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ABSTRACT

Mobile Edge Computing for Future Internet-of-Things

by

Chenshan Ren

Integrating sensors, the Internet, and wireless systems, Internet-of-Things (IoT)

provides a new paradigm of ubiquitous connectivity and pervasive intelligence. The

key enabling technology underlying IoT is mobile edge computing (MEC), which is

anticipated to realize and reap the promising benefits of IoT applications by placing

various cloud resources, such as computing and storage resources closer to smart

devices and objects. Challenges of designing efficient and scalable MEC platforms

for future IoT arise from the physical limitations of computing and battery resources

of IoT devices, heterogeneity of computing and wireless communication capabilities

of IoT networks, large volume of data arrivals and massive number connections, and

large-scale data storage and delivery across the edge network. To address these chal-

lenges, this thesis proposes four efficient and scalable task offloading and cooperative

caching approaches are proposed.

Firstly, for the multi-user single-cell MEC scenario, the base station (BS) can

only have outdated knowledge of IoT device channel conditions due to the time-

varying nature of practical wireless channels. To this end, a hybrid learning approach

is proposed to optimize the real-time local processing and predictive computation

offloading decisions in a distributed manner.

Secondly, for the multi-user multi-cell MEC scenario, an energy-efficient resource

management approach is developed based on distributed online learning to tackle

the heterogeneity of computing and wireless transmission capabilities of edge servers

and IoT devices. The proposed approach optimizes the decisions on task offloading,

processing, and result delivery between edge servers and IoT devices to minimize



the time-average energy consumption of MEC.

Thirdly, for the computing resource allocation under large-scale network, a dis-

tributed online collaborative computing approach is proposed based on Lyapunov

optimization for data analysis in IoT application to minimize the time-average en-

ergy consumption of network.

Finally, for the storage resource allocation under large-scale network, a distribut-

ed IoT data delivery approach based on online learning is proposed for caching ap-

plication in mobile applications. A new profitable cooperative region is established

for every IoT data request admitted at an edge server, to avoid invalid request

dispatching.
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Chapter 1

Introduction

1.1 Background

1.1.1 Future Internet-of-Things (IoT)

In the past decades, the Internet has evolved from peer-to-peer networking to

world-wide-web, and mobile-Internet to the Internet-of-Things (IoT) [1]. The idea

of IoT is originated from Radio Frequency Identification (RFID) tags, each of which

has a distinct address to communicate with other devices/tags and connect to the

Internet [5]. With the rapid development of wireless technologies, Near Field com-

munications (NFC), Machine to Machine (M2M) communications, and Vehicular to

Vehicular (V2V) communications are able to facilitate the implementation of IoT

devices [5].

IoT can bridge the gap between the Internet and traditional telecommunication

networks, enable smart objects to connect to the Internet, and realize ubiquitous and

pervasive intelligence. By 2020, the number of IoT devices will exceed 30 billion [6],

and up to 45% of the Internet traffic are generated from such large number of IoT

devices [7]. The applications of future IoT can be listed as follows.

• Healthcare. Wearable low-power IoT/medical sensors can monitor health-

related data and keep records. The e-health applications (e.g., remote surg-

eries) would require ultra-low latency and uninterrupted communication links.

The collaborations among surgeons can be conducted in different geographical

locations [1, 8–12].

• Autonomous driving. The concept of (semi-)autonomous driving is based on

Vehicle to Everything (V2X), converging the technologies of Vehicle to Vehi-

cle (V2V), vehicle to infrastructure (V2I), vehicle to device, vehicle to pedes-
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trian, vehicle to home, and vehicle to grid. The application of autonomous

driving requires high-reliable and mission-critical computing services [13].

• Industry manufacturing. In the industrial IoT (IIoT) application, the data gen-

erated by the IIoT devices (including sensors, actuators, machines and robots)

can be processed and analysed by exploiting recent progress on artificial in-

telligence to enable smart manufacturing. The typical features of the IIoT

services, (e.g., smart factory) include large-scale computation tasks, ultra-low

latency, high reliability, and heterogeneous accessibility requirements.

• Smart city. The data from the large number of sensors across the city can

be collected and analysed to facilitate the application of smart city. With the

increasingly densely deployed IoT devices and the increasingly large size of

networks, the data from the smart city applications can be in large volume.

1.1.2 Mobile Edge Computing MEC

According to European Telecommunications Standardization Institute (ETSI),

the definition of MEC is to “ provide IT and cloud computing capabilities within the

Radio Access Network (RAN) in close proximity to mobile subscribers [14].” The

features of Mobile Edge Computing (MEC) can be summarized as follows.

• Low latency: The MEC server is located at the edge of the network, which

can significantly reduce the distance between the server and the terminal de-

vice. As a result, the delays of transmitting the data through the core network

to the data centers, as typically done in Mobile Cloud Computing (MCC), can

be eliminated, to provide low-latency and high-reliability services (e.g., au-

tonomous driving).

• High energy efficiency: By offloading the computation-intensive applica-

tions from the mobile devices to the edge servers, MEC can reduce the energy

consumption of local execution and prolong the battery life of the devices.

According to [15], the battery life time of running AR applications via MEC

can be increased by 30-50%.
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Figure 1.1 : The application scenarios of MEC for future IoT [1].

• Scalability: Different from the data center networks, where the servers are

located in the same geo-location and can be controlled in a centralized manner,

in MEC, the servers are geo-distributed and typically organized in a decentral-

ized manner. This increases the flexibility and scalability of MEC platform.

The distributed architecture can also enable the management of a large num-

ber of devices, and provide low-latency computing services.

In a nutshell, MEC is a distributed computing platform by placing computing, net-

working, and storage capabilities inside the devices in edge networks, and supporting

low-latency, high-reliability, and high-connectivity applications [8–11, 16–19].

1.1.3 MEC for Future IoT

By placing various cloud resources (e.g., for computing and storage) close to

smart devices, the advantages of MEC are highly in line with the features of IoT

services [8–11]. As a result, MEC is anticipated to realize the promising benefits

of IoT. Fig. 1.1 illustrates the typical application scenarios of MEC for future IoT.

In many practical applications of smart city (i.e., smart metering, smart heating,

cleaning services, smart energy, and smart farming), the geo-distributed IoT devices

would generate large volumes of data to be processed at the edge servers and the

cloud, thereby providing reactive learning from the big data. These applications
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are typically delay-tolerant. For example, the typical applications of smart energy,

the delay can be 1s to several hours[1]. MEC can provide pervasive computing ser-

vices to meet the requirements of low-latency, high-reliability, and high-connectivity

applications for future IoT. By exploiting data processing at the point of capture,

MEC has the potential to relieve network congestions pertaining to IoT services and

increase network capacity of computing and storage.

MEC can help offload resource-hungry tasks from resource-restrained cordless

IoT devices to MEC servers consisting of base stations (BSs) and gateways through

wireless links [16–18]. MEC can guarantee the quality of services for computation-

intensive and latency-critical applications, such as imaging processing, and augment-

ed reality.

MEC is promising to orchestrate resources of wired network for handling the IoT

data and network services with efficiency and agility [19–21]. The data can be pre-

processed by the MEC servers, and the pre-processed results will be delivered to the

data center for big data analytics to provide guidelines for some IoT services, such

as smart city, and intelligent transportation systems. The pre-processing procedure

can reduce the congestion of the backhual, and relieve the burden of data center for

data analysis.

The unique features of future IoT can be summarized as follows.

• Physical limitations of computing and battery resources of future

IoT devices. In future networks, the IoT devices and sensors can be increas-

ingly densely deployed to achieve accurate and broadly environment monitor-

ing. Consider the simple IoT devices (e.g., sensors). The physical sizes of such

devices are restrained, limiting the battery sizes and computing resources that

can be installed inside the devices.

• Heterogeneity of computing and wireless capabilities of future IoT

networks. With the development of communication technologies, a large

number of cordless or mobile IoT devices are connected to the Internet through

different radio interfaces, e.g., 3GPP LTE/LTE-advanced and WiFi. The fu-
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ture IoT will generate prevalent heterogeneity for networks, such as the het-

erogeneity in data, and data collection, as well as distinct data control poli-

cies/regulations on typical consortium IoT platforms [8].

• Large volume of data arrivals and massive connections in future IoT

networks. The growing demands for ultra-low latency, massive connectivity,

and high reliability for large numbers of IoT services have yielded other critical

issues, such as the limited connections (i.e., connection capacity, bandwidth,

or the number of simultaneously affordable connections) between mobile edge

cloud and smart devices/objects [8–11, 22]. Wireless IoT devices operate in

shared wireless media, which have unique characteristics of unpredictable and

time-varying channels, and can become increasingly congested with a growing

number of IoT devices.

• Distributed large-scale data storage and delivery across the edge net-

work in mobile applications. Hundreds of thousands mobile devices need

to be connected to the Internet, and collect data for specific mobile applica-

tions. Given the sheer size of mobile devices, the real-time data transmission

through core network could barely be feasible and would lead to network con-

gestions and delay around centralized platforms. Moreover, given the limited

storage and geo-distribution of MEC servers, the centralized caching mecha-

nism of IoT data is impractical.

1.2 Challenges of MEC for Future IoT

Fig. 1.2 illustrates the applications of MEC for future IoT, where a large number

of IoT devices with wireless interfaces to the edge cloud generate big data destined for

the data centers (or sinks). This thesis is motivated to address the aforementioned

four features of future IoT.

1.2.1 Scenarios of MEC for Future IoT

We can see in Fig. 1.2 that there are two types of IoT services and applications

for future IoT. The first type of services and applications in the network are latency-
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Figure 1.2 : The application of MEC in IoT networks.

sensitive tasks, such as face recognition, and ultra-high-definition video streaming.

