Philosophical 

Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1555, pp. 

3227-46. 

Rosema, A., Snel, J., Zahn, H., Buurmeijer, W. & Van Hove, L. 1998, 'The relation 

between laser-induced chlorophyll fluorescence and photosynthesis', Remote 

sensing of environment, vol. 65, no. 2, pp. 143-54. 

Rosema, A., Verhoef, W., Schroote, J. & Snel, J.F.H. 1991, 'Simulating fluorescence 

light-canopy interaction in support of laser-induced fluorescence measurements', 

Remote Sensing of Environment, vol. 37, no. 2, pp. 117-30. 



143 

Rosenzweig, C., Iglesias, A., Yang, X.-B., Epstein, P.R. & Chivian, E. 2001, 'Climate 

change and extreme weather events; implications for food production, plant 

diseases, and pests', Global change & human health, vol. 2, no. 2, pp. 90-104. 

Rubel, F., Brugger, K., Haslinger, K. & Auer, I. 2017, 'The climate of the European Alps: 

Shift of very high resolution Köppen-Geiger climate zones 1800–2100', 

Meteorologische Zeitschrift, vol. 26, no. 2, pp. 115-25. 

Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M. & Hashimoto, H. 

2004, 'A continuous satellite-derived measure of global terrestrial primary 

production', Bioscience, vol. 54, no. 6, pp. 547-60. 

Running, S.W., Thornton, P.E., Nemani, R. & Glassy, J.M. 2000, 'Global terrestrial gross 

and net primary productivity from the Earth Observing System', Methods in 

ecosystem science, Springer, pp. 44-57. 

Ryu, Y., Berry, J.A. & Baldocchi, D.D. 2019, 'What is global photosynthesis? History, 

uncertainties and opportunities', Remote Sensing of Environment, vol. 223, pp. 95-

114. 

Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R. & Baldocchi, 

D.D. 2010, 'How to quantify tree leaf area index in an open savanna ecosystem: 

A multi-instrument and multi-model approach', Agricultural and Forest 

Meteorology, vol. 150, no. 1, pp. 63-76. 

Schimel, D., Pavlick, R., Fisher, J.B., Asner, G.P., Saatchi, S., Townsend, P., Miller, C., 

Frankenberg, C., Hibbard, K. & Cox, P. 2015, 'Observing terrestrial ecosystems 

and the carbon cycle from space', Global Change Biology, vol. 21, no. 5, pp. 1762-

76. 

Schlau-Cohen, G.S. & Berry, J. 2015, 'Photosynthetic fluorescence, from molecule to 

planet', Physics Today, vol. 68, no. 66. 

Shan, N., Ju, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J., Goulas, Y. & Zhang, 

Y. 2019, 'Modeling canopy conductance and transpiration from solar-induced 

chlorophyll fluorescence', Agricultural and Forest Meteorology, vol. 268, pp. 

189-201. 

Shiklomanov, A.N., Dietze, M.C., Viskari, T., Townsend, P.A. & Serbin, S.P. 2016, 

'Quantifying the influences of spectral resolution on uncertainty in leaf trait 

estimates through a Bayesian approach to RTM inversion', Remote sensing of 

environment, vol. 183, pp. 226-38. 



144 

Shinkarev, V.P. & Govindjee 1993, 'Insight into the relationship of chlorophyll a 

fluorescence yield to the concentration of its natural quenchers in oxygenic 

photosynthesis', Proceedings of the National Academy of Sciences, vol. 90, no. 16, 

pp. 7466-9. 

Simard, M., Pinto, N., Fisher, J.B. & Baccini, A. 2011, 'Mapping forest canopy height 

globally with spaceborne lidar', Journal of Geophysical Research: Biogeosciences, 

vol. 116, no. G4. 

Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Bolstad, P.V., 

Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y. & Misson, L. 2008, 'A new 

model of gross primary productivity for North American ecosystems based solely 

on the enhanced vegetation index and land surface temperature from MODIS', 

Remote sensing of Environment, vol. 112, no. 4, pp. 1633-46. 

