
Received January 3, 2019, accepted February 3, 2019, date of publication February 14, 2019, date of current version March 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898751

Novel Multi-Keyword Search on Encrypted
Data in the Cloud
YUNYUN WU 1, JINGYU HOU 2, JING LIU3,
WANLEI ZHOU4, (Senior Member, IEEE), AND SHAOWEN YAO3
1School of Information Science and Engineering, Yunnan University, Kunming 650091, China
2School of Information Technology, Deakin University, Burwood, VIC 3125, Australia
3School of Software, Yunnan University, Kunming 650091, China
4School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia

Corresponding authors: Jingyu Hou (jingyu.hou@deakin.edu.au) and Shaowen Yao (yaosw@ynu.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 61363084 and Grant 61863036, and in part by
the China Scholarship Council Program.

ABSTRACT Searching on encrypted data has become a very important technique in cloud computing. Such
searches enable the data owner to search on the encrypted data stored on the cloud without leaking any
information. To obtain a better search experience, researchers have proposed many schemes which mainly
focus on conjunctive and disjunctive keyword searches. However, conjunction of all the keywords may result
in very few results, whereas a disjunction will return toomany results.With the current schemes, customizing
the relevancy of the keywords to obtain the desired results is difficult. To solve these problems, we propose
a novel scheme that supports the search with the user-specified number of keywords contained in the search
result. This number n can be used to customize the keyword relevancy. As a result, the data owner could
obtain the desired search results containing any n keywords of a keyword set. The proposed scheme also
supports the traditional disjunctive and conjunctive keyword searches when n equals 1 or the size of the
keyword set, respectively. The keyword could be positive or negative.We first formally define its security and
then prove that the proposed scheme is secure against the adaptively chosen keyword attack in the standard
model and can defend against the offline keyword guessing attack to some extent. Furthermore, we present a
theoretical performance comparison with other schemes as well as the experimental performance evaluations
on our implemented scheme.

INDEX TERMS Searchable encryption, multi-keyword search, cloud security, privacy protection.

I. INTRODUCTION
As cloud technology continuously develops, more companies
are preferring to provide their services in the cloud. There-
fore, it is very common for users to submit their private
information to cloud servers for services. However, if the
cloud server that hosts the private data from multiple users
is untrusted, the data will be completely exposed to attackers.
A common approach to solve this problem is to encrypt the
data. Once the data have been encrypted, the server can-
not reveal the data. Therefore, it is necessary to search the
encrypted data without breaking the confidentiality of the
data.

Public-key encryption with keyword search (PEKS) was
first proposed by Boneh et al. [1] which enables to search

The associate editor coordinating the review of this manuscript and
approving it for publication was Tariq Ahamed Ahanger.

on the encrypted data. In PEKS, a data sender generates a
searchable ciphertext by using the intended data receiver’s
public key and stores it on the cloud. The data receiver could
output a search token which is related to a keyword by means
of his/her private key and sends a search request to the cloud
server. The cloud server searches on the ciphertext with the
search token and sends the relevant results back to the data
receiver.

Early PEKS schemes [2], [3] focused almost exclusively
on a single keyword search. To enhance the user’s search
experience, more and more expressive schemes that sup-
port conjunctive [4]–[6], disjunctive [7]–[10], negative [11]
keywords, range (such as greater-than) [12] and subset
queries [13], [14] were also proposed. However, the existing
PEKS schemes cannot well apply in such a scenario. Suppose
a user wants to search for some information with a keyword
set K = {A,B,C,D,E}. A conjunction of all the keywords

31984
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-6232-1729
https://orcid.org/0000-0002-6403-9786

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

may result in very few results, whereas a disjunction of these
keywords may return too many results. In order to get the
desired results, the user may search with a relevance number
n to find the results which contain any n keywords of the
keyword set K . Assume n=3, by just using conjunctions and
disjunctions, the search expression would be:

(A ∧ B ∧ C) ∨ (A ∧ C ∧ D) ∨ . . . ∨ (C ∧ D ∧ E).

There are nine disjunctions and twenty conjunctions. This
is a very laborious task. Therefore, it is worth computing the
equation by one operation.

A. CONTRIBUTIONS
We solve the above problem by proposing a novel
multi-keyword search scheme which is based on public-key
encryption; thus, it is called the public-key encryption with
expressive multi-keyword search (PEMKS). We denote a
threshold n as the relevancy. By customizing the relevancy,
the data owner can search for the results that contain any n
keywords of a keyword set. The disjunctive and conjunctive
keyword searches can be viewed as two special cases of the
searches when n is equal to one or the size of the keyword set,
respectively.

The proposed scheme borrows the idea of the attribute-
based encryption [15] by representing the attributes as the
keywords and the access policy as the search expression to
enhance the search. In order to apply the idea in the proposed
scheme, we first solve the problem of the keyword security
(responding to the attribute security), and then improve the
method to obtain the search results which contain any n key-
words of a keyword set, rather than to get the boolean search
results that the current schemes could support. In addition,
the proposed scheme allows the keywords to be positive or
negative, which enhances the search flexibility. A positive
keyword means it is contained in the document, while a
negative keyword means it is not contained in the document.
At last, we define a security model based on PERKS [16]
that can defend not only against the adaptive chosen keyword
attack but also against the offline keyword guessing attack.
Most of the existing PEKS schemes are under the offline
keyword guessing attack. Since the adversary can generate
the encrypted index for the keywords, it may determine the
relationship between keywords and the search token received.
Under the proposed security model, the adversary can only
learn the structure of the expression tree rather than the
information about keywords.

The main contributions of this work are summarized as
follows:

1) An innovative encryption scheme that supports the user
to customize the relevancy of the keywords and the
server to obtain the search results with the relevancy
by taking one operation.

2) A new definition of the semantic security model
that defends against adaptive chosen keyword attacks.
Under the defined security model, the proposed scheme

can also defend against the offline keyword guessing
attack.

3) A performance analysis that contains comparisons with
other schemes, the implementation of the proposed
scheme and the evaluation of its computational over-
head and the storage overhead.

B. ORGANIZATION
The remainder of this paper is organized as follows. Section 2
provides a review of the related works. Section 3 presents
some cryptographic notations and definitions. In section 4,
we introduce the system model and security definitions. The
details of the construction and security proof are presented
in Section 5. Section 6 presents the performance analysis.
Section 8 concludes the paper.

II. RELATED WORK
Searchable encryption (SE) is a cryptographic primitive
which enables the data owner to search on encrypted data
without leaking any information about the data. SE is divided
into two categories: the first one is symmetric searchable
encryption (SSE), and the second one is public-key encryp-
tion with keyword search (PEKS). In SSE, the searchable
ciphertext and search token are encrypted with the same key.
Therefore, only the key holders could search on the encrypted
data. In PEKS, any senders who have the receiver’s public key
could generate the searchable ciphertext, and the valid search
token could only be computed by the specific receiver.

Song et al. [17] proposed the first SSE scheme in 2000.
It was a full-text search scheme and suffered from the sta-
tistical attack. The subsequent schemes focus on the secure
index-based method to improve the efficiency. The existing
SSE schemes turn the attention to three points: security,
efficiency and expressiveness. For security, Goh et al. [18]
first define the security of indexes as the semantic security
against the adaptive chosen keyword attack. However, it only
keeps the index secure. To enhance the security of SSE,
Curtmola et al. [19] comprehensively defined the security
of the index, trapdoor, search pattern and access pattern.
Many SSE schemes [20]–[22] are now based on this security
model. For efficiency, Cash et al. [20] first improved the
efficiency from linear to sub-linear on conjunctive keywords
search. Kamara and Moataz [23] proposed a worst-case sub-
linear complexity searchable symmetric encryption by using
the improved method 2Lev arose by Cash et al. [20]. It could
remain the sub-linear time complexity for any keyword
query. For expressiveness, most current schemes supported
boolean [23], [24] and range [25], [26] queries.

