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AN ABSTRACT OF THE DISSERTATION OF

Title: Variations of stack sorting and pattern avoidance

Supervisor: Professor Murray Elder

Sorting is a process of arranging certain objects into an ordered sequence. Real

world problems such as sorting using switchyard networks, genome arrangement, and

delivery of network data packets can be realised as sorting problems. The study of these

problems can be translated into the study of sorting permutations using a system of

data structures which can store and output data. For instance, the sorting problem in

certain switchyard networks can be formulated as the problem of sorting permutations

using stacks. The results of this thesis address the following research questions related

to sorting permutations.

Open research questions

1. In a sorting process with a finite stack followed by an infinite stack in series,

what is the depth of the finite stack at which the basis becomes infinite?

2. Is there a pattern avoidance characterisation for k-pass pop stack sortable

permutations?

Apart from answering these questions, we develop a new notion of barred pat-

tern avoidance1 to accommodate some of the limitations in the existing barred pattern

avoidance definition. With the new notion of barred pattern avoidance, a proof can be

established to answer question 2 above.

The organisation of this thesis is as follows. Chapter 1 gives a detailed introduction

to the research in permutation patterns and stack sorting. It includes some history and
1A barred pattern is a type of non-classical pattern that describes a set of permutations. More

details will be explained in next chapter.
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some major research outcomes. Moreover, several variations of sorting machines are

described. Finally, a few types of non-classical patterns are explained. Chapter 2

answers the first question above. Based on some experimental data, a conjecture was

made that the basis changes from finite to infinite when the depth of the finite stack

is 3. We found an infinite antichain in the form of extendable sequence of numbers

to prove the conjecture. Chapter 3 answers the second question and introduces a new

notion of barred pattern avoidance to characterise permutations sortable by a k-pass

pop-stack. Then, we finish the chapter by proving the number of forbidden patterns

that the permutations sortable by k-pass pop-stack must avoid is finite. The set of

forbidden patterns can be algorithmically constructed. Chapter 4 concludes the thesis

with some directions for future research.
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CHAPTER 1

INTRODUCTION

1.1 PERMUTATION PATTERNS

The study of permutation patterns is a significant research area in combinatorics

which primarily involves identification and counting of patterns in permutations. The

study began in 1968 when well-known computer scientist and mathematician Donald

Knuth investigated the patterns in permutations sortable by a single stack. In his

book titled The Art of Computer Programming [36] he showed that the permutations

sortable by a stack are exactly those that avoid the pattern 231. In other words,

the permutations must not contain numbers with relative ordering middle, BIG, small.

For example, a permutation 1342 cannot be sorted by a stack because it contains the

numbers 3,4 and 2 with the relative ordering middle (3), BIG (4), small (2) as shown

in Figure 1.1.

3142 42

3
1

42

3

1

3
4
2

1 12

3
4

Figure 1.1: Attempting to sort the permutation 1342 with a stack

The problem of sorting permutation with stacks will be further discussed in Section

1.2

Definition 1. A permutation σ is a bijection of an ordered set to itself. In this re-

search, the ordered set refer to a set of distinct integers. For example, we may take

{1, 2, 3, · · · , n} with the relation <, and write a permutation
(

1 2 3
3 1 2

)
as 312.

Definition 2. A subpermutation of a permutation σ = a1 . . . an is a word p = ai1 . . . aim
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with 1 6 i1 < · · · < im 6 n. For example, 1, 3, 4, 2, 13, 14, 12, 34, 32, 42, 134, 132,

142, 342 and 1342 are all the subpermutations of the permutation 1342.

Definition 3. A subpermutation p can be written in reduced form as red(p) by replac-

ing its ith smallest token with i. For example, red(342) = 231.

Definition 4. Two subpermutations with the same relative ordering are said to be

order-isomorphic. We write α ∼ β if α, β are order-isomorphic. For instance, 342

is order-isomorphic to 231, written 342 ∼ 231. Alternatively, α ∼ β if and only if

red(α) = red(β).

Definition 5. A permutation σ is said to contain a pattern p if it has a subpermutation

that is order isomorphic to p. Otherwise, we say σ avoids p.

Before the study of permutation patterns was initiated in 1968, some results related

to this field had already existed. The Erdős-Szekeres theorem [28] can be interpreted

in the language of permutation patterns to show that for any positive integers a and

b, every permutation of length equal or greater than (a − 1)(b − 1) + 1 must contain

at least one subpermutation γ ∼ 123 . . . a or γ ∼ b . . . 321. Therefore, the number of

permutations that avoid a set of patterns {123 . . . a, b . . . 321} is finite.

Another result due to MacMahon [39] shows that the number of permutations (for

each length) that avoid the pattern 123 can be counted by the well-known Catalan

numbers, named after Eugene Charles Catalan. The first few Catalan numbers for

n = 1, 2, 3, . . . are

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, . . .

which appearsas sequence A000108 in the Online Encyclopedia of Integer Sequences

(OEIS) [30].
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Research problems in permutation patterns can be categorised into characterisa-

tion, enumeration and decision problems.

1.1.1 Characterisation problems

Characterisation refers to the problem of finding (forbidden) patterns to describe

a set of permutations. It is considered the origin of problems in permutation patterns

since the problem that initiated the study of permutation patterns was none other than

finding patterns to characterise the set of permutations sortable by a stack. Most of the

problems in this category can be formulated as follows: “Given a set of permutations

S, what is the minimal set of patterns that every permutation in S must avoid?”. In the

case of characterisation of permutations sortable by a stack, the set of permutations S

refers to all permutations sortable by a stack and the minimal set of patterns is {231}

which every permutation in S must avoid.

Definition 6. A set of patterns is an antichain if no pattern is contained in another

pattern in the set. In other words, patterns in the set are pairwise avoiding.

An antichain can be used as a tool to prove minimality of a set of patterns. In

general it is defined as a subset of a partially ordered set such that no two distinct

elements are comparable. Notice that a set of permutations with the containment

relation is a partially ordered set up to order isomorphism as in Lemma 1.1.1.

Lemma 1.1.1. A set of permutations with the containment relation is a partial ordered

set up to order isomorphism.

Proof. Let α, β and δ be arbitrary permutations in a set of permutations S. Denote

R(α, β) as “α contains β” and |α| to be length of α or number of tokens in α. We will

prove that the set S is a partial order set by showing the containment relation over the

set S is reflexive, antisymmetric and transitive.

Reflexive
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If α ∼ α, for all permutations by definition. So, R(α, α).

Antisymmetric

If R(α, β) and R(β, α), then

1. α has a subpermutation γ ∼ β, and |α| > |β|

2. β has a subpermutation κ ∼ α, and |β| > |α|

These imply that |α| = |β| and |γ| = |β| = |α| = |κ|. Since γ is contained in α and κ

is contained in β, β ∼ γ = α ∼ κ = β. Thus, we have α ∼ β.

Transitive

If R(α, β) and R(β, δ), then we have the following

1. for R(α, β), |α| > |β| and there exist γ ∼ β in α

2. for R(β, δ), |β| > |δ| and there exist κ ∼ δ in β

These imply that |α| > |δ| and α contains γ ∼ β and β contains κ ∼ δ. Thus κ is

order-isomorphic to a subpermutation in γ. So, α containing γ also contains κ ∼ δ.

Thus R(α, δ).

In many cases of the characterisation problem, the size of antichains are finite

[48, 23, 7]. However, an antichain can also be infinite [24].

Definition 7. A set of permutations S is a pattern avoidance class if there exists a

set P of patterns such that σ ∈ S if and only if it avoids all patterns p ∈ P . We will

denote this as S = Av(P ). Moreover, if P is a singleton set {p}, then we will often

write Av(P )=Av(p).

We call P a basis for Av(P ) if P is an antichain.

6



1.1.2 Enumeration problems

Enumeration is the problem of counting all permutations that avoid a given set of

patterns.

A generating function is a useful tool to enumerate permutations in a pattern

avoidance set. If an is the number of permutations of length n that avoid some set P ,

then

f(x) =
∞∑

n=0
anx

n

is the generating function for Av(P ).

For example, the generating function of Av(213) is

∞∑
n=0

Cnx
n such that Cn = 1

n+ 1

(
2n
n

)

[37] and the coefficient Cn of xn is n-th Catalan number in Section 1.1. The generating

functions for other prominent number sequences such as Bell numbers [31] and Schröder

numbers [32] have been found to be the generating functions of some pattern avoidance

sets [44, 56].

1.1.3 Decision problems

Given a permutation σ, one may ask if there is there an algorithm to decide

whether σ avoids a pattern p, or set of permutations P . If so, then how efficient is that

algorithm? The problems in this area mainly focus on the computational complexity

of such an algorithm. Most of the solutions can be categorised into complexity classes

such as polynomial time (P), nondeterministic polynomial time (NP) and polynomial

space (PSPACE).

Research in this area is less developed and thus only a few notable results are

known. For example, Pierrot and Rossin proved that there is a polynomial algorithm

to decide whether a permutation is sortable by two stacks in series [42].
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1.2 STACK SORTING

Stack sorting is one of the major branches in the study of permutation patterns.

In fact, the earliest findings in the study of permutation patterns fall into this area.

The study of stack sorting is about sorting permutations into ordered permutations by

using some stacks1 as a sorting machine. Sorting with stacks can be used to model real

life problems. One example is the ordering problem in switchyard networks [37, 51]. As

mentioned in Section 1.1, Knuth characterised and enumerated the set of permutations

sortable by a single stack [37]. Since then, other variations of sorting machines have

been considered in the literature. Such variations are detailed as follows.

1.2.1 Variations of sorting machines

In the study of stack sorting, a sorting machine refers to a system of objects

that can be used to sort permutations. For example, the objects can be structures

such as stacks, queues, finite token passing networks, pop-stacks and deques. Most of

the objects have two main operations known as push and pop. The push operation in-

serts/inputs elements and the pop operation removes/outputs elements from the object.

Different objects may have different ways to push and pop elements.

Stacks

A stack follows the last in, first out (LIFO) principle. That is, the pop operation

will remove the element which was most recently pushed into the stack and still lies

in the stack. For instance, if a sequence of n elements, a1a2a3 . . . an are pushed into a

stack in the order a1a2a3 . . . an, then the order of the elements leaving the stack will be

anan−1an−2 . . . a1. Note that the push and pop operations of a stack refer to insertion

and removal of a single element one at a time. In general, sorting permutations using

a stack is a nondetermistic process. During the sorting process, push operation can
1In computer science, “stack” is an abstract data type that is used to store a collection of elements.
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happen at any stage as long as there is an element to be inserted into the stack. A

pop operation can also happen at any stage of the sorting process as long as there is

an element to be removed from the stack. Figure 1.2 shows how the permutation 213

can be sorted by a stack with push and pop operations.

213push 13push

2

3pop

2
1

3pop

2

1 3push12 pop12

3

123

Figure 1.2: A simple representation of push and pop operations of a stack

In a stack sorting machine, stacks can be arranged in parallel or series. Different

arrangements of stacks may produce different sets of sortable permutations.

Stacks in parallel: Two stacks L and R are in parallel if an element from the

input can either be pushed directly into L or R. During a pop operation, an element

cannot move from one stack to another except to the output. Diagram 1.3 shows the

arrangement of two stacks in parallel. Note that with this configuration, a permutation

can only be sorted when the elements in the stacks remain in ascending order when

read from top (opening) to bottom throughout the sorting process.

9



inputoutput
a1a2 . . . an

L

R

Figure 1.3: Two stacks in parallel

In 1970s, Even, Itai and Pratt considered the problem of sorting with stacks in

parallel. Even and Itai solved the decision problem for such a machine by proving

that there is an algorithm to decide whether a permutation is sortable by two stacks

in parallel that runs in polynomial time [29]. Later in 1984, Rosenstiehl and Tarjan

presented a faster algorithm to decide whether a permutation is sortable by two stacks in

parallel that runs in linear time [46]. Meanwhile, Pratt showed that the permutations

sortable by two stacks in parallel must avoid a minimal infinite set of patterns [43].

Furthermore, Pratt extended his result for k > 2 stacks in parallel and found that

the bases are still infinite. The enumeration problem was left open until Albert and

Bousquet–Mélou showed that the generating function for permutations sortable by two

stacks in parallel is the solution of a system of functional equations [1].

Stacks in series: Two stacks L and R are in series if both are adjacent to each

other as shown in the Figure 1.4. Thus, an input has to pass through both R and L

stacks in a consecutive order before it can be output. Moreover, we can only pop an

element from a stack if it can be immediately pushed into the following stack.

10



inputoutput

RL

a1a2 . . . an

Figure 1.4: Two stacks in series

Sorting permutations with stacks in series is more complicated than stacks in

parallel. This is because there are more choices for where to move an inserted element

during the sorting process. Therefore, the problems pertaining to stacks in series appear

harder to solve compared to stacks in parallel. The basis for two stacks in series was

found to be infinite by Murphy, but the enumeration problem remains open [41]. As

mentioned above, the decision problem was also recently shown to be in polynomial

time [42]. For k > 2 stacks in series, there is no known result.

In 2006, Elder introduced a new variation of two stacks in series. Instead of having

both stacks to be infinite as in other research, Elder restricted one of the stacks to be

finite. Interestingly, Elder proved that the set of permutations generated 2 by a stack

of depth 2 and an infinite stack in series has a basis consisting of the following 20

permutations [23].