Smith, W., Biederman, J., Scott, R., Moore, D., He, M., Kimball, J., Yan, D., Hudson, A., 

Barnes, M. & MacBean, N. 2018, 'Chlorophyll fluorescence better captures 

seasonal and interannual gross primary productivity dynamics across dryland 

ecosystems of southwestern North America', Geophysical Research Letters, vol. 

45, no. 2, pp. 748-57. 

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W. & Zhang, Y. 2018a, 'Satellite 

sun‐induced chlorophyll fluorescence detects early response of winter wheat to 

heat stress in the Indian Indo‐Gangetic Plains', Global change biology, vol. 24, 

no. 9, pp. 4023-37. 

Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W. & Zhang, Y. 2018b, 'Satellite 

sun‐induced chlorophyll fluorescence detects early response of winter wheat to 

heat stress in the Indian Indo‐Gangetic Plains', Global change biology. 

Stenberg, P., Mõttus, M. & Rautiainen, M. 2016, 'Photon recollision probability in 

modelling the radiation regime of canopies — A review', Remote Sensing of 

Environment, vol. 183, pp. 98-108. 

Stöckli, R., Rutishauser, T., Dragoni, D., O'keefe, J., Thornton, P., Jolly, M., Lu, L. & 

Denning, A. 2008, 'Remote sensing data assimilation for a prognostic phenology 

model', Journal of Geophysical Research: Biogeosciences, vol. 113, no. G4. 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P. & Magney, T. 2018, 

'Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting 



145 

Carbon Observatory-2: Retrieval, cross-mission comparison, and global 

monitoring for GPP', Remote sensing of environment, vol. 209, pp. 808-23. 

Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., Drewry, D., 

Verma, M., Porcar-Castell, A. & Griffis, T.J. 2017, 'OCO-2 advances 

photosynthesis observation from space via solar-induced chlorophyll 

fluorescence', Science, vol. 358, no. 6360, p. eaam5747. 

Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., Xia, Y. & Fernando, 

N. 2015a, 'Drought onset mechanisms revealed by satellite solar-induced 

chlorophyll fluorescence: Insights from two contrasting extreme events', Journal 

of Geophysical Research: Biogeosciences, vol. 120, no. 11, pp. 2427-40. 

Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., Xia, Y. & Fernando, 

N. 2015b, 'Drought onset mechanisms revealed by satellite solar ‐ induced 

chlorophyll fluorescence: Insights from two contrasting extreme events', Journal 

of Geophysical Research: Biogeosciences, vol. 120, no. 11, pp. 2427-40. 

Tol, C., Verhoef, W., Timmermans, J., Verhoef, A. & Su, Z. 2009, 'An integrated model 

of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and 

energy balance', Biogeosciences, vol. 6, no. 12, pp. 3109-29. 

Turner, D.P., Ritts, W.D., Cohen, W.B., Gower, S.T., Running, S.W., Zhao, M., Costa, 

M.H., Kirschbaum, A.A., Ham, J.M. & Saleska, S.R. 2006, 'Evaluation of MODIS 

NPP and GPP products across multiple biomes', Remote sensing of environment, 

vol. 102, no. 3-4, pp. 282-92. 

Turner, D.P., Ritts, W.D., Cohen, W.B., Gower, S.T., Zhao, M., Running, S.W., Wofsy, 

S.C., Urbanski, S., Dunn, A.L. & Munger, J. 2003, 'Scaling gross primary 

production (GPP) over boreal and deciduous forest landscapes in support of 

MODIS GPP product validation', Remote Sensing of Environment, vol. 88, no. 3, 

pp. 256-70. 

Van der Tol, C., Berry, J., Campbell, P. & Rascher, U. 2014, 'Models of fluorescence and 

photosynthesis for interpreting measurements of solar ‐ induced chlorophyll 

fluorescence', Journal of Geophysical Research: Biogeosciences, vol. 119, no. 12, 

pp. 2312-27. 

Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A. & Su, Z. 2009, 'An integrated 

model of soil-canopy spectral radiances, photosynthesis, fluorescence, 

temperature and energy balance', Biogeosciences, vol. 6, no. 12, pp. 3109-29. 



