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Abstract

This research utilizes information theory to study the regulatory roles of

non-coding RNAs in human cancers. microRNAs (miRNA) are small non-

coding RNAs binding to mRNAs to suppress protein expression. Long non-

coding RNAs (lncRNA) can act as competing endogenous RNAs (ceRNAs)

to compete with mRNAs to bind to miRNAs. LncRNAs, miRNAs, and

mRNAs form the ceRNA networks, which play a vital role in regulating

molecular pathways of human cancers. Furthermore, miRNA isoforms, which

are called isomiRs, are also enable to regulate the gene expression and could

be used to distinguish cancer subtypes. Therefore, constructing ceRNA

regulatory networks and identifying isomiRs as cancer subtype biomarkers

are very important for understanding the regulatory role of non-coding RNAs

in cancers.

Current methods for constructing ceRNA networks and discovering

biomarkers that faithfully classify different cancer subtypes have some

limitations. Information theory is a powerful tool for better understanding

the regulatory role of non-coding RNAs in human cancer. This thesis

utilizes information theory for constructing ceRNA network and discovering

human cancer subtype biomarkers in cancers. The novel contributions to the

research field by this thesis are enlisted below:

• A competition rule-based pointwise mutual information is proposed to

construct ceRNA networks.

• An improved mutual information and an information gain are developed

to identify isomiRs as biomarkers for classifying different cancer

xix



Abstract

subtypes.

• A distribution-based method is proposed to flitter out the noisy data

in RNA-seq data.

Three case studies have been performed to study the regulatory roles of

non-coding RNAs in human cancers. (1) The first case study is to construct

the competition relationships between lncRNA, miRNA, and mRNA in

breast cancer by using pointwise mutual information. (2) The second case

study is to utilize the improved mutual information to discover isomiR

biomarkers for classifying different breast cancer subtypes. (3) The third

case study applies the improved information gain to detect isomiR based

biomarkers to classify different glioma subtypes.

xx



Chapter 1

Introduction

1.1 Background

In this thesis, we manly focus on utilizing information theory to construct the

RNA regulatory network and discover biomarkers for better understanding

of the biological process of human cancers. This section briefly introduces

three critical measures of information theory in biological research, relatived

studies of RNA regulatory mechanism in human cancers, and the background

of RNA-sequencing data.

1.1.1 Information theory and its application in

biological research

Information theory was developed for studying the quantification, storage

and transmission of information (Vinga 2013). There are three key measures

in information theory. The first measure is entropy. Entropy measures the

probability of the outcome of a random process. The smaller the entropy, the

more likely the outcome of the random process. Therefore, the entropy could

be applied to measure the important of the outcome in a random process.

The second is mutual information. The mutual information measures the

mutual dependence relationship between two variables. In reality, a variable

1



Chapter 1. Introduction

always has many events. Some researches studied the association relationship

between two events in two variables. Thus, the third key measure of

information theory, which is called pointwise mutual information, could

be applied to find out the relationship between two events. The mutual

information is constructed by the pointwise mutual information. The mutual

information refers to the expected value of all events, while pointwise mutual

information refers to single events.

Information theory had been widely used in many biological researches.

For example, predicting the correlation between DNA mutations and

disease (Milenkovic, Alterovitz, Battail, Coleman, Hagenauer, Meyn,

Price, Ramoni, Shmulevich & Szpankowski 2010), analyse biology

evolution (Danchin, Charmantier, Champagne, Mesoudi, Pujol &

Blanchet 2011), and discovering the co-regulatory networks in biological

process (Mousavian, Kavousi & Masoudi-Nejad 2016). Constructing the

regulatory network and identifying biomarkers help us to understand the

regulatory mechanism of molecules in cancer. Information theory could be

applied to construct the regulatory network and identify biomarkers.

Constructing regulatory network is regarded as discovering the

relationship between molecules. The pointwise mutual information and

mutual information could be applied to measure the relationship between

different kinds of molecules. Thus, the regulatory networks enable to be

constructed by using pointwise mutual information or mutual information.

The biomarker is the molecule which state or change state indicates biological

processes. Identifying the biomarker can be viewed as selecting the most

critical molecules that are involved in the regulation of gene expressions in

cancers or discovering the relationship between molecules and different cancer

subtypes. The entropy measures the probability of molecule as biomarkers to

regulate the pathway of cancer and the mutual information could discover the

relationship between molecules and cancer subtypes. So, the biomarker can

be discovered by using the entropy and mutual information. The three key

measures in information theory can be applied to construct the regulatory

2



Chapter 1. Introduction

network and discover the biomarker. Therefore, information theory is a

powerful tool for understanding the role of molecules in human cancers.

1.1.2 The regulatory mechanisms of long noncoding

RNA, microRNA (isomiR), and mRNA in

cancers

The RNA can be divided into coding RNA, such as messenger RNA (mRNA)

and non-coding RNA, e.g., long non-coding RNA (lncRNA). However, the

coding RNA can translate into protein and non-coding RNA cannot. The

protein translated by mRNA is the basis of living tissues and some of

them participate in the development of cancer (Lodish, Berk, Zipursky,

Matsudaira, Baltimore & Darnell 2000). The mRNA contains five regions:

5′ cap, 5′ untranslated region, coding sequence, 3′ untranslated region (3′-

UTR), and the poly(A) tail. The over-expressed mRNA could produce

large amount of protein and then enhancing or inhabiting the development

of cancers. For example, the over-expressed mRNA PTBP3 promotes the

growth and metastasis of breast cancer cell (Hou, Li, Chen, Chen, Liu,

Li, Bai & Zheng 2018); the highly expressed mRNA FOXA2 inhibits the

proliferation, invasion, and tumorigenesis in glioma cell (Ding, Liang, Gao,

Li, Xu, Fan & Chang 2017). Therefore, it critical to know the expression of

mRNA for understanding the regulatory mechanism of mRNA in cancer.

Although mRNA is very important for the regulation mechanism of

cancer, the mRNA expression is regulated by non-coding RNA. It implies

that the non-coding RNA could regulate the gene expression in cancer.

Therefore, the non-coding RNA plays an important role in cancer. The

non-coding RNA is divided into two main groups: small non-coding RNA

and long non-coding RNA.

There are many different types of small non-coding RNAs have been

discovered, such as MicroRNA (miRNA), Piwi-associated RNAs (piRNAs),

small nucleolar RNA (snoRNA), tRNA-derived small RNA (tsRNA), and
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small interfering RNA (siRNA). In this thesis, we focus on the miRNA and

its isoforms called isomiR. TMiRNAs are short (21-22nt long) regulatory

RNAs. The miRNA could bind to the 3′-UTR of mRNA and therefore,

suppress the protein expression. MiRNAs recognise their targets by binding

to complementary sites between the seed region of the miRNA, which

spans from the 2nd to 7th nucleotides from the miRNA 5′-end and the

target mRNA (Kehl, Backes, Kern, Fehlmann, Ludwig, Meese, Lenhof &

Keller 2017). The seed region of a miRNA is a key determinant of its

targeting specificity, one nucleotide changed in the seed region could alter

its target mRNA.

Mature miRNAs are generated from longer transcripts via several

sequential processing steps (Li, Liao, Ho, Tsai, Lai & Lin 2012).

First the primary miRNA transcripts (pri-miRNA) are cleaved by the

Microprocessor complex that contains Drosha, an RNase III enzyme in the

nucleus (Maher, Timmermans, Stein & Ware 2004). After transporting

the cleaved precursor miRNAs (pre-miRNA) to the cytoplasm miRNAs

are further processed by another RNase III enzyme, Dicer, to produce

small miRNA duplexes (Hutvágner, McLachlan, Pasquinelli, Bálint, Tuschl

& Zamore 2001). Alterations in miRNA maturation, such as the

alternative and imprecise cleavage of Drosha and Dicer, or the turnover

of miRNAs could result in miRNAs that are heterogeneous in length

and/or sequence (Swierniak, Wojcicka, Czetwertynska, Stachlewska, Maciag,

Wiechno, Gornicka, Bogdanska, Koperski, de la Chapelle et al. 2013, Neilsen,

Goodall & Bracken 2012). These variants are called isomiRs (isoforms of

miRNA) and can be divided into three main categories: 3′ isomiR (trimmed

or addition of one or more nucleotides at the 3′ position), 5′ isomiR (trimmed

or addition of one or more nucleotides at the 5′ position), and polymorphic

isomiR (some nucleotides within the sequence are different from the wild

type mature miRNA sequence) (Neilsen et al. 2012).

Different variant types of isomiRs could have different function from

their wild type counterparts. The 3′ isomiR could contribute to changes
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in complementarity between miRNAs and their targets and therefore,

weakening or strengthening their regulatory power. The 5′ isomiRs could

recognise novel target genes since the seed region of the 5′ isomiR is

different from the wild type miRNA. The potential changes in the function

of polymorphic isomiR is defined by the position of the substitute nucleotide.

If the substitute nucleotide is occurred at the seed region, the isomiR could

regulate a novel set of transcripts.

Both the miRNA or isomiR could regulate the gene expression, the

miRNA (isomiR) and mRNA construct a miRNA(isomiR)-mRNA interaction

network. This interaction network reflects the regulatory mechanism of

miRNA (isomiR) and mRNA. It is critical to construct this interaction

network to understand the regulatory mechanism of cancer. For instance,

Li and colleagues analysis the miRNA-mRNA interaction network in breast

cancer and they found the key RNAs in regulating the pathway of breast

cancer with brain metastasis (Li, Peng, Gu, Zheng, Feng, Qin & He 2017).

This finding provides a novel strategy for the treatment of breast cancer with

brain metastasis. However, this interaction network cannot fully explain the

regulatory mechanism of RNAs in cancer. This is because the long non-

coding RNA also plays a vital role in regulating their interaction.

The lncRNA is defined as the non-coding RNA longer than 200

nucleotides. It was first identified in 2002 (Consortium, Team et al. 2002).

Since lacking of functional annotation, lncRNA had been overlooked for

a long time (Wei, Luo, Zou & Wu 2018). In 2005, researcher found

that lncRNA could demarcate chromosomal domains of gene silencing and

influence the gene expression in development and disease states (Rinn,

Kertesz, Wang, Squazzo, Xu, Brugmann, Goodnough, Helms, Farnham,

Segal et al. 2007). Later, researchers also found that lncRNA regulates a

range of biological processes, such as cancer development, gene imprinting,

and modulate the enzymatic activity (Gibb, Brown & Lam 2011, Quinn &

Chang 2016, Marchese, Raimondi & Huarte 2017). These findings indicate

that lncRNAs play important in regulating biological processes.
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Recently studies show that lncRNAs could be competing endogenous

RNAs to compete with mRNAs for binding to the same miRNAs (Salmena,

Poliseno, Tay, Kats & Pandolfi 2011). For instance, BRAFP1 can

compete with gene BRAF for binding to the same miRNA hsa-miR-543 in

lymphoma (Song, Liu, Liu & Li 2015). PTENP1 can compete with gene

PTEN for binding to the same miRNA hsa-miR-17-5p in hepatocellular

carcinoma (Karreth, Reschke, Ruocco, Ng, Chapuy, Léopold, Sjoberg,

Keane, Verma, Ala et al. 2015). An lncRNA can bind to many miRNAs and

a miRNA is able to regulate multiple mRNAs. Therefore, these lncRNAs,

miRNAs, and mRNAs construct a large and complex regulatory network that

is called competition endogenous RNA networks. These ceRNA networks

not only provide a reasonable justification for the presence of lncRNA, it also

provides a new and global function map of lncRNA (Yang, Wu, Gao, Liu, Jin,

Wang, Wang & Li 2016). Understanding this complex regulatory network is

useful for detecting patterns for early cancer diagnosis (Sanchez-Mejias &

Tay 2015) and developing new concepts for cancer treatment (Ebert, Neilson

& Sharp 2007).

There are three common characteristics in the ceRNA network (Quinn

& Chang 2016). First, the relative concentration of the ceRNAs. Second,

the ceRNA is the primary target of the miRNA. Third, the relationships

between the lncRNA, miRNA, and mRNA is the competition relationship.

The competition relationship states that when the expression level of the

ceRNA is very high, the ceRNA can compete for binding to the miRNA

and decrease the expression level of the miRNA. Since miRNA has a low

expression level, less number of miRNAs bind to its target mRNA. Therefore,

the expression level of the mRNA becomes high. In contrast, when the

expression level of the ceRNA is very low, the expression level of the miRNA

will be high; a high expression level of miRNA leads to a low expression level

of mRNA.

Although miRNA-mRNA interaction network and ceRNA network reflect

the regulatory mechanism of the biological process, they have two different
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aspects. The first is that the miRNA-mRNA interaction network is the

regulatory relationship between two different types of RNAs. While the

ceRNA network is the regulatory relationship between three different types

of RNAs. The second is that the expression relationship between RNAs

are different. The expression relationship in miRNA-mRNA interaction

network is always negative correlation. However, in the ceRNA network, the

expression relationship between lncRNA and mRNA is positive correlation

and the expression relationship between miRNA and mRNA (or lncRNA) is

negative correlation.

The coding RNA and non-coding RNA not only regulate the molecular

pathway of cancer, they can be biomarkers for indicating different cancer

subtypes as well. Cancer is a heterogeneous disease and could be divided into

different subtypes (Kuijjer, Paulson, Salzman, Ding & Quackenbush 2018).

The cancer subtype provides useful insight into disease pathogenesis and

cancer treatment (Guo, Shang & Li 2019). The mRNA could be cancer

subtype biomarker that indicates different cancer subtypes. This is because

mRNA can direct regulate the biological pathway that related to cancer

subtype. For example, Parker and colleagues defined the 50 genes that

classified different breast cancer subtypes (Parker, Mullins, Cheang, Leung,

Voduc, Vickery, Davies, Fauron, He, Hu et al. 2009). However, miRNAs and

isomiRs provide a potentially better alternative biomarker for classifying

cancer subtypes compared to mRNA since they are regulatory “hubs” of

gene expression. Therefore, the changes in their expression could influence

multiple downstream mRNAs and therefore diverse biological pathways.

Many groups have found that miRNA or isomiR is a suitable biomarker

for classifying different cancer subtypes (Chen & Wong 2017, Volinia &

Croce 2013). For example, Telonis and colleagues demonstrated that isomiRs

were able to classify two breast cancer subtypes (Telonis, Loher, Jing,

Londin & Rigoutsos 2015). Telonis and colleagues stated that isomiRs could

be biomarkers for classifying 32 different cancers (Telonis, Magee, Loher,

Chervoneva, Londin & Rigoutsos 2017).
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1.1.3 The introduction of RNA-sequencing data

Constructing the RNA regulatory network requires to understand the

relationship between RNAs. The relationship between RNA is detected

from the expression level of RNAs in biological tissues. The discovery

of biomarkers also requires to quanntitative expression level of RNAs in

biological tissues. Therefore, quantifying the expression level of RNAs

in biological tissues is the foundation for understanding the regulatory

mechanism of RNAs in cancers. RNA-sequencing (RNA-seq) uses the next-

generation sequencing technology to provide RNA abundance and diversity

of a biological tissue (Griffith, Walker, Spies, Ainscough & Griffith 2015).

In general, the RNA-seq method consists of two main steps. The first

step is that RNA isolation from the biological tissue. The second step is

that RNA library preparation. In this process the cellular RNAs (mRNA,

lncRNA, small RNAs) are enriched and transformed into cDNA a stable

form of nucleic acid that allows the amplification of each RNA molecule

using PCR (polymerase chain reaction).

Most of the sequencing technologies used to sequence RNAs generate vast

amount of sequence fragment, which is called read, and the sequencing quality

score of the read. The read and its quality score are written in a ‘fastq’ file.

This ‘fastq’ file is called RNA-seq data. Reads stored this file is used to help

to construct the genome of a species (Chang, Li, Liu, Zhang, Ashby, Liu,

Cramer & Huang 2015), identify the biomarker of the disease (Sahraeian,

Mohiyuddin, Sebra, Tilgner, Afshar, Au, Asadi, Gerstein, Wong, Snyder

et al. 2017), discover variant RNAs (Richter, Hoffman, Manheimer, Patel,

Sharp, McKean, Morton, DePalma, Gorham, Kitaygorodksy et al. 2019),

detect gene fusion (Maher, Kumar-Sinha, Cao, Kalyana-Sundaram, Han,

Jing, Sam, Barrette, Palanisamy & Chinnaiyan 2009), and calculate the

expression level of RNAs. In this thesis, we focus on using RNA-seq data

to discover the biomarker and construct the regulatory network in cancers.

Therefore, we use this file to calculate the expression level of RNAs in

biological tissues.
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Calculating the expression level of RNA has four steps: (1) quality

control. The RNA-seq file has many low quality reads, such as there are

many nucleotides cannot be detected in a read. This low quality read is

caused by the sequencing technology. Although the sequencing machine has

very low error sequence ratio (the error sequencing error ratio of the second

general sequencing machine is about 1%), the number of RNA detected from

biological tissue is extremely huge and therefore, the RNA-seq files contains

many low quality reads. Further, every RNA must induce adapters before

sequencing. Therefore, some reads may have adapters in the RNA-seq data.

The low quality read and adapter have negative influence on the downstream

analysis. Thus, the low quality read and adapters must be removed. (2)

Construct a genome reference database. The RNA-seq file contains large

amount of read. However, the data is messy and we cannot identify the read

is originated from the genome. The genome reference database provides a

template for annotating the read. (3) Mapping the read to the reference

genome database. (4) Selecting a suitable metric to calculate the expression

level of the RNAs.

There are three main different metrics measuring the expression level

of RNA: FPKM (Fragments per kilo base per million mapped reads),

RPKM (Reads per Kilo base Million mapped reads), and RPM (Reads per

million mapped reads). All these metrics use the number of read mapped

to reference RNA and the total read of the RNA-seq file to calculate the

expression level of RNA. However, FPKM and RPKM take the length of the

RNA into consideration while RPM does not. The FPKM and RPKM are

suitable for measuring expression level of long RNA, such as lncRNA and

mRNA. The expression level of short RNA is measured by using RPM. The

long RNA had been fragmented before sequencing. The longer the RNA, the

more read this RNA had been fragmented. The length of the RNA influences

the number of read mapped to the reference RNA and therefore, affecting its

expression level. However, the short RNA, such as miRNA, is not fragmented

before sequencing. Thus, the length of RNA cannot influence the number of
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read mapped to the reference. Thus, the length of short RNA cannot affect

its expression level.

The RNA-seq data could be download from many websites, for instance,

TCGA (The Cancer Genome Atlas) website (https://portal.gdc.cancer.

gov/), NCBI(The National Center for Biotechnology Information) website

(https://www.ncbi.nlm.nih.gov/), and EMBL-EBI (The European

Bioinformatics Institute) website (https://www.ebi.ac.uk/). The TCGA

website provides large amount of RNA-seq data on human cancer tissues

and a few RNA-seq data on human normal tissues. This RNA-seq data is

always used to analyse the regulatory mechanism of RNAs in cancers. NCBI

website and EMBL-EBI website offer the RNA-seq data for various tissues

of multiple species.

1.2 Research aims and objectives

This thesis discusses two research topics: (1) understanding the regulatory

relationship between RNAs in cancers and (2) identifying biomarkers for

classifying different cancer subtypes in variety of cancers. We believe that

application of the information technologies improves the understanding the

regulatory role of non-coding RNAs in cancers and provide novel biomarkers

for cancer subtypes.

Aim 1: The ceRNA network reflects the regulation relationship between

lncRNA, miRNA, and mRNA. In information theory, the pointwise mutual

information is used to analyse the relationship between variables, therefore

we apply and improve this method to construct ceRNA networks in breast

cancer.

Objectives:

• Calculating the expression level of lncRNA, miRNA, and mRNA from

RNA-seq data of breast cancer tissue and normal tissue.

• Identifying lncRNA, miRNA, and mRNA that differentially expressed

between breast cancer tissue and normal tissue. Using these cancer
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related lncRNA, miRNA, and mRNA to construct the candidate

ceRNA network.

• Utilizing improved the pointwise information to measure the

competition relationship of the candidate ceRNA network. The

candidate ceRNA network which has the high pointwise mutual

information is the final ceRNA network.

• Applying the KEGG pathway to analyse the function of the ceRNA

network in breast cancer.

Aim 2: The presence of isomiR in RNA sequencing data increases the

information content of small RNA sequencing while providing a hidden

and largely unresearched layer of regulation of gene expression. We

reveal the biomarker potential of isomiRs using mutual information and

information gain to distinct and characterise breast cancer and glioma

subtypes, respectively. These two approaches also provide mechanistic

insight about the mechanism of both cancers.

Objectives:

• Quantifying the expression level of isomiR from RNA-seq data.

• Using a null hypotheses method to remove the lowly expressed isomiR.

• Utilizing the mutual information and information gain to discover the

biomarker for classifying breast cancer subtypes and glioma subtypes,

respectively.

• Applying the KEGG pathway and wet-lab experiment to analysis the

regulatory mechanism of biomarker in breast cancer subtypes and

glioma subtypes.

1.3 Research contribution

We develop novel methods to construct ceRNA network in breast cancer and

identify biomarkers for classifying breast cancer and glioma subtypes. Our
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contributions are showed below:

• Developed new method for discovering the competition

relationship between lncRNAs, miRNAs, and mRNAs.

Chapter 3 presents a novel method for constructing the competition

relationship between RNAs. The contributions of this research have

four aspects: (1) using the competition regulatory mechanism to

construct candidate ceRNA network. The competition regulatory

mechanism is that if the lncRNA highly expressed (or down-regulated)

in breast cancer, the miRNA down-regulated (or up-regulated) breast

cancer, and mRNA up-regulated (or down-regulated) breast cancer.

This competition rule obeys the regulatory mechanism of ceRNA

network. (2) The competition relationship is a complex relationship:

the relationship between lncRNA and mRNA is positive correlation and

the relationship between mRNA and miRNA is negative correlation.

