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ABSTRACT

Research on Object Tracking Technology for Orderless and Blurred Movement

under Complex Scenes

by

Manna Dai

Visual tracking is widely found in anomaly behaviour detection, self-driving,

virtual reality. Recent researches reported that classic methods, including the

Tracking-Learning-Detection method, the Particle Filter and the mean shift, were

surpassed by deep learning in accuracy and correlation filtering in speed. However,

correlation filtering can be affected by boundary effects. The conventional corre-

lation filtering fixes the size of its detection window. When its detection window

only captures partial target images due to large and sudden scale variations, the

correlation filtering fails to locate the tracked target. When the target is undergoing

violent shaking, motion blurs and orderless movements appear along with it. The

conventional correlation filtering locks itself in the previous position of the target,

and hence, the target is out of the sight of the correlation filtering. In this case,

the correlation filtering drifts or fails to track. Therefore, this thesis topic is to

track single-objects under complex scenes with attributes of motion blurs, orderless

motions and scale variations. The main research innovation is listed as follows.

(1) An approach for searching orderless movements is designed in a generative-

discriminative tracking model. To address the uncertain orderless movements, a

coarse-to-fine tracking framework is adopted. A spatio-temporal correlation is learned

for the detection in the subsequent frames. Experiments are conducted on public

databases with orderless motion attributes to validate the robustness of the proposed

approach.

(2) A template matching method is proposed for tracking objects with motion



blurs. An effective target motion model is designed to provide supplementary ap-

pearance features. A robust similarity measure is proposed to address the outliers

caused by motion blurs. Our approach outperforms other approaches in a public

benchmark database with motion blurs.

(3) An ensemble framework is designed to tackle scale variations. The scale of

a target is estimated based on the Gaussian Particle Filtering. A high-confidence

strategy is used to validate the reliability of tracking results. Our approach with

hand-crafted or CNN features outperforms the methods based on correlation filtering

and deep learning in databases with scale variations.

To sum up, this thesis addresses boundary effects, model drifts, fixed search

windows and easily interfered hand-crafted features of objects. Different trackers

are proposed for tracking single-objects with orderless movements, motion blurs and

scale variations. As future work, our methods can be extended to using a neural

network to further improve single-object tracking models.

Dissertation directed by Professors Xiangjian He, Dadong Wang and Shuying Cheng
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Abbreviation

BC - Background Clutters

CLE - Center Location Error

DEF - Deformation

DP - Distance Precision

FFT - Fast Fourier Transformation

FM - Fast Motion

FPS - Frames Per Second

HOG - Histograms of Oriented Gradient

IPR - In-Plane Rotation

ISM - Incremental Similarity Matrices

IV - Illumination Variation

LBP - Local Binary Patterns

LR - Low Resolution

MIL - Multiple Instance Learning

MAP - Maximum a Posteriori

MB - Motion Blur

OCC - Occlusion

OP - Overlap Precision

OPE - One Pass Evaluation

OPR - Out-of-Plane Rotation

OV - Out-of-View

PCA - Principal Components Analysis

PF - Particle Filter
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RBF - Radial Basis Function

SSD - Sum of Squared Differences

SV - Scale Variation

SVM - Support Vector Machine

SVT - Support Vector Tracking



Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(.)T denotes the transpose operation.

G = [Gij]m×n is the identity matrix of dimension m× n.

∑
represents the summation notation.

√ denotes the cube root notation.

∪
represents the intersection operation.

∩
is the union operation.
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