Such tasks can be supported by some edge servers in close proximity to IoT devices,

such as base stations, access points, and cloudlet. We consider two scenarios in this

case to tackle the features of future IoT mentioned in Section 1.1.1

• Multi-user single-cell task scheduling. Given the feature of physical limi-

tations of computing and battery resources of future IoT devices, task schedul-

ing is studied to minimize the total energy consumption of IoT devices.

• Multi-user multi-cell cooperative computing. Given the feature of het-

erogeneity of computing and wireless capabilities of future IoT networks, co-

operative computing is studied as the extension of first scenario.

The other type of tasks is big data analytics (e.g., smart city), where the large

size of data cannot be supported in the MEC servers and need to be processed

across edge cloud and data centers. Then, large-scale network scenario is taken

into consideration. Ubiquitously deployed edge network nodes, such as switches,

routers, and gateways in different subnetworks, can all play a role of MEC servers

and collaborate with one another, leveraging the embedded computing and storage
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capabilities of the devices and helping process, and cache IoT data for corresponding

services and applications.

The unified network is of particular value to many appealing, bandwidth-demanding

IoT services, and mobile applications. For example, extensively deployed surveil-

lance cameras, and cameras installed on mobile vehicles, can collect and upload

real-time images or videos for regenerating augmented reality of environments and

road traffic with broad applications to future smart cities [8–11]. Given the strong

locality of the images/videos, instant content fusion around the point of capture in

the edge cloud, by exploiting ubiquitous computing, provides an efficient approach

for real-time augmentation and redundancy removal to alleviate network conges-

tions. We consider two cases to tackle the features of future IoT mentioned in

Section 1.1.1

• Computing resource allocation in large-scale network. Given the fea-

ture of large volume of data arrivals and massive connections in future IoT

networks, large-scale fog computing is studied. By collaborating the MEC

servers and data center, and allocating the embedded computing resources,

big data analytics can be supported.

• Storage resource allocation in large-scale network. A large number

of IoT data which is likely to be reused by others, such as temperature and

humidity, collected by sensors need to be cached in MEC servers to support

mobile applications (e.g., weather forecast). Given the feature of distributed

large-scale data storage and delivery across the edge network, a cooperative

caching region is designed to improve the storage efficiency.

1.2.2 Technical Challenges in Four Cases

We proceed to articulate the challenges of the four scenarios in details.

Case 1: Multi-user Single-cell Task Scheduling.

In this case, we consider that there are N IoT devices in the coverage of a single

base station (BS), and the BS is connected with an edge server. The MECO can
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reduce the energy consumption of local processing for IoT devices, but increase

the energy consumption for transmission. With the consideration of the physical

limitations of computing and battery resources of IoT devices, an efficient task

scheduling approach need to be proposed to minimize the energy consumption of

IoT devices.

Challenges in this case arise from the time-varying nature of practical wireless

channels. The BS can only have outdated knowledge of IoT devices’ channel condi-

tions at the last slot for predictive computation scheduling decisions at the current

slot. However, the IoT devices can observe the devices information (such as da-

ta arrivals, computing resources, computing energy) for real-time local processing.

In other words, the network states for local processing and computation offload-

ing would be differently aged at the devices (with instantaneous observations of its

own states for local processing) and the BS (with outdated channel conditions for

computation offloading). Such differently-aged network states would prevent the

existing approaches [18, 23–30] from functioning and require the development of hy-

brid learning approaches to be implemented at the devices for instantaneous local

processing decisions and the BS for predictive computation offloading decisions.

Case 2: Multi-user Multi-cell Cooperative Computing.

In this case, we consider that there are N IoT devices covered by M edge server-

s. The tasks generated by IoT devices can be offloaded multiple hops away and

processed anywhere in the network, i.e., locally executed, offloaded to other IoT

devices, or remotely processed at the edge servers. The devices in the considered

scenario have heterogeneity of computing and wireless capabilities. In particular,

inexpensive IoT devices have limited computing and communication capability, and

may only interact with one device at a time; while the powerful MEC servers (such

as base stations, access points and cloudlets) can maintain simultaneous connections

with multiple devices and process complex tasks.

The technical challenges in this case arise from the temporal and spatial couplings

of the optimal operations. On the one hand, the causality of operations in multi-
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hop network would incur strong temporal couplings. Myopic optimization would

lead to sub-optimal solutions due to prevalent network randomness (such as channel

variations, task arrivals and available computing resources). Offline optimization

requires the a-priori knowledge on the network dynamics, which is not practical

due to the stochastic nature of the environment. On the other hand, non-uniform

cardinalities of devices due to the different transmission capabilities of IoT devices

and MEC servers would result in spatial couplings of the optimal operations. The

transmission decisions are coupled among nearby devices. Typically centralized

approaches make the transmission decisions for the devices in the presence of the

global view of the network to avoid transmission collisions due to the non-uniform

cardinalities. However, the instantaneous global view is unlikely given the network

size and non-negligible multi-hop signaling delays.

Case 3: Large-scale Fog Computing under Limited IoT Buffers.

In this case, we consider that a large amount of data generated by IoT devices

are destined for the data center for big data analytics via the edge cloud. Also,

the task can be offloaded multiple hops away and processed anywhere in the net-

work. The causality of operations in multi-hop network would incur strong temporal

couplings. Lyapunov optimization can be used to decouple temporally coupled vari-

ables in this case, and achieve asymptotically optimal solutions with typically an

[O(V ),O(1/V )]-tradeoff between the queue lengths and optimality loss [31]. V is a

configurable parameter to adjust the weights of stability and optimality (in terms

of system utility) in a drift-plus-penalty function.

Challenges in this case arise from the limited buffers of IoT devices, which can

not support the operations of Lyapunov optimization. The Lyapunov optimization

would require sufficient differences among the queues to steer data from the IoT

devices through edge servers to the data center. Unfortunately, inexpensive IoT

devices can only have very limited buffers, leading to insufficient queue differences

for driving data towards the data center. Moreover, the limited buffers of IoT devices

do not align with the typical setting of Lyapunov optimization, where V needs to

be large to achieve the asymptotic optimality.
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Case 4: Large-scale Cooperative Region for Edge Caching.

In above three cases, we focus on the computing resource allocation in MEC.

However, the storage resource allocation is also an important issue in MEC. In this

case, we consider that there are N edge servers, which can cache the IoT data in

the local memories to support mobile applications. F IoT files/data are requested

from mobile users. The requested data can be retrieved from network backbone and

edge cloud.

Challenges in this case arise from the design of cooperative mechanism and coop-

erative regions. Cooperative edge caching is challenging. This is because edge clouds

can be very large and geo-distributed, and undergo spatial and temporal variations

resulting from random content request arrivals and background traffic. Centralized

coordination [32–49] becomes ineffective with significant signaling delays and out-

dated network knowledge which would inhibit optimal solutions. However, there

has been no proper decentralized solution for cooperative edge caching in the p-

resence of random variations. Moreover, in the absence of a global network view,

file/data requests could be dispatched unnecessarily large numbers of hops away

from the edge server admitting the requests under decentralized designs. File/data

could be retrieved from large numbers of hops away as well. The efficiency (or

cost-effectiveness) of the file/data delivery would degrade [50].

Setting up appropriate cooperative caching regions, within which requests can

be dispatched for file/data retrievals with guaranteed cost-savings compared to re-

trievals from the core network, is crucial to prevent the above inefficiency. The

regions have the potential to guide the placement of file/data, preventing repeated-

ly and inefficiently caching the same contents at nearby servers. However, the setup

of the regions is non-trivial under decentralized network settings of cooperative edge

caching.

1.3 Thesis Organization

In this thesis, we propose four new approaches to address the challenges listed in

Section 1.2.2. “Hybrid Learning of Predictive Mobile Edge Computation Offloading
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Figure 1.3 : The organization and relationship of thesis.

under Differently-Aged Network States” is proposed to address the first challenge in

Case 1. “Distributed Online Learning of Fog Computing under Non-uniform Device

Cardinality” is proposed to address the second challenge in Case 2. “Distributed

Online Optimization of Fog Computing for Internet-of-Things under Finite Device

Buffers” is proposed to address the third challenges in Case 3. “Profitable Coopera-

tive Region for Distributed Online Edge Caching” is proposed to address the fourth

challenge in Case 4.
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This organization of this thesis is shown in Fig. 1.3(a), and summarized as fol-

lows:

1. As a brief introduction, Chapter 1 introduces the background of future IoT

and MEC, and summarizes the technical challenges of MEC for future IoT.

2. Chapter 2 introduces the architectures of IoT and MEC, and summarizes the

related works.

3. Chapter 3 proposes a hybrid learning approach to optimize the real-time local

processing and predictive computation offloading decisions in a distributed

manner given the time-varying nature of practical wireless channels.

4. Chapter 4 develops an energy-efficient resource management approach based

on distributed online learning to tackle the heterogeneity of computing and

wireless transmission capabilities of edge servers and IoT devices.

5. Chapter 5 proposes an enabling technique for Lyapunov optimization to oper-

ate under finite buffers without loss of asymptotic optimality. This is achieved

by optimizing the biases (namely, virtual placeholders) of the buffers to create

sufficient backlogs.

6. Chapter 6 establishes a new profitable cooperative region for every IoT file/data

request admitted at an edge server, which can help automate the placement

of contents with reduced density and improved efficiency.

7. Chapter 7 presents the conclusions drawn from the results discussed in ear-

lier chapters of the thesis, and discusses the limitations and future research

directions of this study.

As shown in Fig. 1.3(b), this thesis consists of four chapters of works for three

types of scenarios, i.e., multi-user single-cell scenario, multi-user multi-cell scenario

and large-scale scenario. The relationships between these works are provided in the

following.

1. Case 1 is designed for the IoT devices scheduling mechanism in single-cell.
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2. Case 2 is designed for the multi-hop transmission mechanism of task process-

ing, dispatching and result delivery between nodes in multiple cells.

