

UNIVERSITY OF TECHNOLOGY SYDNEY
Faculty of Engineering and Information Technology

**LOW-COMPLEXITY DIGITAL MODEM
DESIGN AND IMPLEMENTATION FOR
HIGH-SPEED AERIAL BACKBONES**

by

Hao Zhang

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019

Certificate of Authorship/Originality

I, Hao Zhang, declare that this thesis is submitted in fulfilment of the requirements for the award of PhD, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date:

10/02/2020

ABSTRACT

Wireless communication technology is moving towards the integration of terrestrial networks with space networks. However, a number of grand technological challenges have to be overcome for such integration. This thesis addresses some of these challenges and develops efficient and effective solutions to successfully achieve a high-speed aerial backbone link.

The first challenge is the signal synchronization in presence of large carrier frequency offset (CFO). In this thesis, new methods for preamble-aided coarse timing estimation are investigated. Integrated with simple auto-correlation operation, CFO can be estimated and compensated for better frame synchronization in high-speed aerial backbone links. Moreover, the optimized algorithms can be implemented with low-complexity. Simulation result shows that the proposed method can capture tens of Mega Hertz CFO with rapid convergence.

The In-phase and Quadrature-phase (I/Q) imbalance is another significant factor which impacts on practical wideband wireless backbone systems. An effective algorithm is proposed to estimate I/Q imbalance with specially designed training sequence. After I/Q imbalance estimation, I/Q imbalance compensation is combined with channel equalization as well as sampling rate conversion to form the receiver filters of the system. Simulation result shows that the estimated receiver and transmitter imbalance coefficients are quite close to the true values and the joint algorithm can achieve the desired performance.

Analog-to-digital and digital-to-analog conversion devices for signals with very large bandwidth are not always available due to technical or cost issues. In this thesis, a dual pulse shaping (DPS) transmission scheme is proposed, which can achieve full Nyquist rate transmission with only a half of the sampling rate for each of the two data streams. The condition for cross-symbol interference free transmission is derived and validated for two classes of ideal complementary Nyquist pulses. Structures of the DPS transmitter and receiver are described and low-complexity

equalization techniques tailored to DPS are provided as well. The simulation results with two sets of practical dual spectral shaping pulses verify the effectiveness of the proposed scheme.

Finally, the design and implementation of a high-speed low-complexity digital modem for wireless communications at 0.325 terahertz (THz) are presented. The requirements, architecture and signal processing modules of the system are described. Some key strategies are applied to ensure the proposed low complexity algorithms can be implemented in real-time field-programmable gate array (FPGA) platform. The digital modem implementation and the integrations with IF modules and RF frontend are described and the experimental results of them are provided.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Xiaojing Huang for his continual support and encouragement of my study and PhD research. From employment as a casual staff member in 2015 to undertaking a PhD under him in 2016, I have been grateful for his patient guidance during my journey.

I would also like to thank my co-supervisor Prof. Jay Guo for sharing his valuable experience in support of my research, and I also want to thank A/Prof. Jian Andrew Zhang for his guidance and practical advice in my study period.

Keith Bengston, David Humphrey and Joseph Pathikulangara taught me the finer points of software and firmware design during my time at CSIRO. I am grateful for their advice with difficult technical problems.

Along my path I had many excellent mentors: Dr. Peiyuan Qin, Dr. Can Ding, Dr. Ting Zhang, Dr. Shenghong Li, Dr. Wei Lin, Dr. He Zhu, Dr. Hang Li and Dr. Tom Wang. Collaborating with them has broadened my horizons.

The example of my colleagues Anh Tuyen Le, Yijiang Nan, Shulin Chen, Haihan Sun and Hongyang Zhang provided inspiration that helped me to overcome many difficulties.

Last but not least, I would like to express my gratitude to my family: my father Sumin Zhang, my mother Meiyi Guo and my older brother Fei Zhang for their love and wholehearted encouragement. To my loving, encouraging and patient wife Jieqiong Zhang, without whom none of this would have happened: your faithful support during the long process of undertaking a PhD has made all this possible.

