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Abstract 

The possibility of graphene-based micro- and nanoelectronic devices that exploit the 

extraordinary electronic properties of graphene is the biggest inspiration behind the 

accelerated development of graphene science and technology. Although the remarkable 

efforts for establishing graphene as a new electronic material began over 15 years ago, 

the actual realisation of graphene devices on a large-scale remains elusive, mainly due to 

feasibility, cost-effectiveness and compatibility issues with the existing semiconductor 

technology and processes. Significant advancements have been achieved in the synthesis 

and establishment of transport properties of epitaxial graphene (EG) on 4H- and 6H-SiC, 

while equivalent progress using silicon (Si) as a platform (via a thin film of 3C-SiC) with 

reliable electrical transport measurements has not been elucidated to date, due to 

limitations such as non-uniform coverage of graphene on 3C-SiC/Si and high density of 

defects within the 3C-SiC.  

In this work, we first show that the heteroepitaxial 3C-SiC on Si as the substrate should 

be carefully approached, as the 3C-SiC/Si heterojunction is electrically unstable and 

prone to severe leakage or parallel conduction. Subsequently, we find that the interface 

instability is due to the diffusion of carbon into the silicon matrix during the 3C-SiC 

growth, creating electrically active interstitial carbon. We overcome these challenges 

using 3C-SiC on a highly-resistive silicon substrate. 

By addressing the parallel conduction issue of the 3C-SiC/Si heteroepitaxial system, in 

this work, we isolate the charge transport properties of epitaxial graphene (EG) grown 

directly on 3C-SiC over large areas via an alloy-mediated method and present 

corresponding physical ab-initio models. Here, we study the properties of EG synthesised 

on 3C-SiC(100) and 3C-SiC(111). The transport properties of EG on 3C-SiC follow a 

similar power-law dependence of sheet carrier concentration and mobility and 

comparable sheet resistance values with the EG on bulk-SiC – although the grain sizes 

for both are vastly different. Furthermore, we find that the transport properties of 

graphene within the observed regime are dominated by the substrate interaction, resulting 

in a large p-type doping, especially for the graphene on 3C-SiC(100). In the case of EG 

on 3C-SiC(111), the presence of buffer layer reduces the substrate interaction and the 

charge transfer up to an extent. This work demonstrates a more compelling need to focus 
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on the engineering of the graphene-substrate interface as opposed to graphene grain sizes 

in order to tune the charge transport properties of the epitaxial graphene for the integration 

of 2D materials in functional nanosystems. 



iii 

Certificate of original authorship 

I, Aiswarya Pradeepkumar declare that this thesis, is submitted in fulfilment of the  
requirements for the award of Doctor of Philosophy, in the Faculty of Engineering at the 
University of Technology Sydney.  

This thesis is wholly my own work unless otherwise reference or acknowledged. In 
addition, I certify that all information sources and literature used are indicated in the 
thesis.  

This document has not been submitted for qualifications at any other academic institution. 

This research is supported by the Australian Government Research Training Program. 

Aiswarya Pradeepkumar 

30/01/2020   

Production Note:

Signature removed prior to publication.



iv 

 

Dedication 

 
This thesis is dedicated to my parents Pradeepkumar P and Vasanthakumari V 

for giving me invaluable educational opportunities 

and my husband Nikhil Das 

for his support, constant encouragement and care 

  



v 

 

Acknowledgements 
 

First of all, I would like to express my sincere gratitude to my supervisor Professor 

Francesca Iacopi for allowing me to join her team, and her kind support throughout both 

my Master’s dissertation and PhD at first from Griffith University and then from UTS. 

Her valuable advises, continuous encouragement and constant support were critical 

throughout the development of my research work. I would also like to thank Dr David 

Kurt Gaskill, my external supervisor for his feedback at every milestone of my project as 

well as for hosting me at his lab in the United States in 2017 and helping me to finalise 

the publications. 

I must acknowledge UTS for awarding me the PhD scholarship for three and a half years 

after my transfer from Griffith University right after my first year. I would like to 

appreciate the support provided by Dr Ronald Shimmon, and Dr Linda Xiao from 

chemical technology unit in the Faculty of Science for allowing to access liquid nitrogen 

for my experiments. My appreciation is extended to all the instrument training and 

technical support offered by Geoffrey McCredie, Katie McBean, Herbert Yuan from 

microstructural analysis unit in the Faculty of Science.  