The first PEKS scheme was proposed by Boneh et al. [1].
Subsequently, most following schemes make a tradeoff
between security, efficiency and versatility of search criteria.
For security, almost all the schemes can keep the index secure.
However, the salient problem of PEKS is the offline keyword
guessing attack. To solve this problem, the schemes largely
fall into three classes. The first one [2] only allows the server
to search the index with a secret key that is hosted by the

VOLUME 7, 2019 31985

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

server, and the adversary cannot be the server. The sec-
ond one [16], [27] uses an authenticated keyword to limit
the ability to generate the index with any keywords cho-
sen by the adversary. The third one [8] constructs a fuzzy
search trapdoor to defend against the attack under the con-
dition that the keyword space is not the polynomial level.
For efficiency, most existing schemes are linear complexity.
Xu et al. [28] proposed a new index structure to support
a parallel search with sublinear complexity. For versatility
of search criteria, Early schemes [4], [5] could search with
a conjunction of several keywords. Boneh and Waters [13]
proposed a scheme that can implement conjunctive, subset,
and range queries on encrypted data based on hidden vec-
tor encryption. Zhang and Lu [9] proposed a conjunctive and
disjunctive multi-keyword scheme by using inner product.
This approach is very simple and efficient, but the size of
the vector must be as large as the size of the entire unique
keyword set of all the data.

In recent years, attribute-based encryption (ABE) is widely
applied in searchable encryption. Sahai and Waters [29]
first defined the concept of attribute-based encryption as an
extension of identity-based encryption. When a data user’s
attributes satisfy the access policy formulated by the data
owner, the user could decrypt the ciphertext. Zheng et al. [30]
arose the notion of attribute-based keyword search (ABKS)
to enable the data sender to set the access policy of the
data receivers for searching on his/her encrypted data. Fol-
lowing Zheng’s work, Ameri et al. [31] proposed a scheme
that ensures only the authorized users could search on
the encrypted data which is generated at a certain time.
Cui et al. [32] introduced a keyword search with an effi-
cient revocation scheme by using ABE. It could apply in
a multi-sender/multi-receiver scenario. ABE doesn’t keep
the attributes secure, while these ABKS schemes [30]–[33]
aim to achieve a fine-grained access control by using ABE.
Therefore, the above ABKS schemes just defined the security
for the keywords rather than the attributes. There are some
other schemes [7], [8], [11], [34] implementing a boolean
multi-keyword search by using ABE. They regarded the
attributes and access policy as the keywords and search cri-
teria, respectively. These schemes have a stronger secure
definition for the attributes. In order to get a stronger security,
these schemes used two fields to represent a keyword, where
one is the keyword field and the other one is the keyword
value. The keyword field is public, and the keyword value
is secret. This method has a disadvantage that each field
only could have a keyword value. Meanwhile, if the structure
of the keywords is irregular, it is hard to set the keyword
field.

In general, it is hard for the existing schemes to obtain the
search results which contain any n keywords of a keyword set
by one operation.

III. PRELIMINARIES
We begin by introducing some cryptographic notations and
definitions that will be used in the construction.

A. COLLISION-RESISTANT HASH, BILINEAR MAPS AND
COMPLEXITY ASSUMPTIONS
1) COLLISION-RESISTANT HASH [35]
A hash function H is collision-resistant if for any
polynomial-time adversary A, there is a negligible function
ε such that

Pr[Hash− collA,H (n) = 1] ≤ ε(n),

where n is the value of the security parameter. For simplicity,
denote H as a collision-resistant hash function.

2) BILINEAR MAPS [36]
Let G1 and G2 be two groups of prime order p. A bilinear
map e : G1×G1→ G2 between them satisfies the following
properties:

1) Computable: given g, h ∈ G1, there is a
polynomial-time algorithm to compute e(g, h) ∈ G2.

2) Bilinear: for any integer x, y ∈ [1, p], we have
e(gx , gy) = e(g, g)xy.

3) Nondegenerate: if g is a generator of G1, then e(g, g) is
a generator of G2.

3) DECISIONAL BILINEAR DIFFIE-HELLMAN (DBDH)
ASSUMPTION [36]
Let a, b, c, z ∈ Zp be chosen at random, and let g be a
generator of G1. The DBDH assumption is that no proba-
bilistic polynomial-time algorithm β can distinguish the tuple
(g,A = ga,B = gb,C = gc, e(g, g)abc) from the tuple
(g,A = ga,B = gb,C = gc, e(g, g)z) with more than a
negligible advantage. The advantage of β is:

|Pr[β(g,A,B,C, e(g, g)abc) = 1]

−Pr[β(g,A,B,C, e(g, g)z) = 1]|,

where the probability is taken over the random choice of the
generator g, the random choice of a, b, c, z ∈ Zp, and the
random bits consumed by β.

4) MULTI-DECISIONAL BILINEAR DIFFIE-HELLMAN (MDBDH)
ASSUMPTION [37]
Let a, b, c1, . . . , cm, z1, . . . , zm ∈ Zp be chosen at ran-
dom and g be a generator of G1. The MDBDH assump-
tion is that no probabilistic polynomial-time algorithm β

can distinguish the tuple (g,A = ga,B = gb,C1 =

gc1 , . . . ,Cm = gcm , e(g, g)abc1 , . . . , e(g, g)abcm) from the
tuple (g,A = ga,B = gb,C1 = gc1 , . . . ,Cm =

gcm , e(g, g)z1 , . . . , e(g, g)zm) with more than a negligible
advantage. The advantage of β is:

|Pr[β(g,A,B,C1, . . . ,Cm, e(g, g)abc1 , . . . , e(g, g)abcm) = 1]

−Pr[β(g,A,B,C1, . . . ,Cm, e(g, g)z1 , . . . , e(g, g)zm) = 1]|,

where the probability is taken over the random choice of
the generator g, the random choice of a, b, c1, . . . cm, z1, . . . ,
zm ∈ Zp, and the random bits consumed by β.
TheMDBDH assumption has been proven to be equivalent

to the DBDH assumption in [37].

31986 VOLUME 7, 2019

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

B. EXPRESSION TREE
Before describing the expression tree, we present some nota-
tions of the parameters that will be used.
Notations : Let D = {D1, . . . ,Dn} be an n−document

collection. The identifier of document Di is represented as
idi, 0 ≤ i ≤ n, and the identifier could be any string that
uniquely identifies the document. Let a keyword w contained
in the document be a positive keyword, and a keyword which
is not contained in the document be a negative keyword,
denoted as w′. LetW = {w1,w2, . . . ,wm} be a set of distinct
keywords that exist in the document collection D and |W |
be the size of the keyword set. Let Wi be the keyword set
in a document Di, and let Wi ⊆ W . The difference of two
keyword sets A and B is defined as A FG B = (A − B)∪
(B− A).

Each record in an encrypted database consists of two parts:
1) an index Ii that is associated with a document Di that
contains the keyword information Wi, and 2) an encrypted
document Ci = Enc(Di). The encrypted database is defined
as:

EDB = {(C1, I1), . . . , (Cn, In)},

or EBD = (Ci, Ii)ni=1 for short.

C. EXPRESSION TREE CONSTRUCTION
Let searching the encrypted data that contain any k keywords
of a keyword set be an operation Rk , where k is the threshold
value chosen by the data receiver. Let ET (WET ,O) be an
expression tree converted from the search expression, where
WET = {w1, ..wd } is a set of keywords and O is a set
of operations Rk on WET in the search expression. In an
expression tree, each leaf node is associated with a positive
keyword or a negative keyword, and each internal node x is
associated with an operation Rkx . Define numx as the number
of the children of an internal node x, kx is an integer number,
and 0 < kx ≤ numx . For calculation simplicity, the leaf node
is also assigned with a threshold value kx = 1. Let the parent
of the node x in the tree be parent(x), and let the identifier
of node x in the tree be index(x). Let ET be a structure of
the expression tree without the information of keywords and
threshold values. For example, if there is a search expression
such as:

R2(R3(w1,w2,w3),R1(w4,w5),R2(w6,w7,w8,w′9)),

where WET = {w1,w2,w3,w4,w5,w6,w7,w8,w′9} and
O = {R2,R3,R1,R2}, the expression tree ET (WET ,O) is as
shown in FIGURE 1.

