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ABSTRACT

Wireless communication technology is moving towards the integration of ter-
restrial networks with space networks. However, a number of grand technological
challenges have to be overcome for such integration. This thesis addresses some of
these challenges and develops efficient and effective solutions to successfully achieve

a high-speed aerial backbone link.

The first challenge is the signal synchronization in presence of large carrier fre-
quency offset (CFO). In this thesis, new methods for preamble-aided coarse timing
estimation are investigated. Integrated with simple auto-correlation operation, CFO
can be estimated and compensated for better frame synchronization in high-speed
aerial backbone links. Moreover, the optimized algorithms can be implemented with
low-complexity. Simulation result shows that the proposed method can capture tens

of Mega Hertz CFO with rapid convergence.

The In-phase and Quadrature-phase (I/Q) imbalance is another significant fac-
tor which impacts on practical wideband wireless backbone systems. An effective
algorithm is proposed to estimate 1/Q imbalance with specially designed training
sequence. After 1/Q imbalance estimation, 1/Q imbalance compensation is com-
bined with channel equalization as well as sampling rate conversion to form the
receiver filters of the system. Simulation result shows that the estimated receiver
and transmitter imbalance coefficients are quite close to the true values and the joint

algorithm can achieve the desired performance.

Analog-to-digital and digital-to-analog conversion devices for signals with very
large bandwidth are not always available due to technical or cost issues. In this
thesis, a dual pulse shaping (DPS) transmission scheme is proposed, which can
achieve full Nyquist rate transmission with only a half of the sampling rate for each of
the two data streams. The condition for cross-symbol interference free transmission
is derived and validated for two classes of ideal complementary Nyquist pulses.

Structures of the DPS transmitter and receiver are described and low-complexity



equalization techniques tailored to DPS are provided as well. The simulation results
with two sets of practical dual spectral shaping pulses verify the effectiveness of the

proposed scheme.

Finally, the design and implementation of a high-speed low-complexity digital
modem for wireless communications at 0.325 terahertz (THz) are presented. The re-
quirements, architecture and signal processing modules of the system are described.
Some key strategies are applied to ensure the proposed low complexity algorithms
can be implemented in real-time field-programmable gate array (FPGA) platform.
The digital modem implementation and the integrations with IF modules and RF

frontend are described and the experimental results of them are provided.
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Nomenclature and Notation

Bold capital letters denotes matricess.
() denotes matrix conjugate and transpose.
tr{.} denotes the trace of a matrix.
||| * stands for the squared Frobenius norm of a matrix.

E{.} denotes expectation.
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