Part of the sample fabrication reported in this thesis was performed at Griffith University 

and Australian National Fabrication Facility (ANFF, Queensland node) at the University 

of Queensland (UQ). I want to thank the staff members of UQ; Kai-Yu Liu, Elliot Cheng, 

Doug Mair, Wael Al Abdulla, Elena Taran, and Lien Chau for various instrumental 

support. I want to thank Shan Don for the software access support from the Australian 

National Fabrication Facility Design House Virtual Lab.   

My sincere appreciation also goes to ANFF staffs at UNSW, for helping me with dicing 

the wafers used in this study.  

My sincere appreciation also goes to Marcin Zielinski from NOVASIC for proving me 

the 3C-SiC samples throughout my research.  

My sincere thanks also go to Dr Neeraj Mishra, Dr Atieh Ranjbar Kermany, Mr Dayle 

Goding, Dr Mohsin Ahmed, Dr Bei Wang, Dr Zulfiqar Khan, Dr Mojtaba Amjadipour, 

Mr Patrick Rufangura whose collaboration greatly helped in my work.  



vi 

 

Last, but not least, I express my deepest gratitude to my father, mother, husband and all 

family members for their endearing encouragement, and love. 

  



vii 

 

List of Publications 
 

Journal Articles: 

 Aiswarya Pradeepkumar, Mojtaba Amjadipour, Neeraj Mishra, Chang Liu, 

Michael S Fuhrer, Avi Bendavid, Fabio Isa, Marcin Zielinski, Hansika I. 

Sirikumara, Thushari Jayasekara, D. K Gaskill, Francesca Iacopi, p-type epitaxial 

graphene on cubic silicon carbide on silicon ACS Applied Nano Materials 

(2019) 

https://doi.org/10.1021/acsanm.9b02349 

 Aiswarya Pradeepkumar, Marcin Zielinski, Matteo Bosi, Giovanni Verzellesi, D. 

Kurt Gaskill, and Francesca Iacopi Electrical leakage phenomenon in 

heteroepitaxial cubic silicon carbide on silicon. Journal of Applied 

Physics, 123(21), 215103 (2018) 

      https://doi.org/10.1063/1.5026124 

 Aiswarya Pradeepkumar, Neeraj Mishra, Atieh Ranjbar Kermany, John J. Boeckl,  

Jack Hellerstedt, Michael S. Fuhrer, and Francesca Iacopi (2016). Catastrophic 

degradation of the interface of epitaxial silicon carbide on silicon at high 

temperatures. Applied Physics Letters, 109(1), 011604 (2016) 

             http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4955453 

 Aiswarya Pradeepkumar, Neeraj Mishra, Atieh Ranjbar Kermany, John J. Boeckl, 

Jack Hellerstedt, Michael S. Fuhrer, and Francesca Iacopi (2016). Response to 

“Comment on ‘Catastrophic degradation of the interface of epitaxial silicon 

carbide on silicon at high temperatures’” [Appl. Phys. Lett. 109, 196101 

(2016)]. Applied Physics Letters, 109(19), 196102 (2016) 

http://aip.scitation.org/doi/10.1063/1.4967228  

Conference publication: 

 Aiswarya Pradeepkumar, D K. Gaskill, F. Iacopi, "Electrical Challenges of 

Heteroepitaxial 3C-SiC on Silicon", Materials Science Forum, Vol. 924, pp. 297-

301, 2018.  

https://www.scientific.net/MSF.924.297 
 

https://doi.org/10.1021/acsanm.9b02349
https://doi.org/10.1063/1.5026124
http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4955453
http://aip.scitation.org/doi/10.1063/1.4967228
https://www.scientific.net/MSF.924.297


viii 

 

Conference presentations: 

 A. Pradeepkumar, N. Mishra, M. Fuhrer, C. Liu, M. Zielinski, D. K Gaskill, F. 

Iacopi, “Charge transport properties of epitaxial graphene on cubic silicon carbide 

on silicon”, International Symposium of Epi-graphene, TU Chemnitz, August 

2019 (Oral presentation) 