Therefore, calculating the competition score of candidate ceRNA

networks should consider this competition relationship. We combine

the competition rule and the pointwise mutual information to calculate

the competition score. The competition rule is that when the expression

level of lncRNA is high (low), the expression level of miRNA is low

(high) and the expression level of mRNA is high (low). Therefore,

our method provides a suitable metric for measuring the competition

relationship between RNAs. (3) The null hypothesis is applied to select

the ceRNA network that has high competition score. (4) We construct

the ceRNA network reveals the regulatory mechanism of RNA in the

growth, development, and metastasis of breast cancer. Further, some

ceRNA networks have the same lncRNA as ceRNA to compete with

mRNA for binding to miRNA. This lncRNA could be an effective drug

target for breast cancer treatment.

• Proposed an improved mutual information to identify

biomarker for classifying different breast cancer subtypes.
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Chapter 4 presents an improved mutual information method to identify

biomarker of different cancer subtypes. The contributions in this

research are that (1) this method extends the ability of mutual

information for discovering important features in the dataset that the

feature is continue data and label data is discrete data. Further, this

method could classify multiple classes for discovering the feature. (2)

The mRNA is the tradition biomarker for classifying different breast

cancer subtypes. Our method finds out fewer isomiRs are required to

classify different breast cancer subtypes compare with to the number

of mRNA. The isomiR is more effective than mRNA for classifying

different breast cancer subtypes.

• A novel method is developed for discovering glioma subtype

biomarker.

Chapter 5 proposes a new method for identifying isomiR for classifying

different glioma subtypes. The information gain could be used to

identify the isomiR that could be biomarker for classifying different

cancer subtype. However, calculating the information gain requires

suitable cut points for binning the data. In this research, we propose a

distribution-based method to find out cut points for binning data.

• Using a null hypothesis method to filter out the noisy data in

RNA-seq data.

There is a common problem in Chapter 4 and 5: how to filter out

the lowly expressed isomiR. The lowly expressed isomiR has limited

influence the biological process of cancer and negative influence on

the result. The lowly expressed isomiR is defined as the relative low

expressed isomiR compare with other isomiR. So the lowly expressed

isomiR is affected by the expression level of the entire isomiR. We apply

a null hypothesis method to calculate a threshold for identifying the

lowly expressed isomiR. This method is based on the total expression

levels of the entire isomiR. Therefore, it provides a soft threshold to

13



Chapter 1. Introduction

remove the lowly expressed RNAs in different depth of sequencing.

1.4 Thesis Structure

This thesis is structured as fellow: Chapter 1 introduces the application of

information theory in bioinformatics and the function of RNAs in cancer.

It also describes the aims and contributions of our research. Chapter 2

presents the current methods for constructing RNA network and discovering

biomarkers. Further, the bioinformatics tools and computational methods

are illustrated in this Chapter. Chapter 3 proposes a novel method,

which is based on competition rule and pointwise information method, for

constructing the ceRNA network in breast cancer by using paired RNA-

seq data. Chapter 4 displays an improved mutual information method to

identify the isomiR biomarker that could classify different breast cancer

subtype. Further, a ‘soft’ method, which is based on null hypothesis method,

is developed for removing the noisy data. Chapter 5 designs a distribution-

based method for finding out the cut point for binning data. Then applying

the information gain to find out the isomiR that regulates glioma subtypes.

Chapter 6 summaries the research and suggests the future.
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Chapter 2

Literature Review and

Background

This Chapter introduces the methods for constructing the RNA regulatory

network in cancers and identifying the biomarkers for classifying different

cancer subtypes. Section 2.1 presents the technologies of predicting miRNA

targets. Predicting miRNA target is the foundation of constructing RNA

regulatory network. Further, these technologies could be used to discovering

the function of isomiR in regulating biological processes. Section 2.2

shows the main algorithms for constructing the RNA regulatory network.

Section 2.3 describes the popular methods for discovering biomarker and their

weaknesses and advantages. Section 2.4 displays the tools of discovering the

function of the RNA regulatory network and biomarkers. The tool is used to

annotate or validate the function RNA regulatory network and biomarkers

in cancer.

2.1 Technologies for miRNA (isomiR) target

Prediction

In the ceRNA network, the lncRNA to competes with mRNA for binding

to miRNA. Thus, the miRNA could bind to both lncRNA and mRNA.
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Further, the 5′ isomiR could regulate novel gene compare with its wild

type miRNA to influence the biological processes. Therefore, identifying

the target of miRNA is very important to construct the ceRNA network and

understand the function of isomiR. There are large amount of technologies

for predicting miRNA target have been developed and they can be classified

as two categories: traditional method and high-throughput based method.

2.1.1 Traditional methods for predicting miRNA

target mRNA

The traditional method predicts the miRNA target through the feature of

sequence. There are two main features used in traditional methods: the free

energy of target site and the perfect pairing of miRNA seed region to mRNA

target (Liu & Wang 2019).

The free energy of the target site measures the stability of miRNA binds to

mRNA. The lower free energy of the target site, the more stable the miRNA

binds to mRNA. The AU content is defined as the ratio of the adenosine or

uridine base in the target site and could influence the free energy of target

site. The AU-rich region is more likely to be single stranded and relative

to structural accessibility (Liu, Mallick, Long, Rennie, Wolenc, Carmack &

Ding 2013). Therefore, the higher the AU content at the target site, the

more stable for miRNA binds to mRNA. The perfect pairing of miRNA seed

region to mRNA target have significance influence on the miRNA binds to

mRNA. It had been found that the miRNA was likely to bind to mRNA

which the seed region of miRNA was complementary to the mRNA sequence

even although the other position of miRNA could not complementary to the

mRNA sequence (Ellwanger, Büttner, Mewes & Stümpflen 2011). Therefore,

the seed region is very important for predict the miRNA target. Most of the

methods apply these two features for identifying the miRNA target. However,

different methods use different strategies.

The miRanda algorithm applies the sequence alignment method to predict

miRNA targets. This sequence alignment utilizes the dynamic programming
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to search for maximal local target site of miRNA sequence and mRNA

sequence (John, Enright, Aravin, Tuschl, Sander, Marks et al. 2004). Then

calculating the complementarity score of the target site. There are some

rules in calculating the complementarity score. For example, no mismatch

at positions 2 to 4 and the complementarity score at first eleven positions

have high weight. All these rules ensure that the seed region of miRNA

could perfect complementarity to mRNA. Further, this method calculates

the free energy of the target site. The candidate target site should have high

complementarity score and low free energy.

Tragetscan is one of the popular method for predicting miRNA

target (Lewis, Burge & Bartel 2005). This algorithm applies the sequence

alignment to predict miRNA target. This algorithm focus on finding the

binding site that complementarity to the miRNA seed region and has low

folding free energy.

The traditional method for predicting miRNA target has a limitation: the

features for predicting miRNA target is not validated. It means that some

features used in the traditional method may have limit influence on predicting

miRNA target and therefore, the accuracy rate of traditional method is very

low.

2.1.2 High-throughput based methods for predicting

miRNA target mRNA

With the development of the technology, the high-throughput data,

such as CILP (Cross-linking immunoprecipitation) data and PAR-

CLIP (photoactivatable ribonucleoside-enhanced crosslinking and

immunoprecipitation) data, are used to select the critical features that

have significance effect on predicting miRNA target. These critical features

are very useful for enhancing the accuracy rate of miRNA target prediction.

Therefore, many methods which based on the high-throughput data are

developed to predict miRNA target mRNA.

The latest version of Tragetscan algorithm applies the CLIP data to select
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the feature that have significance in predicting miRNA target (Agarwal, Bell,

Nam & Bartel 2015). This method selects 26 candidate features that include

the feature of miRNA, feature of the site, and features of the mRNA. Not

all these features have significance influence on predicting miRNA target.

After analysing the CLIP data, 14 features are identified as the most critical

features in predicting miRNA target. Finally, the context++ model is

applied to calculate the score of miRNA binds to mRNA. The higher score,

the miRNA is more likely to bind to the mRNA.

miRDB is a novel method that applies the CLIP data to find out the most

important features for predicting miRNA target (Liu & Wang 2019). These

important features include the base-pairing of the miRNA seed region, GC

content, AU content and so on. Then the support vector machine (SVM)

is applied to train the data. The output of the model is MirTarget score

that is used to measure the significance of the miRNA binds to mRNA. The

higher the MirTarget score the miRNA is more likely to bind to the mRNA.

According to the results, the performance of this method is better than other

methods.

2.1.3 Methods for predicting miRNA target lncRNA

Many methods have been developed to predict miRNA target mRNA.

However, a few methods are developed for predicting miRNA target lncRNA.

This is because people study the miRNA target mRNA prediction for a long

time, while the study of predicting miRNA target lncRNA is still at the early

stage. Further, many methods for predicting the miRNA target mRNA also

could be applied for predicting the miRNA target lncRNA.

The DIANA-LncBase v1 database is the first extensive database

that predicted the miRNA target lncRNA (Paraskevopoulou, Georgakilas,

Kostoulas, Reczko, Maragkakis, Dalamagas & Hatzigeorgiou 2012). The

database predicted the miRNA target lncRNA by using the DIANA-microT-

CDS algorithm (Reczko, Maragkakis, Alexiou, Grosse & Hatzigeorgiou 2012).

This algorithm is first used to predicted the miRNA target mRNA. However,
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it also could be applied to predict miRNA target lncRNA. This algorithm

combines protein coding sequence features, such as protein coding sequences

conservation and Flanking AU content, and 3′-UTR features, for instance

3′-UTR conservation and accessibility of binding site, to predict the miRNA

target. All these features are extraction by analysis the PAR-CLIP data.

The miRcode is a software that predicts the miRNA target

lncRNA (Jeggari, Marks & Larsson 2012). This software predicts the

miRNA target lncRNA based on seed complementarity and evolutionary

conservation. Using the sequencing alignment method to find out the

sequence region that the lncRNA sequence is complementary to seed region

of miRNA. Then using the multiple alignment to discover the conservation of

sequence region. The high conservation of the sequence region is the binding

site.

These target prediction methods not only provide a strategy for

annotation the function of 5′ isomiR, but also offer the foundation of

constructing novel ceRNA network. However, all the methods for predicting

miRNA target have high false positive rate, even though many methods

contain large amount of features or some technologies to minimize the biased.

Further, there is not a good strategy for discovering novel features. The

novel feature used in all the methods is based on the researchers experience.

Although the prediction model uses the novel features that have significance

in predicting miRNA target, the selected novel features have limit to improve

the performance of the method.

2.2 Algorithms for constructing RNA

regulatory network

The ceRNA network reflects the regulatory mechanism of the biological

process. Methods for constructing ceRNA could be divided into two

categories: target-based method and expression-based method. In this
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section, we will describe these two categories methods and discuss the

advantages and weaknesses of these two methods.

2.2.1 Target-based method for constructing ceRNA

network

In the ceRNA network, the lncRNA and mRNA must be the miRNA target.

Therefore, many methods for constructing the ceRNA network through

finding the miRNA target mRNAs and target lncRNAs. These methods

are called target-based method.

The starBase is a ceRNA database (Li, Liu, Zhou, Qu & Yang 2013) that

uses the target-based method to construct the ceRNA network. A total 108

CLIP data experiment data are applied to find the miRNA target sites. The

miRNA, its target genes, and target lncRNA construct a candidate ceRNA

pair. A hypergeometric test is applied to calculate the P-value of each ceRNA

pair. The equation of calculating the P-value is below:

P − value =

min(l,n)
∑

i=a

(

l
i

)(

N−l
n−i

)

(

N
n

) (2.1)

Where a is the number of miRNA share by mRNA and lncRNA, l is the

number of miRNAs binds to the lncRNA, N is the number of miRNA in the

dataset, n is the number of miRNA binds to mRNA. This p-value measure

the probability of a ceRNA pair to cross-regulate each other. The higher the

value, the more likely the ceRNA pair cross-regulate each other.

Liu et al. used a new way to construct the ceRNA network (Liu, Yan,

Li & Sun 2013). They collected the miRNA target mRNA from TargetScan,

miRanda, and PITA database. The miRNA target lncRNA were downloaded

from miRanda. A hypergeometric test was also used to compute the p-value

of the ceRNA pairs. The ceRNA pairs, which the p-value was higher than

0.95, were applied to construct the ceRNA network.

Das et al. proposed a target-based method for constructing ceRNA

network (Das, Ghosal, Sen & Chakrabarti 2014). They downloaded the
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miRNA target mRNA from the starBase database. The miRNA candidate

target lncRNA were predicted by using miRCode (Jeggari et al. 2012).

Then collecting the PAR-CLIP dataset for improving the prediction of

miRNA target lncRNA. Using the miRNA, its target miRNAs, and its target

lncRNAs to construct a ceRNA pair. Finally, the hypergeometric test was

applied to calculate the p-value of each ceRNA pair.

All these target-based methods for constructing the ceRNA network have

two commons: (1) using the miRNA target method to find out the miRNA

target lncRNA and target mRNA. (2) Applying the hypergeometric test to

measure the probability of the ceRNA pair to regulate each other. However,

the difference between different methods is that using different methods for

predicting miRNA targets. In starBase database, the miRNA target mRNA

is predicted by using the CLIP dataset, while Das uses the CLIP data to

predict the miRNA target lncRNA.

The miRNA target is very important for constructing the ceRNA network.

The target-based method could identify the miRNA target and construct

large and complex ceRNA networks to analysis the mechanism of RNA.

However, the target-based method has many weaknesses in predicting ceRNA

network. The first is that the ceRNA network constructed by using this

method has high false positive rate. This is because the method for predicting

miRNA target provides high false positive miRNA targets, even though

CLIP dataset is applied to enhance the performance of prediction. The

second is that although large amount of ceRNA networks are identified, these

predicted ceRNA networks cannot be used to analysis regulation mechanism

in a certain cancer. This is because the ceRNA network always occurs in a

certain condition. For example, a ceRNA occurred in the lung cancer, but

this ceRNA may not occurred in breast cancer. Thus, many predicted ceRNA

networks must be removed when analysing the regulation mechanism of RNA

in a certain cancer. The third is that this method does not take the relative

concentration of the lncRNA into consideration. The relative concentration

of lncRNA is very important for lncRNA act as ceRNA and is identified by
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using the expression level of lncRNA. The forth is that this method does

not use the expression data to discover the competition relationship between

RNAs. Since the target-based method does not use the expression data, the

expression relationship between RNAs is still unknown. The target-based

method finds out the miRNA target mRNA and target lncRNA. However, it

is does not implied that the lncRNA could compete with the mRNA to bind

to the same miRNA.

2.2.2 Expression-based method for constructing

ceRNA network

Since the limitation of the target-based method, the other method, which

based on the expression data, had been developed to construct ceRNA

network. The expression data provides the expression level of RNA

in samples. The relative concentration of lncRNA and the competition

relationship between lncRNA, miRNA, and mRNA can be detected by using

the expression data. The critical processes in constructing the ceRNA

network by using expression-based method are that finding the change

relative concentration of lncRNA and measuring the competition relationship

between lncRNA, miRNA, and mRNA.

Xia et al. proposed a method constructing the ceRNA network in

gastric cancer method (Xia, Liao, Jiang, Shao, Xiao, Xi & Guo 2014).

This method used the expression data of lncRNA in tumor and normal

tissue to identify the overexpressed lncRNAs. The overexpressed lncRNA

implied that the change relative concentration lncRNA was large and may

become ceRNA to compete with mRNA to bind to the same miRNA.

Then using the miRNA predict targets to construct the ceRNA network.

The miRNA target lncRNA were collected from miRcode database and

the miRNA target mRNA was derived from DIANA-TarBase database.

This method considered the relative concentration lncRNA but not the

competitive relationship between lncRNA, miRNA, and mRNA. Detecting

the competitive relationship between lncRNA, miRNA, and mRNA requires
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the expression data of lncRNA, miRNA, and mRNA.

There are many different method for measuring the competition

relationship between lncRNA, miRNA, and mRNA. They mainly applied

Pearson coefficient or information theory. Chiu et al. presented a Pearson

coefficient-based method to construct the ceRNA network (Chiu, Hsiao,

Chen & Chuang 2015). Chius method used the miRNA predicted targets,

which were derived from TargetScan database, to construct a miRNA-target

matrix. Then the Pearson coefficient was applied to calculate the pair-wised

relationship of the miRNA-target matrix. Given the expression level of two

genes X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} in n samples, the

equation for calculating Pearson coefficient is below:

ρXY =

∑n
i=1(xi − x̄)(yi − ȳ)

√

(
∑n

i=1(xi − x̄)2
√
∑n

i=1(yi − ȳ)2
(2.2)

Where x̄ and ȳ are the average expression level of the gene x and y

in n samples, respectively. However, the Pearson coefficient measures

the relationship between two variables. The competition relationship

between lncRNA, miRNA, and mRNA is triple relationship. Thus, the

Pearson coefficient method should be improved to measure the competition

relationship.

Wang et al. improved the Pearson coefficient to construct the ceRNA

network (Wang, Ning, Zhang, Li, Ye, Zhao, Zhi, Wang, Guo & Li 2015).

This method used the disease relatived lncRNA, miRNA, and lncRNA. Then

applying the CLIP-data to find out the disease related miRNA targets. These

miRNAs and miRNA targets were used to construct ceRNA pairs. Finally,

utilizing the Pearson coefficient to measure the competition relationship

between lncRNA, miRNA, and mRNA. If a ceRNA pair follow these three

conditions: (1) the Pearson coefficient between lncRNA and miRNA was

smaller than −0.5, (2) the Pearson coefficient between lncRNA and mRNA

was larger than 0.5, and (3) the Pearson coefficient between mRNA and

miRNA was smaller than −0.5. This ceRNA pair was applied to construct

ceRNA network. Thus, the selected ceRNA pair by using Wangs method
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must obey the competition relationship between lncRNA, miRNA, and

mRNA.

The partial correlation is a Pearson coefficient-based method and can

measure the triple relationship. Paci et al. constructed the ceRNA network

by using the partial correlation (Paci, Colombo & Farina 2014). They

downloaded the predicted miRNA target mRNA from TargetScan database.

The lncRNAs which could perfect math to the seed region of miRNA were

viewed as the miRNA target lncRNAs. A miRNA a miRNA target lncRNA,

and a miRNA target mRNA construct a ceRNA pair. For given ceRNA pair,

they used the partial correlation to calculate the competition relationship of

the ceRNA pair. The equation of the partial correlation defined as:

ρXY |Z =
ρXY − ρXZρZY

√

(1− ρXY )2
√

(1− ρZY )2
(2.3)

Where X is the mRNA, Y is lncRNA and Z is miRNA. ρXY is the

Pearson correlation between X and Y . The partial correlation measures

the correlation between X and Y after remove Z. Finally, using the partial

correlation to calculate sensitivity correlation S:

S = ρXY − ρXY |Z (2.4)

The ceRNA pairs, which the sensitivity correlation larger than 0.3, were used

to construct ceRNA network.

Some methods apply information theory to measure the competition

relationship between lncRNA, miRNA, and mRNA. Sumazin utilize the

conditional mutual information to construct the ceRNA network (Sumazin,

Yang, Chiu, Chung, Iyer, Llobet-Navas, Rajbhandari, Bansal, Guarnieri,

Silva et al. 2011). The conditional mutual information could measure the

relationship between three variables. It always applies to the discrete dataset.

However, the expression data set of RNA is continuous dataset. In order to

handle with this issue, the conditional mutual information estimators are

used.

Zhang et al. applied the maximal information to construct the ceRNA

network (Zhang, Fan, Jian, Chen & Lai 2015). They use two different
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expression data to identify the overexpressed lncRNA. One expression data

is from TCGA dataset and the other expression data is obtained from NCBI.

The lncRNA, which is highly differentially expressed in one of the data, is

used to construct the ceRNA network. Then, they collect the predicted

miRNA target mRNA and lncRNA from miRTarBase and starBase. The

miRNA targets construct the candidate ceRNA pairs. Finally, the maximal

information-based nonparametric exploration statistics is applied to identify

the relationship between two RNAs. The ceRNA pair, which has high

maximal information coefficient, is applied to construct the final ceRNA

network. This method not only considers the overexpressed lncRNA, but

also the relationship between RNAs.

A few methods neither using Pearson coeffecient nor apllying information

theory construct ceRNA network. Chuang et al. developed a novel method

for identifying the ceRNAs in gliomblastoma by using the expression data

of lncRNA, miRNA, and mRNA (Chiu, Chuang, Hsiao & Chen 2013). The

miRNA targets were downloaded from TargetScan database. These miRNA

targets were used to construct the candidate ceRNA network. Then using

the miRNA program (miRP) enrichment was applied to measure the average

expression level of miRNA in each candidate ceRNA network. It also an

indicator for detecting competition relationship of the candidate ceRNA

network. Finally, using the miRP enrichment to calculate the correlation and

difference score of each candidate ceRNA network. The candidate ceRNA

network, which has significance difference score and positive correlation, was

viewed as the ceRNA network that involved in gliomblastoma.

Cupid et al. presented a simultaneous reconstruction method for

constructing ceRNA network (Chiu, Llobet-Navas, Yang, Chung, Ambesi-

Impiombato, Iyer, Kim, Seviour, Luo, Sehgal et al. 2015). This method

focus on selecting miRNA targets. They collect three features of the miRNA

binding site: (1) the predicted score of the miRNA binding site from

TargetScam and miRanda, (2) the species-conservation scores, and (3) the

relative distance from the 3′ and 5′ ends of the target 3′-UTR. All these
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features are applied to train a SVM classifier. The classifier is able to identify

the consensus binding site. In the second step, the consensus binding site are

used to assess the probability of the miRNA binds to its target. Finally, the

expression data are used to measure the relationship between miRNA and

its targets.