IV. SYSTEM MODEL AND SECURITY DEFINITIONS
In this section, we first introduce the system model, which
contains the communication among the server, the data
receiver and the data senders, as well as the definition of the
proposed scheme, and then define the security of the proposed
scheme.

FIGURE 1. An expression tree.

FIGURE 2. The communication of pemks.

A. SYSTEM MODEL
The following scenario shows how a correct PEMKS works.
Suppose that there is a data receiver Alice, a data sender Bob,
and an honest-but-curious server. When Bob wants to send
some data to Alice, Bob should first obtain the pre-tag of the
keyword from Alice in a secure way. Such communication
channels between the senders and receiver are private in
this phase. Then, Bob encrypts the data, generates indexes
with pre-tags and sends them together to the server. When
Alice wants to search for the required encrypted data, she
could generate a trapdoor with an expression and send the
trapdoor to the server. Once the server receives the search
query with the trapdoor, it searches on the indexes to obtain
matched encrypted data and sends them to Alice. All people,
including the data receiver and data senders, could send the
encrypted data and indexes to the server, but only the receiver
can generate the trapdoor. This is a multi-sender/one-receiver
system. Note that Alice does not search with a single key-
word. She could search with any n keywords of a keyword
set. At the same time, the server cannot learn anything about
the keywords because the proposed scheme only sends the
structure of the expression tree together with the trapdoor to
the server. The procedure is shown in FIGURE 2.

The formal definition of the proposed PEMKS scheme is
given as follows.
Definition 1: PEMKS on encrypted database EDB consists

of five algorithms PEMKS = (Gen,KeywordRg,
BuildIndex,Trapdoor, Search) such that:

VOLUME 7, 2019 31987

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

• Gen(s): run by the receiver; it takes a security parameter
s as the input, and it generates a public/private key pair
(Kpub,Kpri).

• KeywordRg(Kpri,w): run by the receiver; it takes the
private key Kpri and a keyword w as the input, and it
generates a pre-tag sw.

• BuildIndex(Kpub, SW): a probabilistic algorithm and is
run by the sender. It takes the public key Kpub and a
pre-tag set SW as input, and then generates an index I .

• Trapdoor(Kpri,ET (WET ,O)): run by the receiver. It
takes the private key Kpri and the expression tree
ET (WET ,O) as input, and it generates the trapdoor T
for searching.

• Search(Kpub,T , I): a deterministic algorithm and is run
by the server. It takes the public key Kpub, trapdoor T
and index I as input. If I satisfies T , the server returns
true and sends the corresponding encrypted data to the
receiver; otherwise, it returns false.

In the traditional communication of Alice, Bob and the
server, the data are encrypted by Alice’s public key [1].
Alice’s device may have limited resources for decrypting
the encrypted data, such as a mobile phone. To solve this
problem, we can encrypt the data with a symmetric key for
efficiency. Then, Bob sends the symmetric key encrypted by
Alice’s public key together with the encrypted data to the
server.

The correctness of the proposed scheme is introduced as
follows which is based on [13].
Correctness: For all indexes I and expression trees

ET (WET ,O),P is a function that can checkwhether I satisfies
ET (WET ,O) and is denoted as P : I ,ET (WET ,O)→ (0, 1).

Let

(Kpub,Kpri)
R
←− Gen(s), sw← KeywordRg(Kpri,w),

I
R
←− BuildIndex(Kpub, SW),

T ← Trapdoor(Kpri,ET (WET ,O)).

There are two situations, as follows:

• If PET (WET ,O)(I) = 1, then Search(Kpub,T , I) = true.
• If PET (WET ,O)(I) = 0, then Pr[Search(Kpub,T , I) =
false] > 1− ε(s), where ε(s) is a negligible function.

B. SECURITY DEFINITIONS
Inspired by the security models introduced in [13], [15],
and [16], the security is defined for the proposed scheme
to ensure that it does not reveal any information about the
keywords in the indexes. Formally, we define the security
mainly against the chosen keyword attack and the offline
keyword guessing attack:

• Chosen keyword attack [1]: The adversaryA is allowed
to query on a keyword he/she chooses, gets the respond-
ing trapdoor except the challenge keyword, and tests
them. With these keywords and responding trapdoors,
A could get some information of the keyword embedded
in indexes.

• Offline keyword guessing attack [38]: Due to the fact
that the keywords are chosen from a small space (poly-
nomial size), the adversary A could generate the trap-
door with any keywords, and test it.With the relationship
between keywords and the trapdoors, A can determine
the keywords embedded in indexes.

In the above attacks, there are three types of adversaries
in the proposed scheme: 1) a curious sender, who is able
to potentially acquire pre-tags and indexes of any keyword
he/she chooses; 2) an honest-but-curious server, who is able
to potentially acquire all the trapdoors and indexes in an
oblivious way; and 3) the server who is also a sender at the
same time, is able to potentially acquire the pre-tags, indexes,
and trapdoors.

The security of the proposed scheme is described as
follows:
Setup: The challenger B takes a security parameter s as

input and runs the Gen algorithm. B provides the adversary
Awith the public key Kpub while keeping the private key Kpri
to itself. Then, B chooses a keyword set W that contains all
the keywords that will be used in the game.
Query Phase 1: The adversary adaptively chooses a finite

number of queries in the following types of oracles.

• KeywordRg oracle: the adversary adaptively chooses a
finite number q1,k of keywordsWq1,k ={w1, . . .wq1,k } ⊆
W and sends them toB.B runs theKeywordRg(Kpri,wi),
1 ≤ i ≤ q1,k and sends pre-tags {sw1 , . . . , swq1,k } to the
adversary.

• BuildIndex oracle: the challenger randomly selects a

polynomial number of subsets ofW and runs the Ib
R
←−

BuildIndex(Kpub,KeywordRg(Kpri,Wb)) for each subset
Wb. Then, B sends the index set to the adversary. This
algorithm is probabilistic. Even when the sw is the same,
it provides different (but valid) indexes.

• Trapdoor oracle: the adversary chooses a finite num-
ber q1,t of expression tree {ET (WET ,1,O1), . . . ,ET
(WET ,q1,t ,Oq1,t)}. The challenger responds with the

corresponding trapdoors Ti
R
←− Trapdoor(Kpri,ET

(WET ,iOi)) to the adversary, where 1 ≤ i ≤ q1,t and
WET ,i ⊆ W .

At a certain point, the adversary sends the challenger two
same-size keyword sets {W0,W1} that are wished to be chal-
lenged. One restriction is that at most one of the following
items could have occurred:

1) The KeywordRg oracle has been queried with any key-
word in W0 or W1.

2) The Trapdoor oracle has returned Trapdoor(Kpri,ET
(WET ,i,Oi)), where WET ,i should not contain any key-
words in W0 FG W1, and PET i(WET ,i,Oi)(W0) =
PET i(WET ,i,Oi)(W1), for all i = 1, 2, . . . , q1,t .

Challenge Phase: The challenger chooses a coin ν ∈ {0, 1}

and gives I∗
R
←− BuildIndex(Kpub,W∗) to the adversary.

31988 VOLUME 7, 2019

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

Query Phase 2: The adversary continues to adaptively
query the above types of oracles with the same restriction in
Query Phase 1.
Guess: The adversary returns a guess ν′ ∈ {0, 1} of ν and

wins the game when ν′ = ν.
We define the advantage of the adversaryA in breaking the

proposed scheme PEMKS as:

AdvA =

∣∣∣∣Pr[ν′ = ν]− 1
2

∣∣∣∣ .
Definition 2: PEMKS is secure against the adaptive cho-

sen keyword attack if for any polynomial-time adversary A,
the AdvA is a negligible function.

The server has no duty to keep the index private, and
the communication channel between servers and senders is
public. According to the above game, the BuildIndex oracle
indicates that the adversary can obtain all the valid indexes.
In the aforementioned security game, our scheme can also
defend against the offline keyword guessing attack based on
the following analysis:

1) When the adversary A is a sender, A could challenge
the KeywordRg and BuildIndex oracles with restriction
1) inQuery Phase 1 andQuery Phase 2.A cannot dis-
tinguish the challenged indexes by keeping the pre-tags
and given indexes.