 A. Pradeepkumar, N. Mishra, M. Zielinski, D. K Gaskill, F. Iacopi, “Electrical 

characteristics of epitaxial graphene on silicon”, International Conference of 2D 

Materials, Melbourne, 2018 

 A. Pradeepkumar, D K. Gaskill, F. Iacopi, "Electrical Challenges of 

Heteroepitaxial 3C-SiC on Silicon", International Conference for Silicon Carbide 

and Related Materials', Washington DC, Sept 2017 

 

Patents:  

Australian Provisional Patent Applications; Nos. 2017903720 and 2017904860 [UTS Ref 

DISC-2017-019] - submitted for PCT, 2018 

 

  



ix 

 

Table of Contents 
 

Abstract .............................................................................................................................. i 
Certificate of original authorship .................................................................................... iii 
Acknowledgements ........................................................................................................... v 
List of Publications .........................................................................................................vii 
List of Figures ................................................................................................................. xii 
List of Tables................................................................................................................. xvii 

List of Acronyms............................................................................................................ xix 
Chapter 1: Introduction ..................................................................................................... 1 

1.1 Background and Motivation .................................................................................... 1 
1.2 Significance and Context ......................................................................................... 4 
1.3 Thesis framework .................................................................................................... 5 
1.4 References ............................................................................................................... 6 

Chapter 2: Literature review ............................................................................................. 9 
2.1 Graphene - fundamental characteristics .................................................................. 9 
2.2 The electronic band structure of graphene - electronic properties ........................ 10 
2.3 Graphene growth methods ..................................................................................... 14 

2.3.1 Mechanical exfoliation of single-crystal graphite .......................................... 14 
2.3.2 Chemical vapour deposition on transition metals and dielectric insulators.... 15 
2.3.3 Graphene on semiconductors .......................................................................... 15 

2.3.4 Thermal decomposition of silicon carbide...................................................... 16 
2.3.5 Direct growth of graphene on silicon substrates ............................................. 17 
2.3.6 Graphene on silicon using heteroepitaxial cubic silicon carbide.................... 19 

2.4 Transport properties of graphene........................................................................... 21 
2.3.1 Mechanically exfoliated graphene ............................................................ 21 
2.4.1 CVD graphene grown on copper substrates transferred to SiO2/Si ................ 22 

2.4.2 CVD graphene grown on copper substrates transferred to Ge(001) ............... 22 
2.4.3 Epitaxial graphene on SiC via thermal decomposition................................... 23 
2.4.4 H-intercalation of graphene on SiC ................................................................ 25 

2.5 Direct growth of graphene on silicon .................................................................... 27 
2.5.1 Thermal decomposition of cubic silicon carbide on silicon ........................... 27 
2.5.2 Carrier scattering mechanism in epitaxial graphene ....................................... 30 

2.6 Summary................................................................................................................ 31 

2.7 References ............................................................................................................. 33 



x 

 

Chapter 3: Methodology ................................................................................................. 42 
3.1 Substrate material – heteroepitaxial 3C-SiC/Si ..................................................... 42 
3.2 Graphene synthesis ................................................................................................ 43 
3.3 Electrical characterisation...................................................................................... 44 

3.3.1 Hall Effect Measurement ................................................................................ 44 

3.3.2 van der Pauw sheet resistance measurement .................................................. 45 
3.3.3 Temperature-dependent sheet resistance measurements  ................................ 46 
3.3.4 Transfer Length Method (TLM) structures on 3C-SiC/Si .............................. 46 

3.4 Instrument specifications ....................................................................................... 48 
3.4.1 Hall effect measurement ................................................................................. 48 
3.4.2 TLM leakage resistance measurements on 3C-SiC/Si structures ................... 48 

Structural characterisation of 3C-SiC/Si ..................................................................... 49 

3.4.3 Transmission Electron Microscopy ................................................................ 49 
3.4.4 Scanning Electron Microscopy (SEM) ........................................................... 49 
3.4.5 Stress measurements ....................................................................................... 49 
3.4.6 Sentaurus simulations ..................................................................................... 49 
Surface characterisation of graphene ....................................................................... 50 
3.4.7 Raman spectroscopy ....................................................................................... 50 
3.4.8 X-ray Photoelectron Spectroscopy ................................................................. 50 