Compare with the target-based method, the expression-based method

uses the expression level of RNA to measure the competition relationship

between RNAs. However, these expression-based methods have their

weaknesses. Xias method considers the overexpressed lncRNA but does not

detect the competition relationship between RNAs. Many methods, such

as Pacis method and Chuangs method, detect the competition relationship

between RNAs while do not find out the overexpressed lncRNA. The change

relative concentration of lncRNA is a very important for lncRNA competes

with mRNA to bind to miRNA. Many methods, for example Chius method,

use the Pearson coefficient to measure the competition relationship between

lncRNA, miRNA, and mRNA. However, a miRNA can bind to multiple

lncRNAs and mRNAs. The competition relationship between lncRNA,

miRNA, and mRNA is non-linear. The Pearson coefficient is a suitable

method for measuring the linear relationship rather than the non-linear

relationship. Some methods, for instance Chius method, apply the paired-

wise relationship between two RNAs to measure the competition relationship.

The paired-wise relationship implies that these two RNAs are correlatived.

The competition relationship is the relationship between three RNAs but

not two RNAs. Thus, the paired-wise relationship between two RNAs is not

suitable for measuring the competition relationship between three RNAs.

2.3 Methods for discovering biomarker in

cancers

Biomarkers indicate the processes of the biological processes. The

change expression level of the biomarker leads to the alternative of the
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biological processes. Therefore, the expression level of biomarker should have

significance difference between different biological processes. The biomarker

could be applied to identify the tumor and normal samples or classify different

cancer subtypes. There are many methods are developed for discovering the

biomarker. The Fold change method and t-test method are two most popular

methods for identifying tumor and normal samples.

The fold change method measures the expression change of RNA between

tumor sample and normal sample (Grishin 2001). Give the expression level

of RNA a in tumor samples and normal. The ExT
a and ExN

a are defined

as the average expression level of a in tumor and normal sample. The fold

change of the RNA a is calculated by this equation:

FCa = log2
ExT

a

ExN
a

(2.5)

According to this equation, if the fold change of the RNA is larger than

0, it implies that the average expression level of the RNA in tumor sample

is higher than the average expression level of the RNA in normal sample

and we call this RNA is up-regulated in tumor sample. If the fold change of

the RNA is lower than 0, it indicates that the expression level of the RNA

in tumor sample is lower than the average expression level of the RNA in

normal sample and we call this RNA is down-regulated in tumor sample. In

general, if the absolute fold change of the RNA is larger than 1, this RNA

is highly differentially expressed in tumor and normal sample. The highly

differentially expressed RNA infer that this RNA may be a biomarker for

identifying tumor and normal sample.

The fold change method has two weaknesses. The first is that this

method is sensitive with the outliers. This method applies the average

expression levels of RNA in tumor and normal samples. The sample, which

the expression level of RNA is very large or very low, has significance influence

the average expression level. However, this sample may be an outlier and

should not be taken into consideration. Thus, the fold change of the RNA

is influenced by these outliers. The second is that this method will miss
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the RNA that is large differences but small ratios and induce some noisy

RNA which is small differences but large ratios. For example, the average

expression level of a RNA is 1000 in tumor sample and 600 in normal

sample. This RNA has large difference between normal and tumor sample.

However, the absolute fold change of this RNA is lower than 1. Besides,

the average expression level of a RNA is 0.1 in tumor sample and 0.25 in

normal sample. This RNA has very small difference between normal and

tumor sample. However, the absolute fold change of this RNA is larger than

1. The small difference of the expression level of RNA may cause by the

sequencing machine. Thus, this RNA may be a noisy RNA and cannot be a

biomarker for classifying normal and tumor sample.

The t-test method determines whether there is a significance different

between the average expression level of RNA in tumor and normal

sample (Baldi & Long 2001). If the average expression levels of a RNA

a in normal and tumor are ¯ExN
a and ¯ExT

a , respectively. The number of the

sample in normal sample and tumor are nn and nT . The variance of the

expression level this RNA in normal and tumor samples are varN and varT .

We always use this equation to calculate the T-test value:

T − valuea =
ExN

a −ExT
a

√

var2
T

nT
+

var2
N

nN

(2.6)

Then using the known distribution to calculate the P-value. In general, if

the P-value is lower than 0.05, it implies that the RNA a is differentially

expressed in normal and tumor samples.

In practice, researchers combine t-test and fold change to identify the

biomarker of the RNA. The RNA which the fold change is larger than a

threshold and the p-value is lower than 0.05, could be regarded as the tumor

biomarker.

A RNA, which has high fold change and low p-value, is likely to be

biomarker for identifying the tumor sample. This RNA has high probability

play an important role for the development of cancer and could be used for

diagnosing cancer. Therefore, researchers like to combine these two methods
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to find out the biomarker for identifying tumor and normal sample. These

two methods are used in data set that has two classes (normal sample

and tumor sample). A cancer may have multiple subtypes, such as the

breast cancer could be divided into four molecular subtypes. Therefore, t-

test and fold change method cannot be used for discovering cancer subtype

biomarker. Although fold change method and t-test method cannot be used

for discovering multiple classes, many methods are developed for discovering

the biomarker of multiple classes.

Fishers method is able to identify the biomarker for classifying different

cancer subtypes (Gu, Li & Han 2011). Given a RNA Xi and m cancer

subtypes. Xk
i is defined as a set of expression level of the RNA Xi in cancer

subtype k. We state that X̄k
i is the average expression level of RNA Xi in

cancer subtype k and X̄i is the average expression level of RNA Xi in all

samples. The Fisher score of the RNA Xi is calculated by the equation:

Fisher(Xi) =

∑m
j=1 li(X̄

j
i − X̄i)

2

∑m
k=1

∑

x∈Xk
i
(x− X̄k

i )
2

(2.7)

The higher the Fisher score of the RNA, the RNA is more likely to be

biomarker for classifying different cancer subtypes. The Fisher’s method is

based on the average expression level of the RNA in cancer subtype.

Hellinger distance is a method that measures the distributional divergence

of two probability measures (Yin, Ge, Xiao, Wang & Quan 2013). The X and

Y are defined as two probability measures and respect to a third probability

measure θ. The Hellinger distance of these two probability measures is:

dH(X, Y ) =

√

∫

(
√
X −

√
Y )2dθ (2.8)

Specially, if these two probability measures follow the normal

distributions X ∼ N(µ1,σ
2
1) and Y ∼ N(µ2, σ2

2), the square Hellinger

distance between these two probability measures is that

d2H(X, Y ) = 1−
√

2µ1µ2

σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)

2

σ2
1+σ2

2 (2.9)
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The Hellinger distance measures the distance between two variables.

However, we can calculate the paired Hellinger distance between two

difference cancer subtypes. Then using the total Hellinger distance to

measure the distance between multiple variables. The RNA, which has the

largest total Hellinger distance, is more likely to be a biomarker for cancer

subtype classification.

Two information-based methods are used for finding the biomarker in

classifying multiple classes. The first is information gain and the other is the

mutual information. The information gain measures the information gained

about a feature from observing another random variable (Quinlan 1986).

In the decision tree algorithm, the information gain is applied to decide

which feature is used to build the tree. The feature has higher information

gain, this feature provides more information for classification. Thus, we

use the information gain to measure the amount of information of a RNA

in classifying different cancer subtypes. Calculating the information gain

of a RNA (feature) in classifying different cancer subtypes requires the

information entropy of RNA. Given a feature a and the dataset T . This

dataset contains c classes. V alues(a) presents the attribute of feature a. Ti

is a set of samples that belong to the classes i. |ST
a (j)| is a subset of dataset

T which the attribute of feature a is equal to j. | · | is the total number of

the sample. The equation of calculating the information gain IG(T , a) of

the feature a in dataset T is showed below:

IG(T, a) = H(T )−H(T |a) (2.10)

H(T ) =

c
∑

i=1

−|Ti|
|T | log2

|Ti|
|T | (2.11)

H(T |a) =
∑

j∈V alues(a)

|ST
a (j)|
|T | H(ST

a (j)) (2.12)

The information gain measures how important the feature to classified the

data. The higher the information gain, the more important the feature is.
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The information gain has the maximum value. If a feature has the maximum

information gain, this feature could perfect classify different classes. The

information gain could measure the importance of the RNA for identifying

cancer subtype. The higher the information gain of the RNA, this RNA is

more likely to be a cancer subtype biomarker.

According to the information gain, the feature should have many different

attributions. It implies that the information gain is used to the data set that

the feature and label are discrete data. However, the expression data is

the dataset that the feature is continuous data (expression level of RNA is

continuous) and the label is discrete data. Therefore, the information gain

cannot direct be applied. In order to calculate the information gain of the

RNA in classifying different cancer subtypes, the expression level of RNA

must be transformed to discrete data and we called this transformation is

discretization. This transformation is that cluster the expression level of

RNA into several groups. For example, clustering the expression level of

RNA into two groups. The low expressed RNA are grouped into the first

cluster and the high expressed RNA are grouped into the second cluster.

Thus, this RNA has two attributes: highly expressed and lowly expressed.

After the discretization, the information gain could be applied to measure

the importance of the RNA in classifying different cancer subtypes.

There are three popular methods to discrete the continuous data: equal

width, equal frequencies, and highest entropy. The equal width method

separates the data into k equal size intervals. This method finds out the

lowest and highest expression level of the RNA, which are defined as minexp

and maxexp, respectively. Then calculating the width of the interval is

w = (maxexp−minexp)/k. Finally, the interval boundaries are: minexp+w,

minexp + 2w, . . ., minexp + (k − 1)w. The expression levels of RNA are

divided into k groups based on these interval boundaries.

The equal frequency method sorts the expression level of the RNA from

low to high. Then dividing the RNA into k group that each group has

approximately same number of the sample.
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The lowest entropy method is that sorted the expression level of RNA

from small to large and then finding out the entire cluster strategies. Then

calculating the entropy of the entire cluster strategies. The cluster strategy

that has the smallest entropy is viewed as the best cluster strategy. This

best cluster strategy is applied to discrete the expression data.

Different discretization methods have their advantages and weaknesses.

The equal width and equal frequencies method are easier than the lowest

entropy method. However, the range of the expression level of biomarker

in some cancer subtypes are very wide. While the range of the expression

level in some cancer subtypes are very narrow. The range of the expression

level of biomarker in different cancer subtypes do not have the equal width.

Therefore, the equal width technology is not suitable for the expression data

discretization. Further, for given a cancer subtype data, the number of the

sample in different cancer subtypes is always different. Thus, the equal

frequency method is also not suitable for discretising the expression data.

The lowest entropy method could find out the best strategy to cluster the

expression data. This is because the lowest entropy method discovers all the

cluster strategies and then selecting the best strategy. However, the time

consumption of this method increases dramatically with the growth of the

number of sample and the number of cancer subtype. If the number of the

sample is n and we want to divide the expression level of RNA into k groups.

The total number of the cluster strategy is
(

n
k

)

. The number of the cluster

strategy is very large and calculating the entropy of the entire cluster strategy

requires large amount of time. In order to tackle with these weaknesses, we

developed an improved method to discrete the continuous data. This method

discretes the continuous data based on the distribution of the feature and the

time complexity is slight increased with growth of the number of sample and

the number of cancer subtype.

The other information-based method for identifying biomarker is the

mutual information (Steuer, Kurths, Daub, Weise & Selbig 2002). The

mutual information is a measure of how much information that one variable
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has about another variable (Cover & Thomas 2012). This definition gives a

way to quantify the relevance of a feature subset to the output (Vergara &

Estévez 2014). Therefore, mutual information has been used as a criterion for

feature selection in engineering especially in machine learning (Navot 2006).

The mutual information can measure the relationship between the biomarker

and the cancer subtype. The biomarker is the indicator of the cancer subtype

and should have high correlative with the cancer subtype and therefore, have

high mutual information. Given two datasets X and Y . The equation of the

mutual information is that

MI(X, Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.13)

Where P (x) is the probability of variable x, and P (x, y) is the join

distribution of the variable x and y. The mutual information is also used

in the data set that the feature and label are discrete data. However, the

estimate mutual information could apply to calculate the mutual information

of data that the feature and label are continuous data. The estimate mutual

information is that:

MI(X, Y ) =

∫

x

∫

y

f(x, y) log
f(x, y)

f(x)f(y)
dxdy (2.14)

Where f(x) and f(y) is the distribution function of dataset X and Y .

f(x, y) is their joint distribution if X and Y . The kernel density estimator is

always used to calculate the distribution function and their join distribution

function. The kernel density estimator of the distribution is that:

f(x) =
1

Nh
√
2π

N
∑

i=1

exp(−(x − xi)
2

2h2
) (2.15)

Where N is the number of the sample and h is the smoothing parameter.

The join distribution function is that

f(x, y) =
1

Nh22π

N
∑

i=1

exp(−di(x− xi)
2

2h2
) (2.16)
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Where di(x, y) =
√

(x− xi)2 + (y − yi)2. Using the kernel density

estimator, we could calculate the mutual information between two variables

that are continuous data.

2.4 Applied mathematical methods and

bioinformatics tool

2.4.1 Methods for selecting threshold

Selecting the threshold is a very important for constructing the ceRNA

network and discovering the biomarker. For example, many methods are

developed to measure the competition relationship between RNAs, the

ceRNA pairs that have a high competition score are used to construct ceRNA

network. Thus, a threshold is required to identify the ceRNA pairs that have

a high competition score. In addition, the fold change method calculates

the change expression of the RNA. The highly differentially expressed RNA

is viewed as the biomarker. Identifying the biomarker needs a threshold to

filter out the RNA that is small changed. Selecting a ‘hard’ threshold is very

common in research.

The ‘hard’ threshold is that this threshold could be applied in every

research or dataset. For example, in practices, if the P-value of the t-test

between two samples is lower than 0.05, these two samples are significance

different. This threshold 0.05 is a ‘hard’ threshold. This is because this

threshold could be applied in every research or dataset. In addition, if the

absolute value of Pearson coefficient between two variables is larger than

0.7, these two variables are highly correlative. Thus, the 0.7 is also a ‘hard’

threshold. Setting the ‘hard’ threshold required the experience and this ‘hard’

threshold could be applied in most of the threshold selection problem.

However, it may loss of information and sensitivity to the choice of the

‘hard’ threshold (Carter, Brechbühler, Griffin & Bond 2004). In order to

handle with this issue, the ‘hard’ threshold may be changed based on the
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data. For example, the fold change is very sensitivity to the expression level

of RNA and it may neglect the high difference but low ratio RNA. Thus, we

can select the threshold based on the expression level of RNA. The expression

level of miRNA is very high in tissue. Therefore, the threshold for selecting

the tumour relatived miRNA should be low. However, the lncRNA is lowly

expressed in tissue. The threshold of selecting the tumour relatived lncRNA

should be high.

The other strategy to select a threshold is that calculating the threshold

through the dataset. Given a set of real values, these values are follow

a certain distribution, such as normal distribution. If we want to set a

threshold to find out the high real values in this dataset, this threshold could

be calculated based on the distribution. We can calculate 95% confidence

interval of these real values. The threshold of the 95% confidence interval is

a good baseline to identify the very high or low value. The real value, which

is higher than large threshold of the 95% confidence interval, is regarded as

very high value.

2.4.2 Kyoto Encyclopedia of Genes and Genomes

pathway

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database for

analysing the gene function, especially for analysing the function of biomarker

in cancer subtypes (Kanehisa & Goto 2000). A gene could regulate many

KEGG pathway and a KEGG pathway is regulated by multiple genes. For

example, Lin28B gene regulates Hedgehog and Notch signalling pathway and

the Wnt signalling pathway is regulated by 151 genes, such as CCND1 gene

and TP53 gene.

Given a gene set g, these genes are enriched in some KEGG pathways. A

hypergeometric test-based method is applied to measure the enrichment of
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the gene set in a KEGG pathway. The pathway score is calculated by

S(g, p) = − log10(
n

∑

m

(

M
m

)(

N−M
n−m

)

(

N
n

) ) (2.17)

Where N , M , n, and m are the total number of gene in human, the

number of gene in the KEGG pathway p, the number of gene in the gene set

g, and the number of gene in both gene set g and KEGG pathway. The lower

the p-value, this gene set is more likely to regulate this KEGG pathway. In

general, if the pathway score of is lower than 0.05, it implies that these genes

are enriched in the KEGG pathway.

There are two websites contain the latest version of the KEGG pathway

and could be used to analyse the gene enrichment in KEGG pathway.

The first is Davide GO (https://david.ncifcrf.gov/) (Huang, Sherman

& Lempicki 2008) and the second is enrichr website (http://amp.pharm.

mssm.edu/Enrichr/) (Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang,

Koplev, Jenkins, Jagodnik, Lachmann et al. 2016). Both of these websites

provide a user friendly interface to analyse the gene enrichment. Input the

gene name into the website, we can easy to access the P-value of the gene

enrich in the KEGG pathway.

2.4.3 Support vector machine

In section 2.3, we reviewed many methods measure the importance of the

RNA in classifying different cancer subtypes. However, only a few RNAs

could classify different cancer subtypes, we should find out these RNAs. A

strategy for identifying these RNAs is that using a supervised learning model

to calculate the accuracy of the RNA in classifying difference cancer subtypes.

If this model has high performance, these RNAs are the critical biomarker

for classifying cancer subtypes.

Support vector machine (SVM) is a famous supervised learning

model (Cortes & Vapnik 1995). Given a data set of n smaples, it is defined

as D = {(x1, y1), (x2, y2), . . ., (xn, yn)}, x is the feature and y is the label.
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The feature x is a p-dimensional vector and the label y is either 1 or −1. We

want to find the maximum-margin hyperplane that divide these sample into

two groups and each group contains the sample that have the same label.

The hyperplane could be written as w · x − b = 0. The w is the a vector

to the hyperplane. Further, the distance between the hyperplane and the

nearest sample from each group is maximized. This optimization problem

can be written as follow:

min
1

n

n
∑

i=1

ξi + λ ‖ w ‖2

suject to yi(w · xi − b) ≥ 1− ξi and ξi ≥ 0, for all i

The hyperplane is completely determined by the samples that lie nearest

to the hyperplane. Tshese samples are called support vectors. This is the

SVM is used to classify two classes. In order to handle with multiple classes

problem, the one-versus-all method, which is showed in Figure 2.1, is applied.

This method extend the ability of SVM to classify multiple classes.

After training the model, most of data is redundant. This is because

only the support vector determines hyperplane and the other data could not

influence the hyperplane. Therefore, it performance better in small dataset.

Further, SVM is unlikely overfitting compare with other machine learning

methods.

2.5 Summary

This Chapter introduces the methods for predicting miRNA target mRNA

and target lncRNA, constructing the ceRNA network, and identifying the

biomarker. Further, some methods and tools in bioinformatics research

are also described. In conclusion, the methods for predicting miRNA

target mRNA and target lncRNA are the foundation of constructing ceRNA

network. Constructing the ceRNA network should take the change of the

lncRNA and the competition relationship between RNAs into consideration.
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Figure 2.1: The one-versus-all method for classified multiple classes

in SVM. If the dataset contains n classes. This method is that train a

classifier which distinguish one class and the rest classes. Repeat this process

until all the classes are distinguished.
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Many methods could measure the importance of the RNA in cancer subtype

classification. However, identify the most critical RNA for classifying

different cancer subtypes requires machine learning to validate. Further,

understanding the function of the biomarker should use the KEGG pathway.
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Chapter 3

Construction of Competing

Endogenous RNA Networks

from Paired RNA-seq Data

Sets by Pointwise Mutual

Information

3.1 Introduction

In subsection 1.1.2, we describes the regulatory network in lncRNA, miRNA,

and mRNA. When a lncRNA acts as a ceRNA to compete with an mRNA

for binding to the same miRNA, this interplay between the lncRNA, miRNA,

and mRNA is called a ceRNA crosstalk. An miRNA may have multiple target

lncRNAs and it can also regulate several different mRNAs, therefore, there

can exist many crosstalks mediated by this miRNA to form a ceRNA network.

Such a network is useful for detecting cancer biomarkers (Li, Chen, Chen,

Mo, Li, Shao, Xiao & Guo 2015), patterns for early diagnosis (Sanchez-Mejias

& Tay 2015), and new concepts for cancer treatment (Ebert et al. 2007).

Further, we also discussed three features in ceRNA network: (1) changes
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in the ceRNA expression levels, (2)the lncRNA is the primary target of the

miRNA, and (3)the relationships between the lncRNA, miRNA, and mRNA

should obey a competition rule in the ceRNA network.

In section 2.2, we described two types of methods for constructing

ceRNA network. The first is target-based method and the other is

expression-based method. The target-based methods does not consider the

relationship between RNAs. Some expression-based methods use the pair-

wised relationship between tow RNAs to construct ceRNA networks, the

ceRNA network is not the relationship between lncRNAs, miRNAs, and

mRNAs. Although other expression-based methods measure the relationship

between lncRNAs, miRNAs, and mRNAs, they are not suitable for measuring

the non-linear relationship. Therefore, a novel method is demanded to

improve the predictions.

We propose a novel method for constructing ceRNA networks from paired

RNA-seq data sets. This method identifies the over expressed lncRNAs from

the lncRNA expression data of the normal and tumor samples. Thus, we can

identify the ceRNA network related to breast cancer. Then, the competitive

relationships between the lncRNAs, miRNAs, and mRNAs are established

by using the expression levels of the lncRNAs, miRNAs, and mRNAs in

the tumor samples. We combine the competition rule and pointwise mutual

information to calculate a competition score for each of the ceRNA crosstalks.

As an miRNA can have many ceRNAs and can bind to multiple mRNAs,

the competitive relationship between lncRNA, miRNA, and mRNA is non-

linear. Pointwise mutual information is suitable for measuring the complex

point-to-point competitive relationship between RNAs.