3. Case 3 is focused on a large-scale IoT network, where the IoT devices covered

by different edge servers generate large amounts of data destined for the data

center for big data analytics. Data uploading of IoT devices, and data pro-

cessing, dispatching, and result delivery between edge servers in network are

considered.

4. Case 4 is the service application scenario (i.e., content/file retrieval), where

each server optimizes its decisions on the admission, dispatching and grant of

file requests, and the file delivery for granted requests.

The four cases in this thesis studies the resource management of fog computing

from different aspects, i.e., case 1 and 2 research on wireless resource manage-

ment of single-hop and multi-hop transmission; case 3 researches on networking

in a large-scale wired network; case 4 researches on caching with edge computing.

The proposed approaches in cases 1–4 can operate in conjunctions to increase the

throughput and scalability of fog computing.
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Chapter 2

Literature Review

In this chapter, we will introduce the architectures for IoT and MEC. Then, the

related works are summarized with respect to the topics of multi-user single-cell

task scheduling, multi-user multi-cell cooperative computing, computing and storage

resource allocation in large-scale networks.

2.1 Architecture of IoT and MEC

2.1.1 Architecture of IoT

The architectures of IoT can be classified into [51]: RFID, service oriented ar-

chitecture, wireless sensor network, supply chain management, industry, healthcare,

smart city, logistics, connected living, big data, cloud computing, social computing,

and security. Here, we introduce the reference architecture of IoT proposed by Guth

et al. [2] in terms of the functional blocks. Fig. 2.1 illustrates the reference architec-

ture of IoT, which depicts the components and interconnections. The components

and functions are summarized as following.

• Sensor and actuator. Sensors and actuators are the bottom hardware compo-

nents of IoT architecture. In specific, sensors are used to collect surrounding

data, such as temperature or humidity, in the environment, then transform the

data to electrical signals. Actuators are used to act upon, control, or manipu-

late the physical environment, then transform the electrical signals into some

kind of physical actions [2]. Both of the sensors and actuators are connected

with or integrated into the devices.

• Device. By exploiting the software installed in drivers, the devices can process

the data collecting from the bottom components, and translate the physical
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Figure 2.1 : The reference architecture of IoT [2].

parameters into digital information. Devices can be self-contained or connect-

ed to another system to facilitate the IoT integration middleware.

• Gateway. The gateway is used to supported different protocols of interfaces,

such as 3GPP, LTE, and WiFi, and forward the transmission to other entities

in the network for devices. Moreover, the gateway may allocate the services

and resources for devices.

• IoT Integration Middleware. The IoT Integration Middleware is responsible

for integrating different kinds of sensors, actuators, devices, and applications.

Also, it has most of the functions to support cyber-physical system, such as a

rules engine, and graphical dashboards.

• Application. The software system operated based on the IoT integration mid-

dleware and data collected from the bottom physical components represents

the application.
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Figure 2.2 : The framework of MEC[3].

2.1.2 Architecture of MEC

1) Framework of MEC:

Figure 2.2 is the basic framework of MEC, where the functional entities of MEC

can be classified into networks level, mobile edge hosts level, and mobile edge system

level.

• Mobile edge hosts level. The mobile edge host level consists of a mobile edge

host and a corresponding mobile edge host level management entity, and the

mobile edge hosts level can be further categorized into a mobile edge platfor-

m, mobile edge applications, and a virtualization infrastructure. The mobile

edge host provide computing, caching and networking functions to support

the mobile edge applications. The mobile edge platform enables applications

to discover, advertise and consume edge services, and provides the virtual-

ization infrastructure with a set of rules for the forwarding plane [3]. The

communication between mobile edge platforms is via the interface Mp3 inter-

face, between mobile edge platform and mobile edge application is via the Mp1
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interface, between virtualization infrastructures is via Mp7 interface.

• Networks level. The networks level consists of external entities, such as 3GP-

P network, local network and external network representing the association

relationship of MEC system and networks.

• Mobile edge system level. The top layer is the mobile edge system level man-

agement entity, which is responsible for the overall control of the MEC system.

The mobile edge system level consists of mobile edge orchestrator and opera-

tion support system. In particular, the mobile edge orchestrator is responsible

for the application authentication and management. The operation support

system is responsible for the service and subsystem management, and request

admission from Customer Facing Service portal and users.

2) Architecture of MEC

Three generic MEC architectures are proposed in terms of the different localiza-

tion of MEC servers.

Edge Network Architecture: Deploy MEC servers to base stations or wireless

access points, such as Small Cell Cloud (SCC) [52, 53] and Mobile Micro Clouds

(MMC) [54]. The architecture is proposed to enhance the storage and computing

capabilities of small cell base stations, thereby improving the performances of cellular

networks. The SCC can be controlled by a Small Cell Management entity (SCM)

in a centralized manner, or a local SCM (L-SCM) in a distributed manner. With

the deployment of small cells, SCC can provide sufficient computing and storage

resources. Moreover, the architecture of MMC deploys the computing and storage

resources on the base station side, which does not require any management entities,

and can be organized in a distributed manner. The edge server of SCC and MMC

is in close proximity to the terminal devices. The user experience of service of

latency-critical services can be guaranteed.

Core Network MEC Architecture: Deploy the edge servers close to Radio

Access Network (RAN) or close to RAN, such as Fast Moving Personal Cloud (Mo-
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biScud) [55] and Follow Me Cloud (FMC) [56, 57]. The data center network in MCC

can be operated in centralized manner, which has low scalability and cannot meet

the increasing number of users. The MEC architecture is operated in a distributed

manner, enabling the operator management with the increasing number of devices,

and providing low-latency services. Compared to SCC and MMC, this architecture

is capable of computing and storage, but remote from the terminal devices, which

support the applications with large computation and low delay sensitivity.

“Ubiquitous Computing” Architecture: It is noted that the above archi-

tectures have their limitations. A new architecture called “ubiquitous computing”

has been proposed and widely adopted in the literature [58, 59]. In particular, u-

biquitously deployed edge network nodes, such as switches, routers, and gateways

in different subnetworks, can all play a role of edge servers and collaborate with

one another, leveraging the embedded computing capabilities of the devices and

helping process and route data from the point of capture all the way to their des-

tinations. NFV and SDN are the enabling technologies to orchestrate resources of

networks for handling services with efficiency and agility. The ubiquitous computing

architecture can realize the rational allocation of computing tasks, data traffic, and

storage by coordinating infrastructure resources in the network, thereby integrating

the advantages of above architectures to provide different services and applications.

2.1.3 Implementation of MEC for Future IoT

ETSI has identified IoT as one of the most important use cases of MEC [4].

The MEC server can be regarded as the gateway of IoT architecture, which can

support different communication technologies and protocols, such as 3GPP, LTE,

WiFi, Bluetooth, and ZigBee, for IoT devices. Nevertheless, the MEC server can ag-

gregate the data, and process the data with embedded computing resources. Fig. 2.3

show the illustrative example of IoT gateway service scenario [1, 60].

MEC has been the key enabler for IoT in recent researches [1, 8–13, 61–66]. The

works [1, 8–13], discuss the role of MEC for IoT, and introduce the some special use

cases. In [61], a UAV-based IoT platform is designed by leveraging MEC. In [62],
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Figure 2.3 : IoT gateway service scenario [4].

a collaborative computation offloading mechanism is proposed under fiber-wireless

architecture for IoT. In [63, 64], authors identify MEC services for IoT big-data

analytics. SDN scenarios based on IoT and MEC are discussed in [65, 66].

2.2 Summary of Related Work

1) Multi-user Single-cell Task Scheduling:

In the scenario of multi-user single-cell MEC, existing works have proposed

static and dynamic approaches to optimize computation offloading and local pro-

cessing decisions to reduce service delays and energy consumption of mobile de-

vices [16–18, 23–30, 67–70]. In [17, 67–70], the problem of offloading decisions and

resource allocations was optimized offline via submodular/convex optimization tech-

niques [17, 67, 68] and non-cooperative games [69, 70]. However, the one-off opti-

mization [16, 17, 67–70] assumed that the wireless/computing environment remains

unchanged during task execution and can be acquired/predicted at the time of task

arrivals. In [18, 23–30], dynamic approaches were proposed to adjust the offloading

decisions and resource allocations according to the current observation of the en-

vironment, where Lyapunov optimization [18, 23–25] and Q-learning [27–30] were

exploited to enable the online decisions. These dynamic approaches [18, 23–30] also

require that the observed network states would be static for the upcoming time slot

(e.g., during the task execution).

However, the technical challenge of the differently-aged network states resulting

from the time-varying wireless channel conditions in first case would prevent the
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existing approaches [18, 23–30] from functioning and require the development of

hybrid learning approaches to be implemented at the devices for instantaneous local

processing decisions and the BS for predictive computation offloading decisions.

2) Multi-user Multi-cell Cooperative Computing:

Existing works of multi-user multi-cell MEC scenario focused on the researches

of MEC server selection and computation immigration between servers. The coop-

eration of MEC server and data center for multi-user task offloading was studied

in [71]. A threshold-based scheduling algorithm was proposed by comparing the

transmission latency and computation latency, to maximize the total successful of-

floading probability. In [72], a game-theoretic approach was proposed to minimize

the energy consumption of network. A congestion game was formulated to address

the couplings between the amounts of the offloading tasks and edge server selection

policies. [73] studied a task offloading policy under the scenario where one mobile

device can offload tasks to multiple MEC servers. A semi-definite relaxation-based

approach was proposed under the fixed CPU frequency to jointly optimize the task

offloading decisions and CPU frequency scaling. [74] studied the cooperation among

the servers in geo-distribution, and a coalition game was formulated with the utility

function representing the cost of virtual machine migration and resource utilization.