Hao Zhang

August, 2019

List of Publications

Journal Papers

J-1. **Hao Zhang**, Xiaojing Huang, Jian Andrew Zhang and Y. Jay Guo, “Dual Pulse Shaping Transmission and Equalization for High-Speed Wideband Wireless Communication Systems”, submitted to IEEE Transactions on Circuits and Systems I: Regular Papers.

Patent

P-1. Xiaojing Huang, Y. Jay Guo, Jian (Andrew) Zhang and **Hao Zhang**, “Dual Pulse Shaping Transmission System and Method,” AU2018900096, filed on 12 January 2018.

Conference Papers

C-1. **Hao Zhang**, Xiaojing Huang, and Y. Jay Guo, “A 20 Gbps Digital Modem for High-Speed Wireless Backhaul Applications,” presented at the 2017 IEEE 85th Vehicular Technology Conference (VTC2017-Spring), Sydney, Australia, 4 - 7 June 2017.

C-2. **Hao Zhang**, Xiaojing Huang, and Y. Jay Guo, “Low-Complexity Digital Modem Implementation for High-Speed Point-to-Point Wireless Communication,” presented at the 18th International Symposium on Communications and Information Technologies (ISCIT2018), Bangkok, Thailand, 26 - 29 September 2018.

C-3. **Hao Zhang**, Xiaojing Huang, Jian Andrew Zhang and Y. Jay Guo, et al, “A High-Speed Low-Cost Millimeter Wave System with Dual Pulse Shaping Transmission and Symbol Rate Equalization Techniques,” presented at the IEEE International Symposium on Circuits and Systems (ISCAS2019), Sapporo, Japan, 26-29 May 2019.

C-4. **Hao Zhang**, Xiaojing Huang, Ting Zhang, Jian Andrew Zhang and Y. Jay Guo, “A 30 Gbps Low Complexity and Real-Time Digital Modem for Wireless Communications at 0.325 THz,” presented at the 19th International Symposium on Communications and Information Technologies (ISCIT2019), Ho Chi Minh City, Vietnam, 25 - 27 September 2019.

C-5. Xiaojing Huang, **Hao Zhang**, Jian Andrew Zhang and Y. Jay Guo, et al, “Dual Pulse Shaping Transmission with complementary Nyquist Pulses,” presented at the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, Hawaii, USA, 22-25 September, 2019.

Contents

Certificate	ii
Abstract	iii
Acknowledgments	v
List of Publications	vi
List of Figures	xii
Abbreviation	xvi
Notation	xx
1 Introduction	1
1.1 Background	1
1.2 Challenges for ISTN System	3
1.3 Thesis Organization	6
2 Synchronization in Presence of Large CFO	9
2.1 Introduction and Literature Review	9
2.2 Training Sequence Design	11
2.3 Autocorrelation Implementation	13
2.4 Simulation Results	16
2.5 Conclusions	18
3 Joint I/Q Imbalance Compensation and Channel Equalization in SRC Receiver Filters	20

3.1	Introduction and Literature Review	20
3.2	System and Signal Models	23
3.3	I/Q Imbalance Compensation and Channel Equalization	25
3.4	Simulation Results	31
3.5	Conclusions	34
4	Dual Pulse Shaping Transmission System and Method	36
4.1	Introduction and Literature Review	36
4.2	DPS with Complementary Nyquist Pulses	39
4.2.1	Nyquist Theorem	39
4.2.2	Complementary Nyquist Pulses	39
4.2.3	CSI-Free Conditions for DPS Transmission	41
4.2.4	Ideal DPS Pulses	43
4.3	Equalization with Non-Ideal Pulses	47
4.3.1	System and Signal Models	48
4.3.2	Received and Equalized Signal Models	49
4.3.3	ZF Equalization	52
4.3.4	MMSE Equalization	55
4.4	Simulation Results	56
4.5	Conclusion	59
5	High-Speed Digital Modem Implementation for Wireless Communications at 0.325 THz	61
5.1	Introduction and Literature Review	61
5.2	System Description	63
5.2.1	System Requirements	63