3.2 Method

Our method for constructing ceRNA network has four steps. Firstly, it

computes the expression levels of lncRNA, miRNA, and mRNA from breast

cancer tumor tissues and normal tissues. Secondly, the predicted miRNA

targets, differentially expressed RNAs, and the competition regulation
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Figure 3.1: The framework of our method

mechanism are used to construct the candidate ceRNA networks. Thirdly,

it combines the competition rule and the pointwise mutual information to

compute the competition score of each ceRNA crosstalk. Finally, we select

the ceRNA crosstalks which have significant competition scores to construct

the ceRNA network. Figure. 3.1 shows the framework of our method.

lncRNA1 miRNA mRNA1

lncRNAn

miRNA

mRNA1lncRNA1

mRNAm

(a)
(b)

Figure 3.2: The examples of ceRNA crosstalk and ceRNA network.

(a) A ceRNA crosstalk; (b) A ceRNA network
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3.2.1 Definitions and Data Preprocessing

If a lncRNA lnc competes with an mRNA mr for binding to an miRNA

mir, the triple of lnc, mir, and mr is called a ceRNA crosstalk denoted

by T = (lnc,mir,mr). We also say that ceRNA crosstalk T = (lnc, mir,

mr) is mediated by mir. For example, Figure. 3.2(a) is a ceRNA crosstalk

T = (lncRNA1, miRNA, mRNA1) mediated by miRNA.

All the ceRNA crosstalks mediated by the same miRNA as a whole

is defined as a ceRNA network. In this thesis, one ceRNA network

contains only one miRNA and the analysis is done with a set of

individual networks. It is denoted by N = (lnR, mir, mR), where

lnR stands for the set of lncRNAs, mir is the miRNA, and the mR

stands for the set of mRNAs. We also say ceRNA network N =

(lnR,mir,mR) is mediated by mir. For example, Figure. 3.2(b) is a

ceRNA network, where lnR = {lncRNA1, lncRNA2, . . . , lncRNAn} and

mR = {mRNA1, mRNA2, . . . , mRNAm}.
The paired breast cancer RNA-seq data set was downloaded from the

TCGA GDC data portal website (https://portal.gdc.cancer.gov/cart).

This paired data set contains the expression levels of lncRNAs, mRNAs,

and miRNAs of 102 tumor and normal tissue samples. These RNAs and

their expression levels form an expression matrix. Table 3.1 is an example

of expression matrix. Some RNAs expresses in only a few tissue samples.

These low frequently expressed RNAs are not important for breast cancer

study and may have noise affect to the result. Thus, these RNAs which

are not expressed in half of the whole tissue samples were removed from

the expression matrix. We transform the expression matrix to a binary

expression matrix by using the equal frequency discretization method: for the

same RNA expressed in all samples, if this RNA expression level of a sample

is higher (lower) than the median RNA expression level of all the samples,

this RNA is highly (lowly) expressed in this sample and is assigned with

binary value 1 (0). This process was conducted using Weka3.8 (Frank 2014).

Let I[R, S] denote the binary expression matrix, where R is the set of
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Table 3.1: A matrix of expression levels of RNAs

sa1 sa2 . . . sas

lnc1 40 50 . . . 70

... ... ... ... ...

lncn 10 15 . . . 33

mir1 450 350 . . . 150

... ... ... ... ...

mirk 500 700 . . . 600

mr1 20 30 . . . 50

... ... ... ... ...

mrm 65 85 . . . 25

RNAs from the original data set after the noise removal, and S is the set of

samples. In the binary expression matrix, 1 represents that the expression

level of the RNA is relatively high, 0 means that the expression level of the

RNA is relatively low. Table 3.2 is the binary expression matrix transformed

from Table 3.1.

For a given binary expression matrix I[R, S], we define that r′ is a RNA

from R and sa′ is a sample from S. I[r′, sa′] is the value of the RNA r′

of the sample sa′ in the binary expression matrix I[R, S]. For example, in

Table 3.2, I[lnc1, sa1] is 0 and I[mrm, sa2] is 1.

3.2.2 Constructing a candidate ceRNA network.

The target mRNAs and lncRNAs of the miRNAs were downloaded from

the miRWalk2.0 database (http://zmf.umm.uni-heidelberg.de/apps/

zmf/mirwalk2/holistic.html). The miRWalk2.0 database contains the

comparison results of binding sites from 12 existing miRNA-target prediction

software tools (Dweep & Gretz 2015). It is a high quality database of

miRNA targets. Also, this database contains the miRNA’s target lncRNAs

and target mRNAs. An miRNA (with p-value ≤ 0.05 and absolute fold

change ≥ 2.0), its target lncRNAs (with p-value ≤ 0.05 and absolute fold
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Table 3.2: The binary expression matrix of RNAs transformed from Table 3.1

sa1 sa2 . . . sas

lnc1 0 0 . . . 1

... ... ... ... ...

lncn 0 0 . . . 1

mir1 1 1 . . . 0

... ... ... ... ...

mirk 0 1 . . . 1

mr1 0 0 . . . 1

... ... ... ... ...

mrm 1 1 . . . 0

change ≥ 3.0) and its target mRNAs (with p-value ≤ 0.05 and absolute

fold change ≥ 2.0) are used to construct the initial ceRNA network. The

differentially expressed lncRNA, miRNA, and mRNA are computed by using

fold change (Grishin 2001) and the t-test method (Baldi & Long 2001).

Suppose a lncRNA lnc, an miRNAmir, and an mRNAmr form a ceRNA

crosstalk. If lnc up-regulates in breast cancer samples, then the fold change

of lnc should be larger than 0. According to the competition rule, the

highly expressed lncRNA can lead to low expression of the miRNA, i.e.,

mir down-regulates and the fold change of mir should be smaller than 0.

The low expression level of the miRNA increases the expression level of the

mRNA. Therefore, mr up-regulates in breast cancer samples, and the fold

change of mr should be larger than 0. Similarly, if lnc down-regulates and

the fold change of lnc is smaller than 0, then mir up-regulates in breast

cancer samples and the fold change of mir should be larger than 0. Then

mr down-regulates in breast cancer tumor and the fold change of mr is

smaller than 0. Based on this principle, we propose a competition regulation

mechanism. This competition regulation mechanism is divided into a positive

and a negative competition regulation facet:

• Positive competition regulation mechanism: the fold change of the
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miRNA is larger than 0, and the fold changes of lncRNAs and mRNAs

are smaller than 0.

• Negative competition regulation mechanism: the fold change of the

miRNA is smaller than 0, the fold changes of lncRNAs and mRNAs

are larger than 0.

Given the initial ceRNA network, we find the lncRNAs and mRNAs which

follow the positive or negative competition regulation mechanism. Then the

miRNA, lncRNAs, and mRNAs construct a candidate ceRNA network. We

denote the candidate ceRNA network by N ′ = (lncR, mir, mR), where

lncR and mR stand for the sets of lncRNAs or mRNAs which follow the

competition regulation mechanism.

3.2.3 Computing the competition score

A candidate ceRNA network is formed by combining many ceRNA crosstalks.

Some of these candidate ceRNA crosstalks may not satisfy the competitive

relationship. Pointwise mutual information was proposed to measure the

relationships between individual words in a corpus (Church & Hanks 1990).

For given two words x and y, their pointwise mutual information is

PMI(x, y) = log
P (x, y)

P (x)P (y)

Where P (x, y) is the probability of observing two words together. p(x) and

p(y) are the probability of observing x and y respectively. If the pointwise

mutual information is high, these two words frequently co-occur and they

likely to be a phrase. The equation of pointwise mutual information is similar

with the equation of mutual information. However, the pointwise mutual

ifnroamtion refers to single event while the mutual information reference to

multiple events.

In this work, we apply it to measure the competitive relationships between

RNAs in a ceRNA network, namely if a lncRNA can cross regulate an mRNA

through an miRNA, the pointwise mutual information of this crosstalk should
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be high. Traditional pointwise mutual information utilizes the probability

coincidence or Gaussian kernel to measure the relationship between the

variables; and only a positive or only a negative score between the variables

is calculated. However, the competitions in a ceRNA crosstalk have both

negative and positive relationships between the two RNAs. Therefore, the

traditional pointwise mutual information needs to be refined for measuring

the competition relationships between the RNAs in a ceRNA crosstalk.

In this work, we calculate the pointwise mutual information based on our

competition rule, as detailed below.

Given a candidate ceRNA network N ′ = (lncR, mir, mR), where lncR =

{lnc1, lnc2, . . . , lncn} and mR = {mr1, mr2, . . . , mrm}, any lncRNA lnci ∈
lncR, mir, and any mRNAmrj ∈ mR can form a ceRNA crosstalk T = (lnci,

mir, mrj). We use a competition score to measure the reliability of each

ceRNA crosstalk. The higher the competition score of the ceRNA crosstalk

is, the more reliable the ceRNA crosstalk is.

Given a binary expression matrix I[R, S], let lnci, mir, and mrj be a

lncRNA, an miRNA, and an mRNA of R, respectively, and let sal be one of

the samples in S. If lnci, mir, and mrj in sal are satisfied with one of these

conditions:

• Condition 1: I[lnci, sal] = 0, I[mir, sal] = 1, and I[mrj, sal] = 0.

• Condition 2: I[lnci, sal] = 1, I[mir, sal] = 0, and I[mrj, sal] = 1.

we say that sal is the competition sample of T = (lnci, mir,mrj). For

example, at Table 3.2, sa1 is a competition sample of T = (lnc1, mir1, mr1),

since I[lnc1, sa1] = 0, I[mir1, sa1] = 1, and I[mr1, sa1] = 0. In addition,

we define that suppS(lnci, mir,mrj) is the total number of the competition

samples of T = (lnci, mir,mrj) in the sample set S.

The competition score of T = (lnci, mir,mrj) is computed by using

pointwise mutual information (PMI):

PMISmir(lnci, mrj) = log
P S
mir(lnci, mrj)

P S
mir(lnci)P

S
mir(mrj)
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where P S
mir(lnci, mrj), P

S
mir(lnci), and P S

mir(mrj) are computed by:

P S
mir(lnci, mrj) =

suppS(lnci, mir,mrj)
∑n

i′=1

∑m
j′=1 supp

S(lnci′ , mir,mrj′)

P S
mir(lnci) =

∑m
j′=1 supp

S(lnci, mir,mrj′)
∑n

i′=1

∑m
j′=1 supp

S(lnci′ , mir,mrj′)

P S
mir(mrj) =

∑n
i′=1 supp

S(lnci′ , mir,mrj)
∑n

i′=1

∑m
j′=1 supp

S(lnci′ , mir,mrj′)

A positive PMI means the variables co-occur more frequently than what

would be expected under an independence assumption, and a negative PMI

means the variables co-occur less frequently than what would be expected.

3.2.4 Selecting a crosstalk which has a significant

competition score

A competition score can be 0, negative, or positive. If the competition score

of a ceRNA crosstalk is 0 or negative, it implies that there is no competitive

relationship between the lncRNA, miRNA, and mRNA or the competitive

relationship is less reliable than we would be expected. Such a ceRNA

crosstalk should be discarded. A positive competition score indicates that the

competitive relationship between these RNAs is more reliable than what we

expected, and thus the ceRNA crosstalk is reliable to construct the ceRNA

network. Further, the higher the competition score, the more reliable the

ceRNA crosstalk is. Therefore, we should select those crosstalks which are

reliable enough to construct the ceRNA network.

Suppose we are given t candidate ceRNA crosstalks and their competition

scores are {PMI1, PMI2, . . . , PMIt} which are all positive. A threshold θ is

applied to distinguish low and high competition scores, and the problem is to

reject the null hypothesis. The null hypothesis is that the competition score is

small, that is, it implies there is no competing relationship in this crosstalk.

If the competing score is very high, the null hypothesis can be rejected—

it implies that this ceRNA crosstalk involves in regulating the biological
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process. For a ceRNA crosstalk a, its significance level θa of the competition

score is:

θa =
PMIa − PMI

σ

where PMI and σ are the average and standard deviation of the entire

competition scores. The p-value of the ceRNA crosstalk a is pa =

erfc(θa/
√
2) (Theiler, Eubank, Longtin, Galdrikian & Farmer 1992). If the

p-value of a ceRNA crosstalk is lower than 0.05, this ceRNA crosstalk has

significant competition score. We select those ceRNA crosstalks which have

significant competition scores to construct the ceRNA network.

The novelty of our method is to apply competition regulation mechanism

to construct candidate ceRNA networks and utilize the pointwise mutual

information (PMI) to calculate the competition scores. The competition

regulation mechanism, which is deducted from the competition rule, reflects

the nature of the competition rule. Therefore, this regulation mechanism is a

critical feature of the ceRNA network and can be applied to filter out many

noisy eRNAs. Pointwise mutual information can measure both non-linear

and linear relationship, and it is suitable for calculating the competition

score of ceRNA crosstalks. Further, our method utilizes the pointwise mutual

information to measure the point-to-point competitive relationships between

lncRNA, miRNA, and mRNA, but not the pair-wise relationship between

the two RNAs.

3.3 Results

We report two important ceRNA networks related to breast cancer and reveal

their characteristics. We also report how these ceRNA networks play vital

roles in KEGG pathways.
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3.3.1 Two important ceRNA networks related to

breast cancer

We applied the paired breast cancer RNA-seq data set in TCGA GDC data

to construct the ceRNA network. Our method identified 352 mRNAs, 24

miRNAs, and 136 lncRNAs which are differentially expressed between the

tumor and normal tissues. As there are 4 of these miRNAs which do not have

any predicted target RNAs in the RNAwalker2.0 database, ceRNA networks

mediated by the remaining 20 miRNAs which have target RNAs in the

database are constructed. The 20 miRNAs are: hsa-miR-200a-5p, hsa-miR-

203a-3p, hsa-miR-33a-5p, hsa-miR-21-3p, hsa-miR-183-5p, hsa-miR-144-5p,

hsa-miR-145-5p, hsa-miR-184, hsa-miR-451a, hsa-miR-9-3-5p, hsa-miR-182-

5p, hsa-miR-940, hsa-miR-375, hsa-miR-5683, hsa-miR-3677-3p, hsa-miR-

429, hsa-miR-486-2-5p, hsa-miR-210-3p, hsa-miR-335-5p, hsa-miR-196a-2-

5p, hsa-miR-21-5p, hsa-miR-378a-3p, hsa-miR-3065-5p, and hsa-miR-142-

3p. The total number of candidate ceRNA crosstalks mediated by these 20

miRNAs is 75501.

To narrow down the study, we focus our analysis on two significant

ceRNA networks: one is mediated by hsa-miR-451a, and the other is

mediated by hsa-miR-375. These two miRNAs have a vital role in

regulating the development of breast cancer as reported in literature (Camps,

Saini, Mole, Choudhry, Reczko, Guerra-Assunção, Tian, Buffa, Harris,

Hatzigeorgiou et al. 2014, Simonini, Breiling, Gupta, Malekpour, Youns,

Omranipour, Malekpour, Volinia, Croce, Najmabadi et al. 2010), but their

ceRNA networks have not been investigated previously. Our pointwise

mutual information based method detected 132 candidate ceRNA crosstalks

mediated by hsa-miR-451a and 1547 candidate ceRNA crosstalks mediated

by hsa-miR-375. Of them, 25 candidate ceRNA crosstalks mediated by

hsa-miR-451a have significant competition scores and only 273 candidate

ceRNA crosstalks mediated by hsa-miR-375. We use these ceRNA crosstalks

which have significant competition scores to construct the ceRNA networks.

Figure. 3.3 is the ceRNA network mediated by hsa-miR-451a and Figure. 3.4
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Figure 3.3: A ceRNA network mediated by hsa-miR-451a. The

rectangle and oval boxes contain the names of lncRNAs and mRNAs,

respectively

51



Chapter 3. Construction of Competing Endogenous RNA Networks from

Paired RNA-seq Data Sets by Pointwise Mutual Information

presents the ceRNA network mediated by hsa-miR-375. The Python source

code of our algorithm to construct the network can be downloaded from

website https://github.com/ChaowangLan/ceRNA.

3.3.2 Characteristics of the two ceRNA networks

The two ceRNA networks are satisfied with the three characteristics of

ceRNA networks: (1) the expression level of every lncRNA between the

normal and tumor samples is highly differential, (2) every lncRNA is a target

of the miRNA, and (3) the expression levels of lncRNA, mRNA and miRNA

follow the competition rule. The absolute fold change of these lncRNAs

in ceRNA crosstalks mediated by hsa-miR-451a and hsa-miR-375 are larger

than 3.0 and the p-values are smaller than 0.01. This means that these

lncRNAs are over-expressed and satisfy the first point of characteristics of a

ceRNA network. Table 3.3 presents the detailed expression fold change and

the p-values of these lncRNAs.

When a lncRNA competes with an mRNA for binding to the same

miRNA, the lncRNA and the mRNA both are the targets of the miRNA. We

examined the seed regions of hsa-miR-451a to see whether its target mRNAs

or lncRNAs are complementary to the seed region in sequence (Ellwanger

et al. 2011). ENSG00000272620 is perfectly complementary to the seed

region of hsa-miR-451a, and mRNA DLX6 is complementary to the seed

region of the hsa-miR-451a with one mismatch pair. This suggests that

lncRNA ENSG00000272620 and mRNA DLX6 should be very likely the

targets of hsa-miR-451a. Figure. 3.5 shows the binding region of lncRNA

ENSG00000272620 and hsa-miR-451a and the binding region of mRNA

DLX6 and hsa-miR-451a.

Table 3.4 shows the top 5 competition scores of the crosstalks mediated

by hsa-miR-451a and hsa-miR-375, as calculated by our pointwise mutual

information method. A different ceRNA network has a different competition

score. Some of the ceRNA competition scores may be similar. For example,

the largest competition score of the ceRNA crosstalk mediated by hsa-miR-
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Figure 3.4: The ceRNA network formed from the top 50 candidate

ceRNA crosstalks mediated by hsa-miR-375. Text words in the

rectangle boxes are the names of the lncRNAs and text words in the oval

boxes are the names of the mRNAs.
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Figure 3.5: The binding sites of lncRNA, miRNA, and mRNA.
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Table 3.3: Expression fold change ratios and p-values of the lncRNAs

involved in the ceRNA networks mediated by hsa-miR-451a and hsa-miR-

375

LncRNA Fold change p-value

ENSG00000226482 -4.19 7.46 ∗ 10−9

ENSG00000227260 -3.21 3.18 ∗ 10−26

ENSG00000229108 -3.76 8.50 ∗ 10−20

ENSG00000232821 -3.03 2.33 ∗ 10−12

ENSG00000236036 -3.25 6.19 ∗ 10−8

ENSG00000236333 -4.88 2.11 ∗ 10−22

ENSG00000238099 -3.20 4.66 ∗ 10−16

ENSG00000240666 -3.35 1.41 ∗ 10−18

ENSG00000256508 -3.55 9.48 ∗ 10−29

ENSG00000261054 -3.14 2.17 ∗ 10−18

ENSG00000277199 -3.48 7.06 ∗ 10−7

ENSG00000279204 -3.35 4.92 ∗ 10−18

ENSG00000281769 -4.10 4.24 ∗ 10−6

ENSG00000263655 4.62 2.27 ∗ 10−7

ENSG00000272620 3.86 7.36 ∗ 10−3

ENSG00000279184 3.31 2.04 ∗ 10−5
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Table 3.4: Top-5 competition scores in the ceRNA crosstalks mediated by

hsa−miR − 375 and hsa−miR − 451a

lncRNA miRNA mRNA Score P-value

ENSG00000277199 hsa-miR-375 GFRAL 0.35 6.76 ∗ 10−236

ENSG00000238099 hsa-miR-375 C6orf58 0.35 8.48 ∗ 10−228

ENSG00000279204 hsa-miR-375 SOX17 0.31 1.51 ∗ 10−184

ENSG00000229108 hsa-miR-375 DUXA 0.30 2.56 ∗ 10−171

ENSG00000277199 hsa-miR-375 MEOX2 0.30 3.27 ∗ 10−167

ENSG00000272620 hsa-miR-451a DLX6 0.35 8.88 ∗ 10−45

ENSG00000279184 hsa-miR-451a ZG16 0.32 1.60 ∗ 10−37

ENSG00000272620 hsa-miR-451a INSM1 0.31 3.89 ∗ 10−35

ENSG00000272620 hsa-miR-451a NTSR1 0.30 4.92 ∗ 10−33

ENSG00000272620 hsa-miR-451a GPR26 0.30 4.92 ∗ 10−33

451a is equal with the competition score of the ceRNA crosstalk mediated

by hsa-miR-375. But some competition score of the ceRNA crosstalk is

not very similar. Such as the largest competition score of the ceRNA

crosstalk mediated by hsa-miR-21-5p is 0.53 which is larger than the largest

competition score of ceRNA crosstalk mediated by hsa-miR-451a. However,

if two ceRNA crosstalks are mediated by the same miRNA, the higher

competition score of the ceRNA crosstalk is, the more reliable the crosstalk

is.

3.3.3 CeRNA networks and breast cancer treatment

The ceRNA crosstalks mediated by hsa-miR-375 or by hsa-miR-451a may

regulate the development of breast cancer. These ceRNA crosstalks should

be considered in the future for the treatment plan of breast cancer.

As suggested in the third row of Table 3.4, ENSG00000279204 competes

with SOX17 for binding to hsa-miR-375. SOX17 is a member of the SRY-

related HMG-box family that can regulate cell development (Kamachi &
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Kondoh 2013). Fu. et al found that increasing the expression level of this

gene can slow down the speed of breast cancer growth; but reducing the

expression level of this gene can lead to poor survival outcomes in breast

cancer patients (Fu, Tan, Wei, Zhu, Jiang, Zhu, Cai, Chong & Ren 2015).

Thus SOX17 can be a useful biomarker for breast cancer patients. It can be

also understood that the expression of SOX17 can be up-regulated with the

increase of the expression of ENSG00000279204. A high expression level of

SOX17 would lead to decreased growth of breast cancer cell so as to improve

the treatment of breast cancer patients.