51234, 51243, 51423, 52134, 52143

52413, 645123 416235, 416253, 645213

426135, 426153, 4175623, 4137256 4137265

4275613, 4237156, 4237165, 41386725, 42386715


Equivalently, the basis for permutations sorted by a stack of depth 2 and an infinite

2all possible permutations that are formed by passing the sequence 1, 2, . . . , n through a stack
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stack in series is


23451 23541 24531 32451 32541

42531 245163 246153 425163 426153

456231 546231 2531674 2531764 2671453

5231674 5231764 6271453 27318564 72318564


Moreover, Elder, Lee and Rechnitzer proved that the generating function for this vari-

ation of two stacks in series is an algebraic function [25].

Elder also proved that if the basis for a depth k stack followed by an infinite depth

stack is infinite, then so is the basis for a depth k+1 stack followed by and infinite depth

stack [23]. Recall that the basis for two infinite stacks in series is infinite. Therefore,

there must be some value of k at which the basis changes from finite to infinite. Chapter

2 of this thesis will address this boundary.

In 1993, West considered sorting permutations by passing the permutations

through a single stack with a greedy sorting process such that an element is input

into the stack if it is smaller than the top element of the stack; otherwise an element is

output from the stack. Instead of performing one sorting process through a stack, he

performed the sorting process twice through the same stack.

In the literature, this is known as West 2-stack sorting. That is, he investigated the

permutations that are sortable by passing twice through a stack using the deterministic

greedy process above. Note that this sorting process forces elements in the stack to

remain ordered when read from top to bottom. West showed that the permutations

sorted by this process must avoid the minimal set of two patterns {2341, 35̄241} [55].

Note that the pattern 35̄241 with a barred element is not the usual classical pattern

but it is a type of non-classical pattern. Section 1.3 will introduce some of the common

types of non-classical patterns that appear in the literatures.

In 2002, Atkinson, Murphy and Ruškuc investigated the problems of two infinite

12



stacks in series by putting a restriction on both stacks. The restriction is that the

elements in both stacks must always appear in ascending order when read from top

to bottom. This system configuration similar to West system configuration but the

algorithm on how to sort a permutation is different in both configurations. West’s

algorithm depends on a greedy algorithm that favours operations “to the right” of the

system while their system favour “left” greedy algorithm. For details, refers to [5]. They

proved that the pattern avoidance set has an infinite basis and the generating function

is
∞∑

n=0
znx

n = 32x
−8x2 + 20x+ 1− (1− 8x)3/2

where zn is the number of permutations of length n [5]. Surprisingly, this generating

function is also the generating function for Av(1342) [12]. It can be seen that Av(1342)

and Av(infinite basis) are having the same generating function as above. Therefore,

pattern avoidance sets with the same generating function can have completely different

minimal sets of patterns that describe the avoidance sets and vice versa. This variation

of two stacks in series is almost similar to two stacks in parallel as the elements of both

stacks in parallel also have to be in ascending order when read from top to bottom.

Smith consider a similar variation of stacks where the elements in one of the two stacks

must always appear in descending order when read from top to bottom. She found that

the basis is a finite set of two patterns {3142, 3241} [48] and Kremer has shown that

the pattern avoidance set of these two patterns can be enumerated by the generating

function of the Schröder number [38]

Pop-stacks

A pop-stack is similar to a stack except that its pop operation removes all ele-

ments from the stack at once. There are two types of pop-stacks; deterministic and

nondeterministic. In a deterministic pop-stack, the pop operation is only triggered
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when the next element to be pushed has a value bigger than the element on top of the

pop-stack or when there is no element to be pushed from the input. Figure 1.5 shows

a permutation 4213 passing through a deterministic pop-stack.

4213push 213push

4

13push

4
2

3pop

4
2
1

3push124 pop124

3

1243

Figure 1.5: Passing 4213 through a deterministic pop-stack

Meanwhile, a nondeterministic pop-stack does not compare the value of the el-

ements to determine the pop or push operations. The pop and push operations are

nondeterministic like the operations of a stack. Due to the nondeterministic nature

of this pop operation, a permutation such as 231 may pass through the pop-stack in

several different ways, potentially producing different outputs as in Figure 1.6.
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231push 31push

2

1push

2
3

pop

2
3
1

132

31pop

2

31push2 12 push

3

2 pop

3
1

213

1pop

3
2

1push32 32 pop

1

321

12 pop

3

123 push 23 pop

1

231

Figure 1.6: Passing 231 through a nondeterministic pop-stack

Sorting with a pop-stack has less power than a normal stack because each pop

operation forces every element in the pop-stack to be removed. That is, fewer permuta-

tions can be sorted by a pop-stack than a normal stack. Explicitly, Avis and Newborn

[7] proved a permutation can be sortable by a pop-stack if and only if it avoids the set

of patterns {231, 312}, and the number permutations of length n that can be sorted is

2n−1, while as we know from Knuth permutations sortable by an ordinary stack only

need to avoid the set {231} and the number of permutations of length n that can be

sorted is Cn which is asymptotically 4n.
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The study of sorting permutations with pop-stacks began in 1980s when Avis

and Newborn investigated the characterisation and enumeration problems of sorting

permutations by using pop-stacks in series. Pop-stacks in series operate as follows.

Tokens can be passed from the output of one pop-stack to the input of the next stack

at any time, as long as the entire contents are popped. By contrast, a k-pass pop-stack

requires that i-th pop-stack must complete its output before the (i + 1)-st pop-stack

can be used. They proved that the set of permutations sortable by k pop-stacks in

series is characterised by a minimal set of finite patterns [7] and they also provided the

enumerations of these permutations for every length k.

Later, Atkinson and Sack considered pop-stacks in parallel. They proved that

for two pop-stacks in parallel, the characterisation is a minimal set of 7 patterns,

{3214, 2143, 24135, 41352, 14352, 13542, 13524}. They were also able to characterise the

set of permutations sortable by k pop-stacks in parallel with a minimal finite set of

patterns [6]. Then, Smith and Vatter proved the conjecture of Atkinson and Sack that

the generating function for k pop-stacks in parallel is a rational function [49].

Recently, Pudwell and Smith considered permutations that are sortable after

passing twice through a deterministic pop-stack. Similar to West’s result with a 2-

pass stack [55], they proved that these permutations must avoid not only some clas-

sical patterns but also non-classical barred patterns. In particular, the patterns are

2341, 3412, 3421, 4123, 4231, 4312, 413̄52 and 4135̄2 [45]. They also proved that the gen-

erating function is in bijection with a special family of polynominoes. After that,

Claesson and Guðmundsson extended their enumeration result by proving that the

generating function for permutations that are sortable after k passes through a pop-

stack is a rational function [18]. Following this result, the characterisation problem for

k-pass deterministic pop-stacks remained open. In Chapter 3, we provide a solution to

this problem.
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Deques

A double-ended-queue or deque is similar to a stack but with two openings where

the push and pop operations can occur at either openings. Therefore, a deque with

push and pop operations can be visualised as in Figure 1.7.

inputoutput

push

a1a2 . . . an

pop

pushpop

Figure 1.7: A deque

There is less literature available here, compared to stacks and pop-stacks. Some

notable results in sorting permutations with a deque are that Pratt showed that the

basis for sorting permutations with a deque is infinite [43] extending the research of

Knuth who had shown that set of bases for an input-restricted deque is a set of 2

patterns {4231, 3241} [36]. An input-restricted deque is a deque where push operations

can only happen at one end. The enumeration problem for deque sortable permutations

is open.

1.2.2 Problems and motivations

Stack sorting has been an active area of research and many results have been proven

since 1968. Numerous interesting variation of sorting machines have been introduced

and studied by many well-known researchers. Table 1.1 provides a summary of results

that have been obtained with different variations of sorting machines. The motivation

of this thesis is based on previous research and open questions (Open) in stack sorting.
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Variation of sorting machine Characterisation Enumeration Decision

single stack finite [36] Catalan [36] linear†

2 stacks in parallel infinite [43] [1] linear [46]

k > 2 stacks in parallel infinite [43] Open Open

2 stacks in series infinite [41] Open polynomial [42]

k > 2 stacks in series Open Open Open

West-2-stack finite [55] Algebraic [58] linear†

West-3-stack finite [54] [19] linear†

West-k-stack Open Open linear†

2 stacks in series (ascending) infinite [5] [5] Open

2 stacks in series (descending) finite [48] [48] polynomial∗ [48]

(k,∞) stacks in series, k = 2 finite [23] Algebraic [25] polynomial∗ [23]

(k,∞) stacks in series, k > 2 Open Open Open

single pop-stack finite [7] [7] linear†

k > 2 pop-stacks in series finite [7] [7] polynomial∗ [7]

k > 2 pop-stacks in parallel finite [6] Rational [49] linear [6]

2-pass deterministic pop-stack finite [45] Rational [45] linear†

k > 2 pass deterministic pop-stack Open Rational [18] linear†

single deque infinite [43] Open [46][20]

single input-restricted deque finite [36] [36] polynomial [36]

Table 1.1: Summary of past results in stack sorting

† Since the process is deterministic, it can be done in linear time.

∗ Decision results were not stated explicitly by the authors of the papers but we interpreted that the

algorithm to decide a permutation is sortable based on a finite number of patterns to avoid can run in

polynomial time.
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Our first motivation is to extend Elder’s result in sorting permutations with a

stack of depth k and an infinite stack in series, written as (k,∞) stacks in series in the

table. Elder proved that if k = 2, then the number of basis elements is finite. However,

Murphy proved that if k is infinite, then the number of basis elements is infinite. Thus,

there is a question whether there is a minimum finite k so that the set of basis elements

can become infinite. In Chapter 2, we proved that the number of basis elements changes

from finite to infinite when k = 3. Then we extend this result by showing that for any

k > 2, the basis is infinite.

Our second motivation is to solve the characterisation problem for k-pass pop-stack

answering a question of Claesson and Guðmundsson. [18]. Note that, solving charac-

terisation problems may also solve the decision problem. This is because whether a

permutation is sortable can be decided in polynomial time if it only has to avoid finitely

many patterns. So, if the number of forbidden patterns for permutations sortable by

k-pass pop-stack is finite, then the algorithm to decide whether the permutation is

sortable by k-pass pop-stack runs in polynomial time. In Chapter 3, we prove that the

number of basis elements for k-pass pop-stack is finite. Therefore, the algorithm is a

polynomial algorithm. In next section, a few significant types of non-classical pattern

will be explored especially the barred pattern before we give our next problem and

motivation in non-classical pattern context.

1.3 NON-CLASSICAL PATTERNS

The study of pattern avoidance in permutation patterns becomes very challenging

when it involves more restrictions to avoid a single or multiple patterns. For instance,

one can ask what is the pattern avoidance set for a pattern 4213 such that the permuta-

tions that contain it must have the subpermutation aiajakal ∼ 4213 with the restriction

ai and ak must be adjacent in the permutations. The permutation 54213 contains it

but not 42513 because the tokens 2 and 1 are not adjacent. In this case, we cannot
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use classical pattern to represent the pattern directly. Therefore, several types of non

classical pattern such as vincular patterns, bivincular pattern and barred patterns were

introduced.

1.3.1 Vincular patterns

Vincular patterns were introduced by Babson and Steingrímsson [8] in 2000 to

put extra restrictions on a classical pattern p = p1p2p3 . . . pk in a permutation σ =

a1a2a3 . . . an . These restrictions can be divided into three types such as follows: For

each subpermutation ai1ai2ai3 . . . aik
order isomorphic to p=p1p2p3 . . . pk in σ,

1. (Type 1) aij
and aij+1 corresponding to pm, pm+1 must be adjacent in σ that is

ij+1 = ij + 1

2. (Type 2) ai1 corresponding to p1 must be a1

3. (Type 3) aik
corresponding to pk must be an

In order to reflect these restrictions on a classical pattern, some decorations are added

to the pattern.

Definition 8. A vincular pattern, p is a classical pattern where some of its consecutive

tokens are underlined as follows:

1. If p contains pm, pm+1, pm+2, . . . , pm+l, then each occurrence of p in σ must be order

isomorphic to p and contain a subpermutation, ai1ai2ai3 . . . ail
order isomorphic

to pm, pm+1, pm+2, . . . , pm+l such that ij+1=ij + 1 for each m 6 j < m+ l.

2. If p begins with dp1 . . . , then the occurrence of p in σ must start with the first

token a1 in σ.

3. If p ends with . . . p|p|e, then the occurrence of p in σ must end with the last token

an in σ.
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Note: A vincular pattern p without any decoration on its tokens is also a classical

pattern.

Example 1.3.1. Let p= 54321 and σ=971865342. In σ, there are only four occurrences

of p which are the subpermutations 97653, 97642, 97542 and 86542. Each of these oc-

currences has its first two tokens in descending order (∼ 54) and adjacent to each other

in σ. Similarly, its last two tokens correspond to 21. Meanwhile, the subpermutations

98653, 98642 and 98542 are not occurrences of p, since the first two tokens 9 and 8

are not adjacent in σ. Table 1.2 shows a few more examples of vincular patterns in a

permutation.