However, none of the existing studies [71–74] have taken the heterogeneity of

wireless capabilities of future IoT networks into account. Therefore, the techni-

cal challenge of couplings between network operations in time and space resulting

from the non-uniform cardinality of devices, discussed in Section 1.2.2 can not be

addressed by these works.

3) Large-scale Fog Computing:

In the large-scale network scenario, there have been separate studies on MECO

that offloads resource-hungry tasks from wireless devices to edge servers [16–18,

67, 69, 70, 75–78], and fog computing that orchestrates network resources for peer-

to-peer computing [19, 21, 79–82]. With the assistance of edge servers (e.g., base

stations and access points), offloading decisions and resource allocations were typ-
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ically optimized in a centralized manner [67, 75–78]. For the sake of scalability,

distributed scheduling of MECO was studied in [17, 18, 69, 70]. In [69, 70], a non-

cooperative game for offloading decisions was formulated to capture the interactions

among mobile devices in wireless interference environments. In [17], a heuristic

scheme based on submodular optimization was proposed, where the joint optimiza-

tion of offloading decisions and resource allocations was decomposed for distributed

implementations. In [18], Lyapunov optimization was exploited to decouple the of-

floading and resource allocation between time instants and devices, and achieve the

asymptotic optimality in the presence of out-of-date feedback.

In the context of data center or cloud, load balancing for collaborative comput-

ing was studied to address the spatial diversities of workload arrivals [79], tempera-

tures [80], and electricity prices [81]. In our recent work [21], the distributed online

optimization of fog computing was developed with an emphasis on determining the

collaborative regions of edge servers. In [19, 82], the online cooperation of devices

was optimized in a centralized manner, where tit-for-tat incentives were used to

discourage selfish behaviors of devices and decoupled by Lyapunov optimization.

Unfortunately, the offloading was restricted within a single hop in [19, 82], far from

unlocking the full potentials of fog computing.

Separate studies on MECO [16–18, 67, 69, 70, 75–78], and fog computing [19,

21, 79–82]. cannot support the large volume of data arrivals and massive connections

in future IoT networks. Moreover, none of the existing studies [16–19, 21, 67, 69,

70, 75–83] have taken the limited finite buffers of practical IoT devices into account.

However, the direct application of Lyapunov optimization [18, 19, 21, 82] cannot

address the problem of interest due to the limited buffers of practical IoT devices.

4) Large-scale Cooperative Caching:

The studies on edge caching are focused on the content placement and delivery

across edge cloud. Content placement and delivery have been typically decoupled

and separately studied in the literature [84]. Given caching policy and content

placement, content delivery has been studied in wireless networks [85–87] and wired
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networks [33–35]. In [85–87], cache-enabled multicast and cooperative beamforming

were studied for the purpose of throughput improvement. In [33–35], multi-hop

cache-aware routing was developed to minimize the system cost over backbones. All

these schemes were off-line and based on centralized optimization, and are unsuitable

for edge clouds where temporal variations and randomness prevail due to background

traffic.

Cooperative content placement was studied in [36–43]. By exploiting a typically

hierarchical network structure, the placement was decoupled to in-tier and cross-

tier subproblems [36–39], and solved by using integer programming [36, 37] and

game theory [38], or analytically evaluating the content popularity [39]. In [40], the

problem of joint caching, routing, and channel assignment was formulated to max-

imize system throughput in coordinated small-cell networks, and solved by taking

a column generation method. In [41] and [42], the joint optimization of content

placement and delivery was formulated as off-line integer programming problems,

where scalable video coding (SVC)-based layered video caching [41] and real-time

video transcoding [42] were considered. In [42], given caching policy, online content

delivery and transcoding were jointly optimized in a centralized manner. In [43],

the joint optimization of routing and caching for minimizing a content-access de-

lay was proved to be NP-complete, and approximated algorithms were developed

to achieve a (1 − 1/e) optimality. In [44], an online cooperative caching and one-

hop wireless transmission scheme was proposed in a cloud-RAN to minimize the

normalized delivery time (NDT) metric which captures both the delivery phase of

coded caching and the time needed to replenish the cache placement. By model-

ing the time-varying popularity as a Markov process, both reactive and proactive

online caching schemes were developed with a bounded long-term NDT. All these

works [36–44] were focused on content deliveries of up to two hops.

The joint optimization of content delivery and placement over unrestricted num-

bers of hops was studied in [32], where the content delivery over multiple hops had

to be accomplished within a single slot by reserving resources along the delivery

path in a centralized manner. However, the centralized approach in [32] may be
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inefficient due to significant signaling delays and outdated knowledge of the large

networks.

The existing works of cooperative edge caching have not considered the The co-

operative edge caching of interest in future IoT networks has distinctively different

and practical settings from the above existing works. It necessitates new formula-

tions, undergoes specific constraints, and leads to distinct solutions from existing

researches.

However, there has been no proper decentralized solution for cooperative edge

caching, thereby preventing supporting the low-latency demanding mobile applica-

tions. Moreover, there has been no adequate design on cooperative caching region-

s [32–49]. Existing cooperative caching regions are either restrained to within a few

hops from the edge server admitting a content request [36–49], or not restrained at

all [32–35]. This would lead to either reduced cache hit ratio or significant delays

and delivery cost.
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Chapter 3

Hybrid Learning of Predictive Mobile-Edge

Computation Offloading under Differently-Aged

Network States

Given the time-varying nature of practical wireless channels, the BS can only have

outdated knowledge of IoT devices’ channel conditions at the last slot for predictive

computation offloading decisions at the current slot. However, the devices’ informa-

tion, such as data arrivals, and available computing resources, can be observed by

IoT devices to make the decisions on real-time local processing. In other words, the

network states for local processing and computation offloading would be differently

aged at the devices (with instantaneous observations of its own states for local pro-

cessing) and the BS (with outdated channel conditions for computation offloading).

Such differently-aged network states would prevent the existing approaches [18, 23–

30] from functioning and require the development of hybrid learning approaches to

be implemented at the devices for instantaneous local processing decisions and the

BS for predictive computation offloading decisions.

This chapter aims to tackle the challenges arising from the differently-aged net-

work states, and proposes a novel hybrid learning approach that optimizes the in-

stantaneous local processing and predictive computation offloading decisions. The

decisions are expect to minimize the overall energy consumption of all the IoT de-

vices, while maintaining the buffer stability of the devices. The proposed hybrid

learning approach can be decentralized for individual devices and BS, to learn the

network dynamics online and achieve the asymptotically optimal solutions without

the a-priori knowledge of network states. The key contributions of the chapter are

as follows.

• We establish a new hybrid learning approach for instantaneous local process-
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Figure 3.1 : The multi-user single-cell MEC network.

ing and predictive computation offloading decisions by integrating the learning

techniques of stochastic gradient descent (SGD) and online convex optimiza-

tion (OCO) in the primal-dual optimization framework via Lagrange duality.

The Lagrange multipliers can be used to exchange the learning results between

OCO and SGD and provide a unified hybrid learning framework.

• We decentralize the proposed hybrid learning approach between the BS and

IoT devices for scalability. This is achieved by decomposing the primal prob-

lems into independent local processing and computation offloading subprob-

lems to be separately pursued at the devices for instantaneous local processing

based on local observations and the BS for predictive computation offloading

from previous devices’ reports.

• We prove the asymptotic optimality of the proposed hybrid learning approach,

where the optimality loss resulting from the differently-aged network states can

diminish with the decreasing stepsizes of SGD and OCO.

3.1 System Model

Fig. 3.1 shows the multi-user single-cell MEC network of a single BS (which is

co-located with an edge server) and N IoT devices. Let N = {1, · · · , N} collect the

indexes for the N IoT devices. The system operates on a slotted basis. At each time

slot, the tasks arriving at the IoT devices can be either processed locally or offloaded
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to the edge server via a shared wireless channel. Each device allocates its computing

resources for task processing based on its current observations on local computing

capabilities and workloads, while the task offloading via the shared channel needs

to be optimized at the BS after the BS collects the reports from the devices.

The key difference of the network of interest (to the state-of-the-art [16–18, 23–

30, 67–70]) is that we consider the time-varying nature of practical wireless channels:

at the beginning of a time slot, the BS can only have the outdated knowledge of

devices’ channel conditions at the last time slot for predictive computation offloading

decisions at the current slot. As a result, the network states for local processing

and computation offloading are differently aged at the devices (with instantaneous

observations of its own) and the BS (with outdated channel conditions).

3.1.1 Differently-aged Network States

Let Ω(t) = {ωi(t),ω(t), ∀i} denote the set of the network states at time slot

t, where ωi(t) = {Ai(t), Fi(t), εi(t)} and ω(t) = {ci(t), ∀i} are the states at the

time slot for local processing of device i and computation offloading at the BS,

respectively. Ai(t) ≤ Amax
i is the sizes of tasks (in bits) arriving at device i at time

slot t. Fi(t) ≤ Fmax
i and εi(t) ≤ εmax

i are the available computing resources (in the

bits of data that can be processed) and computing cost (in Joules to process a bit of

data) of device i at the slot, respectively. ci(t) denotes the capacity (in bps) of the

wireless channel from device i to the BS at time slot t. Due to the finite transmit

power of the devices, the channel capacity is upper bounded, i.e., ci(t) ≤ cmax
i .