The gene MEOX2 is also called GAX or MOX2. This gene is down-

regulated in breast cancer (Yu, Lee, Tan & Tan 2004). Recent research

shows that MEOX2 can up-regulate p21 which is very important for breast

tumor grading (Abbas & Dutta 2009). Highly expressed p21 prevents the

growth of breast cancer (Sheikh, Rochefort & Garcia 1995). As shown in

the fifth line of Table 3.4, ENSG00000229108 competes with MEOX2 for

binding with hsa-miR-375. The high expression level ofMEOX2 can enhance

the growth of breast cancer. Therefore, decreasing the expression level of

ENSG00000229108 can reduce the expression level of MEOX2. Thus the

high expression level of MEOX2 would inhibit the growth of breast cancer.

In the last second line of Table 3.4, ENSG00000272620 competes with

NTSR1 for binding with hsa-miR-451a. NTSR1 (Neurotensin Receptor

1) is a target of the Wnt/APC oncogenic pathways which is involved in

cell proliferation and transformation (Souazé, Dupouy, Viardot-Foucault,

Bruyneel, Attoub, Gespach, Gompel & Forgez 2006). Dupouy found that

highly expressed NTSR1 is associated with the size, the number of metastatic

lymph nodes, and Scarff-Bloom-Richardson grading (Dupouy, Viardot-

Foucault, Alifano, Souazé, Plu-Bureau, Chaouat, Lavaur, Hugol, Gespach,

Gompel et al. 2009). These suggest that NTSR1 is a promising target for

breast cancer treatment. According to the predicted results, decreasing the

expression level of ENSG00000272620 can decrease the expression level of

NTSR1. Low expression level of NTSR1 is beneficial for the treatment of
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breast cancer.

Most breast cancer patients die because of the “incurable” nature of the

metastasis breast cancer (Lu, Steeg, Price, Krishnamurthy, Mani, Reuben,

Cristofanilli, Dontu, Bidaut, Valero et al. 2009). About 90% of breast cancer

deaths are due to metastasis; indeed, only 20% of the metastatic breast cancer

patients can survive more than 1 year (Neman, Choy, Kowolik, Anderson,

Duenas, Waliany, Chen, Chen & Jandial 2013). Therefore, inhibiting breast

cancer metastasis is very crucial for breast cancer treatment. Morini found

that DLX6 involves in the metastasis potential of breast cancer (Morini,

Astigiano, Gitton, Emionite, Mirisola, Levi & Barbieri 2010). Prest also

pointed out that TFF1 can promote breast cancer cell migration (Prest, May

& Westley 2002). These studies imply that DLX6 and TFF1 are highly

related to breast cancer metastases. Therefore, decreasing the expression

level of these two genes can inhibit breast cancer metastasis. According to our

results, lncRNA ENSG00000272620 and ENSG00000279184 cross-regulate

DLX6 and TFF1 via hsa-miR-451a, respectively. Decreasing the expression

level of ENSG00000272620 and ENSG00000279184 can decline the expression

levels of DLX6 and TFF1. The low expression levels of these two genes would

prevent the development of metastatic breast cancer.

3.3.4 Roles of ceRNA networks in KEGG pathways

Some lncRNAs can cross-regulate genes which are involved in KEGG

pathways. Enrichr (http://amp.pharm.mssm.edu/Enrichr/), a gene

enrichment analysis web server, is applied to find out these KEGG

pathways (Kuleshov et al. 2016). 14 KEGG pathways are found with p-values

lower than 0.05. Some of these KEGG pathways are the key pathway in

breast cancer and may be a potential drug target for breast cancer treatment,

such as the chemokine signaling pathway, the cytokine-cytokine receptor

interaction, and the neuroactive ligand-receptor interaction (Park, Rogan,

Tarnowski & Knoll 2012, Lazennec & Richmond 2010, Morales, Planet,

Arnal-Estape, Pavlovic, Tarragona & Gomis 2011). All the KEGG pathways
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Figure 3.6: The ceRNA networks involved in the chemokine

signaling pathway.

are presented in Table. 3.5. In this subsection, we focus on analyzing the

chemokine signaling pathway.

The cross regulation between the lncRNAs and the genes involved in

the chemokine signaling pathway is shown in Figure. 3.6, demonstrating

11 genes related to chemokine signaling pathway are involved in breast

cancer. Of them, CXCL10, CXCL9, CCL11, CCR8, and GNG13 up-

regulate breast cancer, while the other genes download-regulate breast

cancer. Chemokine signaling pathway expresses on the immune cells and

regulates immune responder. However, new evidences show that the gene

in the chemokine signaling pathway also plays a vital role in breast cancer

progression (Lazennec & Richmond 2010). For example, CXCL10 affects

the tumor microenvironment and plays important role in breast cancer

progression (Mulligan, Raitman, Feeley, Pinnaduwage, Nguyen, O’Malley,

Ohashi & Andrulis 2013), CXCL9 is identified as a biomarker in breast

cancer (Ruiz-Garcia, Scott, Machavoine, Bidart, Lacroix, Delaloge & Andre

2010). Regulating these gene can inhibit the growth of breast cancer.
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Table 3.5: KEGG pathways which can be regulated by ceRNA networks

KEGG name P-value Number of gene

Alcoholism 3.62 ∗ 10−19 28

Systemic lupus erythematosus 4.48 ∗ 10−19 25

Viral carcinogenesis 5.04 ∗ 10−5 13

Cytokine-cytokine receptor interaction 1.84 ∗ 10−4 14

Chemokine signaling pathway 3.62 ∗ 10−4 11

Transcriptional misregulation in cancer 3.69 ∗ 10−3 9

Salivary secretion 4.06 ∗ 10−3 6

Neuroactive ligand-receptor interaction 7.92 ∗ 10−3 11

Serotonergic synapse 1.21 ∗ 10−2 6

Oxytocin signaling pathway 1.84 ∗ 10−2 7

Morphine addiction 1.93 ∗ 10−2 5

Circadian entrainment 2.28 ∗ 10−2 5

Renin secretion 2.32 ∗ 10−2 4

Retrograde endocannabinoid signaling 2.88 ∗ 10−2 5
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3.3.5 A ceRNA which may be an efficient drug target

for breast cancer treatment

Two different miRNAs may have common target mRNAs and common target

lncRNAs. A common target lncRNA can cross-regulate mRNAs through

different miRNAs. Therefore, this common target lncRNA is an efficient

drug target for cancer treatment. An example can be found in Figure. 3.7.

The lncRNA ENSG00000261742 competes for binding to hsa-miR-21-5p, hsa-

miR-33a-5p and hsa-miR-184 with HOXA5 and EGR1. EGR1 is known to

up-regulate PTEN which is a key tumor breast suppressor gene (Redmond,

Crawford, Farmer, D’costa, O’brien, Buckley, Kennedy, Johnston, Harkin &

Mullan 2010). It implies that increasing the expression level of EGR1 can

suppress the development of breast cancer. The lowly expressed HOXA5

lead to the functional activation of twist and promoting the development of

breast cancer (Stasinopoulos, Mironchik, Raman, Wildes, Winnard & Raman

2005). Therefore, increasing the expression level of these two mRNAs are

very important for breast cancer treatment.

Hsa-miR-21-5p, hsa-miR-33a-5p, and hsa-miR-184 can regulate the

expression of these two mRNAs. However, only decreasing the expression

level of one miRNA cannot enhance the expression levels of these

two mRNAs, since the high expression of the other miRNA can

decrease the expression of both mRNAs. In our results, increasing the

expression of ENSG00000261742 can enhance the expression of these two

mRNAs by decreasing the expression of these two miRNAs. Therefore,

ENSG00000261742 is an efficient drug target for increasing the expression

of both mRNAs. About all, this ceRNA is suggested to be an efficient drug

target for breast cancer treatment.
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Figure 3.7: A ceRNA network cross-regulates two mRNAs through

three miRNAs.

3.3.6 Comprehensive Comparison with Other

Methods

We compared our prediction results with three existing methods. The first

comparison is with Chen’s method (Chen, Xu, Li, Zhang, Chen, Lu, Wang,

Zhao, Xu, Li et al. 2017) which is based on the idea of Pearson correlation

coefficient. The second comparison is with Paci’s method (Paci et al. 2014)

which is a partial correlation method. The third comparison is with

Sumazin’s method (Sumazin et al. 2011) which is based on the conditional

mutual information. Our method, Chen’s method, Paci’s method, and

Sumazin’s method predicted total 30365, 106045, 15420, and 227755 ceRNA

crosstalks, respectively. Sumanzin’s method identified the most. Figure 3.8

is a Venn graph showing the common and unique ceRNA crosstalks predicted

by these methods. Each boundary line encloses a number of ceRNA crosstalks

predicted by one or more methods; and the intersection areas indicate the

numbers of common ceRNA crosstalks.

Note that 26620 ceRNA crosstalks predicted by our method are also

identified by one of the three existing methods. Our method have more

common ceRNA crosstalks in comparison with Sumazin’s method (21095 of

our predicted ceRNA crosstalks) than the other methods (1168 and 16153

of our predicted ceRNA crosstalks are identified by the Paci’s method and

Chen’s method, respectively). However, 3745 ceRNA crosstakls predicted by

our method are not identified by the other methods.
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Figure 3.8: The common and unique ceRNA crosstalks predicted by

various methods.

Some of these ceRNA crosstalks may regulate breast cancer processes. For

example, the ceRNA crosstalk (ENSG00000272620, hsa-miR-451a, GPR26 ),

which had been showed in Table 1, was able to be predicted by our method

only. Gene GPR26 is a member of G-protein-coupled receptors. The G-

protein-coupled receptors can play key roles in tumorigenesis, angiogenesis,

and metastasis (Singh, Nunes & Ateeq 2015). The ceRNA crosstalk

(ENSG00000250266, hsa-miR-142-3p, PF4 ) is also predicted by our method

but not identified by the other methods. The highly expressed lncRNA

ENSG00000272620 may compete and cross regulate GPR26 for binding to

hsa-miR-451a to influence breast cancer tumorigenesis, angiogenesis, and

metastasis. The lowly expressed lncRNA ENSG00000250266 could not

down-regulate the hsa-miR-142-3p and might lead to lowly expressed PF4.

Lowly expressed PF4 could not suppress breast cancer growth (Nafi, Idris

& Jaafar 2017). LncRNA ENSG00000250266 may be a potential target for

breast cancer treatment.

Many methods, including Paci’s method, identify ceRNA networks only

taking into account the expression data. These methods could find all

the negative and positive expression relationships between the RNAs. It
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seems that these methods are unbiased and preferable to identify ceRNA

networks. However, the competition relationship between RNAs is a specific

relationship (i.e., lncRNA and miRNA are negatively co-expressed; miRNA

and mRNA are negatively co-expressed). Thus, ceRNA networks should all

hold this specific relationship.

3.4 Conclusion and Discussion on Future

Work

In this chapter, we proposed a novel method for constructing ceRNA

networks from paired RNA-seq data sets. We first identify the differentially

expressed lncRNAs, miRNAs, and mRNAs from the paired RNA-seq data

sets. Then we derive the competition regulation mechanism from the

competition rule and construct the candidate ceRNA crosstalks based on

this rule. This competition regulation mechanism is another feature of the

ceRNA network and is useful for constructing ceRNA networks. Finally,

the pointwise mutual information is applied to measure the competitive

relationship between these RNAs to select reliable ceRNA crosstalks to

construct the ceRNA networks. The analysis results have shown that the

function of ceRNA networks is related to the growth, proliferation, and

metastatic of breast cancer. These ceRNA networks present the complex

regulatory mechanism of the RNAs in breast cancer. In addition, the ceRNA

networks suggest a new approach for breast cancer treatment. The ceRNA

hypothesis is still in its infancy, many ceRNA networks have not been

discovered yet. The mutations of miRNA may change existing or lead to

new crosstalk. For example, the 5′ variant of miRNA may bind to different

target mRNA or lncRNA comparing to its wildtype miRNA since the shift

of the seed region of the miRNA. Further, the ceRNA hypothesis illustrates

the complexity of RNA regulatory network. By this hypothesis, some other

complexity networks may exist. Our method for discovering ceRNA network

from the RNA-seq data that contains the expression level of RNA (miRNA,
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lncRNA, and mRNA) is limited to only the tumor and normal tissues, how

to incorporate different tissues that have a matching RNA and miRNA

sequencing data set to extend our analysis is a future direction of our research

in this area.

A lncRNA that is not differentially expressed may contribute to the

sponge mechanism as well (Conte, Fiscon, Chiara, Colombo, Farina &

Paci 2017). In particular, the relative concentration of the ceRNAs and

changes in the ceRNA expression levels are very important for discovering

ceRNA networks (Salmena et al. 2011). Indeed, conditions like the relative

concentration of ceRNAs and their microRNAs or other conditions not

necessarily corresponding to differentially expressed RNAs can be applicable

as starting points to discover ceRNAs. These will be some of our future work

to enrich the ceRNA sponge hypothesis.
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Chapter 4

An isomiR Expression Panel

Based Novel Breast Cancer

Classification Approach using

Improved Mutual Information

4.1 Introduction

In subsection 1.1.2, we presented the miRNA and isomiR formation. The

isomiR is the isoform of miRNA. It could be envisioned that the increased

expression of miRNA variants, or individual isomiRs, lead to the loss or

weakening of the function of the corresponding wild type mature miRNA

or result in the regulation of a different transcriptome. Recent studies

suggest that isomiRs probably play vital roles in a variety of cancers,

tissues, and cell types (Chen & Wong 2017). For example, Juzenas and

colleagues claimed that isomiRs are differentially expressed in different

human blood cell types (Juzenas, Venkatesh, Hübenthal, Hoeppner, Du,

Paulsen, Rosenstiel, Senger, Hofmann-Apitius, Keller et al. 2017). Telonis

and colleagues showed that specific isomiRs could be superior cancer

biomarkers compared to mature miRNAs when they used isomiRs to classify
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32 different cancers (Telonis et al. 2017). Specifically, Telonis and colleagues

demonstrated that miRNA-based analysis was unable to differentiate two

specific subtypes of breast cancer while, in comparison, isomiRs were able

to make clear distinctions between the two subtypes (Telonis et al. 2015).

These findings suggest that isomiRs may play critical roles in differentiating

subtypes of breast cancer and, furthermore, may provide novel insights

into understanding the molecular mechanisms leading to the development

of breast cancers.

Breast cancer is the most common cancer and the second leading cause

of cancer-related deaths among women worldwide (Lynce, Blackburn, Cai,

Wang, Rubinstein, Harris, Isaacs & Pohlmann 2018). Routine clinical

evaluation and diagnosis of breast cancer is categorised into three major

distinct molecular subtypes based on their hormone receptor status: estrogen

receptor (ERα) and progesterone receptor (PR) positive, Herceptin 2

positive (HER2+), and triple negative (ER/PR/HER2 negative) (Patani,

Martin & Dowsett 2013, Goldhirsch, Wood, Coates, Gelber, Thürlimann,

Senn & members 2011, Ellsworth, Blackburn, Shriver, Soon-Shiong &

Ellsworth 2017). However, the link between molecular mechanisms and

disease prognosis defining the breast cancer subtypes is unclear (Taherian-

Fard, Srihari & Ragan 2014). Understanding the mechanisms of breast

cancer subtyping is clinically useful with respect to prognosis, prediction,

and informed therapeutic choices (Santagata, Thakkar, Ergonul, Wang, Woo,

Hu, Harrell, McNamara, Schwede, Culhane et al. 2014). Within the major

breast cancer subtypes, gene expression profiling has been used to further

classify these molecular subtypes with the potential to design more specific

targeted therapies (Lehmann, Bauer, Chen, Sanders, Chakravarthy, Shyr

& Pietenpol 2011). In addition, gene expression profiling has been found

to be more predictive of treatment response. For example, in a study by

Finn and colleagues they showed reclassification of breast cancer subtypes

using an unbiased gene expression profiling technique predicted a better

treatment outcome compared to the conventional breast cancer subtyping
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(ER/HER2 status) (Finn, Dering, Ginther, Wilson, Glaspy, Tchekmedyian

& Slamon 2007). In this study, a subset of three genes expressed in breast

cancer were more likely to predict responsiveness to dasatinib, a small

molecule specific kinase inhibitor. Dasatinib has been used in clinical trials

for hard to treat metastatic breast cancer (Herold, Christina I and Chadaram,

Vijaya and Peterson, Bercedis L and Marcom, P Kelly and Hopkins, Judith

and Kimmick, Gretchen G and Favaro, Justin and Hamilton, Erika and

Welch, Renee A and Bacus, Sarah and others 2011). However, most breast

cancer clinical trial studies using dasatinib are inconclusive and potentially

these studies would benefit from gene profiling to understand the lack of

responsiveness.

Complex genetic diseases, such as breast cancer, inherently pose the

problem to be characterised by a few biomarkers that faithfully characterise

the subtypes of the disease. MiRNAs and isomiRs provide a potentially

better alternative for classifying complex diseases compared to mRNA based

biomarkering since they are regulatory “hubs” of gene expression. Therefore,

the changes in their expression could influence multiple downstream mRNAs

and therefore diverse biological pathways.

In this chapter, we present a novel method that applies isomiR expression

profiles for improved classification of breast cancer types using small RNA

sequencing data available in the TCGA database. Firstly, since the TCGA

dataset has many lowly expressed isomiRs that have significant negative

influence on the identification of biomarkers, these lowly expressed isomiRs

should be removed. The traditional method for removing the lowly expressed

isomiRs is by selecting a ‘hard’ threshold (Juzenas et al. 2017, Telonis

et al. 2017). If the expression levels of an isomiR is lower than this ‘hard’

threshold, this isomiR is viewed as lowly expressed and should be removed.

However, this ‘hard’ threshold may lead to a loss of information (Zhang &

Horvath 2005). In order to tackle this disadvantage, a ‘soft’ method based

on a null hypothesis method was applied, and this method was designed to

remove these lowly expressed isomiRs. Secondly, we utilized an improved
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mutual information method to calculate the weight of each isomiR, which

measured the significance of the isomiR to classify different subtypes of breast

cancer. The higher the weight of the isomiR, the more suitable the isomiR

for classifying different subtypes of breast cancer. The traditional mutual

information can only be used if both the feature and the label are continuous

or discrete data. This improved mutual information can be applied to

features if it is continuous data and the label is discrete data. Finally, a few

isomiRs, which have high weights, were able to classify different breast cancer

subtypes. In order to identify these key isomiRs, the SVM classification

method was used.

Although there are many methods that have been designed for biomarker

discovery, they can be divided into two major categories. The first

category selects a set of biomarkers that can classify the data (Li, Cheng,

Wang, Morstatter, Trevino, Tang & Liu 2017), such as support vector

machine (SVM) (Zhang, Mo, Ghoshal, Wilkins, Chen & Zhou 2017), mutual

information (Zheng & Wang 2018), and swarm optimizer (Gu, Cheng &

Jin 2018). These methods do not calculate the weight of each biomarker and

therefore, the importance of the biomarker in each breast cancer subtype

classification is not known. The weight of the biomarker may reflect its

regulatory importance in the molecular mechanism of the disease; therefore,

it may be worth studying the potential role of gene regulation of highly

weighed biomarkers. Another category of methods view the gene or isomiR

as the feature and calculates the weight of each feature. The weight of the

feature measures the importance of the feature in the classification. The

top N features viewed as biomarkers. Information gain, t-test, and fold

change methods are widely applied to identify biomarkers (Saeys, Inza &

Larrañaga 2007). However, t-tests and fold change methods are not suitable

for identifying biomarkers from the data that has more than two categories.

Although the information gain can be applied to find biomarkers from

multiple categories, this method is very time consuming. Other methods,

such as Fisher (Gu et al. 2011) and correlation coefficient method (Weston,
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Elisseeff, Schölkopf & Tipping 2003), can calculate the weight of each

feature for data that comprises of more than two categories and is less time

consuming than information gain. However, these methods also have their

limitations. The Fisher method is based on the mean and standard deviation

of the dataset and therefore, small data sets, confounded by outliers will

negatively influence the results. If weights of the feature are calculated by the

correlation coefficient method, it challenges the rank features based on their

weights (Yin et al. 2013). Together, all these methods used for identifying

biomarkers have their limitations. Therefore, a novel method is needed to

identify unique, more discrete and effective biomarkers.

4.2 Method

Our method for identifying isomiR biomarkers in different subtypes of breast

cancer is composed of three steps. Firstly, it computes the expression level

of isomiRs in each breast cancer sample and removes the lowly expressed

isomiRs. Secondly, it utilizes improved mutual information to calculate the

weight of each isomiR. Finally, the third step selects the critical isomiRs

for breast cancer subtype classification, for which the SVM classification

method is applied. These key isomiRs are viewed as breast cancer subtype

biomarkers. Figure 4.1 shows the framework of our methodology.

4.2.1 Data Source and Definitions

The expression profiles of isomiRs in breast cancer patients can be

downloaded from TCGA GDC data portal website (https://portal.gdc.

cancer.gov/cart). However, the website does not provide the name of each

isomiR. The nomenclature used in this study for discrete isomiR was derived

from its mature miRNA: the name of the isomiR comprises of the name of the

corresponding wild type miRNA followed by a variant symbol, e.g hsa-miR-

21-5p|3′t-2. The sign | separates the isomiR name into miRNA name and

variant symbol. The variant symbol is divided into two parts by the sign (−).
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Figure 4.1: IsomiR biomarker subtyping methodology. The framework

of the novel methodology designed for breast cancer biomarker subtyping

is composed of three discrete steps from isomiR expression profiling to

identification of key isomiRs used as novel biomarkers.