Pattern Occurrences in 365142

132 365, 364, 354, 142

132 365, 364, 142

132 365, 142

132 365, 142

d132 365, 364, 354

132e 142

Table 1.2: Examples of vincular patterns in a permutation

A permutation σ is said to contain a vincular pattern p if there exists at least one

occurrence of p in σ. Otherwise σ avoids p. Even though a vincular pattern has more

restrictions than a classical pattern, there are some cases when it characterises the same

set of permutations as a classical pattern. For example, Av(213)=Av(213) [15].

Vincular patterns can be used to describe Baxter permutations which were intro-

duced by Glen Baxter in 1964. A permutation σ is a Baxter permutation if it does

not have any subpermutation aiajakal order isomorphic to 2413 or 3142 and k=j + 1.

So, Av({2413, 3142}) represents the set of all Baxter permutations. Since the introduc-
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tion of vincular patterns, much research involving these patterns has been published

[2, 3, 10, 11, 15, 16, 17, 26, 27, 34, 50, 52].

1.3.2 Bivincular patterns

A bivincular pattern is an extension of vincular pattern. It can have all the

restrictions of a vincular pattern as well as additional restriction to control values in a

pattern.

Definition 9. A bivincular pattern p is a written in a two-row notation such that the

bottom row is a vincular pattern and the top row is a increasing permutation 123 . . . |p|

with some tokens overlined.

1. If the bottom row is a vincular pattern pm, pm+1, pm+2, . . . , pm+l, then each occur-

rence of p in σ must be a subpermutation, aij
aij+1aij+2 . . . aij+l

order isomorphic

to pm, pm+1, pm+2, . . . , pm+l and ij+1 = ij + 1.

2. If the top row contains m(m+ 1)(m+ 2) . . . (m+ l), then any occurrence of p

in σ must contain a subpermutation aij
aij+1aij+2 . . . aij+l

order isomorphic to

pmpm+1pm+2 . . . pm+l with values aij+x
= aij+x+1 − 1.

3. If the top row begins with d1 . . . , then any occurrence of p in σ must start with

the smallest token in σ

4. If the top row ends with . . . |p|e, then any occurrence of p in σ must end with the

largest token in σ

Example 1.3.2. Let σ = 241635. The subpermutation 235 is an occurrence of the

bivincular pattern 1 2 3
1 2 3 because 235 is order isomorphic to the bottom notation 123 and

the tokens 2 and 3 are adjacent such that 2 = 3−1 which satisfies the above notation 12.

Meanwhile, 1 2 3
1 2 3 is the pattern of the subpermutation 246. This is because 246 ∼ 123

has its first two tokens adjacent in σ and the token 2 is the first token in σ (bottom
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row restriction - vincular pattern). Moreover, the token 6 is the largest token in σ (top

row restriction). On the other hand, σ does not have an occurrence of the pattern 1 2 3
1 2 3

because the only possible occurrence for this bivincular pattern is aij
aij+1aij+2 such that

aij
=aij+1 − 1 and aij+1=aij+2 − 1.

In term of pattern avoidance, σ contains a bivincular pattern p if there exist at

least one occurrence of p in σ. Otherwise, σ avoids p.

1.3.3 Barrred patterns

A barred pattern is a classical pattern where some of its tokens are barred. Barred

patterns were introduced by West to characterise the permutations that are sortable

after passing twice through a stack with certain restrictions [55]. The set of all barred

patterns of length 2 is

B2 = {12, 21, 1̄2, 12̄, 2̄1, 21̄, 1̄2̄, 2̄1̄}

Given a barred pattern β, we denote by unbar(β) the permutation obtained after

removing the bar symbol from any token in β. For example, if β = 32̄41, then unbar(β)

= 3241. Meanwhile removebar(β) is the permutation obtained by deleting tokens with

bars and then reducing. So, removebar(β) = 231 ∼ 341. Note that a barred pattern

which satisfies β = unbar(β) can be considered as a barred pattern or a classical

permutation pattern.

In terms of pattern avoidance, a permutation σ is said to avoid the barred pattern β

if each occurrence of removebar(β) in σ (if any) is a part of an occurrence of unbar(β) in

σ ([35, Definition 1.2.3]). A similar definition is mentioned in [21] and [55]. For example,

σ = 13524 is said to avoid a barred pattern β = 24̄13 because the only subpermutation

in σ that is order-isomorphic to removebar(β) = 213 is 324 which is also a part of the

subpermutation, 3524 ∼ unbar(β). Meanwhile, 53124 does not avoid but contains β
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because it has subpermutation, 324 that is order-isomorphic to removebar(β) = 213

but is not part of any subpermutation that is order-isomorphic to unbar(β).

Jean-Luc Baril [9] categorised this definition of barred pattern avoidance as

weak avoidance. In [9] and [44], barred pattern avoidance is defined with additional

restrictions. We define the bar positions in a barred pattern βn of length n as

βpos = t1t2 . . . tn ∈ {0, 1}n such that 0 means no bar and 1 means there is a bar.

For example, the bar position of β = 24̄13 is βpos = 0100. A permutation σ is said to

avoid (not weakly avoid) a barred pattern β if each occurrence of removebar(β) in σ (if

any) can be extended into an occurrence of the pattern β in σ according to βpos. Note

that this avoidance is more restrictive than the weak avoidance. For instance, given a

barred pattern β = 12̄ with βpos = 01, a permutation 12 does not avoid β since the

subpermutation 2 ∼ removebar(β) = 1 cannot be extended to 12 according to βpos.

Another example is σ=123. In this case, the subpermutation 2 ∼ removebar(β) = 1

is able to extend based on βpos by being part of the subpermutations 23 in σ. How-

ever, the subpermutation 3 ∼ removebar(β) = 1 cannot be extended to be part of a

subpermutation order-isomorphic to 12 according to βpos unless there is another token

am > 3 and appear on the right of 3 in σ. Thus it can be seen that Av(12̄) is an empty

set based on this strict avoidance. However, the permutation 12 avoids β = 12̄ in the

context of weak avoidance.

Based on this strict barred pattern avoidance, Pudwell gave a collection of enu-

meration results for permutations that avoid barred patterns of length 6 4 and showed

that there is no single permutation avoiding a barred pattern with only 1 unbar token

[44]. Note that this strict avoidance is known as strong avoidance.

Both barred pattern avoidance definitions disagree with the usual classical pattern

avoidance when β has no bar tokens. For example, σ = 21 does not avoid 21 in the

usual sense of classical pattern avoidance, but if 21 is considered as a barred pattern

then σ avoids 21. This is one of the reasons why we developed a better notion of barred
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pattern avoidance in Chapter 3.

Barred patterns can be useful in characterising some permutations charac-

terised by other patterns. For instance, Av(213̄54) = Av(2143) [53]. Moreover,

Av({253̄14, 413̄52}) represents the set of Baxter permutations [22, 52]. Note that in

our previous example, Av({2413, 3142}) also represents the set of Baxter permutations.

Thus, we have Av({253̄14, 413̄52})=Av({2413, 3142}). Other earlier literatures that

used using barred patterns include [13, 57]

1.3.4 Problems and motivations

Throughout the study of non-classical pattern in permutation patterns, the exis-

tence of barred pattern provides an interesting area of study. One of the reasons is

because of its presence in the study of stack sorting. Moreover, its pattern avoidance

definition has some issues in characterising permutations sortable by k-pass pop stack

when k > 2. We will discuss the issues in Chapter 3 before we define a new barred

pattern avoidance definition (which we call PB-avoidance to distinguish it) that fills

the gaps of existing definition.
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CHAPTER 2

PERMUTATIONS SORTED BY A FINITE AND AN INFINITE

STACKS IN SERIES

2.1 AIM

In this chapter, we want to prove that the set of permutations sorted by a stack of

depth t > 3 and an infinite stack in series has infinite basis, by constructing an infinite

antichain of unsortable permutations. This answers the open question of identifying

the point at which, in a sorting process with two stacks in series, the basis changes from

finite to infinite.

2.2 INTRODUCTION

Sorting mechanisms are natural sources of pattern avoidance classes, since (in

general) if a permutation cannot be sorted then neither can any permutation containing

it. Recall from Chapter 1 that the set of permutations sortable by a stack of depth 2

and an infinite stack in series has a basis of 20 permutations [23], while for two infinite

stacks in series there is no finite basis [41]. For systems of a finite stack of depth 3

or more and infinite stack in series, it was not known whether the basis was finite or

infinite.

The outcome from this chapter shows that for depth 3 or more the basis is infinite.

An infinite antichain belonging to the basis of the set of permutations sortable by a

stack of depth 3 or more and an infinite stack in series is explicitly constructed. A

simple lemma then implies the result for depth 4 or more. For completeness we also

give an explicit construction of an infinite antichain belonging to the basis for (k,∞)

when k > 4. The main result in this chapter has been published as a paper [24].
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2.3 EXPERIMENTAL DATA

A computer program implemented in Python and C++ programming languages

was used1 to find the number of potential basis permutations of lengths up to 13. The

computer search yielded 8194 basis permutations of lengths up to 13 (see Table 2.1; ba-

sis permutations are listed at https://github.com/gohyoongkuan/stackSorting-3).

The antichain used to prove our theorem was found by examining this data and looking

for patterns that could be arbitrarily extended.

Table 2.1: Number of basis elements for S(3,∞) of length up to 13

Permutation length Sortable permutations (count) Basis elements (count)
5 120 0
6 711 9 +9
7 4700 83 +74
8 33039 169 +86
9 239800 345 +176
10 1769019 638 +293
11 13160748 1069 +431
12 98371244 1980 +911
13 737463276 3901 +1921

The size of the basis keeps increasing, unlike the situation for k = 2. With this

numerical evidence, a conjecture was made at this stage that the size of the basis

might be infinite. Thus, an alternative approach to prove the conjecture was to find

an infinite antichain by examining this data and looking for patterns that could be

arbitrarily extended.

2.4 PRELIMINARIES

The notation N denotes the non-negative integers {0, 1, 2, . . . } and N+ the positive

integers {1, 2, . . . }. Let Sn denote the set of permutations of {1, . . . , n} and let S∞ =⋃
n∈N+ Sn. A permutation σ ∈ Sn can be represented as a plot which is the set of points

1enumerating sorting codewords of length 3n as described in Chapter 4, rather than enumerating
the n! permutations.
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{(i, σi)|1 6 i 6 n} [45]. For instance, Figure 2.1 shows the plot for the permutation

243651.

Figure 2.1: Permutation plot of 243651

As before, the set of all permutations in S∞ which avoid every permutation in

B ⊆ S∞ is denoted Av(B). A set of permutations is a pattern avoidance class if it

equals Av(B) for some B ⊆ S∞. A set B = {q1, q2, . . . } ⊆ S∞ is an antichain if no qi

contains qj for any i 6= j. An antichain B is a basis for a pattern avoidance class C if

C = Av(B).

Let Mt denote the machine consisting of a stack, R, of depth t ∈ N+ and infinite

stack, L, in series as in Fig. 2.2. A sorting process is the process of moving entries of

a permutation from right to left from the input to stack R, then to stack L, then to

the output, in some order. Each item must pass through both stacks, and at all times

stack R may contain no more than t items (so if at some point stack R holds t items,

the next input item cannot enter until an item is moved from R to L).

A permutation α = a1a2 . . . an is in S(t,∞) if it can be sorted to 123 . . . n using

Mt. For example, 243651 ∈ S(t,∞) for t > 3 since it can be sorted using the following

process: place 2, 4 into stack R, move 4, 3, 2 across to stack L, place 6, 5, 1 into stack

R, then output 1, 2, 3, 4, 5, 6. Note 243651 6∈ S(2,∞) by [23].

The following lemmas will be used to prove our main result.
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inputoutput

R

L

a1a2 . . . an

Figure 2.2: A stack R of depth t and an infinite stack L in series

Lemma 2.4.1. Let α = a1a2 . . . an ∈ S(t,∞) for t ∈ N+. If i < j and ai < aj then

in any sorting process that sorts α, if both ai and aj appear together in stack L then ai

must be above aj.

Proof. If aj is above ai in stack L then the permutation will fail to be sorted.

Lemma 2.4.2. Let α = a1a2 . . . an ∈ S(t,∞) for t > 3 and suppose 1 6 i < j < k 6 n

with aiajak order-isomorphic to 132. Then in any sorting process that sorts α, ai, aj, ak

do not appear together in stack R.

Proof. If ai, aj, ak appear together in stack R, we must move ak then aj onto stack L

before we can move ai, but this means aj, ak violate Lemma 2.4.1. Note that this is

followed from the Knuth’s 231 result as shown in Figure 1.1

Lemma 2.4.3. Let α = a1a2 . . . an ∈ S(t,∞) for t > 3 and 1 6 i1 < i2 < · · · < i6 6 n

with ai1ai2 . . . ai6 order isomorphic to 243651. Then in any sorting process that sorts α,

at some step of the process ai4 and ai5 appear together in stack R.

Proof. For simplicity let us write ai1 = 2, ai2 = 4, ai3 = 3, ai4 = 6, ai5 = 5, ai6 = 1.

Before 6 is input, 2, 3, 4 are in the two stacks in one of the following configurations:

1. 2, 4, 3 are all in stack R. In this case we violate Lemma 2.4.2.