The states for local processing and computation offloading, ωi(t) and ω(t), can

be differently-aged at the time of decision at the IoT devices and BS. The devices

can locally observe the instantaneous task arrivals, Ai(t), computing resources, Fi(t),

and processing cost, εi(t) for local processing decision. In contrast, the reports from

the devices received at the beginning of time slot t can be outdated to only capture

the channel states {ci(t − 1), ∀i} of the last slot due to the continuously changing

wireless channels. As a result, the BS can only make the computation offloading

schedules predictively with the outdated knowledge of channel conditions.
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The differently-aged network states necessitate the design of hybrid learning for

predictive computation offloading and instantaneous task processing in the MEC

system. In specific, the devices need to apply statistical learning approaches to fa-

cilitate online task processing decisions, and the BS needs to run online learning

to forecast the channel states from the previous reports for predictive computa-

tion offloading. Existing works apply either the statistical learning from instanta-

neous information [18, 23–30] or online learning from outdated information [88–91],

and cannot be applied to the network with differently-aged information. The pro-

posed hybrid learning integrates the statistical and online learning to exploit the

differently-aged network information, i.e., predicting the channel states from out-

dated devices’ reports at the BS while utilizing the instantaneous task knowledge at

the devices, to increase the effectiveness and performance of learning in MEC. The

details will be articulated in Section3.2.

3.1.2 Network Operations

The IoT devices share the wireless channel via time-division multiple-access (T-

DMA). Let τ (t) = {τi(t), ∀i} be the schedule decisions of the IoT devices at time

slot t, where τi(t) is the transmission duration of device i at the slot. The schedule

decisions must satisfy

τi(t) ≥ 0, ∀i, t; (3.1a)∑
i∈N

τi(t) ≤ T , ∀t; (3.1b)

where (3.1a) is self-explanatory, and (3.1b) states that the total transmission time

of all the devices must not exceed the slot duration T .

Let Di(t) denote the backlog (in bits) of the unprocessed tasks (i.e., workloads)

at device i at slot t, as given by

Di(t+ 1) = [Di(t)− ci(t)τi(t)− fi(t)]+ + Ai(t), ∀i,

where [·]+ = max{·, 0}, and ci(t)τi(t) is the maximum size of data transmitted from
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device i to the BS within the scheduled time duration of τi(t). Here, fi(t) is the

computing resources allocated for local processing at device i at time slot t and

cannot exceed the maximum available resources at the device, i.e.,

0 ≤ fi(t) ≤ Fi(t), ∀t. (3.2)

Let Q(t) denote the backlog (in bits) of the unprocessed tasks at the BS at time

slot t, as given by

Q(t+ 1) = [Q(t)− F (t)]+ +
∑

i∈N
ci(t)τi(t),

where F (t) is the available computing resources (in bits of raw data to be processed)

at the BS, and
∑N

i=i ci(t)τi(t) specifies the sizes of data offloaded from all the selected

devices to the BS during slot t.

We need to ensure the stability of all the queues Di(t) and Q(t) in the system,

such that the unbounded growths of the backlogs (and hence, queuing delays) can

be prevented. According to queuing theory [92], a queue is stable, if and only if

the time-average input to the queue is no more than the time-average output of the

queue. The constraints for queue stability can be written as

Ai(t)− ci(t)τi(t)− fi(t) ≤ 0, ∀i; (3.3a)∑
i∈N

ci(t)τi(t)− F (t) ≤ 0, ∀i; (3.3b)

where X(t) = limT→∞
1
T

∑T−1
τ=0 E[X(τ)] denotes the time-average of any random

process X(t).

3.1.3 Problem Formulation

Typical remote wireless devices are battery-powered. We take energy consump-

tion of the devices as the performance metric of the MEC system. The overall energy
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consumption of the wireless devices at time slot t can be given by

Φ(x(t)) =
∑

i∈N
εi(t)fi(t) + piτi(t),

where x(t) = {fi(t), τi(t), ∀i} collects all the variables of local processing fi(t) and

remote offloading τi(t) at slot t. εi(t)fi(t) and piτi(t) are the energy consumptions

of device i for local processing and remote offloading, respectively.

We propose to minimize the time-average energy consumption of the devices

under the outdated channel states at the BS and the constraints for system stability.

The problem can be formulated as

Φ∗ = min
X

Φ(x(t))

s.t. (3.1), (3.2), (3.3), ∀t,
(3.4)

where X = {x(t), ∀t} collects the variables of local processing and computation

offloading across all time slots. Problem (3.4) is challenging with the following

features.

1. Temporal Coupling without a-priori Knowledge: The time-average constraints

on the queue stability, (3.3a) and (3.3b), can result in strong couplings of

the variables X across all time slots. With the temporal coupling, problem

(3.4) cannot be solved myopically (which would lead to severe performance

degradation). The problem cannot be solved offline either, since the a-priori

knowledge on the channel conditions, computing resources, and task arrivals

is unavailable and hard to predict due to the stochastic nature of the system.

2. Differently-aged Network States: As described in Section 3.1.1, this chapter

considers the time-varying nature of practical wireless channels. At the be-

ginning of a time slot, the BS can only have outdated knowledge of devices’

channel conditions. In other words, the network states needed for optimizing

local processing and offloading would be differently aged at the devices (with

instantaneous observations of its own) and the BS (with outdated channel
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conditions at the last slot). This would require different approaches to be im-

plemented at the devices for instantaneous local processing decisions and at

the BS for predictive offloading decisions.

3.2 Hybrid Learning of Predictive Computation Offloading

under Differently-aged Network States

This section presents the new hybrid learning approach that integrates OCO

and SGD to achieve instantaneous processing at the devices and predictive compu-

tation offloading at the BS in a fully decentralized manner. The proposed approach

minimizes the time-average energy consumption of the devices in the presence of

differently-aged network states. The approach can be separately implemented at

the BS and devices. The devices apply SGD to make online local processing de-

cisions based on the instantaneous observations of its task arrivals and processor

states. The BS uses OCO to forecast the channel states from the previous report-

s of the devices (including SGD-learning results and channel states) for predictive

offloading schedules.

An overview of the proposed hybrid learning framework can be provided as fol-

lows.

1. Primal-dual Framework via Lagrange Duality: The proposed hybrid learning

framework first exploits the Lagrange duality to associate the time-average

constraints of problem (3.4) with nonnegative Lagrange multipliers to decom-

pose the temporal couplings.

2. Dual Learning for Optimal Online Decisions on Local Processing per Device

via SGD: SGD can be applied to learn the optimal Lagrange-dual multipliers

online from the sequence of observations on the network dynamics.

3. Predictive Offloading Schedule via OCO: The decoupled per-slot computation

offloading subproblem can be interpreted as an online learning problem, which

optimizes the offloading schedule predictively via OCO by forecasting the cur-

rent network states from the past devices’ reports.



31

Both the SGD-based dual learning and the OCO-based predictive online learning

can be integrated to the Lagrange primal-dual framework. The Lagrange multipliers

can be used to exchange the learning results between OCO and SGD and provide a

unified hybrid learning framework. The details are provided in the following.

By applying Lagrange duality, (3.4) can be reformulated. Let λ(t) = {λi,1(t), λ2(t),

∀i} collect the set of the Lagrange multipliers λi,1(t) and λ2(t) associated with (3.3a)

and (3.3b) at slot t, respectively. The Lagrangian of (3.4) can be given by

L(X,λ(t),Ω(t)) = E
[
L(x(t),λ(t),Ω(t))

]
,

where L(x(t),λ(t),Ω(t)) is the instantaneous Lagrangian, as given by

L(x(t),λ(t),Ω(t)) =
∑

i∈N

[
piτi(t) + εi(t)fi(t)

]
+
∑
i∈N

λi,1(t)
[
Ai(t)− ci(t)τi(t)

− fi(t)
]

+ λ2(t)
[∑

i∈N
ci(t)τi(t)− F (t)

]
.

(3.5)

Given the strong duality of the convex objective and constraints, problem (3.4)

can be equivalently reformulated to its dual problem [93], i.e., max
λ(t)�0

L(x(t),λ(t),Ω(t)),

where � is taken entry-wise. This is because the solution to the dual Lagrangian

with non-negative multipliers, i.e., D(λ(t)) = minx(t) L(x(t),λ(t),Ω(t)), provides

the lower bound of the primal problem (3.4), i.e., D(λ(t)) ≤ Φ∗. The duality gap

(i.e., the difference between D(λ(t)) and Φ∗) can diminish by finding the optimal

multipliers to maximize the dual Lagrangian, i.e., maxλ(t) D(λ(t)).

The optimization of the primal variables x(t) and the dual multipliers λ(t) can

be decoupled and solved iteratively slot by slot [93], as given by

Primal-problem: x∗(t) = min
x(t)
L(x(t),λ(t),Ω(t)); (3.6a)

Dual-problem: λ∗(t) = max
λ(t)

D(λ(t)); (3.6b)

where x∗(t) = {τ ∗i (t), f ∗i (t), ∀i} and λ∗(t) are the optimal variables and dual multi-

pliers at slot t, respectively.
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3.2.1 Hybrid Learning under Differently-aged Network States

The dual Lagrange multipliers λ(t) are updated slot by slot to maximize the

optimal dual solution, i.e., maxλ(t) D(λ(t)). SGD is an effective online learning

method with extensive applications to support vector machines, logistic regression

and artificial neural networks [94]. It is particularly useful in problem (3.4), where

there exists strong temporal coupling and an exact gradient is intractable due to

lack of the a-priori knowledge (i.e., the unpredictability) of the network dynamics.

According to SGD [94], λ(t) can be updated by

λi,1(t+ 1) = {λi,1(t) + ε[Ai(t)− ci(t)τ ∗i (t)− f ∗i (t)]}+; (3.7a)

λ2(t+ 1) = {λ2(t) + ε[
∑

i∈N
ci(t)τ

∗
i (t)− F (t)]}+; (3.7b)

where ε is the stepsize of SGD and accounts for the optimality of stochastic gradient

descent, as will be shown in Theorem 1.