5.2.2	System Architecture	64
5.2.3	Physical Layer Protocol	65
5.3	Signal Processing Modules	67
5.3.1	Transmitter Signal Processing	67
5.3.2	Receiver Signal Processing	67
5.4	Ethernet Interface	68
5.4.1	Functional Overview	68
5.4.2	Interfacing Radio PCS	69
5.4.3	Ethernet Interface Architecture	70
5.5	Implementation of Transmitter and Receiver Filters	71
5.5.1	Transmitter Filter	71
5.5.2	Receiver Filter	73
5.6	Key Strategies for Implementation on FPGA	74
5.6.1	FPGA	74
5.6.2	Key Strategies	78
5.7	Implementation Results	82
5.8	Experimental Results of Digital Modem	84
5.9	Integration with IF Module	85
5.9.1	Test Setup	85
5.9.2	Experimental Results	87
5.9.3	Channel Pre-equalization	89
5.9.4	BER Test with Real-Time Ethernet Traffic	92
5.10	Integration with RF Frontend	98
5.10.1	Architectures of THz RF Frontend	98

5.10.2 Test Setup and Experimental Results	99
5.11 Conclusion	101
6 Conclusions and Future Work	103
6.1 Summary of Contributions	103
6.2 Future Work	105
6.2.1 Dealing with Nonlinear Channels	105
6.2.2 Achieving Higher-Speed Wireless Communication Systems . .	106
6.2.3 Reducing System Complexity	106
Bibliography	108

List of Figures

2.1	Training sequence design.	13
2.2	Using autocorrelation for coarse timing.	13
2.3	CFO=30 MHz estimation under 8 dB SNR.	16
2.4	CFO=10 MHz estimation under 8 dB SNR.	17
2.5	BER performance (uncoded) with and without 10 MHz CFO.	17
2.6	Coarse timing detection probability and missed detection probability versus SNRs (CFO = 0).	18
2.7	Coarse timing detection probability and missed detection probability versus SNRs (CFO = 10 MHz).	19
3.1	Baseband block diagram of a point-to-point wireless communication system with the disclosed successive I/Q imbalance estimation and compensation.	23
3.2	Transmitter frame structure.	26
3.3	Flow graph of Rx I/Q imbalance estimation.	27
3.4	Linear filter structure for Rx I/Q imbalance compensation.	28
3.5	Flow graph of Tx I/Q imbalance estimation.	29
3.6	Receiver filter bank (upper) and polyphase filter (lower) structures. .	31
3.7	Estimated channel frequency response and refined channel after I/Q imbalance compensation.	32

3.8	Real (a) and image (b) parts of estimated and true Tx I/Q imbalance coefficients.	33
3.9	Real (a) and image (b) parts of estimated and true coefficients for Rx I/Q imbalance compensation filter.	33
3.10	BER performance (uncoded) with and without Tx or Rx I/Q imbalance compensation.	34
4.1	Waveforms of (a) RCRC pulses, (b) auto-correlation of RCRC pulses, and (c) cross-correlation of RRC and RCRC pulses.	45
4.2	Waveforms of (a) ORCRC pulses, (b) auto-correlation of ORCRC pulses, and (c) cross-correlation of RRC and ORCRC pulses.	47
4.3	Dual pulse shaping transmitter (a) and receiver (b).	48
4.4	Dual pulse shaping scheme 1.	57
4.5	Dual pulse shaping scheme 2.	58
4.6	Dual pulse shaping and RRC spectra.	58
4.7	PAPR comparison.	59
4.8	BER comparison (solid and dashed lines for ZF and MMSE equalization, respectively).	60
5.1	The backhaul system architecture with only half of the proposed 20 Gbps digital modem.	64
5.2	The frame structure of the physical layer protocol.	65
5.3	Transmitter signal processing diagram.	67
5.4	Receiver signal processing diagram.	68
5.5	MAC with two PHY channels.	69
5.6	The 66B bridge architecture.	70