2. two items are in stack R and one is in stack L. In this case by Lemma 2.4.1 we

cannot move 6 to stack L, so 6 must placed and kept in stack R. If t = 3 stack
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R is now full, so 5 cannot move into the system, and if t > 4, when 5 is input we

violate Lemma 2.4.2.

3. one item, say a, is in stack R and two items are in stack L. In this case we cannot

move 6, 5 into stack L by Lemma 2.4.1 so they remain in stack R on top of a,

violating Lemma 2.4.2.

4. stack R is empty. In this case, 2, 3, 4 must be placed in stack L in order, else we

violate Lemma 2.4.1. We cannot place 6, 5 into stack L until it is empty, so they

must both stay in stack R until 4 is output.

In particular, the last case is the only possibility and in this case ai4 , ai5 appear in stack

R together.

Lemma 2.4.4. Let α = a1a2 . . . an ∈ S(t,∞) for t > 3 and suppose 1 6 i1 < i2 < · · · <

i5 6 n with ai1ai2 . . . ai5 order-isomorphic to 32514. Then, in any sorting process that

sorts α, if ai1 , ai2 appear together in stack R, then at some step in the process ai3 , ai5

appear together in stack L.

Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 1, ai5 = 4. Figure 2.3

indicates the possible ways to sort these entries, and in the case that 2, 3 appear together

in stack R we see that 4, 5 must appear in stack L together at some later point.

Lemma 2.4.5. Let α = a1a2 . . . an ∈ S(t,∞) for t > 3 and suppose 1 6 i1 < i2 <

· · · < i5 6 n with ai1ai2 . . . ai5 order-isomorphic to 32541. Then, in any sorting process

that sorts α, if ai1 , ai2 appear together in stack L, then at the step that ai1 is output,

1. ai3 , ai4 are both in stack R, and

2. if ak is in stack L then k < i2.
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Figure 2.3: Sorting 32514

Proof. For simplicity let us write ai1 = 3, ai2 = 2, ai3 = 5, ai4 = 4, ai5 = 1, and

α = u03u12u25u34u41u5. Figure 2.4 indicates the possible ways to sort these entries. In

the case that 2, 3 appear in stack R together, Lemma 2.4.1 ensures 2, 3 do not appear

together in stack L. In the other case, before 3 is moved into stack L, any tokens in

stack L come from u0u1. Thus when 3 is output the only tokens in stack L will be ak

with k < i2. Lemma 2.4.1 ensures that 4, 5 are not placed on top of 3 in stack L, so

that the step that 3 is output they sit together in stack R. Lemma 2.4.2 also ensures

that 4, 5 are not placed on top of 2 in stack R as shown in Figure 2.4.

2.5 AN INFINITE ANTICHAIN

We use the following notation. If α = a1 . . . an is a permutation of 12 . . . n and

m ∈ Z then let αm be the subpermutation obtained by adding m to each entry of α.
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L

2541
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L

541

2
3

2, 3 cannot appear together in stack L

R

L

2541

3

tokens under 3 must be from u0u1

R

L

541

2

3

R

L

1

3

4
5
2

violates Lemma 2.4.2

R

L

541

2
3

R

L

1

2
3

4
5 R

L

12

3

4
5

(1) and (2) are satisfied

Figure 2.4: Sorting 32541

For example (1 2 3)4 = 5 6 7 and 136 = 19.

We construct a family of permutations G = {Gi | i ∈ N} as follows. Define

P = 2 4 3 7 6 1

xj = (10 5 9)6j

yj = (13 12 8)6j

Si = (14 15 11)6i

Gi = P x0 y0 x1 y1 . . . xi yi Si

The first three terms are

G0 = 2 4 3 7 6 1 (10 5 9) (13 12 8) 14 15 11,

G1 = 2 4 3 7 6 1 (10 5 9) (13 12 8) (16 11 15) (19 18 14) 20 21 17,

G2 = P (10 5 9) (13 12 8) (16 11 15) (19 18 14) (22 17 21)(25 24 20) 26 27 23.
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A diagram 2 of the permutation G2 is shown in Figure 2.5 which illustrates the general

pattern.

Figure 2.5: Permutation plot of G2 = 2 4 3 7 6 1 x0 y0 x1 y1 x2 y2 26 27 23

We will prove that each Gi is an element of the basis of S(3,∞) for all i ∈ N.

Note that if we define x−1, y−1 to be empty, G−1 = 243761895 is also an element of the

basis. We noticed this and G0 had a particular pattern which we could extend using

xjyj. However, we exclude G−1 from our antichain to make the proofs simpler.

Proposition 2.5.1. The permutation Gi 6∈ S(3,∞) for all i ∈ N.

Proof. Suppose for contradiction that Gi can be sorted by some sorting process. Since

P is order isomorphic to 243651, by Lemma 2.4.3 in any sorting process 7, 6 appear

together in stack R. Next, 7 6 10 5 9 is order isomorphic to 32514 so by Lemma 2.4.4
2a map of the bijection G2 from [1, 27] to [1, 27]
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since 7, 6 appear together in stack R we must have that 10, 9 appear together in stack

L at some point in the process.

Now consider xjyj = (10 5 9 13 12 8)6j, and assume that 106j, 96j both appear in

stack L together. Since (10 9 13 12 8)6j is order isomorphic to 32541 by Lemma 2.4.5

136j, 126j must be placed together in stack R and stay there until 106j is output.

Next consider yjxj+1 = (13 12 8 16 11 15)6j, and assume that 136j, 126j both

appear in stack R together. Then since (13 12 16 11 15)6j is order isomorphic to

32514 by Lemma 2.4.4 we have that 166j, 156j appear together in stack L. Note that

166j, 156j = 106(j+1), 96(j+1), so putting the above observations together we see that for

all 0 6 j 6 i we have that 106j, 96j both appear in stack L together and 136j, 126j

appear together in stack R and stay there until 106j is output.

Now we consider the suffix

xiyiSi = (10 5 9 13 12 8 14 15 11)6i

where 106i, 96i are together in stack L. Lemma 2.4.5 tells us not only that 136i, 126i

appear together in stack R and stay there until 106i is output, but that anything sitting

underneath 106i in stack L comes before 96i in Gi, so in particular 146i, 156i are not

underneath 106i. All possible processes to sort xiyiS are shown in Fig. 2.6. All possible

sorting moves fail, which means Gi cannot be sorted.

The idea of the preceding proof can be summarised informally as follows. The

prefix P forces 7, 6 to be together in stack R, then Lemmas 2.4.4 and 2.4.5 alternately

imply that the 106j, 96j terms of xj must be in stack L and the 136j, 126j terms of yj

must be in stack R. When we reach the suffix Si the fact that certain entries are forced

to be in a particular stack means we are unable to sort the final terms. We now show

that if a single entry is removed from Gi, we can choose to place the 106j, 96j terms in

stack R and 136j, 126j terms in stack L, which allows the suffix to be sorted.
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R

L

146i 156i 116i

126i136i

106i

(Si)

R

L

156i 116i

146i126i136i

106i

R

L

146i 156i 116i106i

126i136i

R

L

156i 116i106i

146i136i

126i

R

L

116i106i

156i146i136i

126i

cannot be sorted

R

L

156i 116i106i

146i126i136i

R

L

156i 116i106i

126i136i

146i

R

L

116i106i

156i126i136i

146i

cannot be sorted

R

L

106i

116i156i136i

126i146i

cannot be sorted

Figure 2.6: All possible ways to sort xiyiS

Lemma 2.5.2. Let 0 6 j 6 i. If stack R contains one or both of 106j, 96j in ascending

order, and yj . . . yiSi is to be input as in Fig. 2.7, then there is a sorting procedure to

output all remaining entries in order.

R

L

136j 126j 86j (xj+1 . . . or Si)

(yj)

96j

106j

Figure 2.7: A sortable configuration

Proof. For j < i move 136j, 126j into stack L, output 86j, 96j, 106j, move 166j = 106(j+1)

into stack R, output 116j = 56(j+1), output 126j, 136j from stack L and input 156j =

96(j+1) so that the configuration has the same form as Fig. 2.7 with j incremented by 1.
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For j = i the remaining input is (13 12 8 14 15 11)6j. Put 136i, 126i in stack L

in order, output 86i, 96i, 106i, put 146i, 156i in stack R and output 116i, 126i, 136i, move

156i into stack L and output 146i then 156i.

If one of 96j, 106j is missing, use the same procedure ignoring the missing entry.

Lemma 2.5.3. Let 0 6 j 6 i. If stack L contains one or both of 126j, 136j in ascending

order, and xj+1 . . . Si (or just Si if j = i) is to be input as in Fig. 2.8, then there is a

sorting procedure to output all remaining entries in order.

R

L

xj+1 . . . or Si

126j

136j

Figure 2.8: Another sortable configuration

Proof. If j < i move 106(j+1) into stack R, output 56(j+1), 126j, 136j, move 96(j+1) to

stack R to reach the configuration in Fig. 2.7, which we can sort by Lemma 2.5.2. If

j = i then the remaining input is just Si = (14 15 11)6i: move 146i, 156i to stack R,

then output all entries.

If one of 126j, 136j is missing, use the same procedure ignoring the missing entry.

Proposition 2.5.4. Let G′i be a permutation obtained by removing a single entry from

Gi. Then G′i ∈ S(3,∞).

Proof. We give a deterministic procedure to sort G′i. There are three cases depending

on from where the entry is removed.

Term removed from P . Let P ′ be the factor P with one entry removed. We claim that
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there is a sorting sequence for P ′x0 which outputs the smallest six items in order and

leaves 10, 9 in stack R. To show this we simply consider all cases.

1. If 1 is removed, 2, 4, 3 can be output in order. After that, 7 is moved to stack R

and then stack L. The entry 6 follows the same processes so that it stays on top

of entry 7 in stack L. 10 in stack R, then 5, 6, 7 output, and 9 placed on top of 10

in stack R.

2. If 2, 3, or 4 are removed, write P ′ = ab761 with a, b ∈ {2, 3, 4}. Place a, b in stack

R, move 7, 6 into stack L, output 1, then output a, b in the correct order, then

move 10 into stack R, output 5, 6, 7 and move 9 into stack R.

3. If 6 or 7 is removed, write P ′ = 243a1 with a ∈ {7, 6}. Place 4, 3, 2 in stack L in

order, move a into stack R, output 1 then 2, 3, 4, then move a into stack L, move

10 into stack R, output 5, a and move 9 into stack R.

Thus after inputting P ′x0 we have the configuration shown in Fig. 2.7 with j = 0,

which we can sort by Lemma 2.5.2.

Term removed from xs, 0 6 s 6 i.

Input P leaving 6, 7 in stack R, which brings us to the configuration in Fig. 2.9

with j = 0. Now assume we have input P . . . xj−1yj−1 with j 6 s (note the convention

that x−1, y−1 are empty) and the configuration is as in Fig. 2.9.

R

L

xj yj . . . or x′sys . . .

126(j−1)
136(j−1)

Figure 2.9: Configuration after P . . . xj−1yj−1 is input
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If j < s we can input xjyj into the stacks to arrive at the same configuration with

j incremented by 1, as follows: move 106j to stack L, output 56j, 66j = 126(j−1), 76j =

136(j−1), move 96j to stack L, move 136j, 126j to stack R, output 86j, 96j, 106j.

If j = s, we proceed as follows:

1. If 56s removed, output 66s = 126(s−1), 76s = 136(s−1), move 96s, 106s to stack R, to

reach the configuration in Fig. 2.7 with j = s. From here the remaining entries

can be sorted by Lemma 2.5.2.

2. If 106s is removed, output 56s, 66s, 76s and place 96s in stack R, to reach the

configuration in Fig. 2.7 with j = s and 106s missing. From here the remaining

entries can be sorted Lemma 2.5.2.

3. If 96s is removed, move 66s to stack L, move 106s on top of 76s in stack R, output

56s, 66s, move 136s, 126s into L, then output 86s, 106s. This gives the configura-

tion in Fig. 2.8 with j = s. From here the remaining entries can be sorted by

Lemma 2.5.3.

Term removed from ys, 0 6 s 6 i or Si. Input Px0 to reach the configuration in

Fig. 2.10 with j = 0: move 2, 3, 4 into stack L, 7, 6 to R, output 1, 2, 3, 4, move 10 into

L, output 5, 6, 7 then move 9 into L.

R

L

106j

96j

Figure 2.10: Configuration after Px0y0 . . . xj is input

Now suppose we have input Px0y0 . . . xj to reach the configuration in Fig. 2.10.

If no entry is removed from yj and j < i then we can input yjxj+1 to return to the

configuration in Fig. 2.10 with j incremented by 1 as follows: move 136j, 126j to stack
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R, output 86j, 96j, 106j, move 106(j+1) to L, output 56(j+1) = 116j, 126j, 136j, then move

96(j+1) to stack L.

If j = s (ys is removed):

1. If 86s is removed, output 96s, 106s, move 136s, 126s to stack L to reach the configu-

ration in Fig. 2.8, from which the remaining entries can be sorted by Lemma 2.5.3.

2. If b ∈ {136s, 126s} is removed, place b in stack R, output 86s, 96s, 106s, move b to

stack L to reach the configuration in Fig. 2.8 with one of 126s, 136s removed, from

which the remaining entries can be sorted a by Lemma 2.5.3.