Given λ(t), the optimal primal variables at slot t, x(t), the optimal decisions of

computation offloading τ ∗i (t) and local processing f ∗i (t), can be obtained by solving

the Lagrangian in (3.5), as given by

min
x(t)

γt(f(t)) + ηt(τ (t))

s.t. (3.1), (3.2),

(3.8)

where the objective is obtained by reorganizing (3.5) with regards to the variables

on computation offloading τ (t) = {τi(t), ∀i} and local processing f(t) = {fi(t), ∀i},

i.e., L(x(t),λ(t),Ω(t)) = γt(f(t)) + ηt(τ (t)), and

γt(f(t)) =
∑

i∈N
[εi(t)− λi,1(t)]fi(t); (3.9a)

ηt(τ (t)) =
∑

i∈N
[pi − λi,1(t)ci(t)]τi(t) + λ2(t)

∑
i∈N

ci(t)τi(t). (3.9b)

Note that both the objective and constraints of (3.8) can be decoupled in terms of

local processing and computation offloading decisions. As a result, primal problem



33

(3.8) can be decoupled into two subproblems of local processing and computation

offloading decisions, as given by

minf(t) γt(f(t)) s.t. (3.2); (3.10a)

minτ (t) ηt(τ (t)) s.t. (3.1). (3.10b)

As described in Section3.1.1, given the stochastic nature of practical wireless chan-

nels, the network states for (3.10a) and (3.10b) are differently-aged at the devices

and the BS.

A. Optimal Instantaneous Local Processing Decisions

The IoT devices have instantaneous observations of their own parameters and can

solve (3.10a) for optimal local processing decisions. The local processing decisions

can be decoupled among the devices in both the objective (3.9a) and constraint

(3.2). As a result, problem (3.10a) can be decoupled to independently optimize the

resource allocation at each device, as given by

min[εi(t)− λi,1(t)]fi(t), s.t. 0 ≤ fi(t) ≤ Fi(t). (3.11)

Problem (3.11) is linear programming, and its optimal solution is given by

f ∗i (t) =

 Fi(t), if λi,1(t) ≥ εi(t);

0, otherwise.
(3.12)

B. Predictive Computation Offloading via OCO

However, with only the outdated channel states ω(t) on the last time slot t− 1,

the objective ηt(τ (t)) is unknown to the BS, and the optimal computation offloading

decisions cannot be obtained from solving (3.10b). We propose to apply OCO to

make predictive computation offloading decisions. OCO is an important online

learning technique to make a sequence of accurate predictions over time, where the

ground truth is only available after making the predictions [88–91, 95]. This is
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particularly useful for problem (3.10b) to predict the current channel states ω(t)

(and make online computation offloading decisions) from the previous reports of

channel states.

The Follow-the-regularized-leader (FTRL) rule is an effective online prediction

method in OCO, which uses the information in the previous decision round the

in current decision-making with added regularization penalty for stabilization [95].

With a typical L2 norm regularization penalty, the FTRL rule can be equivalently

reformulated as online gradient descent (OGD) of the primal variables [95]. In

particular, the current decisions τ (t) can be made based on the decisions at the

last time slot τ (t − 1) and the online gradient ∇>τ ηt−1(τ (t − 1),λ(t), c(t − 1))] to

minimize the objective ηt−1 at x(t). The update can be given by

τ (t) = ΠT [τ (t− 1)− α∇>τ ηt−1(τ (t− 1),λ(t), c(t− 1))], (3.13)

where ΠT [·] denotes the projection of [·] into the feasible domain of the primal

variable T specified by constraint (3.1), and α is the stepsize of OGD.

The projection problem of OGD in (3.13) aims to find the point τ satisfying

(3.1) which has the minimum distance to the point after gradient descent, i.e.,

[τ (t − 1) − α∇>τ ηt−1(τ (t − 1),λ(t), c(t − 1))]. The distance minimization problem

can be equivalently reformulated to a quadratic programming problem, as given by

τ (t) = arg min
τ
∇>τ ηt−1(τ (t− 1),λ(t), c(t− 1))

(τ − τ (t− 1)) +
‖τ − τ (t− 1)‖2

2α

s.t. (3.1),

(3.14)

By reorganizing the objective, (3.14) can be rewritten as

min
τ

∑
i∈N

τ 2
i

2α
+ ηi(t)τi

s.t. τi ≥ 0, ∀i,
∑

i∈N
τi ≤ T .

(3.15)
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where

ηi(t) = pi + [λ2(t)− λi,1(t)]ci(t− 1)− τi(t− 1)

α
. (3.16)

Problem (3.15) is also quadratic programming with strong duality, and its La-

grangian can be given by

L(τ , µ) =
∑

i∈N

[ τ 2
i

2α
+ ηi(t)τi

]
+ µ(

∑
i∈N

τi − T ). (3.17)

The dual problem of (3.15) can be written as max
µ>0

min
τ�0

L(τ , µ). Given the optimal

multiplier µ∗, the optimal offloading schedule can be obtained by solving the primal

problem min
τ�0

L(τ , µ), as given by

τi(t) =
[
− α(ηi(t) + µ)

]+
. (3.18)

The optimal multiplier µ∗ can be efficiently solved by bisection search [96] between

the interval [0, µmax], where µmax = −mini∈N ηi(t) with fast convergence.

Note that the typical [O(1/ε),O(ε)]-tradeoff between convergence time and op-

timality loss in terms of the stepsize ε indicates that an O(1/ε) convergence time

allows for an O(ε) close-to-optimal cost. This reveals that the system performance

converges to within an optimality bound of O(ε), which diminishes as the stepsize

of stochastic gradient descent ε → 0. Here, the convergence time is represented by

the queue backlog of devices. To achieve the asymptotic optimality of system, the

stepsize ε will take small values, resulting in the long queue backlog of devices. In

this case, the backlogged tasks in the queue are long enough to prevent being cleared

after locally computation and offloading.

3.2.2 Implementation of Hybrid Learning Framework

The proposed hybrid learning framework under differently-aged network states

is summarized in Algorithm 1, where the Lagrange multipliers λi,1 and λ2 are main-

tained by device i and the BS, respectively. The decisions on local processing and

computation offloading are decentralized and made at the devices and the BS, re-

spectively, for scalability and learning accuracy. At the beginning of each time slot
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Algorithm 1 The Proposed Hybrid Learning Framework under Differently-aged
Network States

For each device i:
1: Observes its own instantaneous information on computing parameters and task

arrivals;
2: Locally optimizes f ∗i (t) by solving (3.10a) based on (3.12);
3: Updates its dual multiplier λi,1(t) by (3.7a);
4: Reports its channel condition ci(t − 1) at the last time slot and the current

multiplier λi,1(t) to the BS;
For the BS:

5: Receives the reports from the devices of the outdated channel conditions;
6: Predictive schedules the computation offloading via OCO by solving (3.13) ac-

cording to (3.18);
7: Updates the multiplier λ2(t) by (3.7b).

t, each device i makes its local processing decision based on its own instantaneous

observation ωi(t) and Lagrange multipliers λi,1(t) in a fully distributed manner. The

BS makes the computation offloading decision based on the outdated channel con-

ditions ω(t) and λi,1(t) collected from each device, and its own Lagrange multiplier

λ2(t). This is achieved by separately pursuing the instantaneous local processing

subproblem (3.10a) and the predictive computation offloading subproblem (3.13).

The BS then notifies the predictively selected devices of the offloading decisions,

receives their transmissions, and collects the channel states of all the devices at the

end of the time slot.

3.3 Performance and Optimality Analysis

In this section, we prove that the proposed hybrid learning approach under

differently-aged network states is asymptotically optimal. The optimality loss re-

sulting from the outdated channel states, can asymptotically diminish by reducing

the stepsize of SGD and OCO. The proposed hybrid learning approach is the or-

chestration of SGD and OCO in a primal-dual optimization framework via Lagrange

duality. As a result, we take two steps to evaluate the performance of the hybrid

learning approach (as compared to the offline optimum Φ∗ for (3.4), which is mini-

mized offline in a posteriori manner and violates causality):
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A. Optimality of Primal-dual Framework under Instantaneous States

We first evaluate the gap between the solution for the proposed primal-dual

framework under instantaneous network states, denoted by x∗(t), and the offline

optimum Φ∗, where x∗(t) = {f ∗(t), τ ∗(t)} is the solution by solving (3.10) under

instantaneous channel states and local processing parameters. The gap is proved to

diminish asymptotically with the decreasing stepsize ε, as will be shown in Theo-

rem 1.

Theorem 1. The gap between Φ(x∗(t)) and Φ∗ satisfies

Φ(x∗(t))− Φ∗ ≤ εU , (3.19)

where U = 1
2

{ ∑
i∈N

(max{Amax
i , [cmax

i T + fmax
i ]})2 + (max{

∑
i∈N

cmax
i T, Fmax})2

}
is a

constant, and ε is the stepsize of SGD.

Proof. We start by bounding the variations of the dual multipliers λ(t). In light of

Lyapunov drift analysis [31], a quadratic drift ∆(λ(t)) is introduced to evaluate the

variation of the multipliers, which is shown to be upper bounded in the following

lemma.

Lemma 1. At each time slot t, the dual drift of ∆(λ(t)) = 1
2
(‖λ(t+1)‖2−‖λ(t)‖2)

is upper bounded, as given by

∆(λ(t)) ≤ε
2

2
U + ε

∑
i∈N

λi,1(t)[Ai(t)− ci(t)τi(t)− fi(t)] + ελ2(t)[
∑
i∈N

ci(t)τi(t)− F (t)].

(3.20)

where U = 1
2

{ ∑
i∈N

(max{Amax
i , [cmax

i T + fmax
i ]})2 + (max{

∑
i∈N

cmax
i T, Fmax})2

}
.

Proof. Squaring on both sides of (3.7a) and (3.7b), we have

λi,1(t+ 1)2 =λi,1(t)2 + [ε(Ai(t)− ci(t)τi(t)− fi(t))]2

+ 2ελi,1(t)(Ai(t)− ci(t)τi(t)− fi(t));
(3.21a)
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λ2(t+ 1)2 =λ2(t)2 + [ε(
∑

i∈N
ci(t)τi(t)− F (t))]2

+ 2ελ2(t)(
∑

i∈N
ci(t)τi(t)− F (t)).