3.4.9 Density Functional Theory (DFT) .................................................................. 50 
3.5 Summary................................................................................................................ 51 
3.6 References ............................................................................................................. 51 

Chapter 4: Electrical degradation of the heterointerface of epitaxial silicon carbide on 
silicon .............................................................................................................................. 53 

4.1 Abstract.................................................................................................................. 58 
4.2 Introduction ........................................................................................................... 58 
4.3 Methodologies ....................................................................................................... 59 

4.4 Results and discussion ........................................................................................... 61 
4.5 Conclusions ........................................................................................................... 67 
4.6 References ............................................................................................................. 68 
4.7 Supporting information.......................................................................................... 75 

4.7.1 References....................................................................................................... 77 
Chapter 5: Electrical characteristics of heteroepitaxial cubic silicon carbide on silicon 78 

5.1 Abstract.................................................................................................................. 83 

5.2 Introduction ........................................................................................................... 83 



xi 

 

5.3 Methodologies ....................................................................................................... 84 
5.4 Results and discussion ........................................................................................... 86 

5.4.1 3C-SiC on low-doped silicon.......................................................................... 86 
5.4.2 3C-SiC on high-resistivity silicon................................................................... 92 
5.4.3 Practical solution for the 3C-SiC/Si in-plane leakage .................................... 94 

5.5 Conclusions ........................................................................................................... 95 
5.6 References ............................................................................................................. 96 

Chapter 6: Charge transport properties and electrical conduction in epitaxial graphene 
on cubic silicon ............................................................................................................... 99 

6.1 Abstract................................................................................................................ 103 
6.2 Introduction ......................................................................................................... 104 
6.3 Results and discussion ......................................................................................... 106 

6.3.1 Raman characterization................................................................................. 107 
6.3.2 X-ray Photoelectron Spectroscopy ............................................................... 109 

6.3.3 Electrical characterization............................................................................. 110 
6.4 Conclusions ......................................................................................................... 120 
6.5 Materials and Methods ........................................................................................ 121 
6.6 References ........................................................................................................... 124 
6.7 Supporting Information (SI) ................................................................................ 129 

6.7.1 Raman characterisation ................................................................................. 130 
6.7.2 Graphene layer thickness estimation using XPS data ................................... 134 

6.7.3 Effect on the number of layers of graphene on the transport properties....... 135 
6.7.4 Testing the presence of Ni/Cu metal or metal oxides in the graphene ......... 136 
6.7.5 Electrical characterization............................................................................. 137 
6.7.6 Verifying the coverage of EG on 3C-SiC(100) ............................................ 138 
6.7.7 Density Functional Theory Model  ................................................................ 139 
6.7.8 References..................................................................................................... 140 

Chapter 7: Conclusions and future works ..................................................................... 141 
7.1 References ........................................................................................................... 144 

 

  



xii 

 

List of Figures 
 

Figure 1- 1: 42 years of microprocessor trend data. Original data up to 2010 collected and 
plotted by M. Horowitz et al.2 New data for 2010 - 2017 collected and plotted by K. Rupp 
(Source: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/). ... 1 

Figure 2-1: a) The lattice structure of ideal single-layer graphene made up of two 
sublattices, A and B. The unit cell comprised of two hexagonal vectors a1 and a2 (length 
2.46 Å); (b) Reciprocal lattice of monolayer graphene, defined by the vectors b1 and b2. 
Blue hexagon denotes the first Brillouin zone of graphene, where are Γ, K+, and K- are 
the points of high symmetry.2…………………………………………………………….9 

Figure 2-2: a) The electronic band structure of monolayer graphene.2, 5, 10 The plot shows 
graphene’s electronic bands where the electron and hole states meet at the Dirac point. 
The K+ and K- are the two inequivalent points at the corners of the Brillouin zone (black 
hexagon). The other four corners are equivalent to either K+ and K-, K = 2𝜋𝑎3, b) Linear 
dispersion relation showing the vertically mirrored Dirac cones intersecting at the Fermi 
energy11; c) energy dispersion for an infinite graphene sheet along K- – Γ – K+. The 
pseudospin points parallel or antiparallel towards right moving or left moving particle. 
Pseudospin depends on whether the particle is located below or above the Dirac point or 
in the valley.2 ................................................................................................................... 11 