If j = i and the entry is removed from Si, sort the remaining entries as follows:

1. If 116i is removed, place 136i, 126i into stack R, output 86i, 96i, 106i, then

126i, 136i, 146i, 156i.

2. If b ∈ {146i, 156i} is removed, place 136i, 126i into stack R, output 86i, 96i, 106i,

move 126i into stack L, place b on top of 136i in stack R, output 116i then 126i,

move b into stack L, output 136i then b.

Theorem 2.5.5. The set of permutations that can be sorted by a stack of depth 3 and

an infinite stack in series has an infinite basis.

Proof. Proposition 2.5.1 shows that each Gi cannot be sorted, and Proposition 2.5.4

shows that noGi can containGj for j 6= i as a subpermutation since any subpermutation

of Gi can be sorted. Thus G = {Gi | i ∈ N} is an infinite antichain in the basis for

S(3,∞).
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2.6 FROM FINITE TO INFINITELY BASED

Let Bt be the basis for S(t,∞) for t ∈ N+. Lemma 1 in [23] is modified by taking

the consideration that permutations passing through the stacks must be sorted. Then,

we have the following:

Lemma 2.6.1. If σ ∈ Bt has length n then either σ or (213)nσ belongs to Bt+1.

Proof. If σ 6∈ S(t+ 1,∞) then since σ ∈ Bt, deleting any entry gives a permutation in

S(t,∞) ⊆ S(t + 1,∞), so σ ∈ Bt+1. Else σ ∈ S(t + 1,∞). In any sorting process for

(213)nσ the entries 1n, 2n, 3n cannot appear together in stack L, so at least one entry

must remain in stack R which means we must sort σ with stack R of depth at most t,

which is not possible, so (213)nσ cannot be sorted. If we remove an entry of the prefix

then the two entries a, b ∈ {1n, 2n, 3n} can be placed in stack L in order, leaving stack

R depth t+ 1 so the permutation can be sorted, and if an entry is removed from σ then

since σ ∈ Bt it can be sorted with R having one space occupied.

Theorem 2.6.2. The set of permutations that can be sorted using a stack of depth

t ∈ N+ and an infinite stack in series is finitely based if and only if t ∈ {1, 2}.

Proof. We have |B1| = 1 and |B2| = 20 [37, 23]. Theorem 2.5.5 shows that B3 is

infinite. Lemma 2.6.1 implies if Bt is infinite then so is Bt+1.

2.6.1 An explicit antichain for S(t,∞)

The antichain G = {Gi | i ∈ N} can be extended to become an infinite antichain

in the basis of S(t,∞) for t > 3.

Lemma 2.6.3. The explicit antichain of S(t,∞) for t > 3 is the set Gt = {Gi,t}, where

Gi,t = P (x0y0) . . . (xiyi)(14 15 16 . . . 12t 11)6i

Proof. Recall that the Lemmas 2.4.1, 2.4.2, 2.4.3, 2.4.4 and 2.4.5 that were used to prove

Proposition 2.5.1 as well as Proposition 2.5.4 are not specifically written for S(3,∞)
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but for every t > 3 in S(t,∞). Moreover, note that Gi,t is similar to the Gi of S(3,∞)

except the length (number of entries) of the suffix in Gi,t is dependent on the depth of

stack R. So, the similar arguments to Propositions 2.5.1 and 2.5.4 are valid for S(t,∞)

before any entry from the suffix (14 15 16 . . . 12t 11)6i is input.

We start by proving Gi,t is not sortable by S(t,∞). Based on the same argument in

Proposition 2.5.1, when the entries from P (x0y0) . . . (xiyi) are output before any entry

from the suffix (14 15 16 . . . 12t 11)6i is input, S(t,∞) will have the entries 126j and

136j appear together in stack R such as in Figure 2.11.

R

L

(14 15 16 . . . 12t 11)6i

126j

136j

Figure 2.11: Configuration before (14 15 16 . . . 12t 11)6i is input

At this configuration, there are t-1 entries before (to the left of) the next smallest

entry 116i in the suffix (14 15 16 . . . 12t 11)6i and only t-2 spaces left in stack R.

(Case 1) Suppose both the entries 126j and 136j are kept to stay in stack R until

the entry 116i is input. Then at least one entry from the suffix need to move to stack

L else there will be not space for the entry 116i to move into stack R. Besides that,

some entries from the suffix need to move to stack R with the largest entry (12t)6i stay

on top of the stack or else the entries in stack L are not in ascending order when read

from top to bottom and the sorting process will fail as in Lemma 2.4.1.

After all the entries before 116i are input, the entry 116i can move to stack R and

then stack L before getting output. Once 116i is output, the next smallest element to

be output is the entry 126j. Since the largest entry (12t)6i is above 126j, then it has to

move into stack L to allow 126j to be output. Since entries in stack L are smaller than
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R

L

116i

(12t)6i

.

.

126j

136j

.
x

.

Figure 2.12: Configuration before 116i is input such that x is an entry from suffix

(12t)6i, the stack L is not in ascending order. Based on Lemma 2.4.1, the permutation

Gi,t is not sortable.

(Case 2) Suppose the entry 126j stays in stack L and 136j stays in stack R until

the entry 116i is input. Note that both entries cannot appear together in stack L or else

136j will be above 126j causing stack L not in ascending order when read from top to

bottom. Then, all the entries from the suffix before 116i is input have to stay in stack

R since each entry is bigger than 126j. At this stage of configuration, the number of

entries in stack R is t since there are t-1 entries stay above 136j. Since stack R has only

depth t, then there is no space for the entry 116i to be input. So, Gi,t is not sortable.

Let G′i,t be a permutation obtained by removing a single entry from Gi,t. We will

prove that G′i,t is sortable by S(t,∞). Similar to the argument in Proposition 2.5.4,

removing any entry from P , xs or ys such that 0 6 s 6 i can end up to the configuration

as in Figure 2.13 before any entry from suffix is input.

R

L

(14 15 16 . . . 12t 11)6i

126j

136j

Figure 2.13: Configuration after an entry is deleted from P , xs or ys

At this stage of configuration, there are t empty spaces in stack R and there are
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only t entries in suffix. So, every entry from suffix can move to stack R with the next

smallest entry 116i stays on top of the stack. Then output the entry 116i. At this stage

of configuration, entries in stack L are in ascending order while entries in stack R are

in descending order when read from top to bottom as in Figure 2.14. So, G′i,t can be

sorted by output the entry 126j and 136j first. Then, move each entry in stack R into

stack L and the order is increasing. After that, output each entry one by one from

stack R until G′i,t is sorted.

R

L

116i

(12t)6i

.

.

156i

146i

126j

136j

Figure 2.14: Configuration before 116i is input from suffix

Then Gi,t cannot be sorted by S(t,∞) and Gi,t cannot contain Gj,t for j 6= i as a

subpermutation since any subpermutation of Gi,t can be sorted. So, G = {Gi,t | i ∈ N}

is the antichain for S(t,∞) such that t > 3.

2.7 CONCLUSION

The main result from this chapter answers the characterisation problem for sorting

with a finite and an infinite stack in series. The result has been published in Lecture

Notes in Computer Science Vol. 10792 [24]. The open problem that is yet to be solved

is the enumeration problem which we had attempted to solve but with no breakthrough.

By using language-theoretic approach as in [25], we tried to describe the permutations

in S(3,∞) as some formal language belonging to a class such as context-free, ET0L,

EDT0L or indexed, which could help us determine the generating function of the set.

Unfortunately, we did not get very far with this technique because we were not

able to find a bijection between S(3,∞) and a formal language class. However, we did
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observe that the set of encoded permutations in the avoidance set is most likely not a

context free language. More details are provided in Chapter 4.
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CHAPTER 3

ON PERMUTATIONS SORTED BY k PASSES

THROUGH A DETERMINISTIC POP-STACK

3.1 AIM

In this chapter we consider permutations sortable by k passes through a determin-

istic pop-stack. We show that for any k ∈ N the set is characterised by finitely many

forbidden patterns, answering a question of Claesson and Guðmundsson.

Our characterisation demands a more precise definition than in previous literature

of what it means for a permutation to avoid a set of barred and unbarred patterns. We

propose a new notion called PB-containment and prove some useful results about this

notion.

3.2 INTRODUCTION

Recall that a pop-stack is a variation of sorting machine which operates as follows:

at each step it can either push one token from the input stream onto the top of the

stack, or else pop the entire stack contents to the output stream. Here, we consider

the tokens to be distinct real numbers with the usual ordering and the pop-stack is

a deterministic pop-stack. A deterministic pop-stack always performs the push move

unless the token on the top of the stack is smaller in value that the token to be pushed

from the input, or if there is no further input. Observe that by definition the stack

remains ordered from smallest on top to largest on the bottom during the operation of

a deterministic pop-stack. For example, 41352 can be sorted by two passes (Figure 3.1).

Let p1(α) denote the sequence obtained by passing a sequence α through a de-

terministic pop-stack once, and define pk(α) = pk−1(p1(α)). For example p1(41352) =

14325 and p2(41352) = 12345. We say α is k-pass deterministic pop-stack sortable if

pk(α) is an increasing sequence.
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41352 352

4
1

52

3

14

5
2

143 14325

(a) First pass.

14325 4325

1

325

4

1 5

4
3
2

1

5

1234

(b) Second pass.

Figure 3.1: Sorting 41352 with a 2-pass pop-stack

In this chapter, we show that k-pass deterministic pop-stack sortable permutations

are characterised by a finite list of forbidden (usual and barred) patterns for all k ∈ N.

In order to prove this, we realised the current notions of what it means to avoid a set of

barred and unbarred patterns would not suffice. Because of this we have introduced a

new notion called PB-containment which we define in Section 3.3. We show that this

is exactly the right notion for k-pass pop-stack sorting especially when k > 3

The proof of our characterisation is in the form of a constructive algorithm, which

we can be implemented to obtain a finite list of patterns 1 for each k > 1. For k = 2

our list includes the patterns obtained by Pudwell and Smith [45], but also contains

many additional (redundant) patterns. We give several lemmas which show how to

remove some redundant patterns in general but further lemmas are needed to obtain a

“minimal” list.

We make the following observations. First, our present result is in contrast to the
1Note that the list is a huge list with many redundant patterns that can be removed from the set

without affecting the avoidance set. Thus, it is not a minimal list because there might be another
smaller list that characterised the same pattern avoidance set. More details will explained in later
section in this chapter.
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usual (nondeterministic) stacks-in-series model where in many cases no finite pattern-

avoidance characterisation is possible due to the existence of infinite antichains , as

we saw in the previous chapter. Second, the operation of a pop-stack is related to a

classical sorting: “bubble-sort” is exactly sorting by arbitrarily many passes through a

pop-stack of depth 2. Third, pop-stacks are a natural model for genome rearrangement

[45].

3.2.1 B-sequences

Definition 10 (B-sequence). LetX∗ denote the set of all finite sequences of letters from

some alphabet X, and |u| the length of a sequence u ∈ X∗. Consider N = {1, 2, 3, . . . }

as an infinite alphabet of letters and define a disjoint copy N = {i | i ∈ N} of barred

letters. Define a map unbar : N ∪N→ N by unbar(i) = i = unbar(i), which extends to

(N ∪ N)∗ entry-by-entry.

A finite sequence β ∈ (N∪N)∗ is called a B-sequence if unbar(β) is a permutation.

For example 41352 is a B-sequence, since unbar(41352) = 41352, whereas 311̄2 is not a

B-sequence. 2

Define a second map ν : N ∪ N → N by ν(i) = ε (the empty letter) and ν(i) = i,

which also extends to sequences entry-by-entry. Then define removebar : (N∪N)∗ → N∗

by removebar(α) = red(ν(α)). For example removebar(41352) = 3241.

Informally we will say that unbar(β) is the permutation obtained by erasing the

bar above any barred token in β, and removebar(β) a permutation obtained by deleting

barred tokens then reducing. Note that a B-sequence which satisfies β = unbar(β) can

either be considered as a B-sequence or a permutation, and depending on the context

this will be an important distinction. If F is any set of B-sequences, let Fp = {β ∈

F | β = unbar(β)} and Fb = F \ Fp be the sets of unbarred and barred elements of F
2In [35] and elsewhere the term barred pattern is used, although the string 14342 is also referred to

as a barred pattern [35, p. 310]. So to avoid confusion we use the new term “B-sequence”.
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respectively.

Let B ⊆ (N∪N)∗ denote the set of all B-sequences. A subsequence of a B-sequence

β = b1 . . . br, bi ∈ N ∪ N is a sequence bi1 . . . bis where 1 6 i1 < · · · < is 6 r.

3.3 NEW NOTION OF BARRED PATTERN AVOIDANCE

Definition 11 (PB-containment). Let σ be a permutation and F ⊆ B a set of B-

sequences. We say that σ PB-contains F if there exists β ∈ F and a subpermutation

γ of σ such that

– γ ∼ removebar(β) and

– for all α ∈ Fb, if γ ∼ removebar(α) then γ is not subpermutation of δ ∼ unbar(α)

of σ.

Informally, the second condition says that the forbidden subpermation γ ∼

unbar(β) of σ can potentially be “saved” by some α ∈ Fb (α possibly different to

β) if γ is a subpermutation of some δ ∼ unbar(α) where δ is itself a subpermutation

of σ. The requirement that γ ∼ removebar(α) is somehow optional, but we found it

convenient to include. In this way, PB-containment differs considerably from existing

notions of containing barred patterns.