(3.21b)

By substituting (3.21) into the definition of ∆(λ(t)), we have

∆(λ(t)) =
ε2

2

∑
i∈N

[Ai(t)− ci(t)τi(t)− fi(t)]2 +
ε2

2
[
∑
i∈N

ci(t)τi(t)− F (t)]2 + ε
∑
i∈N

λi,1(t)[Ai(t)

− ci(t)τi(t)− fi(t)] + ελ2(t)[
∑
i∈N

ci(t)τi(t)− F (t)]

(a)

≤ ε2U + ε
∑
i∈N

λi,1(t)[Ai(t)− ci(t)τi(t)− fi(t)] + ελ2(t)[
∑
i∈N

ci(t)τi(t)− F (t)],

(3.22)

where inequality (a) is because [Ai(t) − ci(t)τi(t) − fi(t)]2 ≤ (max{Amax
i , [cmax

i T +

fmax
i ]})2, and [

∑
i∈N ci(t)τi(t)− F (t)]2 ≤ (max{

∑
i∈N

cmax
i T, Fmax})2.

Divide both sides of (3.20) by ε, then take expectations over Ω(t), and add

E[Φ(x∗(t))] on both sides of (3.20) (where x∗(t) = {f ∗(t), τ ∗(t)} is the optimal

policy by solving (3.10) with instantaneous network dynamics Ω(t)). We can obtain

∆(λ(t))

ε
+ E[Φ(x∗(t))]

≤εU +
∑
i∈N

λi,1(t)[Ai(t)− ci(t)τ ∗i (t)− f ∗i (t)]

+ λ2(t)[
∑
i∈N

ci(t)τ
∗
i (t)− F (t)] + E[Φ(x∗(t))]

=εU + E
[
L(x∗(t),λ(t),Ω(t))

]
=εU +D(λ(t))

≤εU + Φ∗,

(3.23)

where L(x∗(t),λ(t),Ω(t)) is defined in (3.5); x∗(t) is the optimal primal variable;

E
[
L(x∗(t),λ(t),Ω(t))

]
= D(λ(t)); and the last inequality in (3.23) is due to the

weak duality that D(λ(t)) ≤ Φ∗ [93].

By summing up (3.23) from time slots t = 1 to t = T, we have

‖λ(T + 1)‖2

2ε
− ‖λ(1)‖2

2ε
+

t=T∑
t=1

E[Φ(x∗(t))] ≤ εUT + Φ∗T. (3.24)
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Because ‖λ(T+1)‖2
2ε

≥ 0 and ‖λ(1)‖2
2ε

<∞, we have

Φ∗(x∗(t)) =
1

T
lim
T→∞

t=T∑
t=1

E[Φ(x∗(t))] ≤ εU + Φ∗. (3.25)

This concludes the proof.

Theorem 1 reveals that the time-average energy consumption, achieved by the

primal-dual framework with SGD dual learning, converges to within an optimality

bound of O(ε), which diminishes as the stepsize of SGD ε → 0. The stepsize ε

also accounts for the convergence time of the proposed learning process. Given the

stepsize ε, the convergence time of SGD linearly increases with O(1/ε) [94]. The

typical [O(1/ε),O(ε)]-tradeoff between the convergence time and the optimality loss

in terms of ε indicates that an O(1/ε) convergence time allows for an O(ε) close-to-

optimal solution.

B. Optimality of OCO-based Predictive Offloading under Differently-

aged Network States

Next, we assess the optimality loss of the predictive computation offloading de-

cisions, i.e., x(t) = {f∗(t), τ (t)} in Section 3.2.2, under the outdated states of the

wireless channels, as compared to the solution under instantaneous channel states

x∗(t). The gap between Φ(x(t)) and Φ(x∗(t)) is proved to diminish asymptotically

with the decreasing OCO stepsize α under sublinear penalty terms, as will be shown

in Theorem 2.

Theorem 2. The optimality loss of the OCO-based predictive computation offload-

ing, resulting from outdated channel states, i.e., the gap between Φ(x(t)) and Φ(x∗(t)),

satisfies

Φ(x(t))− Φ(x∗(t)) ≤ RV({τ ∗(t)}Tt=1)

αT
+
αG2

2
, (3.26)

where R and G are constants, V({τ ∗(t)}Tt=1) =
T∑
t=i

‖τ ∗(t) − τ ∗(t − 1)‖ is the ac-

cumulated variation of the optimal offloading schedules τ ∗(t) under instantaneous

channel states, and α is the stepsize of OCO.
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Proof. Note that the local data processing decision in the proposed hybrid learning

approach is also based on the instantaneous observations (i.e., same as the opti-

mality analysis under instantaneous network states in Theorem 1). As a result,

the per-slot optimality loss of the hybrid approach only comes from the predictive

offloading schedules based on outdated channel conditions (compared to that under

instantaneous channel conditions), i.e.,

Φ(x(t))− Φ(x∗(t)) =
1

T
lim
T→∞

t=T∑
t=1

E
[
ηt(τ (t))− ηt(τ ∗(t))

]
. (3.27)

Given Lemma 2, we can establish the relationship between the proposed solution τ (t)

achieved by the proposed hybrid online learning approach and the optimal solution

τ ∗(t) under instantaneous channel conditions, as given in the following Lemma.

Lemma 2. Let ηt(τ (t)) denote the utility of predictive computation offloading through

the proposed hybrid online learning approach at slot t, and ηt(τ
∗(t)) denote the ob-

jective achieved by the optimal policy in the presence of instantaneous channel states.

We have

ηt(τ (t)) ≤ηt(τ ∗(t)) +
R‖τ ∗(t)− τ ∗(t− 1)‖

α
+ Ψ(t+ 1) +

αG2

2
, (3.28)

where Ψ(t+ 1) = ‖τ (t)−τ∗(t−1)‖2
2α

− ‖τ
∗(t)−τ (t+1)‖2

2α

Proof. The objective of (3.14) can be equivalently interpreted as min
τ
ν(τ (t)) =

∇>τ η(τ (t−1),λ(t),Ω(t−1))(τ −τ (t−1))− ‖τ−τ (t−1)‖2
2α

. Given the strong convexity

of ν, there exists β ≥ 0 satisfying ν(τ (t+ 1)) ≤ ν(τ ∗(t))− β
2
‖τ (t+ 1)− τ ∗(t)‖2 [97,

Cor. 1], where τ (t + 1) (i.e., the solution to (3.14) in the proposed approach) is

the global optimum of ν at slot (t + 1). By using variable substitution, i.e., setting

β = 1
α

in the above inequality, and defining Ψ′(t+ 1) = ‖τ∗(t)−τ (t)‖2
2α

− ‖τ
∗(t)−τ (t+1)‖2

2α
,
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we have

∇>τ ηt(τ (t))[τ (t+ 1)− τ (t)] +
‖τ (t+ 1)− τ (t)‖2

2α

≤∇>τ ηt(τ (t))[τ ∗(t)− τ (t)] + Ψ′(t+ 1).

(3.29)

Adding ηt(τ (t)) on both sides of (3.29) leads to

ηt(τ (t)) +∇>τ ηt[τ (t+ 1)− τ (t)] +
‖τ (t+ 1)− τ (t)‖2

2α

≤ηt(τ (t)) +∇>τ ηt[τ ∗(t)− τ (t)] + Ψ′(t+ 1)

(a)

≤ηt(τ ∗(t)) + Ψ′(t+ 1),

(3.30)

where inequality (a) is due to the fact that ηt(τ (t)) +∇>τ ηt[τ ∗(t)−τ (t)] ≤ ηt(τ
∗(t))

given the convexity of ηt. By rearranging (3.30), we have

ηt(τ (t)) ≤ ηt(τ
∗(t)) + Ψ′(t+ 1)−∇>τ ηt[τ (t+ 1)− τ (t)]− ‖τ (t+ 1)− τ (t)‖2

2α
(a)

≤ηt(τ ∗(t)) + Ψ′(t+ 1) +
αG2

2
,

(3.31)

where inequality (a) is because −∇>τ ηt[τ (t+ 1)− τ (t)] ≤ ‖∇τηt(τ (t))‖‖[τ (t+ 1)−

τ (t)‖ ≤ α‖∇τ ηt(τ (t))‖2
2

+ ‖τ (t+1)−τ (t)‖2
2α

, and ‖∇τηt‖2 ≤ N(max{pmax, |λi,1|maxcmax})2 =

G2.

Note that

2αΨ′(t+ 1) = ‖τ ∗(t)− τ (t)‖2 − ‖τ ∗(t)− τ (t+ 1)‖2

=‖τ ∗(t)− τ (t)‖2 − ‖τ (t)− τ ∗(t− 1)‖2 + ‖τ (t)− τ ∗(t− 1)‖2 − ‖τ ∗(t)− τ (t+ 1)‖2

=‖τ ∗(t)− τ ∗ (t− 1)‖‖τ ∗(t) + τ ∗(t− 1)− 2τ (t)‖

+ ‖τ (t)− τ ∗(t− 1)‖2 − ‖τ ∗(t)− τ (t+ 1)‖2

(a)

≤2R‖τ ∗(t)− τ ∗(t− 1)‖+ ‖τ (t)− τ ∗(t− 1)‖2 − ‖τ ∗(t)− τ (t+ 1)‖2

=2R‖τ ∗(t)− τ ∗(t− 1)‖+ 2αΨ(t+ 1).

