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Abstract

This research utilizes information theory to study the regulatory roles of

non-coding RNAs in human cancers. microRNAs (miRNA) are small non-

coding RNAs binding to mRNAs to suppress protein expression. Long non-

coding RNAs (lncRNA) can act as competing endogenous RNAs (ceRNAs)

to compete with mRNAs to bind to miRNAs. LncRNAs, miRNAs, and

mRNAs form the ceRNA networks, which play a vital role in regulating

molecular pathways of human cancers. Furthermore, miRNA isoforms, which

are called isomiRs, are also enable to regulate the gene expression and could

be used to distinguish cancer subtypes. Therefore, constructing ceRNA

regulatory networks and identifying isomiRs as cancer subtype biomarkers

are very important for understanding the regulatory role of non-coding RNAs

in cancers.

Current methods for constructing ceRNA networks and discovering

biomarkers that faithfully classify different cancer subtypes have some

limitations. Information theory is a powerful tool for better understanding

the regulatory role of non-coding RNAs in human cancer. This thesis

utilizes information theory for constructing ceRNA network and discovering

human cancer subtype biomarkers in cancers. The novel contributions to the

research field by this thesis are enlisted below:

• A competition rule-based pointwise mutual information is proposed to

construct ceRNA networks.

• An improved mutual information and an information gain are developed

to identify isomiRs as biomarkers for classifying different cancer

xix



Abstract

subtypes.

• A distribution-based method is proposed to flitter out the noisy data

in RNA-seq data.

Three case studies have been performed to study the regulatory roles of

non-coding RNAs in human cancers. (1) The first case study is to construct

the competition relationships between lncRNA, miRNA, and mRNA in

breast cancer by using pointwise mutual information. (2) The second case

study is to utilize the improved mutual information to discover isomiR

biomarkers for classifying different breast cancer subtypes. (3) The third

case study applies the improved information gain to detect isomiR based

biomarkers to classify different glioma subtypes.
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