We admit that “PB-contains” sounds technical, but we persist with it because the

nature of avoiding a set of barred patterns turns out to be very subtle, as we describe

in Section 3.4. The present definition captures precisely the properties we need to

characterise k-pass pop-stack sortable permutations. P,B stands for “permutation”

versus “set of B-sequences”.

Example 3.3.1. Let F = {3241, 41̄352} and consider the permutations σ1 = 143562

and σ2 = 152463. Then

– σ1 has the subpermutation 4352 ∼ 3241 which is not part of a longer subper-

mutation of σ1 order-isomorphic to unbar(41̄352) = 41352, so σ1 PB-contains
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F .

– σ2 has subpermutation 5463 ∼ 3241, however 5463 is a subpermutation of

52463 ∼ unbar(41̄352) = 41352 (so σ2 (or strictly speaking its subpermuta-

tion 5462) is “saved” by the existence of this other pattern). Since there are

no other subpermutations of σ2 that are order-isomorphic to either 3241 or

removebar(41̄352) = 3241, then σ2 does not PB-contain F .

Further examples showing the subtlety of PB-containment are given below as

Examples 3.3.2–3.6.4.

We remark that 32451 is not 3-pass pop-stack sortable, however both 4631572 and

4731562 are, so Example 3.3.3 is relevant when we try to characterise 3-pass pop-stack

sortable permutations. See Section 3.4.

We say σ PB-avoids F if it does not PB-contain F . Using propositional logic, we

can express this as follows:

Definition 12 (PB-avoidance). Let σ be a permutation and F ⊆ B a set of B-

sequences. We say that σ PB-avoids F if for every β ∈ F and every subpermutation γ

of σ either

– γ 6∼ removebar(β), or

– there exists α ∈ Fb such that γ ∼ removebar(α) and γ is a subpermutation of

δ ∼ unbar(α) of σ.

For any set of B-sequences F , let AvB(F ) denote the set of permutations that

PB-avoid F . We call AvB(F ) the PB-avoidance set of F . If F has no barred elements

(so F = Fp) then the second condition in Definitions 11–12 is vacuous and AvB(F ) =

Av(F ).

Example 3.3.2. Let F = {12̄, 21̄}. Suppose σ PB-contains F . If σ contains some

γ ∼ removebar(12̄) = 1 (so γ can be any entry of σ), then the second condition in
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Definition 11 say we must check every α ∈ Fb to see that γ is not contained in a

subpermutation δ ∼ 12 or δ ∼ 21 of σ. This means σ cannot have more than one token.

The same argument also holds for σ containing some γ ∼ removebar(21̄) = 1. Thus, σ

of length at least two cannot PB-contains F . So, AvB(F ) = S∞ \ {1}.

Example 3.3.3. 3 Let β1 = 46̄31̄572, β2 = 47̄31̄562, F = {β1, β2} and consider the

permutation σ = 4731562.

– σ has subpermutation 43562 ∼ removebar(β1), however there exists α = β2 ∈ Fb

such that 43562 ∼ removebar(β2) is a subpermutation of 4731562 = unbar(β2).

Since there are no other subpermutations of σ that are order-isomorphic to

removebar(β1) = removebar(β2), then σ does not PB-contain F . Note that it

is β2 (and not β1) that “saves” σ because 43562 ∼ removebar(β1) is not a sub-

permutation of 4631572=unbar(β1) in σ. In short, σ PB-contains {β1} but does

not PB-contain F because of the existence of β2 in F .

3.4 ISSUES IN EXISTING NOTION OF BARRED PATTERN AVOID-

ANCE

In [35, Definition 1.2.3] a permutation σ is said to avoid a barred pattern β if each

occurrence of removebar(β) in σ (if any) is a part of an occurrence of unbar(β) in σ.

There are two issues with this definition. Firstly, as written, this does not agree with

the usual pattern avoidance when β has no bar tokens. For example, σ = 21 obviously

does not avoid β = 21 in the usual sense of pattern avoidance, but if β is considered as a

barred pattern then σ avoids β since there exist a subsequence, κ = 21 = removebar(β)

in σ and κ is part of the occurrence of unbar(β) = 21 in σ.

Secondly and more seriously, in applications such as [45, 55] some set of permuta-

tions S is characterised by being those permutations avoiding some list of barred and
346̄31̄572 and 47̄31̄562 are taken from the set of forbidden patterns for permutations sortable by

3-pass pop-stack which we obtained by a computer program. See the full list in Section ??
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unbarred patterns, where, as we understand it, this means that each permutation in

S must avoid every pattern individually. Explicitly, Tenner [52] defines that if P is

a collection of pattern, then Av(P ) means is the set of permutations simultaneously

avoiding all patterns in P :

Av(P ) =
⋂

p∈P

Av(p)

If this interpretation were used for Example 3.3.3, we would say that 4731562 does

not avoid any list containing 46̄31̄572, 47̄31̄562 since it fails to avoid the barred pattern

46̄31̄572. Our definition of PB-avoids says that even though some permutation may

not avoid some pattern in a list of barred and unbarred patterns, it might be saved by

another barred pattern in the list. This interpretation is what is needed to characterise

3-pass pop-stack sortable permutations, since both 4631572, 4731562 are 3-pass pop-

stack sortable and 32451 is not. For the applications in [45, 55] either interpretation is

correct since the sets of barred and unbarred patterns to be avoided have no “overlap”:

in the case of [45], the two barred patterns have removebar equal to 2341 and 4312

which are both different to the unbarred patterns in their list; and in the case of [55]

there is only one barred pattern whose removebar is different to the unbarred pattern.

3.5 SETS OF B-SEQUENCES

We make the following definition to compare different sets of B-sequences, in

analogy with usual pattern avoidance.

Definition 13 (B-isomorphic). Let F,G ⊆ B. We say that F and G are B-isomorphic,

written F ∼B G, if AvB(F ) = AvB(G).

For example, {35̄412} 6∼B {3541̄2} (since for example 3412 ∈ AvB(3541̄2) \

AvB(35̄412)), but it can be shown (by Lemma 3.5.1 next) that {35̄412} ∼B {354̄12}.

Our definition characterises “sameness” of sets of B-sequences according to the

permutations which PB-avoid them. Following Example 3.3.2 we have {12̄, 21̄} ∼B
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{12̄, 2̄1} ∼B {1̄2, 2̄1} ∼B {1̄2, 21̄} since in each case the PB-avoidance set is S∞ \ {1}.

The following lemma gives a method to check B-isomorphism for singleton sets

without having to construct entire PB-avoidance sets.

Lemma 3.5.1. Let α, β be B-sequences. Then {α} ∼B {β} if and only if unbar(α) ∼

unbar(β) and removebar(α) = removebar(β).

Proof. Suppose that unbar(α) ∼ unbar(β) and removebar(α) = removebar(β). Let

σ 6∈ AvB(β), then σ contains a subpermutation γ ∼ removebar(β)(= removebar(α))

that is not part of a longer subpermutation δ ∼ unbar(β)(∼ unbar(α)) in σ, which

means σ 6∈ AvB(α). A similar argument gives σ 6∈ AvB(α) implies σ 6∈ AvB(β), so

α ∼B β.

For the other direction, if removebar(α) 6= removebar(β), then either one is shorter,

or if they have the same length, they are not order-isomorphic. Without loss of general-

ity say σ = removebar(β) is not longer than removebar(α). Then σ 6∈ AvB(β). However

σ ∈ AvB(α) because no subpermutation γ of σ is order-isomorphic to removebar(α), so

{α} 6∼B {β}.

Otherwise we have removebar(α) = removebar(β) and unbar(α) 6∼ unbar(β). Let

us consider the cases separately.

1. If one has no barred tokens, say β, then α must contain barred tokens and be

longer. We have σ = unbar(α) ∈ AvB(α), but σ contains γ = removebar(β) which

is not saved by β, so σ 6∈ AvB(β).

2. Else both have barred tokens.

(a) If one is shorter than the other, say σ = unbar(β) is shorter than unbar(α),

then σ ∈ AvB(β), but σ PB-contains {α} because it contains removebar(α)

which cannot be part of a subsequence δ ∼ unbar(α) because δ would be

longer than σ itself.
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(b) Else unbar(α), unbar(β) have the same length, and unbar(α) 6∼ unbar(β).

Let σ = unbar(β) so σ ∈ AvB(β). Now σ contains removebar(α) which is

not part of a subsequence δ ∼ unbar(α) because the only permutation having

the same length as unbar(α) is σ itself, and σ = unbar(β) 6∼ unbar(α). Thus

σ 6∈ AvB(α).

Thus in all cases we have {α} 6∼B {β}.

It follows from the lemma that for example {35̄412} ∼B {354̄12}.

3.6 REMOVING REDUNDANT B-SEQUENCES

In this section we give several lemmas which tell us when we may remove elements

from a set F without changing its PB-avoidance set. We make no claim that the

lemmas in this section are exhaustive, for example there are sets F,G ⊆ B for which

none of the three lemmas applies but they have the same PB-avoidance sets for other

reasons. See Example 3.6.4 below for an example of this. However, the rules we give in

this section are useful in Theorem 3.8.1 to reduce the size of the finite sets we obtain

there.

We start with a useful (reflexive and transitive) relation on B.

Definition 14. Let κ, λ ∈ B. We say κ �B λ if

• removebar(κ) = removebar(λ), and

• unbar(κ) 6 unbar(λ) (unbar(κ) is order-isomorphic to a subpermutation of

unbar(λ)).

For example:

– 12̄ �B 13̄2̄

– 12 �B 13̄2

– 35̄412 �B 354̄12

– 354̄12 �B 35̄412
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It follows from Lemma 3.5.1 that κ �B λ and λ �B κ implies {κ} ∼B {λ}. For

convenience in our proofs we formalise “because” and “saves”. We will also denote γ is

a subpermutation of σ by γ <subperm σ.

Definition 15. Let β ∈ F ⊆ B. A permutation σ PB-contains F because of β ∈ F

and γ <subperm σ if:

• γ ∼ removebar(β), and

• for all α ∈ Fb, if γ ∼ removebar(α) then γ is not subpermutation of δ ∼ unbar(α)

of σ.

An element α ∈ Fb saves γ <subperm σ if γ ∼ removebar(α) and γ is not subpermutation

of any δ ∼ unbar(α) of σ.

Of course in general σ could PB-contain F because of several different β and γ.

Here are the first three lemmas.

Lemma 3.6.1. Let F ⊆ B with κ, λ ∈ Fb. If κ �B λ then F ∼B F \ {λ}.

Lemma 3.6.2. Let F ⊆ B with κ ∈ Fp, λ ∈ Fb. If κ �B λ then F ∼B F \ {κ}.

Lemma 3.6.3. Let F ⊆ B with κ, λ ∈ Fp. If κ 6 λ and for all α ∈ Fb, κ 6∼B

removebar(α), then F ∼B F \ {λ}.

Proof of Lemma 3.6.1. First, suppose σ PB-contains F . Then this is either because of

β ∈ F \ {κ, λ}, or κ, or λ.

– In the first case, there is some β ∈ F \ {κ, λ} and γ ∼ removebar(β) a subpermu-

tation of σ with γ not contained in any δ ∼ unbar(α) for all α ∈ Fb where δ is a

subpermutation of σ. If so, then γ is not contained in any δ ∼ unbar(α) for any

α ∈ (Fb \ {λ}), so σ PB-contains F \ {λ}.
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– Else, σ contains a subpermutation γ ∼ removebar(λ) = removebar(κ), and γ

is not a subpermutation of any subpermutation δ of σ with δ ∼ unbar(α) for

any α ∈ Fb, so in particular γ is not contained in any δ ∼ unbar(α) for any

α ∈ (Fb \ {λ}), so σ PB-contains F \ {λ}. Thus σ PB-contains F \ {λ}.

This shows AvB(F \ {λ}) ⊆ AvB(F ).

Now suppose σ PB-contains F \{λ} but does not PB-contain F . This means that

there must be some subpermutation γ of σ with γ ∼ removebar(β) for some β ∈ F \{λ}

which is not saved by any α ∈ (F \ {λ})b, but is saved by λ ∈ Fb. This means γ is

a subpermutation of δ ∼ unbar(λ) of σ. But this means γ is also a subpermutation

of δ′ ∼ unbar(κ) since unbar(κ) 6 unbar(λ), which contradicts that σ PB-contains

F \ {λ}. This shows

AvB(F ) ∩ AvB(F \ {λ})

is empty, hence the result.

Proof of Lemma 3.6.2. Suppose σ PB-contains F , then this is either because of β ∈

F \{κ}, or because of κ. In the first case we have σ PB-contains F \{κ}. In the second

case σ contains a subpermutation γ ∼ κ = removebar(λ) and for all α ∈ Fb, γ is not a

subpermutation of a subpermutation δ ∼ unbar(α) of σ. This means σ PB-contains F

because of λ as well, so σ PB-contains F \ {κ}. Thus by contrapositive we have shown

AvB(F \ {κ}) ⊆ AvB(F ).

Now suppose σ PB-contains F \ {κ} because of β. Since κ ∈ Fp it can play

no role in saving σ, this means σ PB-contains F also because of β, so AvB(F ) ⊆

AvB(F \ {κ}).