The first part indicates the variant type of the isomiR. 3′t (5′a) implies that

this isomiR is 3′ trimming (5′ additional) isomiR. The second part denotes the

number of the nucleotide that is trimmed or added. In addition, the number

of reads are not suitable for analyze. Thus, we calculated the RPM (reads per

million mapped reads) of each isomiR. The clinical information of the breast

cancer patients was obtained from the website (https://www.nature.com/

articles/nature11412#supplementary-information). Since the TCGA

website does not provide the expression levels of polymorphic isomiRs, this

kind of isomiR was not taken into consideration in this chapter. Although the
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clinical information contained 824 breast cancer patients, only 698 patients

had valid clinical information. In this chapter, we applied these 698 patients

isomiR expression levels to identify biomarkers that classify breast cancer

subtypes.

The traditional clinical classification method sorts breast cancer into

three different subtypes based on the hormone receptor status. However,

some breast cancer patients proved to be positive in both ERα/PR+ and

HER2+ receptor status. These breast cancer patients were identified as

ERα/PR+ or HER2+ breast cancer subtypes. However, it was not suitable

to classify these breast cancer patients as ERα/PR+ or HER2+ breast cancer

subtype patients. Therefore, these patients were reclassified as a fourth

breast cancer subtype. Together, the breast cancer patients were classified

into four subtypes and the number of patients in each subtype of breast

cancer are shown in Table 4.1.

Table 4.1: Breast cancer subtype reclassification for isomiR identification.
Subtype name ERα+HER2- ERα-HER2+ ERα+HER2+ Triple negative

Number of patient 472 31 76 119

4.2.2 Removal of lowly expressed isomiR

A large amount of isomiRs were identified from the TCGA dataset. However,

many isomiRs had to be removed since they were lowly expressed and had

significant negative effects on the result. We defined in our dataset, that an

isomiR was lowly expressed if the total expression level of the isomiR was

relatively low in the dataset. The total expression level of isomiR was deemed

the sum of the expression level of isomiR in all samples. In order to detect the

distribution of total expression level of isomiRs, a histogram (Pearson 1895)

of which the ‘bin’ of the bar graph equaled 1 was applied. Since the total

expression level of isomiR was wide ranging, this histogram proved to be

very large and therefore the complete histogram could not be displayed in
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this research: the distribution of the total expression level less than 35 is

shown in Figure 4.2.
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Figure 4.2: The distribution of total expression levels of isomiRs.

The x-axis presents the total expression level. The ratio of the isomiRs

was calculated using the number of the isomiRs in the bin divided the total

number of isomiRs. For example, the ratio of the expression level isomiRs

that lower than 1 is about 0.65. This implies that 65% of the isomiRs total

expression level is lower than 1

According to Figure 4.2, about 65% of all isomiRs showed their total

expression level was lower than 1. This implied that most of these isomiRs

were lowly expressed. Further, it denoted that the distribution of the total

expression level of isomiRs followed the exponential distribution. In order to

remove these lowly expressed isomiRs, a null hypothesis method was applied.

This null hypothesis states that: if the total expression level of an isomiR is

very low, this isomiR is a noisy isomiR and should be removed. If the total
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expression level of an isomiR is very high, the null hypothesis can be rejected

and this isomiR is not a noisy isomiR. For given q isomiRs and the expression

level of each isomiR in all breast cancer patients, we first calculated the total

expression level of each isomiR. The total expression level of q isomiRs are

denoted as TE = {te1, te2, . . . , teq}. The significance threshold θ of the

competition score was calculated using the formula:

θ =
q ∗ TE

χ2
1−α/2(q)

Where TE is the mean of all the total expression level of isomiRs, χ2
1−α/2(q)

is the Chi-square with q degree of freedom, and α is the p-value. Here, the p-

value was set at P = 0.05. Only the isomiRs whose total expression level was

smaller than this significance threshold θ, being viewed as lowly expressed,

were removed.

4.2.3 Calculating the weight of isomiR by improved

mutual information

The mutual information is a powerful method in feature selection. Many

mutual information-based feature selection methods have been developed and

the performance has proven to be very good (Li, Cheng, Wang, Morstatter,

Trevino, Tang & Liu 2017). However, these methods has some limitations.

Although some methods select a set of features that are very important

for classification, they do not provide the weight of the feature. Some

methods are applied from the data of which both the feature and the

label are discrete or continuous data. However, these methods were not

deemed suitable for this type of research. Therefore, an improved mutual

information was developed to calculate the weight of each isomiR. This

improved mutual information calculated the weight of each isomiR and

measured the relationship between features and labels.

For any given expression profile of isomiRs, this expression profile has m

isomiR X = {x1, x2, . . . , xm}, n breast cancer patients S = {s1, s2, . . . , sn},
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and the subtype label of the patients Y = {y1, y2, . . . , yn}. xa
τ is defined as

the expression level of isomiR τ in the breast cancer sample a. The min-max

normalization method is applied to scale the expression levels of each isomiR

between 0 and 1. The mutual information between an isomiR xτ and breast

cancer subtype Y is:

I(xτ , Y ) =
1

n

n
∑

i=1

log
f(xi

τ , yi)

f(xi
τ )f(yi)

Where f(xi
τ ), and f(yi) are the density function of isomiR and label,

respectively. f(xi
τ , yi) is the joint density function of isomiR and label.

Since the expression level of isomiR is continuous data while the label is

discrete data, the density function of isomiR and label should be calculated

by different equations:

f(xi
τ ) =

1√
2πn

n
∑

j=1

exp(−(xi
τ − xj

τ )
2

2
)

f(yi) =
1√
2πn

n
∑

j=1

exp(−d(yi, yj)

2
)

Where d(yi, yj) measures the distance between labels yi and yj. If these two

labels are continuous data. The distance between two labels can be calculated

by Euclidean distance. However, the label in this research is discrete data.

The distance of two labels cannot be calculated by Euclidean distance. d(yi,

yj) is 0 if these two labels are the same, and it is 1 otherwise.

Since the improvement in calculating the distance between discrete

labels, the mutual information is applicable for the dataset where the

feature is continuous data and the label is discrete data. The joint density

function f(xi
τ , yi) can be calculated by using two-dimensional Gaussian kernel

estimate:

f(xi
τ , yi) =

1

2πn

n
∑

k=1

exp(−Dk(x
i
τ , yi)

2
)

Where Dk(x
i
τ , yi) =

√

(xi
τ − xk

τ )
2 + d(yk, yi).
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This improved mutual information measured the relationship between

features and labels. If the feature and the label have high co-relationship,

the weight of the isomiR should be large. It implies that this isomiR is more

important for the breast cancer subtype classification.

4.2.4 Identification of isomiR biomarkers that classify

breast cancer subtypes

A few key isomiRs, which have the highest weights, can distinguish between

the different subtypes of breast cancer. These key isomiRs can then be used as

breast cancer biomarkers, and they can be identified through these processes:

sorting isomiRs by using their weights from large to small, then using the

different top N isomiRs to evaluate the performance in the classification

of breast cancer subtypes. The performance of this type of breast cancer

classification will be raised with the increasing number of selected isomiRs.

If the performance of classification by using top N isomiRs is not significantly

raised compared to the performance by using top N + 1 isomiRs, it implies

that these N isomiRs are key isomiRs and can be viewed as biomarkers.

In this chapter, the SVM (Pedregosa, Varoquaux, Gramfort, Michel,

Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg et al. 2011) classifier

was applied to classify different subtypes of breast cancer. According to

Table 4.1, different subtypes of breast cancer have variable numbers of

patients. Around 68% of breast cancer patients are ERα+HER2-, while

nearly 4.4% of breast cancer patients are ERα-HER2+. This dataset is

an imbalanced dataset and the SMOTE method was used to balance the

data (Chawla, Bowyer, Hall & Kegelmeyer 2002). The receiver operation

characteristic (ROC) curve is very popular to judge the discrimination

ability of various statistical methods (Hanley & McNeil 1982). The area

under ROC curve (AUC) measures the performance of the classifier (Ferri,

Hernández-Orallo & Flach 2011). Since this research is a multiclasses

learning, macro-AUC of ROC was used to validate the performance of the

classification (Zhang & Zhou 2014). Further, 5-fold cross-validation was
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applied to evaluate the results.

4.3 Results and Discussion

4.3.1 Characterization of isomiRs identified in

different subtypes of breast cancer

In this study, 20134 different isomiRs were identified in the small RNA

sequencing results of 698 breast cancer patients. However, most of the

isomiRs were lowly expressed. Thus, we removed the lowly expressed

isomiRs by using the null hypothesis method that was described in the

subsection 4.2.2. Finally, 435 isomiRs, whose total expression level was larger

than the significance threshold, were viewed as highly expressed isomiRs.

Among these highly expressed isomiR, 169 isomiRs were 5′ variant isomiRs

and 266 isomiRs were 3′ variant isomiRs. These isomiRs are derived from 169

wild type miRNAs. The distribution expression of these isomiRs and their

miRNAs across different breast cancer subtypes are shown in Figure 4.3 and

Figure 4.4. In Figure 4.3, only the total expression level of the isomiRs, of

which one nucleotide is added at 3′ position, is larger than the expression level

of wild type miRNA. While the expression level of the other 3′ isomiRs is

lowly expressed compare with wild type miRNAs. In Figure 4.4, the isomiR,

which trimmed one nucleotide at the 5′ position, has a similar expression level

to the wild type miRNA. These two isomiRs (which added one nucleotide at

3′ position and trimmed one nucleotides at the 5′ position) may play vital

roles in the breast cancer subtypes. Individual pre-miRNA may produce

many different kinds of isomiRs and the expression level of isomiRs maybe

higher than its wild type miRNA. Figure 4.5 displays the expression level of

miRNA has-let-7d and its isomiRs across different breast cancer subtypes.

We found that different kinds of isomiRs are produced during the miRNA

maturation processes. Further, the expression level of isomiRs may be higher

than the corresponding wild type miRNA.
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Figure 4.3: The distributions of 3′ isomiR and their wild type

miRNAs across different breast cancer subtypes. The x-axis is the

variant symbol. The variant symbol is divided into two parts by the sign

(−). The left part of the sign (−) is the variate type at 3′ position. The

right part of sign (−) is the number of nucleotide added or trimmed at the

3′ position.
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Figure 4.4: The distributions of 5′ isomiR and their wild type

miRNAs across different breast cancer subtypes. The Y-axis is the

total expression level of isomiR (or wild type miRNA). The x-axis is the

variant symbol. The variant symbol is divided into two parts by the sign

(−). The left part of the sign (−) is the variate type at 5′ position. The

right part of sign (−) is the number of nucleotide added or trimmed at the

5′ position.
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Figure 4.5: The distributions of miRNA has-let-7d-5p and its

isomiRs across different breast cancer subtypes. The 3′ (5′) isomiR

could have different lengths. The total expression level of 3′ (5′) isomiR is

the sum of the expression level of different length of 3′ (5′) isomiR.
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Figure 4.6: The performance of classification by using different

number of isomiR. The x-axis is the number of isomiRs that are used

to classify the breast cancer subtype. The Y-axis is the performance of the

classification.
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4.3.2 Identification of isomiRs that classify breast

cancer subtypes

After the characterization of isomiRs in breast cancer, we calculated the

weight of these isomiRs by using improved mutual information. Finally, we

selected different numbers of isomiRs to compute their performance in the

classification of breast cancer subtypes. The results and the Python source

code of our algorithm can be downloaded from the website https://github.

com/ChaowangLan/isomiRbreastsubtype.

According to Figure 4.6, with the increasing number of isomiRs selected,

the performance of the classification was improved. However, when the

number of isomiRs was more than 20, the performance of the classification

plateaued. Therefore, the number of key isomiRs for breast cancer subtype

classification was 20. These 20 isomiRs are viewed as breast cancer subtype

biomarkers. These isomiRs and their weights are listed in the second and

third column of Table 4.2.

Among the isomiRs that faithfully characterize breast cancer subtypes,

7 isomiRs were identified as 5′ variant isomiRs and the other isomiRs were

identified as 3′ variant isomiR. Most of these isomiRs were highly expressed

compared to their corresponding wild type miRNAs. We calculated the ratio

of the expression levels of these isomiRs and their corresponding wild type

miRNAs in different subtypes of breast cancer. These ratios are listed in

Table 4.2. If the expression level of an isomiR was larger than the expression

level of its corresponding wild type miRNA, the ratio was larger than 1.

Among these 20 isomiRs, only hsa-mir-28-3p|3′a-2 and hsa-mir-22-3p|5′t-1
were lowly expressed compare to their corresponding wild type miRNAs,

the other isomiRs were more abundant. These results denote that many

of these isomiR biomarkers are more highly expressed compared to their

corresponding wild type miRNAs.
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Table 4.2: The 20 isomiR biomarkers, their weights, and their ratios

Rank IsomiR name Weight
Ratios

ERα+HER2- ERα-HER2+ Triple negative ERα+HER2+

1 hsa-mir-106b-5p|5′a-1 1.86 ∗ 10−3 19.53 25.56 37.89 16.27

2 hsa-mir-28-3p|3′a-2 1.57 ∗ 10−3 0.51 0.65 0.87 0.53

3 hsa-mir-93-5p|3′a-1 1.46 ∗ 10−3 128.75 161.48 260.60 126.86

4 hsa-mir-106b-3p|5′t-1 1.45 ∗ 10−3 2598.00 3570.00 6163.00 2890.00

5 hsa-mir-106b-3p|3′a-1 1.37 ∗ 10−3 2702.00 3643.00 6395.00 2987.00

6 hsa-mir-17-3p|3′a-1 1.37 ∗ 10−3 1233.00 1601.00 3776.00 1251.00

7 hsa-mir-197-3p|3′a-1 1.19 ∗ 10−3 6.18 10.81 12.87 6.15

8 hsa-mir-92a-1-3p|5′t-1 1.14 ∗ 10−3 1.80 2.26 3.47 1.75

9 hsa-mir-146b-5p|3′a-1 1.13 ∗ 10−3 5.38 7.46 9.93 6.50

10 hsa-mir-210-3p|5′a-1 1.12 ∗ 10−3 15.69 40.67 37.39 20.70

11 hsa-mir-146b-5p|3′a-2 1.07 ∗ 10−3 11.12 15.06 19.60 14.63

12 hsa-let-7i-5p|3′a-1 1.03 ∗ 10−3 1.03 1.46 1.72 1.10

13 hsa-mir-210-3p|3′a-1 1.03 ∗ 10−3 206.94 513.97 497.48 272.43

14 hsa-mir-106b-5p|3′a-1 9.97 ∗ 10−4 46.36 56.38 85.98 39.33

15 hsa-mir-532-5p|3′a-1 9.60 ∗ 10−4 11.98 21.97 17.88 13.88

16 hsa-mir-93-5p|3′t-2 9.26 ∗ 10−4 6.85 7.89 13.59 6.31

17 hsa-let-7d-5p|3′a-1 8.80 ∗ 10−4 2.96 4.32 5.49 3.15

18 hsa-mir-27a-3p|5′t-1 8.51 ∗ 10−4 62.11 104.63 106.78 59.38

19 hsa-mir-22-3p|5′t-1 8.45 ∗ 10−4 0.04 0.05 0.05 0.04

20 hsa-mir-93-5p|5′t-1 8.45 ∗ 10−4 1.80 2.02 3.18 1.58
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4.3.3 Comparing the performance of improved mutual

information to other feature selection methods

Many methods for feature selection have been developed. However, not

all these methods are suitable for the dataset where feature is continuous

data and label is discrete data. In this chapter, we focused on comparing

the performance of our novel method with two popular feature selection

methods. One is the Fisher score and the other is the Hellinger distance-based

method (Gu et al. 2011, Cieslak & Chawla 2008). The AUCs, calculated using

the three different methods and using different numbers of selected isomiRs,

are presented in Figure 4.7. According to this figure, the AUCs show an

increase with the raising of the number of selected isomiRs. However, if the

number of selected isomiRs is larger than 30, the AUCs, which are calculated

by these three methods, do not have significance changes. It indicates that

the number of key isomiRs, by using these three methods, are lower or

equal than 30. However, different methods identify different numbers of

key isomiRs for breast cancer classification. The Fisher method identified

30 key isomiRs while the Hellinger method found 25 key isomiRs. Although

fewer key isomiRs were discovered using Hellinger method, the AUC was

found to be slightly lower than the Fisher method. Our method identified

20 key isomiRs that classify breast cancers, which is the lowest number of

key isomiRs compared to the other methods mentioned, and the AUC was

similar (nearly equal) to the Fisher method. It implied that our method

can use fewer isomiRs as biomarkers to classify different subtypes of breast

cancer

Since we applied all samples to detect the biomarker and SOMTE method

to balance the data, the results are over-optimistic. However, all methods

compared under the same condition. Tshe conclusion drawn from the

comparison may not be affected.
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Figure 4.7: Comparison of our isomiR panel based novel method

classification with other feature selection methods. The x-axis is the

number of isomiRs that are used to classify the breast cancer subtype. Y-axis

is the performance of the classification. The higher the AUC, the better the

classification. Legend: the star represents the novel method described in this

chapter. The circle, and cross sign are the Filter method, and the Hellinger

method, respectively.

4.3.4 IsomiRs are superior biomarkers compared to

protein coding gene expression-based approaches

for the classification of different subtypes of

breast cancer

Over the past decade, many studies have found that protein coding gene

expression data can be used to classify breast cancer subtypes. For instance,

Van and colleagues proposed that a 70-genes’ expression profile can use for

identifying different subtypes of breast cancer (Van De Vijver, He, Van’t Veer,
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Dai, Hart, Voskuil, Schreiber, Peterse, Roberts, Marton et al. 2002), Parker

and colleagues defined the PAM50 genes, which are the most famous

biomarkers for breast cancer subtype classification (Parker et al. 2009), and

Neve and colleagues also applied genes expression data for the classification

of different subtypes of breast cancer (Neve, Chin, Fridlyand, Yeh, Baehner,

Fevr, Clark, Bayani, Coppe, Tong et al. 2006). Their research indicated

that differentially expressed mRNAs can be used as breast cancer subtype

biomarkers.

The TCGA database also provides the expression level of mRNAs in

different subtype of breast cancer. Therefore, we can calculate if isomiR

or gene expression-based profiling performs better for breast cancer subtype

classification. Figure 4.8 presents the AUC by using isomiRs and mRNAs.

According to the comparison in Figure 4.8, the performance of breast cancer

subtype classification using the expression of five mRNAs is very high (the

AUC is near to 0.89). Direct comparison of isomiRs and mRNA (gene

expression) clearly show that fewer isomiRs are needed classify different

subtypes of breast cancer compared to the number of mRNA (genes). With

the increasing number of mRNA, the difference between the two classification

methods is comparable, i.e. when the number of mRNA (gene classification)

is more than 35, the AUC does not show any significant difference. Therefore,

the number of key mRNA is 35, in comparison with isomiR, the key number

is 20, showing fewer isomiRs can classify different subtypes of breast cancer.

This experiment indicates that isomiRs also can be used as biomarkers for the

classification of breast cancer subtypes and, importantly, fewer isomiRs can

be used to classify different subtypes of breast cancer. These results strongly

suggest that isomiRs are more suitable biomarkers compared to biomarkers

based on protein coding gene expression profiles.
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Figure 4.8: Comparison of isomiR and gene classification for breast

cancer subtyping. The x-axis is the number of isomiR that are used

to classify the breast cancer subtype. Y-axis is the performance of the

classification. The higher the AUC, the better the classification. Legend:

the star and circle present the classification using mRNA and isomiR,

respectively.

4.3.5 IsomiRs may play important regulatory roles in

different subtypes of breast cancer

Many studies have found that different categories of isomiRs have different

functions in regulating biological processes. For example, 3′ isomiRs

have low 3′ untranslated region stability and therefore, loose regulation of

mRNAs (Burroughs, Ando, de Hoon, Tomaru, Nishibu, Ukekawa, Funakoshi,

Kurokawa, Suzuki, Hayashizaki et al. 2010). 5′ isomiRs have slightly

altered seed sequences compared to the corresponding wild type miRNAs;

therefore, besides weakening the regulatory effect of the wild type miRNAs
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they can target mRNAs that are significantly different from the wild type

miRNA targeted transcriptome (Tan, Chan, Molnar, Sarkar, Alexieva,

Isa, Robinson, Zhang, Ellis, Langford et al. 2014). Based on sequence

similarities it is possible to predict potential mRNAs that are regulated

by certain miRNAs (Agarwal et al. 2015, Betel, Koppal, Agius, Sander

& Leslie 2010)and therefore, biological pathways that are influenced by

miRNAs and their isomiRs. The elevated levels of isomiRs compared to their

corresponding wild type miRNAs can also be used to predict changes in the

regulation of gene expression in breast cancers that may well provide insight

into the molecular mechanisms leading to breast cancer. We predicted that

the presence of abundant 3′ isomiR develop weakened regulatory effects on

transcripts that are regulated by the corresponding wild type miRNAs. Thus,

mRNAs that are regulated by the wild type miRNAs should show elevated

expression levels when the expression level of isomiRs were significantly

elevated. These targets that may be affected by the accumulation of

3′ isomiRs can be obtained from the miRWalker2.0 website (http://

zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/holistic.html). To

predict potential targets for abundant 5′ isomiRs with modified seed sequence

we used the miRDB website (http://www.mirdb.org/). In order to obtain

the most likely targeted mRNAs, the score of the prediction target gene

should be higher than 95 (the maximum score is 100).

After predicting the sets of potential mRNAs that are affected by the

elevated miRNA isomiR levels, we wanted to characterize what molecular

pathways may be changed in breast cancers. Enrichr (http://amp.pharm.

mssm.edu/Enrichr/), which is a gene enrichment analysis web server,

was applied to find out the Kyoto The KEGG pathway of these target

genes (Kuleshov et al. 2016). 104 KEGG pathways were identified as

significant pathways (the p-value of these pathways were lower than 0.05)

from this website. In this chapter, we selected five pathways have been

computed to be significantly affected by isomiRs to further discuss the

function of the isomiRs in breast cancer. These 5 KEGG pathways are
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presented in Table 4.3.