Figure 2- 3: Dirac dispersions with 2mc2. At m = 0, the bandgap is zero and the dispersion 
is linear at the Dirac point.13 ........................................................................................... 12 

Figure 2-4: Schematics of direct graphene synthesis on epitaxial 3C-SiC100 ................. 20 

Figure 2-5: Structure of monolayer graphene on Si-face SiC(0001) with a buffer layer.122

 ......................................................................................................................................... 24 

Figure 2-6: Mobility and sheet carrier density data of the EG synthesized on Si-face of 
bulk 4H- and 6H-SiC semi-insulating wafers at 300 and 77 K from Tedesco et al.68 
Triangles represent the data of EG on Si-face of SiC; Squares and circles represent the 
data for n-type and p-type EG on the C-face of SiC, respectively. ................................. 25 

Figure 2-7: Structure of a) Monolayer graphene on top of buffer layer/3C-SiC b) Quasi-
free standing bilayer graphene after H-intercalation – buffer layer decoupled from 
substrate forming additional graphene layer.138 .............................................................. 26 

Figure 3-1: Schematics showing the alloy mediated graphitization of 3C-SiC/Si1……...43 

Figure 3-2: a) Schematics of Hall effect phenomenon2 b) van der Pauw contacts on 
Graphene/3C-SiC showing the Hall effect measurement configuration.  ........................ 44 



xiii 

 

Figure 3- 3: Schematics of a) van der Pauw sheet resistance measurement3; b) test 
structure of graphene on 3C-SiC for the sheet resistance measurement configuration….45 

Figure 3-4: a) TLM structure, b) I-V measurement on TLM structure ........................... 46 

Figure 3- 5: Total resistance across the different contact spacing7 ................................. 47 

Figure 3-6: TLM structures on 3C-SiC/Si. Width of the contacts are 500 μm ............... 47 

Figure 3- 7: Ecopia HMS-5300 Hall effect Measurement System with AMP55T ......... 48 

Figure 3- 8: HP 4145B Semiconductor Parameter Analyzer (left) and the probe station 
(right)............................................................................................................................... 48 

Figure 4- 1: Sheet resistance of the 250nm thick as-grown SiC(100) and the vacuum 
annealed SiC(100) at 1100⁰C for 1 hour as a function of temperature in the range between 
5K and 300K……………………………………………………………………………63 

Figure 4-2: Resistivity versus temperature for the annealed SiC(100). Activation energy 
of 44meV is obtained by fitting the data over 30K to 100K (zone II).  ........................... 63 

Figure 4-3: Absolute stress difference of the epitaxial SiC(100) and SiC(111) films before 
and after annealing at 1180⁰C versus film thickness. Each point represents the absolute 
difference of the average stress for the as-grown and the annealed films. The difference 
indicates in all cases a transition towards a more compressive stress state with decreasing 
thickness. Note that the exponential suppression of the stress difference with increasing 
thickness indicates the interfacial nature of the stress change.  ....................................... 65 

Figure 4-4: High-resolution TEM micrographs of the SiC-Si interface of the 250nm-thick 
SiC(100) and SiC(111) films (a) as-grown SiC(100) film (b) SiC(100) film annealed in 
vacuum at 1100⁰C, for 1 hour c) as-grown SiC(111) film d) SiC(111) film annealed in 
vacuum at 1100⁰C, for 1 hour. The SiC/Si interface of both the as-grown SiC films appear 
to be well-defined whereas, the interface of the annealed SiC films appears 
inhomogeneous. .............................................................................................................. 67 

Figure 4-S1: Photolithographic pattern made on the SiC/Si for the electrical 
characterisation3,4 (Courtesy of QMNC, Griffith University)…………………………..76 

Figure 5- 1: a) Layout of the van der Pauw structure on 3C-SiC/Si, b) schematic of 
electrical conduction path in the SiC grown at 1300-1400 °C on the low-doped p-Si 
substrate. The whole silicon substrate is involved in the conduction through the injection 
of holes into the SiC layer……………………………………………………………….86 