Proof of Lemma 3.6.3. Suppose σ PB-contains F . Then this is either because of λ,

or not. If it is because of β 6= λ then since λ ∈ Fp plays no role in saving β, σ also

PB-contains F \ {λ}. If it is because of λ, then σ contains a subpermutation γ ∼ λ.
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Since κ 6 λ this means σ has a subpermutation γ′ ∼ κ and by hypothesis no α ∈ Fb

can save σ since κ 6∼ removebar(α) for any α ∈ Fb. Thus σ PB-contains F because of

κ, so σ PB-contains F \ {λ}, and AvB(F \ {κ}) ⊆ AvB(F ).

Now suppose σ PB-contains F \ {λ} because of β. Since λ ∈ Fp plays no role in

saving σ, σ PB-contains F also because of β. Thus AvB(F ) ⊆ AvB(F \ {λ}).

Here are some examples which demonstrate the lemmas.

Example 3.6.1. Let F = {51̄2̄43, 41̄32}. We claim that the first pattern is redundant.

Suppose you want to decide whether σ PB-contains F because of β = 51̄2̄43, then

first find a subpermutation γ ∼ 543 ∼ 321, then check whether this is part of a longer

subpermutation δ ∼ 4132 or δ ∼ 51243. But if it is part of 4132 then it is automatically

also part of 51243, so the decision is already made and there is no need to check for

51243 as well. This example generalises to Lemma 3.6.1.

The next example shows the situation in Lemma 3.6.3.

Example 3.6.2. Let F = {54321, 4321, 321, 34̄21}. We claim the pattern 54321 is

redundant. Suppose you want to decide whether σ PB-contains F because of β =

54321. If so σ contains the subpermutation γ = 4321 as well, and since there is only

one α ∈ Fb, with removebar(α) = 321, and neither 54321 nor 4321 is order-isomorphic

to 321, so the second condition of the Definition does not apply. Thus 4321 suffices to

deal with it.

Note that for F ′ = {4321, 321, 34̄21}, Lemma 3.6.3 cannot be applied to remove

4321, and one can show that F ′ 6∼B {321, 34̄21}. However, Lemma 3.6.2 does apply,

and shows F ′ ∼B {4321, 34̄21}.

The next examples show situations where none of Lemmas 3.6.1–3.6.3 apply.

Example 3.6.3. Let F = {51̄2̄463, 41̄32}, G = {41̄32} and consider the permutation

σ = 41352. We claim that σ PB-contains F but PB-avoids G.

56



To see the first claim, there exists β = 51̄2̄463 ∈ F and γ = 3241 a subpermutation

of σ so that γ ∼ removebar(51̄2̄463), and for each α ∈ Fb:

– α = 51̄2̄463 satisfies γ ∼ removebar(51̄2̄463) but is not a subpermutation of any

δ ∼ 512463 of σ, so this α does not save it.

– α = 41̄32 does not satisfy γ ∼ removebar(41̄32) = 432 so this α does not save it

either.

To see the second claim, the only possible β is 41̄32, and the only subpermutation

of σ that is ∼ removebar(β) is γ = 432, but γ is a subpermutation of δ = 4132 of σ

and δ ∼ unbar(β). So by Definition 2 σ PB-avoids {41̄32}.

Example 3.6.4. F = {31̄24, 312}, G = {213, 312} have same PB-avoidance sets, and

again none of the three lemmas applies. We claim that both F and G are “minimal”

in that there is no set H ⊆ B with |H| = 1 and AvB(H) = AvB(F ).

3.6.1 Further lemma

We have one further way to remove redundant B-sequences which is slightly more

involved, and will be useful below.

Lemma 3.6.4. Let F ⊆ B with κ, λ ∈ Fb, removebar(κ) 6 removebar(λ) and

unbar(κ) ∼ unbar(λ). If

– α ∈ F with removebar(α) = removebar(κ) implies α = κ, and

– α ∈ F with removebar(α) = removebar(λ) implies α = λ,

then F ∼B F \ {λ}.

Proof. If σ PB-contains F because of λ and γ, then by hypothesis there exists

γ′ <subperm γ with γ′ ∼ removebar(κ). If there exists α ∈ Fb and δ with γ′ <subperm

δ <subperm σ and removebar(α) ∼ δ then by hypothesis the only possible α is κ, so
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σ contains δ ∼ unbar(κ) ∼ unbar(λ) which is a contradiction that σ PB-contains F

because of λ, so σ PB-contains F because of κ, hence σ PB-contains F \ {λ}, so

AvB(F \ {λ}) ⊆ AvB(F ).

Conversely if σ PB-contains F \{λ}, but PB-avoids F , then it must be that some

γ <subperm σ is saved by λ. But this cannot be since there is no α ∈ (F \ {λ})b with

removebar(α) ∼ removebar(λ).

Example 3.6.5. Let

F = {6135̄27̄8̄4, 613527̄8̄4, 6135̄278̄4, 6135̄27̄84, 6135278̄4, 613527̄84}.

The lemma shows F ∼B {6135̄27̄8̄4}.

We know there are further lemmas that can be proved, with more complicated

hypotheses, which can remove more redundant elements of a set F . The next example

shows a situation where a lemma is needed.

Example 3.6.6. F = {4123, 4231, 43251, 41̄352}. We claim that the pattern 43251

is redundant. Suppose σ PB-contains F . Either this is because of some β ∈ F \

{43251}, else it is only because of κ = 43251. So, each of the subpermutation γ ∼

4351 ∼ 4251 ∼ 3251 ∼ removebar(41̄352) <subperm δ must be saved by 41̄352 with

γ <subperm τ ∼ unbar(41̄352). Thus, σ will contains subpermutation 4a3b251 such that

4a351 ∼ 4a251 ∼ 3b251 ∼ unbar(41̄352). So, 4a3b251 is either order isomorphic to

6152473 or 6251473. Both of these subpermutations contains removebar(4123) and

removebar(4231) respectively. So, σ PB-contains F because of removebar(4123) or

removebar(4231) contradicts that it is because of κ only. Thus, σ PB-contains F and

also PB-contains F \ {43251}

However, we were unable to generalise this in time for the thesis deadline.
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3.7 BLOCKS

Here we follow Pudwell and Smith [45]. Let σ be a permutation. Call a factor

Bi = ai,1ai,2 . . . ai,ni
of σ a block if ni > 0 and ai,j > ai,j+1 for all 1 6 j < ni. (Recall

that factor means the entries are contiguous in σ.) A (maximal) block decomposition

of σ is an expression of the form σ = B1B2B3 . . . Bm where each Bi is a block and for

any two adjacent blocks Bi = ai,1ai,2 . . . ai,ni
and Bi+1 = ai+1,1ai+1,2 . . . ai+1,ni+1 we have

ai,ni
< ai+1,1. For example σ = 87634521 has block decomposition B1 = 8763, B2 =

4, B3 = 521. For convenience we indicate the block decomposition of σ by inserting |

symbols to separate blocks, so for our example we write 8763 | 4 | 521.

If Bi = ai,1ai,2 . . . ai,ni
is a block, let B̃i = ai,ni

. . . ai,2ai,1. We have the following.

Lemma 3.7.1 ([45]). If σ has block decomposition B1B2B3 . . . Bm then

p1(σ) = B̃1B̃2B̃3 . . . B̃m.

For example σ = 987354621 = 9873 | 54 | 621 so p1(σ) = 3789 45 126. Note that p1(σ)

essentially reverses blocks of B1B2B3 . . . Bm. The largest token in a block will move to

the right across all the smaller elements in the block while the smallest element in a

block will move to the left across the larger elements in the block. Thus, the elements

in a block are sorted after 1 pass.

Lemma 3.7.2. Let γ= B1B2B3 . . . Bm be a factor of σ, α ∈ B1, β ∈ Bm such that

α > β. After k-passes through a deterministic pop stack, γ is not sorted if m > 4k.

Proof. Due to the deterministic sorting process, after 1 pass, the size of each block is

at most 3 (having 3 elements) [18]. Note that if γ is sorted after k− 1 passes, then the

state where α and β in a block such that . . . | . . . α . . . β . . . | . . . must have happened so

that after k passes, α will be on the right of β such as γ= . . . β . . . α . . . . We will prove

that this state never happen at the end of k − 1 passes, thus γ is not sorted after k
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passes.

Let assume each block in γ including B1 and Bm has at most 1 element. Note that

this assumption is the worse case scenario for the initial state of γ before 1 pass because

after 1 pass, the number of blocks in p1(γ) will remain the same. So, there are total 4k

elements between α and β. After 1 pass, there will still be 4k elements between α and

β because initially there is no other element in B1 and Bm for α to move to right and β

to move to the left. In the best case, assume starting from p1(γ), each subsequence pass

will move α to the right across two tokens and move β to the left across two tokens.

Thus, the the number of tokens between α and β will be reduced by 4 tokens in each

pass. Thus, after (k−1) passes which means after (k−2) passes from p1(γ), the number

of tokens between α and β will be more than or equal to 4k−4(k−2). So, it is obvious

that the state . . . | . . . α . . . β . . . | . . . has not yet happened and γ cannot be sorted at

the end of k passes. In other cases, the number of tokens that move passed α or β

might be less than 2 tokens as the size of blocks is at most 3. Therefore, at the end of

(k − 1) passes, number of tokens separating α or β will still be more than 8. Thus, γ

is still not able to be sorted at the end of k passes.

3.8 GENERAL CHARACTERISATION OF k-PASS POP-STACK

SORTABLE PERMUTATIONS

Theorem 3.8.1. Let k ∈ N+. There exists a finite set Fk ⊆ B such that the set of all

k-pass pop-stack sortable permutations is equal to AvB(Fk). Moreover, the set Fk can

be algorithmically constructed.

Proof. Let Gk denote the set of all k-pass pop-stack sortable permutations. We proceed

by induction, with the base case k = 1 established by Avis and Newborn [7] (specifically,

F1 = {231, 312}). Assume Fk−1 has been constructed, is finite, and Gk−1 = AvB(Fk−1).
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Let rmax = max{|removebar(β)| | β ∈ Fk−1} and C = (3 + 8k)3rmax. Then define

Ωk = {τ ∈ Bp | |τ | 6 3rmax, τ 6∈ Gk}∪

{τ ∈ Bb | |τ | 6 C, |removebar(τ)| 6 3rmax, removebar(τ) 6∈ Gk, unbar(τ) ∈ Gk}.

Claim 1: Ωk is finite: we have
C∑

i=1
i!2i

B-sequences (i! permutations and 2i ways to assign bars) to consider to add to Ωk. This

count includes those in Bp since 3rmax 6 C.

Claim 2: Ωk is algorithmically constructible: since we only have finitely many τ of length

at most C, for each τ we can check τ 6∈ Gk, removebar(τ) 6∈ Gk and unbar(τ) ∈ Gk in

linear time by passing them according to the deterministic procedure.

Claim 3: σ 6∈ Gk if and only if σ PB-contains Ωk.

Proof of Claim 3. Recall that σ 6∈ Gk if and only if p1(σ) 6∈ Gk−1 if and only if p1(σ)

PB-contains Fk−1.

To prove the forward direction, suppose p1(σ) PB-contains Fk−1, and further as-

sume this is because of some ζ <subperm p1(σ) and β ∈ Fk−1 with removebar(β) ∼ ζ,

and there is no α ∈ (Fk−1)b and δ <subperm σ with ζ <subperm δ, ζ ∼ removebar(α) and

δ ∼ unbar(α). Note, there may be many choices of β and ζ to take, but fix one choice.

1. Mark tokens corresponding to ζ in p1(σ) bold. Let ζ ′ <subperm σ be such that

after one pass, the tokens belonging to ζ ′ are the bold tokens corresponding to

ζ <subperm p1(σ). Mark the ζ ′ tokens bold as well. Note that |ζ ′| 6 rmax.

For example, if σ = 987354621 then p1(σ) = 378945126 which PB-contains F1 =

{231, 312} because of (for instance) β = 312 and the subpermutation ζ = 946 of
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p1(σ). We write p1(σ) as 378945126, and thus σ as 987354621.

2. Next, write σ in block decomposition σ = B1B2B3 . . . Bm. Say that Bi is bold if

it contains at least one bold entry (from ζ ′). We wish to delete non-bold entries of

σ but we do not want to merge bold blocks, so we apply the following subroutine.

– set κ = σ

– while ai,j is a non-bold letter,

if removing ai,j from κ does not cause two or more bold blocks to merge,

delete ai,j from κ.

We claim that at the end of this process |κ| 6 3|ζ ′| 6 3rmax. Let ai,j ∈ Bi

with 1 < i < m be a non-bold token in κ. If at most one of Bi−1, Bi, Bi+1 is

bold, then removing ai,j cannot merge bold blocks. Else assume at least two of

Bi−1, Bi, Bi+1 are bold. If ai,j is not the first or last entry in Bi, it can be deleted

without merging blocks. This leaves at most two unbold entries in each block.

For B1 (resp. Bm) we can delete all except the last (resp. first) entry without

merging bold blocks. This leaves at most two unbold entries in each block. Then

in the worst case each block contains just one bold entry, with an unbold entry

on either side. For example, if we get to κ = · · · | 12,10, 8 | 975 | 642 | 31 then

we cannot delete 8, 9, 5, 6, 2, 3 without merging blocks.