146 

Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J. & Samson, R. 2015, 

'Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf 

structure and light scattering properties—A bottom-up approach', Remote Sensing 

of Environment, vol. 158, pp. 169-79. 

Verhoef, W. 1998, Theory of radiative transfer models applied in optical remote sensing 

of vegetation canopies. 

Verhoef, W. 2011, 'Modelling vegetation fluorescence observations', 7th EARSEL 

workshop of the Special Interest Group in imaging spectroscopy: final 

programme, 11-13 April 2011, Edinburgh, UK. 

Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer, J., Drewry, D.T., Magney, 

T., Marang, I., Hutley, L. & Moore, C. 2017, 'Effect of environmental conditions 

on the relationship between solar ‐ induced fluorescence and gross primary 

productivity at an OzFlux grassland site', Journal of Geophysical Research: 

Biogeosciences, vol. 122, no. 3, pp. 716-33. 

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J.P., Camps-Valls, G. & Moreno, 

J. 2012, 'Machine learning regression algorithms for biophysical parameter 

retrieval: Opportunities for Sentinel-2 and-3', Remote Sensing of Environment, vol. 

118, pp. 127-39. 

Verrelst, J., van der Tol, C., Magnani, F., Sabater, N., Rivera, J.P., Mohammed, G. & 

Moreno, J. 2016, 'Evaluating the predictive power of sun-induced chlorophyll 

fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE 

modeling study', Remote Sensing of Environment, vol. 176, pp. 139-51. 

Vilfan, N., Van der Tol, C., Muller, O., Rascher, U. & Verhoef, W. 2016, 'Fluspect-B: A 

model for leaf fluorescence, reflectance and transmittance spectra', Remote 

sensing of environment, vol. 186, pp. 596-615. 

Walker, J. & Gillison, A. 1982, 'Australian savannas', Ecology of tropical savannas, 

Springer, pp. 5-24. 

Walther, S., Duveiller, G., Jung, M., Guanter, L., Cescatti, A. & Camps‐Valls, G. 2019, 

'Satellite Observations of the Contrasting Response of Trees and Grasses to 

Variations in Water Availability', Geophysical Research Letters, vol. 46, no. 3, 

pp. 1429-40. 

Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., Jung, M., Varlagin, 

A. & Guanter, L. 2016, 'Satellite chlorophyll fluorescence measurements reveal 



147 

large-scale decoupling of photosynthesis and greenness dynamics in boreal 

evergreen forests', Global Change Biology, vol. 22, no. 9, pp. 2979-96. 

Wang, C., Beringer, J., Hutley, L.B., Cleverly, J., Li, J., Liu, Q. & Sun, Y. 2019, 

'Phenology Dynamics of Dryland Ecosystems Along the North Australian 

Tropical Transect Revealed by Satellite Solar‐Induced Chlorophyll Fluorescence', 

Geophysical Research Letters, vol. 46, no. 10, pp. 5294-302. 

Wang, S., Huang, C., Zhang, L., Lin, Y., Cen, Y. & Wu, T. 2016, 'Monitoring and 

assessing the 2012 drought in the Great Plains: analyzing satellite-retrieved solar-

induced chlorophyll fluorescence, drought indices, and gross primary production', 

Remote Sensing, vol. 8, no. 2, p. 61. 

Wang, Y., Tian, Y., Zhang, Y., El-Saleous, N., Knyazikhin, Y., Vermote, E. & Myneni, 

R.B. 2001, 'Investigation of product accuracy as a function of input and model 

uncertainties: Case study with SeaWiFS and MODIS LAI/FPAR algorithm', 

Remote Sensing of Environment, vol. 78, no. 3, pp. 299-313. 

Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N., Verardo, D.J. & Dokken, D.J. 

2000, Land use, land-use change and forestry: a special report of the 

Intergovernmental Panel on Climate Change, Cambridge University Press. 