2) When the adversary A is a server, A could challenge
two oracles Trapdoor and BuildIndex with restriction
2) in Query Phase 1 and Query Phase 2. A cannot
distinguish the challenged indexes by keeping the trap-
doors and given indexes.

3) When the adversary A is simultaneously both a server
and a sender, with the restrictions inQuery Phase 1 and
Query Phase 2, A can obtain the pre-tags, trapdoors,
and given indexes at the same time, except for the
corresponding trapdoors and pre-tags of the challenged
keyword sets. Therefore, A still cannot distinguish the
challenged indexes.

A notable difference between traditional PEKS schemes
is the KeywordRg algorithm. We need to obtain the pre-tags
before constructing an index. Therefore, it allows us to limit
the adversary’s ability to generate the challenged keywords’
trapdoors and indexes at the same time, which is the key point
for defending against the offline keyword guessing attack.

In fact, a pre-tag is only calculated once for each sender,
and some pre-tags of special keywords can be published to
reduce the communication overhead between a receiver and
senders.

V. OUR CONSTRUCTION
A. CONSTRUCTION
LetG1,G2 be two bilinear groups of prime order p, and let e :
G1×G1→ G2 be a bilinear map that satisfies the properties
described in Bilinear Maps. The Lagrange coefficient is
defined as 1i,S (x) =

∏
j∈S,j 6=i

x−j
i−j , where i ∈ Zp and S is

a set of elements in Zp. Each keyword is associated with a

unique element in Zp, and Zp = {0, . . . , p − 1} is a group
modulo p.
• Gen(s)
It takes a security parameter s as input and then randomly
chooses a prime order p of groups G1,G2 and a hash
function H : {0, 1}∗ → Zp. Then, α, β, χ, δ are uni-
formly chosen at random from Zp. The public key is

Kpub = (g, s∗ = gβ , gδ,Y = e(g, g)α,H)

. The private key is Kpri = (α, β, χ, δ).
• KeywordRg(Kpri,w)
It takes the private keyKpri and a keywordw as the input,
and it calculates tw as follows:

tw = H (w||χ).

tw is kept as a secret of the keyword. Then, it returns the
pre-tag to the data sender:

sw = gtw .

• BuildIndex(Kpub, SWi)
Let Wi = {w1, . . . ,wh} be the set of keywords in a doc-
ument Di, and the set of pre-tags is SWi = {sw1 , . . . swh}.
Two random numbers s, r ∈ Zp are chosen, and the
index is computed as follows:

I = (E = Y s, {E (1)
wj = swj

s
}
wj∈Wi

,E (2)
= s∗s,

E (3)
= gr , {E (4)

wj = e(gδ, swj)
r
}wj∈Wi).

• Trapdoor(Kpri,ET (WET ,O))
For each node (including the leaves) in the expres-
sion tree, it first chooses a polynomial qx following a
top-down manner as described below. Let x denote the
node in the expression tree, and let the highest degree
dx of the polynomial qx be one less than kx of the node,
denoted as dx = kx − 1. Then, it sets qr (0) = α for
the root node r and randomly chooses other dr points
of the polynomial qr . For any other node x, it sets
qx(0) = qparent(x)(index(x)) and randomly chooses other
dx points. Each leaf node x is associated with a keyword,
which could be a positive keyword wi or a negative
keyword w′i. If the leaf node x is associated with a
positive keyword wi, we generate the trapdoor Tx in the
following way:

Tx = (T (1)
x = g

qx (0)
twi ,T (2)

x = swi
δ).

If the leaf node x is associated with a negative keyword
w′i, Tx is calculated in the following way:

Tx = (T (3)
x = g

qx (0)
β , T (2)

x = swi
δ).

In the end, the trapdoor is

T = {T1, . . . ,Tj,ET },

where j is the number of leaf nodes,ET is the structure of
the expression tree, and each node contains its identifier
and the positive or negative attribute of the keyword.

VOLUME 7, 2019 31989

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

• Search(I ,T):
We first define a recursive algorithm DecrytNode(T , I ,
x), which returns the Fx as the output, where I is an
index, T is the trapdoor, and x is the node in the expres-
sion tree. The algorithm DecrytNode(T , I , x) proceeds
as follows:
If the keyword is positive and E (4)

wi = e(E (3),T (2)
x),

we can calculate the Fx as follows:

Fx = e(E (1)
wi ,T

(1)
x)

= e(sswi , g
qx
(0)tx)

= e(g, g)qx (0)s.

If the keyword is negative and E (4)
wi 6= e(E (3),T (2)

x),
we can calculate the Fx as follows:

Fx = e(E (2),T (3)
x)

= e(s∗s, g
qx (0)
β)

= e(g, g)qx (0)s.

If there is no leaf node satisfying the above description,
search() returns false. Otherwise, search() continues to
compute the FN for the internal node N .
For the node N with all the child nodes x, FN is com-
puted in the following way:

FN =
∏
x∈SN

F
1i,S′N

(0)
x where

i = index(x)
S ′N = {index(x) : x ∈ SN }

=

∏
x∈SN

(e(g, g)sqx (0))
1i,S′N

(0)

=

∏
x∈SN

(e(g, g)sqparent(x)(index(x)))
1i,S′N

(0)

= e(g, g)sqN (0).

Finally, Fr can be calculated, where r is the tree’s root.
– If Fr = Y s, Search() will return true.
– If Fr 6= Y s, Search() will return false.

We now present the proof of its correctness.
Correctness: Let I be an index and ET (WET ,O) be the

expression tree. Let P→ (0, 1) be the function that can check
whether I satisfies ET (WET ,O):
Let

(Kpub,Kpri)
R
←− Gen(s), sw← KeywordRg(Kpri,w),

I
R
←− BuildIndex(Kpub, SW),

T ← Trapdoor(Kpri,ET (WET ,O)).

• If PET (WET ,O)(I) = 1, it simply calculates the Y s as the
above description.

• If PET (WET ,O)(I) = 0, the following lemma shows that
if H is collision-resistant, Pr[Search(I ,T) 6= false] is
negligible.

Lemma 3:Whenever PET (WET ,O)(I) = 0, if H is collision-
resistant, Pr[Search(I ,T) 6= false] is negligible.

Proof: Let w be the keyword in the index, and let wx
be the keyword that is associated with the leaf node x in the
expression tree. The search() algorithm contains two steps:
1) If the node x is a leaf node and only w is matched with
wx , we could calculate the valid Fx for the node x. When wx
is a positive keyword, the word "match" means that w = wx ;
otherwise, it means thatw 6= wx . 2) If the node x is an internal
node and only x’s children satisfy the operation, we could
calculate the valid Fx and then obtain the correct Fr for the
root.

According to the search() algorithm, the proof is divided
into two parts:
• If node x is a leaf node and w is not matched with wx ,
then the probability of calculating a valid Fx is negli-
gible. When wx is a negative keyword, the probability
is zero as E (4)

wi = e(E (3),T (2)
x). When wx is a positive

keyword and H is collision-resistant, in the following
equation:

E (4)
wi = e(E (3),T (2)

x)

⇒ e(gδ, swi)
r
= e(gr , sx δ)

⇒ e(g, swi)
rδ
= e(g, sx)rδ,

the probability of sx = swi is negligible when wi 6= x.
Therefore, the probability of calculating a validFx is still
negligible.

• If node x is an internal node and its children do not sat-
isfy the operation, the probability of calculating a valid
Fx is negligible. By using the interpolation theorem, it is
very similar to the proof of privacy in the secret sharing
scheme in [39]. It will not be proved again.

Therefore, whenever PET (WET ,O)(I) = 0, if H is collision-
resistant, Pr[Search(I ,T) 6= false] is negligible.

B. SECURITY ANALYSIS
Under the security model mentioned above, the security proof
of the proposed scheme is given.
Theorem 4: Under the DBDH and MDBDH assumptions,

the proposed PEMKS is secure against the adaptive chosen
keyword attack.

Proof: Three types of adversaries are introduced in
Section 4. The third adversary, who is the server and the
sender at the same time, actually has the abilities of the first
two adversaries. Therefore, the security proof is presented
when the adversary is the third one.

In terms of the proof, the convenient way is to construct
a sequence of games, where game G0 is the same as G1,
G1 is the same as G2, . . ., and the last game is the same
as the former one except that the index might be generated
in a different way. Suppose that there is a adversary A can
distinguish the sequence games, then our scheme can build a
simulatorB that solves theDBDHandMDBDHassumptions.

First, set groupsG1 andG2 with a bilinear map e. Then, let
[E, {E (1)

wi ,E
(4)
wi }i∈[1,m],E

(2),E (3)] denote the challenge index
that will be given to the adversary in the real attack. Let
R, {R(4)i }i∈[1,m] be the random elements of G2. We define the

31990 VOLUME 7, 2019

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

hybrid games, which differ in terms of what challenge index
is given by the simulator B to the adversary A:

Game0 : I0 = [E, {E (1)
wi ,E

(4)
wi }i∈[1,m],E

(2),E (3)]

Game1 : I1 = [R, {E (1)
wi ,E

(4)
wi }i∈[1,m],E

(2),E (3)]

Game2 : I2 = [R, {E (1)
w1
,R(4)1 }, {E

(1)
wi ,E

(4)
wi }i∈[2,m],

E (2),E (3)]

......

Gamem+1 : Im+1 = [R, {E (1)
i ,R(4)i }i∈[1,m],E

(2),E (3)]

The proposed scheme shows that the challenge index in
Gamem+1 leaks no information about the keywords since it
is composed of five random group elements and illustrates
that the transitions from Game0 to Game1 to Game2 to......to
Gamem+1 are all computationally indistinguishable.
Lemma 5: Under the (t, ε)-DBDH assumption, in time t ,

there is no running adversary that can distinguish between
Game0 and Game1 with an advantage greater than ε.

Proof: Suppose that there is an adversary A that can
distinguish between Game0 and Game1 with advantage ε.
We build a simulator B that plays the DBDH game with
advantage ε.

B receives a DBDH challenge [g,A = ga,B = gb,C =
gc,Z], where Z is either e(g, g)abc or a random element of
G2 with equal probability. The game is as follows:
Setup: The simulator B randomly chooses β, δ from Zp,

retains the generator g, and then outputs g1 = gδ, g2 = gβ .
Then,B selects a random oracleH and assigns Y = e(A,B) =
e(g, g)ab. The public key is as follows:

g, g1 = gδ, g2 = gβ , Y = e(g, g)ab, H .

Finally, B selects a setW of strings from {0, 1}∗ uniformly
at random and sends W to A.
Query Phase 1:
• KeywordRg oracle: A can query H for the pre-tags,
and B will maintain an H − list to respond to A. The
H − list consists of a list of the tuples < wi, ci >,
which is initially empty. When A queries wi ∈ W to
the KeywordRg oracle, B will return the pre-tag to the
adversary as follows:
1) If the query ofwi is already in theH−list ,B returns

ci to A.
2) Otherwise, B selects a random ai ∈ Zp and

responds with ci = gai . Then, B adds the tuple
< wi, ci > to H − list .

• BuildIndex oracle: B randomly selects a polynomial
number of subsets of W . This collection of subsets is
denoted as W ∗. For each subset Wi ⊆ W ∗, B runs the
BuildIndex and sends the set of indexes I∗ to the A.

• Trapdoor oracle: A adaptively chooses a finite number
of queries q1,t of expression tree ET (WET ,O) to chal-
lenge the Trapdoor oracle. B sets up the polynomial
for the nodes of the expression tree. First, B defines an
algorithm as:

Poly(ET x(WET ,O), λx).

This is a recursion algorithm, which takes an expression
tree ET x(WET ,O) with a root x and an integer λx ∈ Zp
as input and outputs a polynomial. For simplicity, ET x is
short for ET x(WET ,O). This algorithm starts by setting
up a polynomial qx with the highest degree dx for the
node x and qx(0)=λx . The remaining points are chosen
randomly from Zp. Then, the algorithm constructs a
polynomial for each child node x by calling the algo-
rithm Poly(ETx , qparent(x)(index(x))). Note that qx(0) =
qparent(x)(index(x)) for each child node x. Now, B runs
Poly(ETx , a) to define polynomials for the nodes in the
expression tree. Finally, B defines the final polynomial
Qx(∗) = bqx(∗) for each node x of the expression tree,
and Qr (0) = ab, where r is the root of the tree.
B calculates Tx with the polynomial of the leaf node x
as follows:
1) If the leaf node is associated with a negative key-

word w′i, B chooses the ci from the H − list where
the keyword is wi and returns Tx as follows:

Tx = (T (3)
x = g

bqx (0)
β = B

qx (0)
β ,T (2)

x = ciδ)

2) If the leaf node is associated with a positive key-
word wi, B chooses the ci from the H − list where
the keyword is wi and returns Tx as follows:

Tx = (T (1)
x = g

bqx (0)
ci = B

qx (0)
ci ,T (2)

x = ciδ)

Finally, B sends T = {T1, . . . ,Tj} to A, where j is the
number of leaf nodes.

Challenge: A chooses two keyword sets W0 = {w0,1, . . . ,

w0,m},W1 = {w1,1, . . .w1,m} with the same number of key-
words under the constraint that at most one of the following
items could have occurred.

1) The KeywordRg oracle has been queried with any key-
word in W0 or W1.

2) The Trapdoor oracle has returned Trapdoor(Kpri,ET
(WET ,i,Oi)), where WET ,i should not contain any
keyword in W0 FG W1, PET (WET ,i,Oi)(W0) =

PET (WET ,i,Oi)(W1) for all i = 1, 2, . . . , q1,t , and the
keywords cannot all be negative keywords.

Then, B flips a fair binary coin ν, chooses two random
elements c, r ∈ Zp, and returns an index I as follows:

I = (E = Z , {E (1)
wν,i = Cai}

wν,i∈Wν
,

E (2)
= Cβ , E (3)

= gr , {E (4)
wν,i = e(g1, ci)r }wν,i∈Wν)

Phase 2: A continues querying as in Phase 1 under the
constraint described above.
Guess:A eventually outputs a bit ν′, representing its guess

for ν.
If Z = e(g, g)abc, then in A’s view, this game is identical

to the original game G0. If Z is a random element in G2,
the advantage of A is negligible. Therefore, if A can distin-
guish game Game0 from game Game1 with a nonnegligible
probability, B has a nonnegligible probability in breaking the
DBDH assumption.

VOLUME 7, 2019 31991

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

Lemma 6:Under the (t, ε)-MDBDH assumption, in time t ,
there is no running adversary that can distinguish between
Gamem and Gamem+1 with an advantage greater than ε for
m ∈ [1,m].

Proof: Suppose that there is an adversary A that can
distinguish between Gamem and Gamem+1 with advantage ε.
We build a simulator B that plays the MDBDH game with
advantage ε.
B receives an MDBDH challenge [g,Z1,1 = gz1,1 , . . . ,

Z1,m = gz1,m ,Z2 = gz2 ,Z3 = gz3 ,R1, . . . ,Rm], where Ri
is either e(g, g)z1,iz2z3 or a random element of G2 with equal
probability. The game proceeds as follows:
Setup: The simulator B randomly chooses z∗, z2 from Zp,

retains the generator g, and then outputs g1 = gz2 , g2 = gz∗ .
Then,B selects a random oracleH and assigns Y = e(A,B) =
e(g, g)ab. The public key is as follows:

g, g1 = gz2 , g2 = gz∗ , Y = e(g, g)ab, H

Finally, B selects a setW of strings from {0, 1}∗ uniformly
at random and sends W to A.
Query Phase 1:
• KeywordRg oracle: A can query H for the pre-tags,
and B will maintain an H − list to respond to A. The
H − list consists of a list of the tuples < wi, ti >.
The list is initially empty.WhenA querieswi ∈ W to the
KeywordRg oracle,B returns the pre-tag to the adversary
as follows:
1) If the query ofwi is already in theH−list ,B returns

ti to A.
2) Otherwise, B selects a random z1,i ∈ Zp and

responds with ti = gz1,i = Z1,i. Then, B adds the
tuple < wi, ti > to H − list .

• The BuildIndex oracle is the same as the BuildIndex
oracle in Lemma 5.

• Trapdoor queries:A adaptively chooses a finite number
of queries q1,t of expression tree ET (WET ,O) to chal-
lenge the Trapdoor oracle.B generates the T (1)

x and T (3)
x ,

which is the same as Lemma 5. The T (2)
x is as follows:

T (2)
x = gz2 zi = Z zi2 .

Challenge: A chooses two keyword sets W0 = {w0,1, . . . ,

w0,m},W1 = {w1,1, . . .w1,m} with the same constraint as in
Lemma 5. Then, B flips a fair binary coin ν, chooses c, z3 ∈
Zp, and returns an index I as follows:
For i = m, B outputs:

Im = (E = (e(g, g)ab)c, E (1)
m = (gz1,m)c, E (2)

= (gβ)c,

E (3)
= gz3 = Z3, E (4)

m = e(Z1,m,Z2)z3 = Rm).

For i ∈ [1,m− 1], B outputs:

E (1)
i = (gz1,i)c, E (4)

i = e(Z1,i,Z2)z3 = Ri.

Phase 2: A continues querying as in Phase 1 under the
constraint described above.
Guess:A eventually outputs a bit ν′, representing its guess

for ν.

If Ri = e(g, g)z1,iz2z3 , then A’s view of this game is
identical to the original game. IfRi is a random element inG2,
then the advantage of A is negligible. Therefore, if A can
distinguish game Gamem from game Gamem+1 with a non-
negligible probability, then B has a nonnegligible probability
in breaking the MDBDH assumption.

Under the above games, the proposed scheme also defend
against the offline keyword guessing attack which is men-
tioned in section III.

The following is the discussion of the other two types of
adversaries that are not considered above: a sender colluding
with other senders and senders colluding with a server.

1) SENDER COLLUDING WITH OTHER SENDERS
If a sender colludes with other senders, this means they can
obtain the pre-tags they should not know, while they still
cannot obtain the corresponding trapdoor. In fact, our scheme
can defend against this type of adversary. The BuildIndex
algorithm is probabilistic. Different senders cannot generate
the same index with the same keywords. Therefore, a sender
colluding with other senders is equivalent to the adversary
being a sender, as we have proven above.

2) SENDERS COLLUDING WITH A SERVER
If the senders collude with a server, this means that this type
of adversary can obtain all the pre-tags, trapdoors and indexes
without limitations. Suppose that Bob is a sender and Alice is
a sender who also has root privileges of the server; there are
two different situations:

• If Alice steals the pre-tags from Bob, this means Alice
only acquires the pre-tags without the corresponding
keywords. We can encrypt the keyword first and then
generate the pre-tag (this method is proposed in [16]).
Finally, Alice still cannot distinguish the indexes with
the pre-tags.

• If Bob gives the pre-tags and corresponding keywords
together to Alice, we can take some measures in practice
to keep the proposed scheme secure. The data receiver
keeps some special sets of keywords secure by only
giving these keywords to some trusted senders.

Negative Keywords: In the proposed scheme, we use a wild
keyword to represent all the negative keywords that are not
in the index. However, if the adversary queries the trapdoor
with an expression tree that only contains negative keywords,
we obtain the following result:∏
x∈SN

T (3)
x

1i,S′N
(0)

where
i = index(x)

S ′N = {index(x) : x ∈ SN }

=

∏
x∈SN

(g
qx (0)
β)

1i,S′N
(0)

=

∏
x∈SN

(g
qparent(x)(index(x))

β)
1i,S′N

(0)

= g
qN (0)
β .

31992 VOLUME 7, 2019

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

Finally, we can obtain g
α
β and then compute:

e(g
α
β , ss∗) = e(g

α
β , gsβ)

= e(g, g)sα.

If all the keywords in the trapdoor are negative keywords,
the trapdoor will match with all indexes, and the adversary
could obtain all the encrypted data. Actually, the adversary
cannot decrypt the encrypted data and learn any information
about the keyword because s∗ is just a wild keyword without
a real meaning. In the real world, a person typically will not
search with a set of negative keywords.

VI. PERFORMANCE ANALYSIS
A. EFFICIENCY
The scheme’s efficiency includes the storage overhead of the
public key, private key, index and trapdoor, as well as the
computational overhead of algorithms Gen(), KeywordRg(),
BuildIndex(), Trapdoor() and Search().
Let n, l, o, and m be the sizes of the distinct keyword

set in encrypted data, keyword set in trapdoor, operation set
and keyword set in an index, respectively. Let lp, ln be the
numbers of positive keywords and negative keywords in the
trapdoor, where l = lp+ ln. The time consumed on the group
is the main part of the overall computational overhead. There-
fore, using the operations on the group to analyze the compu-
tational overhead in theory. Let E denote an exponentiation
operation, and let P denote a pairing operation.

In Gen(), the size of the public key is a constant 4, and
a part of the size of the private key is 4. The computational
overhead is 3 ∗ E .

In KeywordRg(), the proposed scheme generates a pair
of secret and pre-tag for each keyword, gives the pre-tag
to the sender, and keeps the secret to ourselves. Therefore,
the size of the private key depends on the number of secrets
of pre-tags, which is 4 + n. The computational overhead of
generating all the pre-tags is n ∗ E .
In BuildIndex(), the storage overhead of an index, repre-

sented as |index|, is determined by the numberm of keywords
in the index; thus, |index| = 2m + 3. The computational
overhead of each index is (m+ 3) ∗ E + m ∗ P.
In Trapdoor(), each keyword in the trapdoor contains two

group elements. Therefore, the storage overhead of the trap-
door |Trapdoor| is 2∗l. The computational overhead is 2l∗E .
Let min() be a function to obtain the minimum number.

In Search(), the valid Fx for the leaf node x should be com-
puted firstly, which is m ∗ logl at most, and then computes
Fx for internal nodes x in the expression tree. Therefore,
the computational overhead of search() is less than (m∗logl+
min(m, l)) ∗ P+ (o+ l) ∗ E .
Comparison:Wecompare the performance of the proposed

scheme with the other four schemes [7], [8], [11], [34]. The
reason of choosing these four schemes is that they are all
representative schemes published in the past 5 years. They
support conjunction and disjunction at least, and are based
on the basic idea of ABE. So these schemes are similar to

our scheme. The proposed scheme aims to extend the search
criteria rather than improving the efficiency. Therefore, our
scheme is feasible when the storage overhead and computa-
tional overhead are similar to the other four schemes.

The storage overheads of these schemes are shown in
TABLE 1.We publish the public key to everyone and keep the
private key to ourselves. The server stores the indexes, and the
storage overhead of the trapdoor is the communication over-
head. There is little difference in terms of storage overhead
between the proposed scheme and the other four schemes.
The costs of the public key and trapdoor in our scheme are
the least. The costs of the private key and index in our scheme
are between the highest and lowest costs.

The computational overheads of these schemes are shown
in TABLE 2. The BuildIndex() algorithm is run by the data
senders, the data receiver runs the Trapdoor() algorithm,
and the server runs the Search() algorithm.Since the four
schemes [7], [8], [11], [34] are based on the linear secret
sharing scheme (LSSS) [40], v1 is defined as the number of
elements in the set of minimum subsets that satisfy the access
structure and v2 is defined as the number of elements in all the
subsets mentioned in [11]. Since these two parameters are not
used in our scheme, we present a simple example to explain
v1 and v2. Given a search expression (Z1 = A AND (Z2 =
B OR Z3 = C)), the minimum subsets that satisfy the search
expression are {Z1,Z2} and {Z1,Z3}, and v1 = 2, v2 = 4.

As shown in TABLE 2, the computational overhead of
Search() in our scheme is not much less than that of the
others. Actually, there is no need to compute for all nodes.
The number of nodes that need to be computed depends
on the operation Rk . If k is 1, then it means that we have
constructed a constant polynomial, and only need to compute
the overhead of one child node. In the experiments, once Fr
of the root is generated, the algorithm can be terminated.
In the real world, people generally search on short criteria.
Therefore, the practical computational overhead is similar to
the other schemes.

B. EXPERIMENT
We implement our scheme in the PBC library, which is a free
lightweight C library providing the mathematical details of
a bilinear pairing on a cyclic group. There are three groups
G1, G2, and GT of prime order r and a bilinear map e to
generate an element ofGT that takes an element fromG1 and
an element fromG2 as inputs. Our experiments run on an all-
in-one desktop computer with an Intel Core i7-6650U CPU
(4 core 2.20GHz) and 8 GB of RAM running 64-bit Windows
10 Pro.

At the beginning of this section, we analyzed the
performance theoretically and mentioned two operations:
exponentiation operation and pairing operation. Some sim-
ple experimental results about the computational overhead
for each operation are shown in FIGURE 3, where the
x-coordinate represents the different operations: e(G1,G1),
e(G2,G2), e(G1,G2), G1a, G2a and GT a. FIGURE 3 shows
that the computational overheads of the pairing operations

VOLUME 7, 2019 31993

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

TABLE 1. Storage overhead comparison with other schemes.

TABLE 2. Computational overhead comparison with other schemes.

FIGURE 3. The computational overhead of operations.

on different types of group elements are the same. G1a and
G2a have the same computational overheads because they
have the same data structures in the PBC library. GT a has
the minimum computational overhead.

In FIGURE 4, we present the storage overhead of the
proposed scheme, where Zn means a prime order representing

FIGURE 4. The storage overhead of PEMKS.

a secret key, and the others representing the standard group
elements, public parameters, master key, pre-tag, index that
contains two keywords, and trapdoor that contains three key-
words, respectively.

In FIGURE 5, we present the computational overheads of
the algorithms KeywordRg(), BuildIndex(), Trapdoor(), and
Search().

FIGURE 5. The computational overhead of PEMKS.

31994 VOLUME 7, 2019

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

The first one shows the time for generating pre-tags con-
taining 100 to 1000 keywords. The computational time is
almost linear with the number of keywords.

The second one presents the computational overhead of
generating indexes containing 10 to 50 documents. In the
proposed scheme, the indexes are generated by multiple
senders. Actually, each sender would not generate a large
number of indexes. The computational time is linear with
the number of documents. This figure also shows four other
different cases, where each document contains 8 keywords,
10 keywords and 12 keywords. We observe that an increase
in the number of keywords in each index implies an increase
in the computational time for each index.

The third one shows the computational overhead for gen-
erating a trapdoor that contains 4 to 14 keywords. The time is
also linear with the number of keywords in the trapdoor.

The final one is the computational overhead for search-
ing. There are many factors that influence the search time,
such as the numbers of keywords in the trapdoor and index,
the number of matched indexes, the search criteria and so
on. To obtain relatively realistic results, we generate indexes
containing 10 to 18 keywords, and each keyword is chosen
from 1000 keywords randomly. Different lines mean different
numbers of keywords in the trapdoor. The computational time
of the same number of keywords in the trapdoor is linear
with the number of keywords per index, and the search time
increases with the increase in the number of keywords in the
trapdoor.

VII. CONCLUSION
In this paper, we propose a novel multi-keyword search
scheme, called PEMKS, which solves the problem of how
to customize the keywords’ relevancy. The proposed scheme
allows the data receiver to search encrypted data that contain
any n keywords of a keyword set. At the same time, it can also
support negation. We present the details of the scheme, for-
mally define its security, and prove that the proposed scheme
is secure against the adaptive chosen keyword attack and the
offline keyword guessing attack. We present the performance
analysis compared with other schemes in theory, implement
the proposed scheme and conduct some experiments to eval-
uate the proposed scheme’s performance.

REFERENCES
[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public

key encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Interlaken, Switzerland: Springer, 2004, pp. 506–522.

[2] P. Xu, H. Jin, Q.Wu, andW.Wang, ‘‘Public-key encryptionwith fuzzy key-
word search: A provably secure scheme under keyword guessing attack,’’
IEEE Trans. Comput., vol. 62, no. 11, pp. 2266–2277, Nov. 2013.

[3] J. Baek, R. Safavi-Naini, and W. Susilo, ‘‘Public key encryption with
keyword search revisited,’’ in Proc. Int. Conf. Comput. Sci. Appl. Perugia,
Italy: Springer, 2008, pp. 1249–1259.

[4] Y. H. Hwang and P. J. Lee, ‘‘Public key encryption with conjunctive
keyword search and its extension to a multi-user system,’’ in Proc. Int.
Conf. Pairing-Based Cryptogr. Tokyo, Japan: Springer, 2007, pp. 2–22.

[5] D. J. Park, K. Kim, and P. J. Lee, ‘‘Public key encryption with conjunctive
field keyword search,’’ in Proc. Int. Workshop Inf. Secur. Appl. Jeju Island,
South Korea: Springer, 2004, pp. 73–86.

[6] S. Jiang et al., ‘‘Publicly verifiable Boolean query over outsourced
encrypted data,’’ IEEE Trans. Cloud Comput., vol. 10, no. 5, pp. 356–362,
Aug. 2017.

[7] H. Cui, Z. Wan, R. Deng, G. Wang, and Y. Li, ‘‘Efficient and expressive
keyword search over encrypted data in cloud,’’ IEEE Trans. Depend. Sec.
Comput., vol. 15, no. 3, pp. 409–422, Jun. 2016.

[8] J. Lai, X. Zhou, R. H. Deng, Y. Li, and K. Chen, ‘‘Expressive search on
encrypted data,’’ in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun.
Secur., May 2013, pp. 243–252.

[9] Y. Zhang and S. Lu, ‘‘POSTER: Efficient method for disjunctive and
conjunctive keyword search over encrypted data,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2014, pp. 1535–1537.

[10] J. Han, Y. Yang, J. K. Liu, J. Li, K. Liang, and J. Shen, ‘‘Expressive
attribute-based keyword search with constant-size ciphertext,’’ Soft Com-
put., vol. 22, no. 15, pp. 5163–5177, Aug. 2017.

[11] Z. Lv, C. Hong,M. Zhang, and D. Feng, ‘‘Expressive and secure searchable
encryption in the public key setting,’’ in Proc. Int. Conf. Inf. Secur. Passau,
Germany: Springer, 2014, pp. 364–376.

[12] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, ‘‘Practical attribute-based
multi-keyword search scheme in mobile crowdsourcing,’’ IEEE Internet
Things J., vol. 5, no. 4, pp. 3008–3018, Dec. 2017.

[13] D. Boneh and B. Waters, ‘‘Conjunctive, subset, and range queries
on encrypted data,’’ in Proc. Theory Cryptogr. Conf. Amsterdam,
The Netherlands: Springer, 2007, pp. 535–554.

[14] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
‘‘Rich queries on encrypted data: Beyond exact matches,’’ in Proc. Eur.
Symp. Res. Comput. Secur. Vienna, Austria: Springer, 2015, pp. 123–145.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur., Oct. 2006, pp. 89–98.

[16] Q. Tang and L. Chen, ‘‘Public-key encryption with registered keyword
search,’’ in Proc. Eur. Public Key Infrastruct. Workshop. Pisa, Italy:
Springer, 2009, pp. 163–178.

[17] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy, May 2000,
pp. 44–55.

[18] E.-J. Goh, ‘‘Secure indexes,’’ IACR Cryptol. ePrint Arch., 2003. [Online].
Available: http://eprint.iacr.org/2003/216

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ J. Com-
put. Secur., vol. 19, no. 5, pp. 895–934, Jan. 2011.

[20] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
‘‘Highly-scalable searchable symmetric encryption with support for
Boolean queries,’’ in Advances in Cryptology—CRYPTO. Stanford, CA,
USA: Springer, 2013, pp. 353–373.

[21] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, ‘‘Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy
improvement,’’ IEEE Trans. Inf. Forensics Security, vol. 11, no. 12,
pp. 2706–2716, Dec. 2016.

[22] J. Yao, Y. Zheng, C. Wang, and X. Gui, ‘‘Enabling search over
encrypted cloud data with concealed search pattern,’’ IEEE Access, vol. 6,
pp. 11112–11122, 2018.

[23] S. Kamara and T. Moataz, ‘‘Boolean searchable symmetric encryption
with worst-case sub-linear complexity,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn., 2017, pp. 94–124.

[24] X. Yuan, X. Yuan, B. Li, and C. Wang, ‘‘Secure multi-client data access
with Boolean queries in distributed key-value stores,’’ in Proc. IEEE Conf.
Commun. Netw. Secur. (CNS), Oct. 2017, pp. 1–9.

[25] B. Wang, Y. Hou, M. Li, H. Wang, H. Li, and F. Li, Tree-Based Multi-
Dimensional Range Search Encrypted Data With Enhanced Privacy.
Beijing, China: Springer, 2014.

[26] N. S. Jho, K. Y. Chang, D. Hong, and C. Seo, ‘‘Symmetric searchable
encryption with efficient range query using multi-layered linked chains,’’
J. Supercomput., vol. 72, no. 11, pp. 4233–4246, Nov. 2016.

[27] Q. Huang and H. Li, ‘‘An efficient public-key searchable encryp-
tion scheme secure against inside keyword guessing attacks,’’ Inf. Sci.,
vols. 403–404, pp. 1–14, Sep. 2017.

[28] P. Xu, X. Tang,W.Wang, H. Jin, and L. T. Yang, ‘‘Fast and parallel keyword
search over public-key ciphertexts for cloud-assisted IoT,’’ IEEE Access,
vol. 5, pp. 24775–24784, 2017.

[29] A. Sahai and B.Waters, ‘‘Fuzzy identity-based encryption,’’ in Proc. Annu.
Int. Conf. Theory Appl. Cryptograph. Techn. Aarhus, Denmark: Springer,
2005, pp. 457–473.

VOLUME 7, 2019 31995

Y. Wu et al.: Novel Multi-Keyword Search on Encrypted Data in the Cloud

[30] Q. Zheng, S. Xu, and G. Ateniese, ‘‘Vabks: Verifiable attribute-based
keyword search over outsourced encrypted data,’’ in Proc. INFOCOM,
Jul. 2015, pp. 522–530.

[31] M. H. Ameri, M. Delavar, J. Mohajeri, and M. Salmasizadeh, ‘‘A key-
policy attribute-based temporary keyword search scheme for secure cloud
storage,’’ IEEE Trans. Cloud Comput., to be published.

[32] J. Cui, H. Zhou, H. Zhong, and Y. Xu, ‘‘AKSER: Attribute-based keyword
search with efficient revocation in cloud computing,’’ Inf. Sci., vol. 423,
pp. 343–353, Jan. 2017.

[33] S. Wang, D. Zhang, Y. Zhang, and L. Liu, ‘‘Efficiently revocable and
searchable attribute-based encryption scheme for mobile cloud storage,’’
IEEE Access, vol. 6, pp. 30444–30457, 2018.

[34] M. Ru, Y. Zhou, J. Ning, K. Liang, J. Han, and W. Susilo, ‘‘An efficient
key-policy attribute-based searchable encryption in prime-order groups,’’
in Proc. Int. Conf. Provable Secur., 2017, pp. 39–56.

[35] M. Bellare, R. Canetti, and H. Krawczyk, ‘‘Keying hash functions for
message authentication,’’ in Proc. Annu. Int. Cryptol. Conf. Stanford, CA,
USA: Springer, 1996, pp. 1–15.

[36] D. Boneh and M. Franklin, ‘‘Identity-based encryption from the weil
pairing,’’ in Proc. Annu. Int. Cryptol. Conf. Stanford, CA, USA: Springer,
2001, pp. 213–229.

[37] J. W. Byun, D. H. Lee, and J. Lim, ‘‘Efficient conjunctive keyword search
on encrypted data storage system,’’ in Proc. Eur. Public Key Infrastruct.
Workshop. Turin, Italy: Springer, 2006, pp. 184–196.

[38] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, ‘‘Off-line keyword
guessing attacks on recent keyword search schemes over encrypted data,’’
in Proc. 3rd VLDB Workshop SDM, Seoul, South Korea, Sep. 2006,
pp. 75–83.

[39] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[40] P. Golle, J. Staddon, and B. Waters, ‘‘Secure conjunctive keyword search
over encrypted data,’’ in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur.
Yellow Mountain, China: Springer, 2004, pp. 31–45.

YUNYUN WU received the B.E. and M.E.
degrees fromYunnan University, Kunming, China,
in 2012 and 2015, respectively, where she is cur-
rently pursuing the Ph.D. degree with the School
of Information and Communication Engineer-
ing. Her research interests include cloud com-
puting security, outsourcing storage security, and
cryptology.

JINGYU HOU received the Ph.D. degree in com-
putational mathematics from Shanghai University,
China, and the Ph.D. degree in computer sci-
ence from the University of Southern Queensland,
Australia. He is currently with the School of Infor-
mation Technology, Deakin University, Australia.
He has published three monographs and more
than 50 refereed journal and conference papers.
His research interests include data and Web min-
ing, bioinformatics, data analytics and algorithm

design, databases, and information retrieval.

JING LIU received the Ph.D. degree in com-
puter application technology from the University
of Electronic Science and Technology of China,
in 2003. From 2003 to 2005, he was a Post-
doctoral Fellow with the No. 30 Institute, China
Electronics Technology Group Corporation. From
2005 to 2012, he was an Assistant Professor with
the School of Information Science and Technol-
ogy, Sun Yat-sen University. Since 2013, he has
been with Yunnan University. His current research

interests include applied cryptography and network security.

WANLEI ZHOU (SM’09) received the B.Eng. and
M.Eng. degrees in computer science and engi-
neering from the Harbin Institute of Technology,
Harbin, China, in 1982 and 1984, respectively,
the Ph.D. degree in computer science and engi-
neering from The Australian National University,
Canberra, Australia, in 1991, and the D.Sc. degree
fromDeakin University, in 2002. He was an Alfred
Deakin Professor and the Chair of Information
Technology with Deakin University. He is cur-

rently the Head of School of the School of Software, University of Technol-
ogy Sydney, Australia. He has published more than 300 papers in refereed
international journals and refereed international conferences proceedings.
His research interests include distributed systems, network security, and
privacy preserving. He has chaired many international conferences and has
been invited to deliver keynote address in many international conferences.

SHAOWEN YAO received the B.S. and M.S.
degrees in telecommunication engineering from
Yunnan University, China, in 1988 and 1991,
respectively, and the Ph.D. degree in computer
application technology from the University of
Electronic Science and Technology of China,
in 2002. He is currently a Professor with
the School of Software, Yunnan University.
His current research interests include neu-
ral network theory and applications, cloud

computing, and big data.

31996 VOLUME 7, 2019

	INTRODUCTION
	CONTRIBUTIONS
	ORGANIZATION

	RELATED WORK
	PRELIMINARIES
	COLLISION-RESISTANT HASH, BILINEAR MAPS AND COMPLEXITY ASSUMPTIONS
	COLLISION-RESISTANT HASH32bellare1996keying
	BILINEAR MAPS30boneh2001identity
	DECISIONAL BILINEAR DIFFIE-HELLMAN (DBDH) ASSUMPTION30boneh2001identity
	MULTI-DECISIONAL BILINEAR DIFFIE-HELLMAN (MDBDH) ASSUMPTIONbyun2006efficient

	EXPRESSION TREE
	EXPRESSION TREE CONSTRUCTION

	SYSTEM MODEL AND SECURITY DEFINITIONS
	SYSTEM MODEL
	SECURITY DEFINITIONS

	OUR CONSTRUCTION
	CONSTRUCTION
	SECURITY ANALYSIS
	SENDER COLLUDING WITH OTHER SENDERS
	SENDERS COLLUDING WITH A SERVER

	PERFORMANCE ANALYSIS
	EFFICIENCY
	EXPERIMENT

	CONCLUSION
	REFERENCES
	Biographies
	YUNYUN WU
	JINGYU HOU
	JING LIU
	WANLEI ZHOU
	SHAOWEN YAO