3. After this, we obtain a permutation κ <subperm σ such that the bold letters

ζ ′ <subperm κ and |κ| 6 3rmax.

We now claim that p1(κ) PB-contains Fk−1 because of the same ζ and β as σ. Since

bold blocks are preserved in κ, we know that p1(κ) will also contain ζ. Now suppose

there is some α ∈ (Fk−1)b and δ <subperm p1(κ) (<subperm p1(σ)) with ζ ′ <subperm δ,

removebar(α) ∼ ζ and δ ∼ unbar(α). This means that the same α saves σ, which
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contradictions our original assumption. Thus p1(κ) PB-contains Fk−1 which implies

p1(κ) 6∈ Gk−1 which implies κ 6∈ Gk.

Thus since |κ| 6 3rmax and κ 6∈ Gk, we have κ ∈ (Ωk)p by definition. To finish this

direction, we will show that κ is not saved by any τ ∈ (Ωk)b.

Suppose (for contradiction) that κ <subperm σ is saved by some τ ∈ (Ωk)b. Thus

we have removebar(τ) ∼ κ, and some subpermutation δ <subperm σ with κ <subperm δ

and δ ∼ unbar(τ) ∈ Gk. This means p1(δ) PB-avoids Fk−1.

Now p1(δ) will contain ζ since blocks containing ζ ′ <subperm κ <subperm δ will not

merge after one pass. Since p1(δ) PB-avoids Fk−1 and contains ζ, there must be some

α ∈ (Fk−1)b which saves ζ <subperm p1(δ). This means there is some δ′ <subperm p1(δ)

with ζ <subperm δ′, ζ ∼ removebar(α) and δ′ ∼ unbar(α).

We claim α saves ζ <subperm p1(σ), since there exists δ′ <subperm p1(δ) <subperm

p1(σ) with ζ ∼ removebar(α) and δ′ ∼ unbar(α). This contradicts that p1(σ) PB-

contains Fk−1 because of ζ and β. Thus we have shown σ 6∈ Gk implies σ PB-contains

Ωk.

Now for the converse direction, suppose that σ PB-contains Ωk, and so we can

assume that this is because of γ <subperm σ and τ ∈ (Ωk)p with γ ∼ τ (which is not

saved by any α ∈ (Ωk)b), and so by definition γ 6∈ Gk so p1(γ) PB-contains Fk−1.

Assume (for contradiction) that σ ∈ Gk. We will show that this implies we can

construct some κ <subperm σ such that κ ∈ Gk, γ <subperm κ and |κ| 6 C = (3+8k)3rmax.

If so, then we can construct α ∈ (Ωk)b with unbar(α) = κ and removebar(α) = γ, which

means α saves γ <subperm σ, and this gives a contradiction.

Here is how we construct κ. In σ, mark the tokens corresponding to γ bold.

Call a block of σ bold if it contains at least one bold token, and otherwise a block

is called non-bold. Starting with κ = σ, we delete non-bold tokens using the following

procedure, which is more careful than the similar subroutine used in the proof of the
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forward direction above. The goal is to delete non-bold tokens to obtain a permutation

κ with subpermutation γ such that for every block B in κ there is a block B′ in σ so

that the tokens in B are tokens in B′. That is, we do not allow any blocks to merge,

only to be deleted entirely.

– set κ = σ

– while ai,j ∈ Bi is a non-bold letter,

- if removing ai,j from κ does not cause two or more blocks of any kind (bold

or non-bold) in κ to merge, delete ai,j from κ,

- if Bi is non-bold and removing the entire block Bi at once does not cause

any of the remaining blocks to merge, then delete Bi.

We claim that at the end of this process each block contains at most two non-bold

entries, which will be the first and last entries of the block. However, since we have not

deleted non-bold blocks if their removal would cause other blocks to merge, we could

have arbitrarily long factors of non-bold blocks, as in Figure 3.2.
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Figure 3.2: Worst case situation: κ = 16, 14, 15, 12, 13, 10, 11, 896745231

However, we claim that this is the only situation that can occur with arbitrar-

ily long blocks of size 2, and in this case if the factor is longer than 4k blocks by

Lemma 3.7.2, the factor cannot be sorted by k passes and so neither can σ, contradic-

tion. Thus we have |κ| is at most 3|γ| (the bold blocks with a non-bold entry first and

last) plus 8k|γ| ( 4k factors each containing 2 tokens, as in Figure 3.2, in the worst case

occurring between every pair of bold tokens from γ). Thus

|k| 6 (3 + 8k)|γ| 6 (3 + 8k)3rmax = C

If κ cannot be sorted, then p1(κ) 6∈ Gk−1 because of some subpermutation τ ∼

removebar(β) with β ∈ Fk−1, but since no block has merged in obtaining p1(κ), p1(σ)

also contains τ which cannot be saved since blocks containing the tokens forming τ are

fixed. Thus p1(σ) 6∈ Gk−1, so σ 6∈ Gk, contradiction.
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Claim 3 implies that we could take Fk = Ωk and the theorem is done. However,

we can first apply Lemmas 3.6.1–3.6.4 to Ωk to obtain a smaller set with the same

PB-avoidance set, so we will call this Fk. As remarked in the previous section, the

result of appying the lemmas is not guaranteed to give a set that is minimal or unique.

Note that each of these lemmas needs to check a finite set so each is algorithmic.

3.9 CONCLUSION

We have shown in Theorem 3.8.1 that there are only finitely forbidden patterns

characterising the permutations sortable by k-pass pop-stack. Before the proof was

constructed, a computer program was written based on some unproved assumptions to

find the forbidden patterns for permutations sortable by 3-pass pop-stack. By using

the computer program, we were able to find the same 8 forbidden patterns for 2-pass

pop-stack as in [45], as well as obtaining a list of 49 patterns for 3-pass pop-stack. The

list of 49 patterns found is shown in Figure 3.3.

23451, 54312, 54231, 54132, 54123, 34512, 34521
35412, 43251, 43512, 43521, 45123, 45132, 45213
45231, 45321, 51234, 53421, 53412, 53241, 51432
52413, 513462, 526̄413, 516̄423, 5136̄24, 51246̄7̄3, 4531̄62
46̄31̄572, 361̄452, 351̄462, 5236̄14, 47̄31̄562, 51̄2̄4673, 51̄2̄6473
4631̄52, 51̄2̄7463, 5127̄46̄3, 51̄42̄673, 51426̄7̄3, 52̄41̄673, 52416̄7̄3
6137̄52̄4, 6237̄51̄4, 51̄2̄74̄683, 51̄2̄84̄673, 6135̄27̄8̄4, 6235̄17̄8̄4, 5126̄47̄3

Figure 3.3: List of 49 patterns in Ω3 found by computer search

Based on these patterns, and the various anomalies contained in them such as

that shown in Example 3.3.3, we formulated our new definitions of B-sequence and

PB-contains, and then proved that the set of forbidden patterns for permutations

sortable by k-pass pop-stack is finitely based. The proof is in the form of constructive

algorithm and it can be implemented as a computer program to find the Ωk which
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contains the forbidden patterns. However, it is not feasible to generate the complete Ωk

list because of the high upper bound. Even though the complete Ωk list could be found

with the aid of a supercomputer, the list still contains a lot of redundant patterns.

Lemmas 3.6.1, 3.6.2, 3.6.3 and 3.6.4 can only remove some of the redundant patterns.

For future research, one can find more Lemmas to remove all redundant patterns.

Rather than using the correct bound to generate Ω3, we implemented a computer

program based on the proof but we use a lower value for the bound to generate the Ω3

list. We found that the list contains all the 49 patterns found above. So, we believe

that the smallest set of forbidden patterns that characterise the permutations sortable

by 3-pass pop-stack could be exactly the list in Figure 3.3.
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CHAPTER 4

FUTURE RESEARCH

4.1 STACKS IN SERIES

Let α, β and γ be the operations of passing an entry from input to the output

through the stacks in S(t,∞), t ∈ N as shown in Figure 4.1, where α is the operation of

moving an entry from input into stack R, β is the operation of moving an entry from

stack R into stack L, and the final output operation γ moves an entry from stack L to

output.

inputoutput

R

L

αβγ

Figure 4.1: A stack R of depth t and an infinite stack L in series

Every entry ij from a permutation i1...in ∈ S(t,∞) with j = 1, ..., n is moved

exactly once by each of the three operations, as it moves from input to output. There-

fore, all sortable permutations of length n in S(t,∞) can be encoded as words of length

tn. We call these words sorting codewords and denote the set of all possible sorting

codewords for S(t,∞) as Wt,∞.

Sorting codewords can potentially be used to describe a pattern avoidance set as a

formal language class which in turn may provide a description for the generation func-

tion that enumerates the permutations in the avoidance set. For instance, any pattern

avoidance set that can be described as a regular language has a rational generating

function [47] while a pattern avoidance set that can be described by an unambiguous

context-free language has an algebraic generating function [14]. Atkinson, Livesey and
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Tulley proved the generating function for the set of permutations generated by passing

an ordered sequence through a finite token-passing network is rational by showing the

set is in bijection with a regular language [4]. Elder, Lee and Rechnitzer proved that

the generating function of S(2,∞) is algebraic by proving the pattern avoidance set

of S(2,∞) is in bijection with an unambiguous context-free language [25] of words in

W2,∞.

We attempted to find the generating function for S(3,∞) by following a similar

strategy. Due to the nondeterministic nature of sorting with stacks, there can be more

than one sorting codeword for each sortable permutation. Thus, we need to find a subset

of W3,∞ that is in bijection with S(3,∞). To do so, we tried selecting the codewords

that output tokens as soon as possible, that is, has more γ letters closer to the front.

We denote such a codeword as greedy codeword. For instance, if l1 = αβγααβγβγ and

l2=αβαγαβγβγ are the only codewords that sort the permutation 132, so we choose

l1 as the greedy codeword for permutation 132. Note that l1 can be obtained by l2 by

replacing the factor αγ with γα, which has no effect on permutation being sorted.

So, we find some additional rules that can help us to remove all redundant code-

words that sort the same permutation and from the list of rules obtained, we choose

the one that can produce a greedy codeword. For instance, clearly that we can either

replace γα with αγ or αγ with γα but we choose the latter case because it obviously can

produce a greedy codeword. However, so far we were not able to find sufficient rules to

remove all redundant codewords for each sortable permutations of length greater than

12 even though we already found hundreds of such rules. While doing so, we observed

the following.

Example 4.1.1. The codeword

αβαα(αβ)iαβγ(βα)i+1αβγ(γ)2i+1γββγγ; i > 1
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sorts the permutation Pi =

(4+2i, 5+2i)(3+i)(4+(2i−1), . . . , 4+(i+1), 4+i)1(2+i, . . . , 2+2, 2+1)(6+2i)2 ∈ S(3,∞).

For instance, P1=67451382 can be sorted by following the sorting codeword

αβαα(αβ)αβγ(βα)2αβγ(γ)3γββγγ. Such words cannot be part of a context-free lan-

guage by the pumping lemma for context-free languages. Therefore we suspect there is

no subset of sorting codewords in bijection with S(3,∞) that is (unambiguous) context-

free.

Finding generating functions for S(k,∞) would be interesting in its own right, but

also be a step towards the open problem of enumeration for two infinite stacks in series.

4.2 k-PASS POP-STACKS

Recall that the algorithm in Section 3.8 will produce a large set of Ωk which

contains a lot of redundant patterns with respect to PB-containment. Applying the

Lemmas 3.6.1−4 can only remove some of the redundant patterns. For future research,

it is possible that more Lemmas can be constructed to remove all the redundant pat-

terns, but it will take a lot of effort because a pattern in F is redundant when it is not

only contains another patterns in F but also saved by some patterns in F .

So, the approach to construct and prove further lemmas is to check every possible cases

for each pattern in F whether it contains some patterns or saved by some patterns. As

a warm up exercise, one can try to construct a lemma for the Example 3.6.6.

Another interesting question is to answer the characterisation problem of

nondeterministic k-pass pop-stack. The sorting procedure in Chapter 3 is deter-

ministic because a pop operation is performed when the next input element is bigger

than the top element in the pop-stack. Meanwhile, a nondeterministic procedure has

no such restriction and allow a pop operation to happen at anytime as long as there
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are some elements in the pop-stack. Due to the nondeterministic procedure, there is no

bar pattern in the expected basis. So, there is a possibility that an infinite antichain

might exist for k passes. To prove this, the similar technique from Chapter 2 might be

used.

Our notion of PB-avoidance also opens up some interesting possibilities. Recall

that by Kaiser-Klazar [33, Thm. 3.4] and Marcus-Tardos [40] the function counting

the number of permutations of length n in any Av(F ) for F non-empty is either poly-

nomial or exponential. It is conceivable some sets F could have PB-avoidance set

with growth function strictly between polynomial and exponential, or strictly between

exponential and factorial. Example 3.3.2 shows a non-trivial PB-avoidance set with

factorial growth.

Generating functions for PB-avoidance sets might also exhibit interesting be-

haviour. For the sets Fk in 3.8.1 we know by [18] the generating functions are rational

for all k, but for general set F the set AvB(F ) could have interesting enumerations.
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