WHITE, M.A., De BEURS, K.M., DIDAN, K., INOUYE, D.W., RICHARDSON, A.D., 

JENSEN, O.P., O'KEEFE, J., ZHANG, G., NEMANI, R.R., Van LEEUWEN, 

W.J.D., BROWN, J.F., De WIT, A., SCHAEPMAN, M., LIN, X., DETTINGER, 

M., BAILEY, A.S., KIMBALL, J., SCHWARTZ, M.D., BALDOCCHI, D.D., 

LEE, J.T. & LAUENROTH, W.K. 2009, 'Intercomparison, interpretation, and 

assessment of spring phenology in North America estimated from remote sensing 

for 1982–2006', Global Change Biology, vol. 15, no. 10, pp. 2335-59. 

Whitley, R.J., MACINNIS‐NG, C.M., Hutley, L.B., Beringer, J., Zeppel, M., Williams, 

M., Taylor, D. & Eamus, D. 2011, 'Is productivity of mesic savannas light limited 

or water limited? Results of a simulation study', Global Change Biology, vol. 17, 

no. 10, pp. 3130-49. 

Wieneke, S., Burkart, A., Cendrero-Mateo, M., Julitta, T., Rossini, M., Schickling, A., 

Schmidt, M. & Rascher, U. 2018a, 'Linking photosynthesis and sun-induced 

fluorescence at sub-daily to seasonal scales', Remote Sensing of Environment, vol. 

219, pp. 247-58. 



148 

Wieneke, S., Burkart, A., Cendrero-Mateo, M.P., Julitta, T., Rossini, M., Schickling, A., 

Schmidt, M. & Rascher, U. 2018b, 'Diurnal and seasonal patterns of 

photosynthesis and its relationship to F687, F760 and a revised PRI', EGU 

General Assembly Conference Abstracts, vol. 20, p. 14562. 

Wieneke, S., Burkart, A., Cendrero-Mateo, M.P., Julitta, T., Rossini, M., Schickling, A., 

Schmidt, M. & Rascher, U. 2018c, 'Linking photosynthesis and sun-induced 

fluorescence at sub-daily to seasonal scales', Remote Sensing of Environment, vol. 

219, pp. 247-58. 

Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., 

Hammerle, A., Julitta, T., Spielmann, F. & Yakir, D. 2018a, 'Sun-induced 

fluorescence and gross primary productivity during a heat wave', Scientific reports, 

vol. 8, no. 1, p. 14169. 

Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., 

Hammerle, A., Julitta, T., Spielmann, F.M. & Yakir, D. 2018b, 'Sun-induced 

fluorescence and gross primary productivity during a heat wave', Scientific 

Reports, vol. 8, no. 1, p. 14169. 

Wu, J., Kobayashi, H., Stark, S.C., Meng, R., Guan, K., Tran, N.N., Gao, S., Yang, W., 

Restrepo ‐ Coupe, N. & Miura, T. 2018, 'Biological processes dominate 

seasonality of remotely sensed canopy greenness in an Amazon evergreen forest', 

New Phytologist, vol. 217, no. 4, pp. 1507-20. 

Wu, X., Xiao, X., Zhang, Y., He, W., Wolf, S., Chen, J., He, M., Gough, C.M., Qin, Y. 

& Zhou, Y. 2018, 'Spatiotemporal Consistency of Four Gross Primary Production 

Products and Solar‐Induced Chlorophyll Fluorescence in Response to Climate 

Extremes Across CONUS in 2012', Journal of Geophysical Research: 

Biogeosciences, vol. 123, no. 10, pp. 3140-61. 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, 

O. & Reichstein, M. 2018, 'Basic and extensible post-processing of eddy 

covariance flux data with REddyProc', Biogeosciences Discussions. 

Yang, H., Yang, X., Zhang, Y., Heskel, M.A., Lu, X., Munger, J.W., Sun, S. & Tang, J. 

2017, 'Chlorophyll fluorescence tracks seasonal variations of photosynthesis from 

leaf to canopy in a temperate forest', Global change biology, vol. 23, no. 7, pp. 

2874-86. 