Table 4.3: Five KEGG pathways which are relative to breast cancer

progresses and subtype classification

KEGG name P-value Number of gene

Pathways in cancer 5.01 ∗ 10−11 96

p53 signalling pathway 1.29 ∗ 10−6 24

MAPK signalling pathway 1.20 ∗ 10−5 56

Insulin signalling pathway 3.16 ∗ 10−3 29

Estrogen signalling pathway 1.79 ∗ 10−2 20

The first two KEGG pathways in Table 4.3 are very important for

analysis of breast cancer outcome (Gasco, Shami & Crook 2002). This data

suggests that isomiRs also play a vital role in breast cancer development.

The clinical breast cancer classification is based on the hormone receptor

status, some of these KEGG pathways are involved in regulating the

hormone receptor status. For example, Neve’s research highlights that up-

regulation of genes involved in insulin/MAPK signaling predicts response to

Herceptin (Neve et al. 2006). It implies that these two signaling pathways

regulate the Herceptin status. According to the third and fourth line of

Table 4.3, isomiRs were shown to influence 56 and 29 genes in MAPK and

insulin signal pathways, respectively. Therefore, isomiRs could affect the

Herceptin statue through these two pathways and lead to the development

of different subtypes of breast cancer. We also identified the estrogen

signalling pathway represented by 20 genes that is potentially affected by

the isomiRs (Table 4.3). It implies that isomiRs could affect the expression

of these genes to influence the estrogen receptor status. Above all, isomiRs

may regulate the hormone receptor status via different KEGG pathways and

therefore, affecting different breast cancer subtypes.
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4.3.6 Assessing the role of individual isomiRs in the

regulation of breast cancer specific pathways

Next, we focused on the further analysis of six isomiRs that have potential

to characterise/classify breast cancer subtypes. Dressman and colleagues

pointed out that there are 18 genes that may delineate the role of estrogen

receptor in breast cancer (Dressman, Walz, Lavedan, Barnes, Buchholtz,

Kwon, Ellis & Polymeropoulos 2001). Transforming growth factor-beta type

III receptor (TGFBR3) and serpin family A member 3 (SERPINA3) are two

of these genes. Accordingly, the miRwalker 2.0 database, TGFBR3 is one of

the potential target genes of hsa-let-7i-5p and SERPINA3 is the target gene

of hsa-mir-197-3p. However, if one nucleotide is added to the 3′ position

of these two miRNAs, then there is a possibility that these isomiRs cannot

efficiently bind to the gene TGFBR3 and SERPINA3, respectively. This is

because the longer sequence alters the stability of the miRNA and cannot

inhibit the expression level of its target gene. Alternatively, 3′ isomiRs could

be a sign of actively turned over miRNA that may have weakened regulatory

functions. In the ER negative breast cancer tumors, most hsa-let-7i-5p wild-

type miRNAs are altered to isomiRs hsa-let-7i-5p|3′a-1 and hsa-mir-197-3p

miRNAs are changed to isomiRs hsa-mir-197-3p|3′a-1. Therefore, they are

predicted to have a weakened affect to inhibit the expression level of TGFBR3

and SERPINA3 and these two genes are highly expressed in the ER negative

breast cancer subtype. Similarly, these two genes are lowly expressed in the

ER positive breast cancer subtype. Table 4.4 displays the average expression

level of these two isomiRs in different subtypes of breast cancer. According to

the average expression levels of isomiRs hsa-let-7i-5p|3′a-1 and hsa-mir-197-

3p|3′a-1 in different subtypes of breast cancer, these two isomiRs are highly

expressed in the ER negative tumors (ERα-Her2+ and triple negative breast

cancer subtype) and lowly expressed in ER positive tumors (ERα+Her2- and

ERα+HER2+ breast cancer subtypes).

The 5′ variant isomiRs have distinct seed sequences compared to the

corresponding wild type miRNAs; therefore, they may regulate a novel set
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Table 4.4: The average expression level of isomiRs and miRNA in each breast

cancer subtype.

IsomiR/miRNA name
Breast cancer subtype

ERα+HER2- ERα-HER2+ Triple negative ERα+HER2+

hsa-let-7i-5p|3′a-1 10.43 13.57 17.09 10.55

hsa-mir-197-3p|3′a-1 26.27 36.33 61.66 25.75

of transcripts relative to the wild type miRNAs. Table 4.5 presents the

predicted target genes of some 5′ variant isomiRs by miRDB database. The

dysregulation of estrogen signalling pathway leads to ER positive breast

cancer and therefore, the genes involved in this pathway may be the most

attractive target for ER positive breast cancer treatment In the first line of

Table 4.5, hsa-miR-93-5p|5′t-1 may bind to gene SHC4. SHC4 is one of the

gene involved in estrogen signalling pathway. The result implies that hsa-

miR-93-5p|5′t-1 may regulate SHC4 and dysregulate the estrogen signalling

pathway. Furthermore, three 5′ variant isomiRs, which exhibited in the

last three lines of Table 4.5, potentially bind to MAPK14, MAPK8, and

RAP1B, respectively. These three genes are the part of the MAPK signaling

pathway, which affects the Herceptin status. These results revealed that 5′

variant isomiRs may bind to genes that regulate hormone receptor status

and therefore, lead to different breast cancer subtypes.

Table 4.5: 5′ variant isomiRs’ predicted target genes

isomiR Predicted target mRNA Score

hsa-miR-93-5p|5′t-1 SHC4 95

hsa-mir-27a-3p|5′t-1 MAPK14 97

hsa-miR-92a-1-3p|5′t-1 MAPK8 97

hsa-mir-106b-3p|5′t-1 RAP1B 95
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4.4 Conclusion

In this chapter, we propose a novel method for identifying isomiR biomarkers

for breast cancer subtyping from small RNA sequencing data. We first

removed the lowly expressed isomiRs from the data sets. Then we calculated

the weight of the isomiR by utilizing the improved mutual information.

The improved mutual information measured the co-relationship between the

expression level of isomiRs and breast cancer subtypes. The higher the co-

relationship between isomiR’s expression and breast cancer subtypes, the

more important the isomiR for breast cancer subtype classification. Further,

this improved mutual information can be applied to the data set that the

feature is continuous data and the label is discrete data. While the traditional

mutual information cannot. Finally, the SVM classifier was applied to

find specific isomiR biomarkers for classification of the different breast

cancer subtypes. This method, proved to be more effective and efficient

in identifying fewer key isomiRs needed for breast cancer subtyping in

comparison to the Fisher and Hellinger methods. Importantly, in this study,

we describe the enhanced identification of isomiR biomarkers for classification

of breast cancer subtypes and, in addition, isomiRs were found to be superior

biomarkers compared to classification based on mRNA gene expression for

this type of classification. Further, applying this improved methodology, we

identified individual isomiRs that may be key in the regulation of specific

breast cancer pathways. There is great potential in exploiting these novel

isomiR regulatory mechanisms as drug-targets for more personalized subtype

breast cancer specific therapies.

Discovery of unique biomarkers in different breast cancer subtype is a

challenge in research, especially since the regulation mechanism of different

breast cancer subtypes is not yet fully understood. Our research provides a

new way to explore the mechanism of breast cancer subtypes.
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Chapter 5

Identification of Glioma

Subtypes Biomarkers through

Information Gain

5.1 Introduction

Glioma is the most common primary central nervous system tumor in

adults (Johnson, Dickerson, Connolly & Gephart 2018). The glioma subtype

classification is based on histopathology and is the foundation to patient

management and clinical investigations (Louis, Ohgaki, Wiestler, Cavenee,

Burger, Jouvet, Scheithauer & Kleihues 2007, Coons, Johnson, Scheithauer,

Yates & Pearl 1997). However, the histopathology-based classification of

glioma subtypes has an issue: it is subjected to significant interobserver

variability. Therefore, making the correct glioma subtype diagnosis is very

challenging (Chen, Smith-Cohn, Cohen & Colman 2017). The glioma

subtype in fact could be classified by some molecular biomarkers (Aldape,

Zadeh, Mansouri, Reifenberger & von Deimling 2015). However, little

is known about the molecular biomarker in classifying different glioma

subtypes. Identifying the biomarker of glioma cancer subtype is very

important for making accurate diagnosis and understanding the molecular
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mechanism of different glioma cancer subtypes (Trabelsi, Chabchoub, Ksira,

Karmeni, Mama, Kanoun, Burford, Jury, Mackay, Popov et al. 2017).

In this chapter, we study the role of isomiRs in classifying different

glioma subtypes from RNA-seq data. 75, 417 isomiRs are identified from the

RNA-seq data. However, most of the isomiRs are lowly expressed and have

significantly negative influence on discovering the glioma subtype biomarker.

Thus, the hypothesis method is applied to remove these lowly expressed

isomiRs. Then, the information gain is used to identify the isomiR which

could classify different glioma subtypes. Since the expression level of the

isomiR is continuous data, the expression level of isomiR should transform

to discrete data before calculating the information gain of the isomiR. Some

of our prediction were further validated in cell lines using molecular biology

approaches. Furthermore, using high throughput immunochemistry assays

we showed that isomiR based prediction could reveal novel molecular markers

to identify glioma subtypes.

5.2 Definition and Materials

The 16 glioma patient tissues were obtained from The Tumour Bank, The

Children’s hospital at Westmead. These glioma patient tissues are classified

three categories: astrocytoma, ependymoma, and glioma cancer cell. The

16 small RNA libraries are prepared using NEBNext Multiplex Small RNA

Library Pre Set 1/2 for Illumina and to be run on 1 HiSeq lane using 50bp

single end reads. Since the availability of a spare lane of the sequencing

machine, we got 2 lanes data for each patient tissue.

The isomiR can be divided into 6 variation types: 1.) 5′

trimming (deleted nucleotides at the 5′ end of the wild type miRNA); 2.)

5′ addition (additional nucleotides at the 5′ end of the wild type miRNA),

3.) polymorphic (nucleotide changes from wild type miRNA), 4.) 3′

trimming (deleted nucleotides at the 3′ end of the wild type miRNA), 5.)

3′ templated addition (added nucleotides to 3′ end of the wild type miRNA
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Table 5.1: The type symbol and the variation form detail of isomiR

Variation Type typesyb Detail

3′ trimming 3′t The length of trimmed sequence

3′ untemplated addition 3′a The sequence added in the 3′ dicing

site

3′ templated addition 3′g The length of sequence mapped to

the miRNA precursor

5′ trimming 5′t The length of trimmed sequence

5′ addition 5′a The sequence added in the 5′ dicing

site

Polymorphic ms Position and original

nucleotide/changed nucleotide

and the added nucleotides can be mapped to the miRNA precursor), and 6.)

3′ untemplated addition (added nucleotides to 3′ end of the wild type miRNA

and the added nucleotides cannot be mapped to the miRNA precursor).

To discriminate different forms of isomiR, we use the symbol

miRNAname|typesyb − detail. Where the miRNAname is the wild type

miRNA name that that produces the miRNA isoform. The typesyb is type

symbol that presents one of the six types of isomiRs (showed in Table e 5.1)

and the Detail describes the length of the addition or trimming, or the

additional sequence at the 3 end, or the changed nucleotide. For instance,

if an isomiR is produced from hsa-let-7c precursor with two nucleotides

trimmed at the 3′ end, this isomiR is described by the symbol hsa-let-7c|3′t-2.
Similarly, hsa-miR-4510|ms-6G/U means that this isomiR is generated from

hsa-miR-4510 precursor with a nucleotide substitution (G change to U) at

the sixth nucleotide.
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5.3 Methods

5.3.1 Threshold selection

Given n total expression levels of isomiRs T = {t1, t2, . . ., tn} which follow

exponential distribution. The small total expression level of isomiR suggests

that this isomiR has limit in regulating the biological process while the

large total expression level of isomiR may have significance in regulating the

biological process. The threshold θ is applied to distinguish the lowly and

highly expressed isomiR. Here, the problem is to reject the null hypothesis.

This null hypothesis is that the total expression level of isomiR is small, that

is, it implies that this isomiR dysfunction the biological process. If the total

expression level of isomiR is very high, the null hypothesis can be rejected

it implies that this isomiR involved in regulating the biological process. The

threshold is defined as:

θ =
n ∗ T
χ2
α/2(n)

Where T is the mean of isomiRs’ total expression level. χ2
α/2(2 ∗ n) is the

value of chi-square random variate with 2 ∗ n degree of freedom that has

probability level α/2. In this research, the probability level α is 0.025. If the

total expression level of an isomiR is larger than θ, this isomiR is viewed as

highly expressed.

5.3.2 Information gain

The information gain is used to discover how many information we can

obtain to classify the data. In this research, the information gain is utilized

to measure the contribution of the isomiR for classifying different glioma

subtypes. If the isomiR has a high information gain, this isomiR may play

important role in classifying different glioma subtypes.

The information gain always used in the discrete data. However, the

expression level of isomiR is continuous data. We should transform the

continuous data into discrete data. The process of transformation is that
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sorting the expression level of isomiR from small to large. Then finding k−1

cut points which divide the expression levels of the isomiR into k categories.

The equal width method and equal frequent method are two classical methods

for transforming continuous data into discrete data. These two methods are

not suitable for our research since the distribution expression levels of isomiRs

in different glioma subtypes are not equal and the number of the patient in

different cancer subtypes are not equal.

In this paper, we propose a distribution-based supervise method to

transform the continuous data to discrete data. For the expression level

of isomiR a in n patients D = {d1, d2, . . . , dn}. Patients are classified into s

cancer subtypes. We define that EXst
a is a set of expression levels of isomiR

a in the cancer subtype st. The median expression level of the isomiR in

subtype group EXst
a is Mst. Sorting all the subtype groups by using the

median expression level of isomiR from small to large. The sorted subtype

group list is presented by {EX1
a , EX2

a , . . . , EXs
a}. For any two adjacency

glioma subtype group EX i
a and EX i+1

a . We find all the expression levels of

isomiR a in EX i
a which is smaller than M i+1 and V i

large is denoted as the

largest value in these expression levels. Similarly, we find all the expression

level of isomiR in EX i+1
a which is larger than M i and V i

small is denoted as

the smallest value in these expression levels. The cut point between subtype

group is EX i
a and EX i+1

a is cpi =
(V i

large
+V i

small
)

2
. Given s subtype, we can

obtain s−1 cut points. These cut points divide the expression levels of isomiR

into s categories C(a) = {c1a, c2a, . . . , csa}. Da(j) is a set of patients that their

expression levels of isomiR a classified in cja. |Da(j)| is the number of patient

in Da(j). P (Dst) and P (Dst
a (j)) are the ratios of the cancer subtype st in D

and Da(j), respectively. The information gain of an isomiR a in classifying

the n patients D is calculated by these equations:

IG(D, a) = H(D)−H(D|a) (5.1)

H(D) =

s
∑

i=1

P (Di) log(P (Di)) (5.2)
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H(D|a) =
∑

j∈C(a)

Da(j)

|S| H((Da(j)) (5.3)

5.4 Result

5.4.1 IsomiRs are highly expressed in gliomas

Recent studies showed that in cancer the expression of isomiRs can

supersede the expression of their corresponding wild type miRNAs (REF).

In order to identify and quantify isomiRs in our glioma samples, we

aligned sequencing reads to the miRNA reference sequences (miRbase) using

Miraligner (Pantano, Estivill & Mart́ı 2009) We use the output of this

software to calculate the expression level of isomiRs. Our analysis identified

75,417 different forms of isomiRs in all glioma samples. The range of different

isomiRs varies from 23,318 to 33,390 in individual gliomas (Figure 5.1). These

isomiRs can be divided into 6 types. We calculate the total expression level

of the 6 types of isomiR in each sample. Figure. 5.2 presents the expression

level distribution of isomiR and wild type miRNA. The expression level of

wild type miRNA, 3′ trimming miRNA and 3′ addition miRNA are the three

most highly expressed miRNA (isomiR) in glioma patients. Specially, the

total expression level of the 3′ trimming isomiR is larger than the expression

level of wild type miRNA. It implies that the 3′ trimming isomiR may play

important role in regulating the glioma.

The isomiR is widely existing in the glioma patients. However, the

expression level of different types of isomiRs are different. Many 5′ variant

isomiRs are likely to trimmed or added with one nucleotide (see in Figure 5.3).

Similarly, 3′ variant isomiRs are more likely to trimmed or added with

one nucleotide (shown in Figure 5.4 and 5.5). According to Figure 5.6,

the nucleotide substitution could be found in all position of the wild type

miRNA. However, the nucleotide substitution at the first position is most

highly expressed in the polymorphic isomiR.
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Figure 5.1: The number of isomiR in each sample. More than twenty

thousand forms of isomiR are identified in each glioma patient. The x-

axis presents the name of the label of glioma sample. GA: patients with

astrocytoma subtype, EPE: patients with ependymoma subtype, and cell

line is the patient with cell subtype.
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Figure 5.2: The expression level of different types of isomiRs and

miRNA. We can found that the expression level of 3′ trimming isomiR is

higher than wild type miRNA and the 3′ untemplated additional isomiR

has comparable expression level to the wild type miRNA. The 3′ trimming

and untemplated isomiRs may play important roles in regulating the gene

pathway of glioma. The expression level of polymorphic, 5′ isomiR, and 3′

templated additional isomiR are related lowly expressed compare to other

types of isomiRs and wild type miRNA.
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Figure 5.3: The expression level distribution of 5′ isomiRs in different

glioma subtypes.The positive value in the x-axis means the isomiR is 5′

trimming isomiR and the negative value implies that the isomiR is 5′ added

isomiR.

5.4.2 Selecting highly expressed isomiRs

Although there are large amount of isomiRs are discovered in glioma patient

sample, many isomRs are lowly expressed, see in Figure 5.7. These lowly

expressed isomiRs have negative influence on the result. Thus, these lowly

expressed isomiRs should be removed.

An isomiR is highly expressed since its total expression level larger than

a threshold θ in order for rejecting the null hypothesis. The method for

calculating the threshold θ is showed in section 5.3. In this research, the

threshold θ is 196.76. There are 2448 isomiRs are defined as the highly

expressed isomiRs. The highly expressed isomiR account for 7.33% to 10.47%

of the entire isomiR in a glioma sample. Although the number of the highly

expressed isomiR is very small, the expression level of different types of

isomiRs are very high.
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Figure 5.4: The expression level distribution of 3′ trimming or

templated additional isomiRs in different glioma subtypes. The

negative value in x-axis indicates that the isomiR is 3′ templated addition

isomiR otherwise is 3′ trimming isomiR.
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Figure 5.5: The expression level distribution of 3′ untemplated

addition isomiRs in different glioma subtypes. The x-axis is the

number of nucleotide added at the 3′ position.

5.4.3 IsomiRs could be biomarkers for classifying

different glioma subtypes

The isomiR that differentially expressed in different glioma subtypes may

reflect molecular differences between gliomas. In order to find out the

differentially expressed isomiR, we apply the information gain. The method

of calculating the information gain is showed in subsection 5.3.2. The

information gain measures the importance of the isomiR in classifying

different glioma subtypes. The higher the information gain, the isomiR is

more likely to be a biomarker for classifying different glioma subtypes. The

information gain has a maximum value, thus the isomiR that has maximum

information gain is the most important for classifying different glioma

subtypes. Finally, we found out 76 isomiRs that have maximum information

gain. All these isomiRs are presented in Table A.1. These 76 isomiRs

contain thirty-one polymorphic isomiRs, eight 3′ templated addition isomiRs,
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Figure 5.6: The expression level distribution of polymorphic isomiRs in different glioma

subtypes. The y-axis is the total expression level of the isomiR. The x-axis is the nucleotide substitution

position of the miRNA.
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Figure 5.7: The PDF of the total expression level of isomiRs. The

expression level of the isomiR is continuous data. A histogram of which the

‘bin’ of the bar graph equaled 1 was applied. X-asix is the bin number. Bin

1 is the number of the isomiR which its expression level is below 1 and bin

2 is the isomiR which its expression level is between 1 and 2. Since the total

expression level of isomiR was wide ranging, this histogram proved to be

very large and therefore, the complete histogram could not be displayed: the

distribution of the total expression level less than 40.
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eleven 3′ trimming isomiRs, nineteen 3′ untemplated addition isomiRs, five

5′ addition isomiRs, and two 5′ trimming isomiRs. Figure 5.8 presents the

expression distribution of two isomiRs that have maximum information gain

and we will discuss their functions in regulating the glioma subtypes in

subsection 5.4.4. According to Figure 5.8, isomiR has-miR-138-5p|3′g-1 is

highly expressed in cell line and lowly expressed in Ependymoma subtype.

While isomiR has-miR-4510|ms-6G/U is highly expressed in Ependymoma

subtype and lowly expressed in cell line subtype.

5.4.4 The role of isomiR in glioma cancer subtypes

The wet-lab experiment is applied to confirm the regulatory mechanism of

the isomiR in glioma cancer subtypes. However, the wet-lab experiment is

not done by myself. I give a brief description and conclusion of the wet-lab

experiment in this chapter.

In the wet-lab experiment, we study the roles of two isomiRs has-miR-138-

5p|3′g-1 and has-miR-4510|ms-6G/U in cancer. The has-miR-138-5p|3′g-1 is

a 3′ isomiR and therefore, it weakens to regulate its two target mRNAs Cyclin

D1 (CCND1 ) and Aurora kinase A (AURKA). The has-miR-138-5p|3′g-
1 is differentially expressed in different glioma subtype. Thus, these two

mRNAs also should differentially expressed in different glioma subtypes. The

immunohistochemistry (IHC) approach is applied to detect whether these two

mRNAs are deferentially expressed in different glioma subtypes. The results

demonstrate that the expression levels of these two mRNAs are co-expression

with has-miR-138-5p|3′g-1 and these two mRNAs are differentially expressed

in different glioma subtype.