Figure 5-2: Plane view SEM images for IMEM-CNR 3C-SiC a) 500 nm-thin SiC(100) 
film on on-axis p-Si; where antiphase boundaries (denoted APB) and stacking faults  



xiv 

 

(denoted SF) are visible; b) 5 μm-thick SiC(100) films on 6° off-axis p-Si substrates; 
APBs and SFs are not visible .......................................................................................... 88 

Figure 5-3: Schematic of Si substrate bending into more convex due to the compressive 
stress exerted by the carbon interstitials within the top portion of silicon.  ..................... 89 

Figure 5-4: TCAD simulation results of the 3C-SiC on low doped p-Si substrate a) 
electron density and b) hole density, in the SiC/Si system before junction degradation (no 
defects); c) electron density and d) hole density, in the SiC/Si system after incorporating 
interstitial carbon degradation within the silicon.  ........................................................... 91 

Figure 5-5: a) TLM structures on the 3C-SiC/high-resistivity Si, b) Fitted TLM leakage 
resistances versus contact spacing for SiC on high-resistivity Si ................................... 93 

Figure 5-6: Schematic of conduction path in 3C-SiC/high-resistivity Si grown at 1300 - 
1400 °C -the conduction occurs within a region of a few micrometres thick below the 
interface. .......................................................................................................................... 94 

Figure 5-7: SiC/high-resistivity Si after ~20 µm deep etching of Si a) TLM structure, b) 
electrical conduction ....................................................................................................... 95 

Figure 6-1: Schematic of the process steps for the alloy-mediated synthesis of graphene 
on the 3C-SiC/Si substrate.20…………………………………………………………..106 

Figure 6-2: Polar plots of Si peak intensity, 3C-SiC TO peak intensity and the ratio of the 
2D to G peak intensity as a function of the relative angle (β) between the polarizations of 
the analyzer and incident laser, for (a) EG/3C-SiC(100); (b) EG/3C-SiC(111)............ 109 

Figure 6-3: XPS C 1s and Si 2p core-level spectrum for; (a) EG/3C-SiC(100) (sample 3 
in Table 2) and (b) EG/3C-SiC(111) (sample 1 in Table 6-2) ...................................... 109 

Figure 6-4: a) van der Pauw geometry with four-point InSn contacts. b) Schematics of 
vdP sheet resistance measurements on bare-Si, 3C-SiC/Si and EG/3C-SiC/Si. 
Temperature-dependent sheet resistance of c) EG/3C-SiC(100), 3C-SiC/Si(100) and 
bare-Si(100); (d) EG/3C-SiC(111) and 3C-SiC/Si(111) and bare Si(111) in the range 
between 80 and 300 K; e) mobility as a function of temperature in the range between 80-
300K for EG/3C-SiC(100) and EG/3C-SiC(111). ........................................................ 113 

Figure 6-5: Mobility and sheet carrier density data of the EG on 3C-SiC/Si (Table 3) are 
here superimposed and remarkably in line with those of EG on Si-face of bulk 4H- and 
6H-SiC 16 x 16 mm2 semi-insulating substrates at 300 and 77 K from Tedesco et al.7 
Reprinted from ref 7. Copyright from 2009 AIP publishing. ........................................ 114 

Figure 6- 6: Electronic band structure for EG on 3C-SiC with top-substrate demonstrating 
the effect of substrate interaction on transport properties of epitaxial graphene. (a) 
Absence of buffer layer (at 100 % oxidation) increase a charge transfer from graphene 



xv 

 

into the oxidized substrate with a Fermi level at 0.55 eV below the Dirac point – can be 
linked to the case of EG/3C-SiC(100); (b) presence of buffer layer (at 60 % oxidation) 
between EG and substrate reduce the charge transfer from graphene giving Fermi level at 
0.43 eV below the Dirac point (EF closer to ED) - reflecting the case of EG/3C-SiC(111). 
Si, C, and O atoms are shown in yellow, black and red spheres. The upper panels show 
the charge density plot. The blue color mesh represents electron accumulation, and red 
color mesh indicates electron depletion. ....................................................................... 117 