149 

Yang, K., Ryu, Y., Dechant, B., Berry, J.A., Hwang, Y., Jiang, C., Kang, M., Kim, J., 

Kimm, H. & Kornfeld, A. 2018, 'Sun-induced chlorophyll fluorescence is more 

strongly related to absorbed light than to photosynthesis at half-hourly resolution 

in a rice paddy', Remote Sensing of Environment, vol. 216, pp. 658-73. 

Yang, P. & Van Der Tol, C. 2018, 'Linking canopy scattering of far-red sun-induced 

chlorophyll fluorescence with reflectance', Remote sensing of environment, vol. 

209, pp. 456-67. 

Yang, X., Shi, H., Stovall, A., Guan, K., Miao, G., Zhang, Y., Zhang, Y., Xiao, X., Ryu, 

Y. & Lee, J.-E. 2018, 'FluoSpec 2—An Automated Field Spectroscopy System to 

Monitor Canopy Solar-Induced Fluorescence', Sensors, vol. 18, no. 7, p. 2063. 

Yang, X., Tang, J., Mustard, J.F., Lee, J.-E., Rossini, M., Joiner, J., Munger, J.W., 

Kornfeld, A. & Richardson, A.D. 2015a, 'Solar-induced chlorophyll fluorescence 

that correlates with canopy photosynthesis on diurnal and seasonal scales in a 

temperate deciduous forest', Geophysical Research Letters, vol. 42, no. 8, pp. 

2977-87. 

Yang, X., Tang, J., Mustard, J.F., Lee, J.E., Rossini, M., Joiner, J., Munger, J.W., 

Kornfeld, A. & Richardson, A.D. 2015b, 'Solar‐induced chlorophyll fluorescence 

that correlates with canopy photosynthesis on diurnal and seasonal scales in a 

temperate deciduous forest', Geophysical Research Letters, vol. 42, no. 8, pp. 

2977-87. 

Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.E., Walker, G., Reichle, R., Koster, 

R., Lyapustin, A. & Wang, Y. 2015, 'The 2010 Russian drought impact on satellite 

measurements of solar-induced chlorophyll fluorescence: Insights from modeling 

and comparisons with parameters derived from satellite reflectances', Remote 

Sensing of Environment, vol. 166, pp. 163-77. 

Yu, L., Wen, J., Chang, C., Frankenberg, C. & Sun, Y. 2019, 'High‐Resolution Global 

Contiguous SIF of OCO‐2', Geophysical Research Letters, vol. 46, no. 3, pp. 

1449-58. 

Zarco-Tejada, P.J., González-Dugo, V. & Berni, J.A.J. 2012, 'Fluorescence, temperature 

and narrow-band indices acquired from a UAV platform for water stress detection 

using a micro-hyperspectral imager and a thermal camera', Remote Sensing of 

Environment, vol. 117, pp. 322-37. 



150 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M. & Berry, J.A. 2019, 'A practical 

approach for estimating the escape ratio of near-infrared solar-induced 

chlorophyll fluorescence', Remote Sensing of Environment. 

Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., 

Voigt, M. & Köhler, P. 2014, 'Estimation of vegetation photosynthetic capacity 

from space ‐ based measurements of chlorophyll fluorescence for terrestrial 

biosphere models', Global Change Biology, vol. 20, no. 12, pp. 3727-42. 

Zhang, Y., Guanter, L., Berry, J.A., van der Tol, C., Yang, X., Tang, J. & Zhang, F. 2016, 

'Model-based analysis of the relationship between sun-induced chlorophyll 

fluorescence and gross primary production for remote sensing applications', 

Remote Sensing of Environment, vol. 187, pp. 145-55. 

Zhang, Y., Joiner, J., Alemohammad, S.H., Zhou, S. & Gentine, P. 2018, 'A global 

spatially contiguous solar-induced fluorescence (CSIF) dataset using neural 

networks', Biogeosciences, vol. 15, no. 19, pp. 5779-800. 

Zhang, Y., Joiner, J., Gentine, P. & Zhou, S. 2018, 'Reduced solar‐induced chlorophyll 

fluorescence from GOME‐2 during Amazon drought caused by dataset artifacts', 

Global change biology, vol. 24, no. 6, pp. 2229-30. 