The isomiR has-miR-4510|ms-6G/U is a polymorphic isomiR and changed

nucleotide is in the seed region. Thus, this isomiR binds to other mRNAs

compare with its wild type miRNA. According to the target prediction of

miRDB, this isomiR binds to Lin28B which regulates let-7 familly. The

western blot results show that is the has-miR-4510|ms-6G/U could bind to

Lin28B mRNA while the hsa-miR-4510 could not. It implies that the isomiR
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Figure 5.8: The expression distribution of has-miR-138-5p|3′g-1
(A) and isomiR has-miR-4510|ms-6G/U (B) in different glioma

subtypes. The x-axis in this figure is the glioma subtype and the y-axis

is the expression level of the isomiR.
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has-miR-4510|ms-6G/U is become a novel let-7 tumour suppressor family

and regulates let-7 maturation through targeting Lin28B.

5.4.5 Predicting molecular pathways of isomiRs in

glioma subtypes

The isomiR provides a hidden unresarched layer of the gene regulation. 5′

isomiRs could regulate novel target genes and 3′ isomiRs weaken the function

of regulating target genes compare to wild type miRNA. In order to detect

the molecular pathways that influenced by isomiR, we find out genes that

are regulated by isomiRs and then detecting the genes molecular pathway.

The 76 isomiRs that have maximum information gain are key isomiRs in

classifying different glioma subtypes. Thus, we focus on analyzing the

molecular pathways that are regulated by these isomiRs. However, not all the

isomiRs have significance regulate the molecular pathway. This is because

the expression level of some isomiRs are relative low compared with their wild

type miRNAs. The relative lowly expressed isomiRs have limited influence

in regulating their target genes. In this chapter, the isomiR, which the total

expression level is larger than its wild type miRNAs, significance regulates the

gene and then affecting the molecular pathway. Finally, we found 12 isomiRs

that their total expression level were higher than their wild type miRNAs.

These 12 isomiRs include a polymorphic isomiR, three 3′ trimming isomiR,

five 3′ templated additional isomiRs, a 5′ trimming isomiR, a 5′ additional

isomiR, and a 3′ untemplated addition. These isomiRs are hsa-miR-4510|ms-

6G/U, hsa-miR-338-3p|3′t-1, hsa-miR-99a-3p|3′g-1, hsa-miR-190b|3′g-2, hsa-
miR-138-5p|3′g-1, hsa-miR-146b-3p|3′g-1, hsa-miR-146b-3p|5′t-1, hsa-miR-

331-3p|3′t-1, hsa-miR-146b-3p|3′a-C, hsa-miR-29a-3p|5′a-C, hsa-miR-497-

5p|3′g-1, hsa-miR-125b-2-3p|3′t-1.
Different kinds of isomiRs have different regulation mechanism to affect

the gene expression. 3′ isomiRs loose regulation of mRNAs. And the 5′

isomiR and polymorphic isomiR, which the substitute nucleotide at the seed

region, may target mRNAs that are different from the wild type miRNA
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targeted transcriptome. Therefore, we apply the miRwalker2.0 (http://

zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) to discover the target

gene of 3′ isomiR. While using the miRDB website (http://mirdb.org/) to

predict the target gene of the 5′ isomiR and polymorphic isomiRs, which the

substitute nucleotide at the seed region. The predicted target gene which

the predicted score is higher than 95 is viewed as the target gene of the

isomiR. The KEGG pathway of the gene is detected by using the Enrichr

website (http://amp.pharm.mssm.edu/Enrichr/enrich).

5.4.6 Predicting general pathways that miss regulated

due to elevated of 3′ isomiR expression

123 KEGG pathways that losed regulated by 3′ isomiRs are identified as

significance pathway (the p-value of the pathway is lower than 0.05). In this

chapter, we focus on analyzing 5 key glioma relatived KEGG pathways that

are presented in Table 5.2. The first three KEGG pathways showed in this

table are the KEGG pathway that relative to glioma or cancer. The PI3K-

Akt signalling pathway, which is showed in the fourth line of Table 5.2, is very

important in regulating cell growth, proliferation, and survival (Hemmings

& Restuccia 2012). This pathway is elevated in many glioma cells (Haas-

Kogan, Shalev, Wong, Mills, Yount & Stokoe 1998, Hu, Pandolfi, Li,

Koutcher, Rosenblum & Holland 2005). We found that forty-three 3′

isomiRs weaken regulatory effects on genes relatived to PI3K-Akt signalling

pathway. Thus, the gene relatived to PI3K-Akt signalling pathway will be

activated. The activated of the PI3K-Akt signaling pathway allows glioma

cell to apophasis (Cheng, Fan & Weiss 2009). Therefore, this pathway is a

critical for the survival of the glioma cell. p53 signalling pathway regulates

DNA replication and cell division (Harris & Levine 2005). Deregulated

p53 pathway components enhance glioma cell invasion, proliferation and

migration (Zhang, Dube, Gibert, Cruickshanks, Wang, Coughlan, Yang,

Setiady, Deveau, Saoud et al. 2018). The 3′ isomiR weakens the regulatory

effect on genes that regulate p53 signalling pathway and therefore, lead to
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Table 5.2: 3′ isomiRs influence the KEGG pathways that relative to glioma

KEGG pathway P-value Number of gene

Pathways in cancer 4.45 ∗ 10−13 76

Glioma 1.26 ∗ 10−6 17

MicroRNAs in cancer 1.57 ∗ 10−5 37

PI3K-Akt signalling pathway 5.34 ∗ 10−6 43

p53 signalling pathway 6.75 ∗ 10−7 17

glioma cell invasion, proliferation and migration.

5.4.7 Predicting the subtype specific changes of

individual targets of miRNAs based on isomiRs

The polymorphic isomiR that the substitute position at the seed region and

the 5′ isomiR binds to novel genes and then affecting the KEGG pathways.

There are 22 KEGG pathways that p-values are lower than 0.05 are affecting

by the polymorphic isomiR that the substitute position at the seed region

and the 5′ isomiR. We found that these isomiRs also regulate the gene relative

to miRNA in cancer and PI3K-Akt signalling pathway, which is presented

in the first two lines of Table 5.3. Further, four genes regulated by these

isomiRs are involved in mToR signalling pathway, which is in the third line

of Table 5.3. The mToR signalling pathway is critical for cell growth and

survival (Vogt 2001). Regulating this pathway could influence glioma cell

growth and survival. The polymorphic isomiR that the substitute position

at the seed region and the 5′ isomiR regulate novel genes compare with wild

type miRNA and influence KEGG pathway.

5.5 Conclusion

In this chapter, we applied the information gain to identify the isomiR for

classifying different glioma cancer subtypes from RNA-seq data. We found

that the 3′ trimming and untemplated isomiR were highly expressed compare
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Table 5.3: 5′ isomiRs and polymorphic isomiRs effect the KEGG pathways

that relative to glioma

KEGG name P-value Number of gene

PI3K-Akt signalling pathway 1.08 ∗ 10−4 20

MicroRNAs in cancer 0.0135 6

mTOR signalling pathway 0.017 4

with other types of isomiR. Most of the isomiRs were lowly expressed and

should be removed from the dataset. Then, the information gain was applied

to measure the significance of the isomiR in classifying different glioma

subtypes. Since the information gain was used to the discrete data and the

expression level of isomiR is continuous data. We transformed the continuous

data into discrete data by using the distribution-based method. Finally,

we obtained 76 isomiRs that had the maximum information and they may

be very important for classifying different glioma subtypes. These isomiRs

regulated the mRNA which relatived to the molecular pathway of glioma.

The wet-lab experiment demonstrated that the isomiR hsa-miR-4510|ms-

6G/U is a novel member of let-7 tumour suppressor family and regulates

the let-7 maturation by targeting Lin28B mRNA. The hsa-miR-138-5p|3′g-1
isomiR regulates the CCND1 and AURKA which are potential biomarkers

for glioma subtype classification. Discovering the biomarker for classifying

different glioma subtypes is challenge. Our research provides a new way to

explore the glioma subtype biomarkers.
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Summary and Future Work

6.1 Summary

In this thesis, information theory is applied to study the regulation

mechanism of non-coding RNA in human cancer. It is instigated to

contribute more knowledge to the regulation mechanism of non-coding RNA

in human cancers. This thesis mainly focuses on two critical regulatory

mechanism of non-coding RNA in human cancers. The first is the ceRNA

network and the other is the biomarkers for classifying different cancer

subtypes. The pointwise mutual information is used to construct the ceRNA

network in breast cancer, which reflects the competition relationship between

lncRNAs, miRNAs, and mRNAs. The improved mutual information and

the information gain are employed to discover the biomarker for classifying

different breast cancer subtypes and glioma subtypes, respectively.

In Chapter 3, we propose a novel method to construct ceRNA network

in breast cancer. The advantages of this method is that we apply the

competition regulation mechanism is applied to remove the significance

negative ceRNA crosstalk and combining the competition rule and pointwise

mutual information to measure the competition relationship between

lncRNA, miRNA, and mRNA. The results demonstrate that the ceRNA

networks constructed by our method play critical roles in breast cancer
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growth, development, and metastatic.

The Chapter 4 identifies the isomiR biomarker for classifying different

breast cancer subtype by using improving mutual information. The

traditional mutual information could be applied to the dataset which both

the label and the feature are continuous data or both are discrete data.

However, the expression level of the isomiR is continuous data and the

breast cancer subtype is discrete data. Our method improved the mutual

information method and it could be applied to the data set that feature

is continuous data and label is discrete data. The results displays the

improved mutual information is better than other feature selection methods

for discovering isomiRs as biomarkers for classifying different breast cancer

subtypes. Further, the isomiR is better a biomarker than mRNA for

classifying differen breast cancer subtypes.

The Chapter 5 focuses on discovering the isomiR biomarker for classifying

different glioma subtypes. In this research, we analyse the isomiR expression

in different glioma subtypes and find that a few isomiR are highly expressed

while large amount of isomiRs are lowly expressed. These lowly expressed

isomiRs have significance negative influence on discovering biomarker.

Therefore, a hypothesis method is applied to remove these lowly expressed

isomiRs. The information gain is applied to measure the significance isomiR

in classifying different glioma subtypes and 76 isomiRs has the maximum

information gain. The wet-lab experiments reveal that the isomiR could

regulate the mRNA and then influencing the molecular pathway of glioma

subtypes.

6.2 Future Work

Following above our research, we can find that the information theories is a

powerful tool in discovering the regulation mechanism of non-coding RNA in

human cancers. However, the regulation mechanism of the non-coding RNA

in cancers is not fully understood. Therefore, our future work will focus on
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these research topics:

• Constructing the ceRNA network which other RNAs as

ceRNA.

The other RNAs, such as circular RNA (circRNA) and mRNA, also

could be ceRNAs to compete with mRNA to bind to miRNA. Thus, the

other RNAs, miRNA, mRNA are able to construct the ceRNA network.

The ceRNA network, which the lncRNA acts as ceRNA, is a partition

of the RNA regulatory network in breast cancers. Understanding the

comprehensive regulatory mechanism of non-coding RNA in breast

cancer should take all the RNA into consideration.

• Discovering the ceRNA-ceRNA network interaction.

In this thesis, we define the ceRNA network is the interaction between

a miRNA, its target mRNAs and target lncRNAs. One miRNA

may co-regulate with the other miRNA, this co-regulate relationship

connects two ceRNA networks and forms ceRNA-ceRNA interaction

network. CeRNA networks may work synergistically during different

developmental stages or tissues to control specific functions. Analysing

ceRNA interactions in the context of tissue development will provide

insights into the regulation of cell development, as well as the

dysregulation of key mechanisms of pathogenesis (Xu, Feng, Han, Li,

Wu, Shao, Ding, Li, Deng, Di et al. 2016). Cancers are always regulated

by serval different ceRNA networks and two different ceRNA networks

may regulate the same pathway. These two ceRNA networks are very

important in regulating the mechanism of cancer.

• The isomiR as the biomarker in classifying different stages of

cancer.

The stages of cancer describes how far the cancer has grown. For

example, in the stage I, cancer cells are very small in an area.

However, the cancer is spread to other part of the body in stage

IV. Understanding the stage of cancer help doctor to determine the
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treatment and provides the possible outcome. IsomiR performs a good

biomarker for classifying different cancer subtypes. It may be able to

classify different stages of cancers.

• The improvement of the method for calculating the number

of key biomarker.

We can measure the weight of RNA for classifying difference cancer

subtypes. The higher the weight of RNA, the more important for

cancer subtype classification. However, it is challenge to determine

the number of the key biomarker. The traditional method of selecting

key biomarker is experts experience. In this thesis, we provide a

new method (5-fold cross validation) to find out the key biomarker.

However, my method has some limitations. For example, it requires to

observe the trend of the classification result. We hope that the novel

method could find out the number of key biomarker through calculation

not through observation.

• The improvement of the method for calculating the number

of key biomarker.

Feature selection is a good method for identifying biomarkers for

classifying different cancer subtypes. These biomarkers are useful to

diagnosis cancer subtypes. However, not all biomarkers are suitable for

cancer treatment. Identifying the biomarker that suitable for cancer

treatment is a very interesting topic. In order to find out the treatment

related biomarker, we should develop a novel method to find out the

causal relationship between RNA and cancer subtypes.
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Appendix: Long Table

Table A.1: 76 isomiRs that have maximum information

gain and their average expression level in different glioma

subtypes.

IsomiR name
Average expression level

Astrocytoma Ependymoma Cell line

hsa-let-7a-5p|ms-19A/G 14.66 72.14 4.59

hsa-let-7b-5p|ms-17G/C 10.85 33.02 2.34

hsa-let-7b-5p|ms-17G/T 6.73 21.50 1.03

hsa-let-7b-5p|ms-4G/A 13.30 36.43 8.06

hsa-let-7c-5p|3′a-A 825.95 3219.64 132.96

hsa-let-7c-5p|3′a-AC 5.96 28.74 1.31

hsa-let-7c-5p|3′a-AT 37.41 152.39 7.31

hsa-let-7c-5p|3′a-ATT 9.21 43.43 1.88

hsa-let-7c-5p|3′a-C 1653.48 6587.12 287.20

hsa-let-7c-5p|3′a-GC 6.49 44.35 1.50

hsa-let-7c-5p|3′a-GT 38.61 397.72 12.47

hsa-let-7c-5p|3′a-T 23.56 97.37 6.28

hsa-let-7c-5p|3′g-1 472.74 2163.26 98.17

hsa-let-7c-5p|3′t-3 120.45 337.97 20.25
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IsomiR name
Average expression level

Astrocytoma Ependymoma Cell line

hsa-let-7c-5p|ms-10A/G 35.36 119.29 5.53

hsa-let-7c-5p|ms-10A/T 8.74 31.71 0.84

hsa-let-7c-5p|ms-11G/A 15.06 51.10 2.16

hsa-let-7c-5p|ms-13T/A 14.18 49.00 3.00

hsa-let-7c-5p|ms-13T/C 39.99 138.70 6.84

hsa-let-7c-5p|ms-13T/G 12.54 44.31 2.72

hsa-let-7c-5p|ms-14T/A 8.31 29.95 2.16

hsa-let-7c-5p|ms-16T/C 26.51 89.31 4.78

hsa-let-7c-5p|ms-17A/C 10.85 33.01 2.34

hsa-let-7c-5p|ms-17A/T 6.75 21.55 1.03

hsa-let-7c-5p|ms-18T/C 27.69 101.36 5.25

hsa-let-7c-5p|ms-1T/A 22.70 84.37 4.22

hsa-let-7c-5p|ms-1T/C 40.26 140.54 7.13

hsa-let-7c-5p|ms-1T/G 15.81 56.05 3.84

hsa-let-7c-5p|ms-2G/A 8.84 33.68 1.03

hsa-let-7c-5p|ms-3A/G 57.63 210.24 9.75

hsa-let-7c-5p|ms-3A/T 12.21 45.31 3.38

hsa-let-7c-5p|ms-4G/A 9.87 33.92 1.88

hsa-let-7c-5p|ms–1T/C 8.60 31.33 1.13

hsa-let-7e-5p|ms-7A/G 6.17 22.11 4.41

hsa-let-7i-5p|3′a-ATT 17.27 59.56 25.32

hsa-let-7i-5p|ms-4G/A 22.37 73.18 33.38

hsa-miR-100-5p|3′a-CGT 6.73 17.34 30.29

hsa-miR-100-5p|3′a-TA 9.09 21.34 49.70

hsa-miR-125b-2-3p|3′t-1 25.47 143.37 15.19

hsa-miR-125b-2-3p|5′a-A 18.79 74.01 9.19

hsa-miR-132-5p|3′t-2 54.66 13.48 5.34

hsa-miR-132-5p|3′t-3 34.45 6.89 2.16

hsa-miR-132-5p|5′a-A 36.61 13.94 2.72
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IsomiR name
Average expression level

Astrocytoma Ependymoma Cell line

hsa-miR-138-5p|3′g-1 58.30 2.30 104.36

hsa-miR-146b-3p|3′a-C 3.02 37.92 0.94

hsa-miR-146b-3p|3′g-1 21.98 225.04 5.91

hsa-miR-146b-3p|5′t-1 20.89 204.31 5.81

hsa-miR-181d-5p|3′t-2 61.66 10.90 4.13

hsa-miR-190b|3′g-2 1.14 54.47 0.19

hsa-miR-24-3p|3′t-1 904.15 274.95 492.64

hsa-miR-26a-5p|3′a-TA 14.13 31.03 7.41

hsa-miR-26a-5p|3′a-TTT 10.06 28.12 4.59

hsa-miR-29a-3p|5′a-C 897.16 284.33 2352.29

hsa-miR-30a-5p|3′a-T 637.03 1219.70 195.88

hsa-miR-30a-5p|ms-20A/C 15.85 30.51 6.09

hsa-miR-331-3p|3′t-1 27.43 177.00 9.38

hsa-miR-338-3p|3′t-1 23.47 2.26 0.28

hsa-miR-340-3p|3′a-T 107.40 24.58 3.84

hsa-miR-340-3p|3′t-1 93.69 16.12 3.09

hsa-miR-340-5p|3′t-1 493.35 142.01 12.94

hsa-miR-340-5p|3′t-2 142.32 33.79 3.47

hsa-miR-4510|ms-6G/T 13.75 46.82 2.72

hsa-miR-483-3p|3′a-GCT 0.38 29.64 0.66

hsa-miR-497-5p|3′g-1 47.58 99.65 4.41

hsa-miR-497-5p|3′g-2 5.27 29.73 0.84

hsa-miR-497-5p|5′t-1 5.46 27.86 0.84

hsa-miR-92b-3p|ms-23G/A 7.88 172.89 18.38

hsa-miR-9-3p|ms-5A/G 31.42 8.40 0.28

hsa-miR-9-5p|3′a-AA 567.89 198.63 25.69

hsa-miR-9-5p|3′g-2 132.86 59.88 6.38

hsa-miR-9-5p|5′t-1 6794.71 1705.62 153.40

hsa-miR-9-5p|5′t-2 928.13 225.21 23.82
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IsomiR name
Average expression level

Astrocytoma Ependymoma Cell line

hsa-miR-9-5p|ms-18G/T 20.57 10.01 0.84

hsa-miR-98-5p|ms-19T/G 12.31 43.64 2.16

hsa-miR-99a-3p|3′g-1 7.89 63.42 2.16

hsa-miR-99a-5p|3′a-CT 19.31 52.82 4.50
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Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

3′UTR 3′ untranslated region

AUcontent Adenine and uracil content

AUC Area under ROC curve

AURKA Aurora kinase A

BRAF B-Raf Proto-Oncogene

BRAFP1 V-Raf Murine Sarcoma Viral Oncogene Homolog B

Pseudogene 1

C6orf58 Chromosome 6 Open Reading Frame 58

CCND1 Cyclin D1

CLIP Cross-linking immunoprecipitation

DLX6 Distal-Less Homeobox 6

DUXA Double Homeobox A

EGR1 Early Growth Response 1
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EMBL −EBI The European Bioinformatics Institute

ERα Estrogen receptor

FOXA2 Forkhead Box A2

FPKM Fragments per kilo base per million mapped reads

GCcontent Guanine and cytosine content

GFRAL GDNF Family Receptor Alpha Like

GPR26 G Protein-Coupled Receptor 26

HER2+ Herceptin 2 positive

HOXA5 Homeobox A5

isomiR MicroRNA isoform

IHC Immunohistochemistry

INSM1 INSM Transcriptional Repressor 1

KEGG Kyoto Encyclopedia of Genes and Genomes

Lin28B Rotein Lin-28 Homolog B

MAPK14 Mitogen-Activated Protein Kinase 14

MAPK8 Mitogen-Activated Protein Kinase 8

MEOX2 Mesenchyme Homeobox 2

NCBI The National Center for Biotechnology Information

NTSR1 Neurotensin Receptor 1

PAR− CLIP Photoactivatable ribonucleoside-enhanced crosslinking

and immunoprecipitation
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PCR Polymerase chain reaction

PF4 Platelet Factor 4

PR Progesterone receptor

PTBP3 Polypyrimidine Tract Binding Protein 3

PTEN Phosphatase And Tensin Homolog

PTENP1 Phosphatase And Tensin Homolog Pseudogene 1

RAP1B RAP1B

RNA− seq RNA-sequencing

RPKM Reads per Kilo base Million mapped reads

RPM Reads per million mapped reads

SERPINA3 Serpin family A member 3

SHC4 SHC Adaptor Protein 4

SOX17 Sex Determining Region Y-Box 17

SVM Support vector machine

TCGA The Cancer Genome Atlas

TFF1 Trefoil Factor 1

TGFBR3 Transforming growth factor-beta type III receptor

TP53 Tumor Protein P53

ZG16 Zymogen Granule Protein 16

ceRNA Competing endogenous RNA

circRNA Circular RNA
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lncRNA Long non-coding RNA

mRNA Messenger RNA

miRNA MicroRNA

miRP miRNA program

piRNAs Piwi-associated RNAs

pre−miRNA Precursor miRNAs

pri−miRNA Primary miRNA transcripts

siRNA Small interfering RNA

snoRNA Small nucleolar RNA

tsRNA tRNA-derived small RNA
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