Figure 6-7: (a) and (b) XPS C 1s and Si 2p core-level spectrum for a selected EG/3C-
SiC(111) (sample 4) after H-intercalation. (c) and (d) schematic and electronic band 
structure for H-intercalated EG on top-oxidized substrate 3C-SiC(111) with Fermi level 
at 0.32 eV, below the Dirac point (ED-EF) indicating p-type conduction. The upper panel 
in (d) shows the charge density plot. Si, C, O and H atoms are shown in yellow, black, 
red and green spheres. The blue color mesh represents the electron accumulation, and red 
color mesh indicates electron depletion. ....................................................................... 119 

Figure 6-S1: Raman maps of ID/IG and I2D/IG ratios, G and 2D positions, G and 2D FWHM 
across 30 μm x 30 μm for a) EG/3C-SiC(100) –sample 1; b) EG/3C-SiC(111) – sample 
2. (Selected samples from Table 6-2)………………………………………………….130 

Figure 6-S2: Average Raman spectra (30 μm × 30 μm) of EG/3C-SiC(100) and EG/3C-
SiC(111) across 30 μm x 30 μm using 532 nm laser (selected samples from Table 6-2)
 ....................................................................................................................................... 131 

Figure 6-S3: 30 μm x 30 μm Raman peak intensity maps of TS1, TS2 and TS3 turbostratic 
in-plane1 modes identified between 1700 and 2300 cm-1 in the Raman spectra of (a) 
EG/3C-SiC(100) – sample 3; (b) EG/3C-SiC(111) – sample 1 (selected samples from 
Table 6-2) ...................................................................................................................... 132 

Figure 6-S4: Polar plots of Si peak intensity, 3C-SiC TO peak intensity and the ratio of 
the 2D to G peak intensity as a function of the relative angle for (a) EG/3C-SiC(100); (b) 
EG/3C-SiC(111) across 2 different spots separated by 1.5 mm. ................................... 133 

Figure 6-S 5: (a) EDX - no evidence for the presence of nickel or copper metal/metal 
oxides in the graphene. An Oxford INCAx-sight EDX spectroscopy attached to the 
FESEM was used to evaluate the elemental composition of the EG at 10 kV; (b) XPS 
survey spectra of EG/3C-SiC(100) and EG/3C-SiC(111) from Figure 6-3. No XPS peaks 
for nickel/copper metal or metal oxides between the ranges of 850-960 eV.6, 7 ........... 136 

Figure 6-S6: Temperature dependent sheet resistances (a) EG/3C-SiC(100), 3C-SiC(100) 
measurement interrupted at lower temperatures; (b) EG/3C-SiC(111) and 3C-SiC(111) in 
the range between 4K and 300K. .................................................................................. 137 

Figure 6-S7: (a) Sheet resistance (plotted in units of quantum resistance, h/e2) as a 
function of temperature for EG/3C-SiC(100) and EG/3C-SiC(111). (Same samples as 



xvi 

 

reported in Table 6-2 of the manuscript); (b) Graph showing the combined and de-
identified mobility versus sheet carrier concentration data for EG on Si-face SiC from 
literature,8 together with the values for the EG on 3C-SiC from this work. These data as 
a whole can be fitted with good confidence with the same power law, indicating that they 
share a common conductivity of about ~3 ± 1 (e2/h). ................................................... 137 

Figure 6-S8: a) (a) Temperature dependent sheet resistance for EG/3C-SiC(100), 3C-
SiC(100), EG without full coverage on 3C-SiC/Si and EG etched via oxygen plasma (O2 

flow rate of 25 sccm at 150W); (b) average Raman spectra (30 μm × 30 μm) of EG without 
full coverage on 3C-SiC(100) –SiC LO band intensity is substantially higher than 2D; (c) 
Raman peak intensity maps of turbostratic in-plane modes - TS1, TS2 and TS3 of the 
poor coverage EG/3C-SiC/Si. ....................................................................................... 138 

Figure 6-S9: Density functional theory calculation results: schematic of the structure 
calculated (left, carbon is yellow, Si is blue and 3C-SiC structure was used – see main 
text for details) and electronic band structure for EG on 3C-SiC(111) (right) with no 
oxidation at the EG/3C-SiC interface and Fermi level at 0.59 eV (dotted line) above the 
Dirac point resulting n-type sheet carrier concentration of 2 x 1013 cm-2. .................... 139 

Figure 7-1: Cross-sectional view of a top-gate graphene FET…………………………144 

  