5.7	The Ethernet interface architecture.	71
5.8	Structure of Tx filter for one sample.	72
5.9	Structure of addition tree for the real/imaginary part of one symbol. .	73
5.10	FPGA structure.	75
5.11	A slice of Virtex 7 FPGA.	76
5.12	Flexibility feature of FPGA.	78
5.13	Essential constraints applied to FPGA device.	82
5.14	Route result for the whole system.	84
5.15	Frequency tones used to check I/Q imbalance: tones at input to D/A (a) and tones at output from A/D (b).	85
5.16	16-QAM constellation obtained through external baseband loopback. .	86
5.17	Structure of test setup.	86
5.18	A picture of 20 Gbps digital modem and test setup.	87
5.19	A picture of IF link with additive noise.	88
5.20	A picture of spectrum analyzer and switch driver.	88
5.21	Four channels of IF signal.	89
5.22	Frequency response of LSB2 (a), LSB1 (b), USB1 (c) and USB2 (d) channels.	90
5.23	Tx filters without pre-equalization.	91
5.24	Tx filters with pre-equalization of (a) real part and (b) imaginary part. .	91
5.25	Real parts of Rx filters (a) without pre-equalization and (b) with pre-equalization.	92
5.26	Constellations (a) without pre-equalization and (b) with pre-equalization.	92
5.27	Spirent TestCenter user interface.	95

5.28 BER test results for individual channels with adjacent channel interference.	96
5.29 BER test results for all four channels.	97
5.30 Block diagram of THz communication system.	98
5.31 Frequency conversion from baseband to RF.	99
5.32 THz system and test setup.	100
5.33 Measured constellations under various loopback tests: Baseband (a), IF (b) and RF (c).	101

Abbreviation

3GPP - Third generation partnership project

A/D - Analog-to-digital conversion

AWGN - Additive white Gaussian noise

ASIC - Application specific integrated circuit

BER - Bit error rate

BRAM - Block random-access memory

CLB - Configurable logic block

CFO - Carrier frequency offset

CP - Cyclic prefix

CSI - Cross-symbol interference

CRC - Complementary raised-cosine

D/A - Digital-to-analog conversion

DFTs - Discrete Fourier transforms

DPS - Dual pulse shaping

DSP - Digital signal processing

EVM - Error vector magnitude

FDM - Frequency domain multiplexing

FEC - Forward error coded

FF - Flip-flop

FFT - Fast Fourier transform

FPGA - Field-programmable gate arrays

FTN - Faster-than-Nyquist

GbE - Gigabit Ethernet

Gbps - Gigabit per second

GEO - Geostationary Earth orbit

Gsps - Giga samples per second

HDL - Hardware description language

HTS - High-throughput satellite

IDFT - Inverse discrete Fourier transform

I/Q - In-phase and quadrature-phase

IP - Intellectual property

IoT - Internet of thing

ISI - Inter-symbol interference

ISTN - Integrated space and terrestrial network

LDPC - Low density parity check

LEO - Low Earth orbit

LO - Local oscillator

LOS - Line-of-sight

LS - Least square

LNA - Low noise amplifier

LSB - Lower signal band

LTE - Long term evolution

LUT - Look-up table

MAC - Medium access control

MEO - Medium Earth orbit

MHz - Mega Hertz

ML - Maximum likelihood

MMSE - Minimum mean square error

mm-wave - Millimetre wave

NRZ - Non-return-to-zero

OFDM - Orthogonal frequency-division multiplexing

ORCRC - Odd root complementary raised-cosine

PAPR - Peak-to-average power ratio

PCS - Physical coding sub-layer

PHY - Physical layer

PMA - Physical medium attachment

PMD - Physical medium dependent

PN - Pseudo noise

QAM - Quadrature amplitude modulation

RAM - Random-access memory

RC - Raised-cosine

RCRC - Root complementary raised-cosine

RF - Radio frequency

ROM - Read-only memory

Rx - Receiver

RRC - Root raised-cosine

RZ - Return-to-zero

SC - Single carrier

SC-FDE - Single carrier frequency domain equalization

SPS - Single pulse shaping

SRC - Sampling rate conversion

SNR - Signal to noise ratio

THz - Terahertz

Tx - Transmitter

UAS - Unmanned aircraft system

UAVs - Unmanned aerial vehicle

USB - Upper signal band

ZF - Zero forcing

Nomenclature and Notation

Bold capital letters denotes matrixess.

$(\cdot)^H$ denotes matrix conjugate and transpose.

$tr \{\cdot\}$ denotes the trace of a matrix.

$\|\cdot\|^2$ stands for the squared Frobenius norm of a matrix.

$E\{\cdot\}$ denotes expectation.