Zhang, Y., Song, C., Band, L.E., Sun, G. & Li, J. 2017, 'Reanalysis of global terrestrial 

vegetation trends from MODIS products: Browning or greening?', Remote 

Sensing of Environment, vol. 191, pp. 145-55. 

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y. & Dong, J. 2017, 'A global 

moderate resolution dataset of gross primary production of vegetation for 2000–

2016', Scientific data, vol. 4, p. 170165. 

Zhang, Y., Xiao, X., Zhang, Y., Wolf, S., Zhou, S., Joiner, J., Guanter, L., Verma, M., 

Sun, Y. & Yang, X. 2018, 'On the relationship between sub-daily instantaneous 

and daily total gross primary production: Implications for interpreting satellite-

based SIF retrievals', Remote sensing of environment, vol. 205, pp. 276-89. 

Zhao, F., Dai, X., Verhoef, W., Guo, Y., van der Tol, C., Li, Y. & Huang, Y. 2016, 

'FluorWPS: a Monte Carlo ray-tracing model to compute sun-induced chlorophyll 

fluorescence of three-dimensional canopy', Remote sensing of environment, vol. 

187, pp. 385-99. 

Zhao, M., Running, S.W. & Nemani, R.R. 2006, 'Sensitivity of Moderate Resolution 

Imaging Spectroradiometer (MODIS) terrestrial primary production to the 



151 

accuracy of meteorological reanalyses', Journal of Geophysical Research: 

Biogeosciences, vol. 111, no. G1. 

 


	Title Page
	Certificate of original authorship
	Acknowledgements
	Publications
	Table of contents
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	Chapter 1. Introduction
	1.1. Research background
	1.1.1. Global carbon cycle under climate change
	1.1.1.1. Carbon cycle
	1.1.1.2. GPP in the global carbon budget

	1.1.2. Photosynthesis and Chlorophyll fluorescence
	1.1.2.1. Photosynthesis
	1.1.2.2. Chlorophyll fluorescence
	1.1.2.3. The link between photosynthesis activity and chlorophyll fluorescence
	1.1.2.4. Remote sensing of SIF
	1.1.2.5. Field measurements of SIF
	1.1.2.6. Modelling of SIF


	1.2. Objectives and research questions

	Chapter 2. Enabling the three-dimensional FLiES model to simulate seasonal scale sun-induced chlorophyll fluorescence
	Abstract
	2.1. Introduction
	2.2. Study area and Data
	2.2.1. Study area
	2.2.2. LiDAR data
	2.2.3. Landsat reflectance
	2.2.4. Eddy covariance GPP
	2.2.5. Measured Canopy SIF

	2.3. Methodology
	2.3.1. FLiES SIF module
	2.3.2. Machine learning
	2.3.3. Model simulations
	2.3.3.1. FLiES-SIF model
	2.3.3.2. DART model
	2.3.3.3. SCOPE model

	2.3.4. Statistical Analysis

	2.4. Results
	2.4.1. Retrieved biochemical parameters in two years
	2.4.2. Comparison of simulated SIF with field measured canopy SIF under different sunlit & cloudy light conditions
	2.4.3. The correlation between GPPEC and SIF in sunny or cloudy days

	2.5. Discussion
	2.5.1. Model sensitivity
	2.5.2. The relationship between GPP and scattered vs emitted SIF
	2.5.3. Uncertainties of seasonal SIF simulations

	2.6. Conclusions

	Chapter 3. Partitioning sun-induced chlorophyll fluorescence into overstory and understory layers by using a three-dimensional model
	Abstract
	3.1. Introduction
	3.2. Study area and Data
	3.2.1. Study area
	3.2.2. LiDAR data
	3.2.3. GOME-2 SIF
	3.2.4. Sentinel-2 reflectance
	3.2.5. MODIS EVI data
	3.2.6. Eddy covariance data