  



xvii 

 

List of Tables 
 

Table 3-1 Summary of all the samples used in this work ............................................... 42 

Table 4-1 Electrical characteristics measured at room temperature for in-house 
SiC/Si(100) samples as-grown and after annealing at 1100⁰C (data acquired with setup 
1)………………………………………………………………………………………..61 

Table 4-2 Residual mean stresses (σ) for the as-grown and annealed SiC (100) and 
SiC(111) films and the absolute stress differences between them. The films are of 
different thicknesses and annealed in N2 for 2 hours at different temperatures of 1100⁰C, 
1180⁰C and 1250⁰C. ....................................................................................................... 64 

Table 4-S1 SiC and silicon resistances (leakage) measured at room temperature for in-
house SiC/Si(100) samples as-grown and after annealing at 1100⁰C. Results are the 
averaged values from four measurements………………………………………………76 

Table 5-1 Summary of the samples used………………………………………………..85 

Table 5- 2 Hall measured transport characteristics at room temperature. Results are the 
averaged values extracted from three samples for each type.  ......................................... 86 

Table 5- 3 Hall measured transport characteristics at room temperature for IMEM-CNR 
thin 500 nm and thick 5 μm SiC films grown on the on-axis p-Si and 6° off-axis p-Si 
substrates. Results are the averaged values extracted from three samples for each type.
 ......................................................................................................................................... 87 

Table 5-4 Simulation parameters. ................................................................................... 91 

Table 5-5 Hall measured transport characteristics at room temperature. Results are the 
averaged values extracted from three samples for each type.  ......................................... 93 

Table 5-6 Electrical characteristics at room temperature for SiC/high-resistivity Si before 
and after ~20 µm deep etching of silicon between SiC pillars a) van der Pauw Hall 
measurement results b) TLM leakage resistance results. Results after etching are the 
averaged values of two samples each.............................................................................. 94 

Table 6-1: Summary of attempts to the growth and the transport characterization of 
epitaxial graphene on Si wafers at room temperature.                                                    105 

Table 6-2 Raman mapping characteristics at 300K, for EG on 3C-SiC/Si of both (100) 
and (111) orientations showing grain sizes calculated from intensity ratios of D and G 
bands, peak positions of G and 2D, and FWHM of G and 2D bands. Error bars correspond 
to the standard deviation of the measured values over an area of 30 x 30 cm2............. 107 



xviii 

 

Table 6-3 Hall measured transport properties at 300K. The errors represent the maximum 
variation of the values upon the current sweep from 1 to 10 μA.  ................................. 112 

Table 6-4 Hall characteristics at 300K before and after H-intercalation of EG/3C-
SiC(111) (sample 4) ...................................................................................................... 118 

Table 6-S1: Calculated number of layers for the graphene grown on 3C-SiC(100), 3C-
SiC(111) and H-intercalated EG/3C-SiC(111) based on the XPS C1s spectra………...135 

 

  



xix 

 

List of Acronyms 
 

CMOS Complementary metal-oxide-semiconductor 

2D Two dimensional 

CVD Chemical vapour deposition 

LPCVD Low-pressure chemical vapour deposition 

EG Epitaxial graphene 

3C-SiC Cubic silicon carbide 

SiC Silicon carbide 

SF Stacking faults 

APB Anti phase boundaries 

UHV Ultra-high vacuum 

FET Field-effect transistor 

CNP Charge neutrality point 

MEMS Micro-electro-mechanical systems  

HOPG Highly oriented pyrolytic graphite 

QFMLG Quasi free-standing monolayer graphene 

SEM Scanning electron microscopy 

HRTEM High-resolution transmission electron microscopy 

FIB Focused ion beam 
TLM Transfer length measurement 

ICP Inductively coupled plasma 

RIE Reactive ion etching 

NEXAFS Near edge X-ray absorption fine-structure spectroscopy 

ARPES Angle-resolved photoemission spectroscopy  

XPS X-ray photoelectron spectroscopy 

FWHM Full width at half maximum 

IMFP Inelastic mean free path 

LEEM Low-energy electron microscopy 

DFT Density functional theory  


	Title Page
	Abstract
	Certificate of original authorship
	Dedication
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms



