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Abstract

The ability to combine both a functional sensing and signalling membrane-electrode
interface system is crucial for developing new technologies that can directly connect the
living biosphere with electrical devices. However, there is a considerable distinction
between both the chemical and biomechanical properties of live cell membranes versus
synthetic electrical prostheses, thus there remain significant challenges that must be
overcome in order to establish stable and functionally predictable interactions between
these different components. The sparsely tethered bilayer lipid membrane possesses the
necessary skeleton onto which novel chemistries can be added in order to succeed in the

first iteration of correctly integrating electronic coupling with biological tissue.

This dissertation presents an investigation into controlling the ionic and the electronic
interface and then detecting ion fluxes arising from nearby biologically active cells at the
nanometer scale, by using the detectable electrical signals derived from interfacing of
membranes with a gold electrode. In it, the feasibility of implementing tBLMs as either
an interface between biological systems and electrical devices or for continual sensing in

real-time or for diagnostic purposes is investigated.

Commencing is a comprehensive review of variant artificial lipid membrane models and
the impedance spectroscopy approach (Chapter 1). A demonstration of the intimate
nanoscale contacts of cells with the surface of the electrode is presented in Chapter 2. The
aim of this study was to examine the feasibility of applying tBLMs in bio-implantable
devices to offer specific transmission of electrical signals to individual target neurons to
improve signal fidelity. This was to be achieved by reducing leakage pathways, thereby

minimizing electrophoretic ion currents being lost into the surrounding interstitial
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medium. Chapter 3 describes how, instead of using the lipid membrane-covered
electrodes to signal to cells, the electrode might be used to as a nano-biosensor for cell
detection. Various approaches to increase sensitivity were explored to enhance this
capability. The necessity for detection at the nanometer scale is explored in Chapter 4,
recording in real-time the laser-generated heat pulses arising from laser-illuminated gold
nanoparticles. Detection of these heat pulses required attachment of the gold
nanoparticles to the membrane surface, while non-specific binding of gold nanoparticles

failed to elicit a measurable response.

Conclusions and perspectives are presented in Chapter 5, sum up of the significant
achievements presented in this dissertation, which has focused on extending our
understanding of cell membrane interactions and exploring the feasibility of using these

across a range of applications.
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