	3.3. Methodology
	3.3.1. FLiES SIF model
	3.3.1.1. Vegetation structure
	3.3.1.2. Model frame

	3.3.2. Machine learning
	3.3.3. Structure of model simulations

	3.4. Results
	3.4.1. Compare model simulated SIF, MODIS EVI, eddy covariance GPP and GOME2 SIF
	3.4.2. The relationship between GPPEC and overstory SIFFLiES, understory SIFFLiES
	3.4.3. Predicted overstory GPP and understory GPP

	3.5. Discussion
	3.5.1. Vegetation structure and PAR effect SIF on overstory and understory layer for different vegetation types.
	3.5.2. Uncertainties of SIF simulation in overstory and understory layers

	3.6. Conclusion

	Chapter 4. OCO-2 sun-induced chlorophyll fluorescence normalised by a three dimensional radiative transfer model is better correlated with vegetation productivity
	Abstract
	4.1. Introduction
	4.2. Study area and Data
	4.2.1. Study area
	4.2.2. OCO-2 SIF
	4.2.3. MODIS data
	4.2.4. LiDAR data
	4.2.5. Eddy covariance data

	4.3. Methodology
	4.3.1. Definitions of OCO-2 observation directions
	4.3.2. FLiES model
	4.3.3. Normalised APAR and SIF yield
	4.3.4. Structure of model simulations
	4.3.5. Relative importance method

	4.4. Results
	4.4.1. OCO-2 SIF observations in multi-angles
	4.4.2. The relationship between GPP and OCO-2 SIF over nadir, hot spot and dark spot observations
	4.4.3. The correlation between normalised APAR and SIF for nadir, hot spot, and dark spot directions
	4.4.4. The correlation between LUE and normalised SIF yield for the nadir, hot spot and dark spot viewing directions

	4.5. Discussion
	4.5.1. View zenith angle effects on the SIF variations
	4.5.2. Normalised SIF of OCO-2 data
	4.5.3. Relationship between environmental factors and SIF observations in different view observations
	4.5.4. Applications of remotely sensed SIF observations

	4.6. Conclusion

	Chapter 5. Sun-induced chlorophyll fluorescence is influenced by the understory reflectance based on two scenarios
	Abstract
	5.1. Introduction
	5.2. Definition for two scenarios
	5.2.1. Scenario I
	5.2.2. Scenario II

	5.3. Theoretical basis
	5.3.1. Incident radiation on canopy and understory
	5.3.2. Formula description for the scenario I
	5.3.3. Formula description for Scenario II

	5.4. FLiES SIF simulation method
	5.4.1. FLIES SIF model and ray-tracing frame
	5.4.2. Database generation

	5.5. Results
	5.5.1. The variation of SIF with Cab, dleaf, 𝝆-𝒖. and FVC
	5.5.2. Environmental factors effects on red and far-red SIF for scenarios I and II
	5.5.2.1. Understory reflectance effects on red and far-red SIF
	5.5.2.2. Fraction of vegetation cover effects on red and far-red SIF
	5.5.2.3. Leaf density effects on red and far-red SIF
	5.5.2.4. Leaf chlorophyll total content effects red and far-red SIF

	5.5.3. Canopy layer’s properties affect SIF at the scenario I and II
	5.5.3.1. Leaf density effects on red and far-red SIF
	5.5.3.2. Cab effects on red and far-red SIF

	5.5.4. Regression model for SIF and vegetation structures

	5.6. Discussion
	5.6.1. Scattering SIF and soil SIF
	5.6.2. Soil effects in savanna
	5.6.3. Understory reflection effects in mature forest
	5.6.4. Applications for remote sensing

	5.7. Conclusion

	Chapter 6. Conclusions
	6.1. Summary of key methodology and conclusions
	6.1.1. The development and validation of the new three-dimensional SIF model
	6.1.2. Partition SIF signal to tree and grass layers
	6.1.3. Normalized OCO-2 SIF by 3D SIF model
	6.1.4. SIF signal affected by understory layer

	6.2. Research limitations and future research directions
	6.3. Conclusions

	Chapter 7. Bibliography