(3.32)

where inequality (a) is obtained since ‖τ ∗(t) +τ ∗(t−1)−2τ (t)‖ ≤ ‖τ ∗(t)−τ (t)‖+

‖τ (t)−τ ∗(t− 1)‖ ≤ 2R. Here, R2 = NT 2 and ‖τ (t)−τ (t)‖ ≤ R holds for any τ (t)
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satisfying (3.1). Therefore, (3.32) can be rewritten as

Ψ′(t+ 1) ≤ R‖τ ∗(t)− τ ∗ (t− 1)‖
α

+ Ψ(t+ 1). (3.33)

Finally, (3.28) can be proved by substituting (3.33) into (3.31).

By summing up (3.28) from time slots t = 1 to t = T, and taking expectation

over Ω(t), we can obtain

t=T∑
t=1

E
[
ηt(τ (t))

]
≤
t=T∑
t=1

E
[
ηt(τ

∗(t)) +
R‖τ ∗(t)− τ ∗(t− 1)‖

α
+ Ψ(t+ 1) +

αG2

2

]
(a)

≤
t=T∑
t=1

E
[
ηt(τ

∗(t))
]

+
RV({τ∗(t)}Tt=1)

α
+
αG2T

2
+
‖τ (1)− τ ∗(0)‖2

2α
,

(3.34)

where the inequality (a) is obtained by plugging Ψ(t + 1) in Lemma 2 into the

inequality and then removing the negative terms.

By rearranging (3.34), dividing both sides of (3.34) by T, and taking T → ∞,

we have

lim
T→∞

1

T

t=T∑
t=1

E
[
ηt(τ (t))− ηt(τ ∗(t))

]
≤ RV({τ∗(t)}Tt=1)

αT
+
αG2

2
, (3.35)

where the inequality is due to the fact that |λ(2)‖2 <∞ and ‖τ (1)− τ ∗(0)‖2 <∞.

By plugging (3.35) into (3.27), we have

Φ(x(t))− Φ(x∗(t)) ≤ RV({τ ∗(t)}Tt=1)

αT
+
αG2

2
. (3.36)

This concludes the proof.

Theorem 2 reveals that the time-average utility of the proposed hybrid learning

approach can converge asymptotically to the online learning optimum, when the

V({τ ∗(t)}Tt=1) is sublinear. The optimality loss Bhybrid can asymptotically diminish

as the stepsize α→ 0.

By combining the findings in Theorems 1 and 2, we can establish that the pro-

posed hybrid learning approach can asymptotically converge to the offline optimum,
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as given by

Φ(x(t))− Φ∗ ≤ Bhybrid, (3.37)

where the optimality loss of the proposed online learning approach, i.e., Bhybrid =

εU +
RV({τ∗(t)}Tt=1)

αT + αG2

2
, can asymptotically diminish, as ε→ 0 and α→ 0.

3.3.1 Simulation Results and Analysis

In this section, we evaluate the proposed hybrid learning approach with N = 30

devices and an edge server, where we run 5000 slots with duration T = 10ms. The

computing resources of the BS is 50Mbits/sec. The available computing resources

of the devices are uniformly and randomly distributed from 0 to 1Mbps, and the

energy consumption for locally processing unit size of data (per Mbits) at the devices

is randomly and uniformly distributed from 0.08 to 0.12mW. The transmit power

of the devices is 200mW (i.e., 23dBm) [98]. The volume of data arriving at devices

varies randomly and uniformly from 0 to 1Mps. The stepsize of SGD is ε = 0.001

and the stepsize of OCO is α = 0.1; unless otherwise specified.

For comparison purpose, we also simulate two other approaches:

1. Online convex optimization approach (denoted by “OCO” in the simulation),

where the devices do not observe the devices’ information at each time slot.

All the decisions of slot t are made based the network states Ω(t − 1) of the

last time slot through online convex optimization [88].

2. Round-robin approach (denoted by “Round-robin” in the simulation), where

the devices do not observe the devices’ information at each time slot, and the

computation offloading decisions at slot t are made in a round-robin manner.

The devices process the remaining tasks locally after offloading.

3. Lyapunov optimization approach [18] (denoted by “Lya”), where the devices

can observe the devices’ information at each time slot, but the computation

offloading decisions at slot t are made based on the outdated wireless channel

conditions at the last time slot (t− 1).
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Figure 3.2 : The stabilized system energy consumption versus the reciprocal of the
stepsize of SGD, 1/ε.

We would like to simulate the synchronized information on network status. How-

ever, the simulation in the ideal case requires the offline searching of large sizes of

actions across a large number of time slots (e.g., 5000 time slots and N=30 IoT

devices), which is computationally prohibitive to be simulated in practice. We have

clarified that the proposed algorithms are mathematically proved to be asymptot-

ically optimal, as stated in Theorem 2. In other words, the performance of the

proposed approaches can asymptotically converge to that of the ideal cases.

Fig. 3.2 plots the devices’ energy consumption achieved by the proposed and

benchmark approaches, as the reciprocal of the stepsize of stochastic gradient de-

scent, i.e., 1/ε increases from 0 to 500. We can see that the device energy con-

sumptions of the proposed hybrid learning, “Lya” approach, and “OCO” approach

first decrease and then stabilizes of 1/ε increases. This validates the asymptotic

optimality of the proposed approach in Theorem 1. The energy consumption of

“Lya” and “OCO” approach are larger than the proposed approach, since they lack

the capabilities of either predicting channel conditions for computation offloading

or exploiting local observations for real-time decisions.

Fig. 3.3 plots the changes of Lagrange multipliers of the proposed approach as t

evolves. We can see that the values of Lagrange multipliers under different 1/ε all

first increase and stabilize at the same value over time. As the stepsize decreases
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Figure 3.4 : The device energy efficiency as the energy variation of local processing
and devices’ computing capability increases. The proposed approach can exploit the
diversity of devices for processing to improve the energy efficiency.

from 1/ε = 500 to 1/ε = 2000, the proposed hybrid learning approach requires

increasingly long convergence times to stabilize the system, but there would be

increasingly small fluctuation of the multipliers after stabilization and also decrease

of the energy consumption, as shown in Fig.3.2. This is the typical between the

convergence time and optimality loss as dictated in Theorem 1.

Fig.3.4(a) plots the device energy efficiency achieved by the proposed and bench-

mark approaches as the temporal energy variation of local processing increases. We

can see in Fig.3.4(a) that the energy efficiency of the proposed approach and “Lya”
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approach increase with the energy variation of local processing. This is because

these two approaches with local observation can exploit the diversity gain results

from the energy variation of local processing. They have more chances to find a

lower value of εi(t) for local processing with the increase of energy variation of local

processing. Since the proposed approach can predict the wireless channel conditions

and has more diversity for processing, the energy efficiency of the proposed approach

is better than the “Lya” approach. On the other hand, the “OCO” approach with-

out local observation capability can only learn the average value of εi(t). In this

case, the “OCO” approach can not exploit the diversity when the average value of

εi(t) is time-invariant, and the energy efficiency of “OCO” approach does not change

with the increase of energy variation of local processing. “Round-robin” approach

does not have any knowledge on the devices and wireless information, therefore the

energy efficiency does not change.

Fig.3.4(b) plots the device energy efficiency achieved by the proposed and bench-

mark approaches as the devices’ computing capability increases. We can see in

Fig.3.4(b) that the energy efficiency of all the approaches increase with the devices’

computing capability, but the energy efficiency of the proposed approach and “Lya”

approach increase rapidly. This is because the increasing computing capability of

devices provides the diversity for processing. The proposed approach and “Lya”

approach can observe the real-time energy cost for local processing, and process

more tasks in low values of εi(t) with the increase of devices’ computing capability.

Since the proposed approach can predict the wireless channel conditions and has

more diversity for processing, the energy efficiency of the proposed approach is bet-

ter than the “Lya” approach. On the other hand, since the “OCO” approach and

“Round-robin” approach can not observe the devices’ information, the increase of

devices’ computing capability has slight impact on the decisions of local processing.

Fig.3.5 shows the devices’ energy efficiency achieved by the proposed and bench-

mark approaches as the channel variation increases. Recall that the average channel

capacity follows a uniform distribution within [1.4(1 − ρ), 1.4(1 + ρ)]Mbps. Here, ρ

is the variation percentage of the average channel capacities across the devices and
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Figure 3.5 : The device energy efficiency as the local processing energy and channel
variation increases. The proposed approach can exploit the diversity of devices and
channels to improve the energy efficiency.

can be adopted to measure the channel heterogeneity. We can see in Fig.3.5 that the

energy efficiency of the proposed approach and “OCO” approach does not change

with the variation of ρ. This is because these approached can learn the average

channel capacities of the devices from feedback. In this case, the energy efficiency

of these approaches do not change given the time-invariant average of channel ca-

pacities. On the other hand, “Lya” approach and “Round-robin” approach can not

predict the channel capacity, thereby decreasing the energy efficiency.

3.3.2 Discussion on Delay-Sensitive Tasks

The typical [O(1/ε);O(ε)]-tradeoff indicates that an O(1/ε) optimality loss can

be be achieved with an O(ε) convergence time. This allows to leverage between

convergence time and optimality loss. We can reduce the delay of tasks by increasing

the stepsize ε and the optimality loss.

For illustration convenience, we assume all tasks are of the same priority, and

the queues operate on a simple FIFO basis. This may cause unfairness (i.e., the

variations of task delays), as a head-of-line (HOL) task of a queue can be offloaded,

become the bottom of another FIFO queue, and hence undergoes a significantly

increased queuing delay. The proposed approach can be extended to capture the

execution delays and fairness (i.e., the delay variations) of the tasks by setting
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priority queues with meticulously designed weights. Specifically, we can design the

weight of a task (and its corresponding result) to be the age of the task (in time

slots). The age of the task grows until the delivery of the result. All the queues

operate as priority queues, where tasks can be arranged in the descending order of

task age and the oldest tasks are placed at the HOL. The priority queues would

not affect the asymptotic optimality of the proposed approach. This is because the

proposed approach only depends on the Lagrange multipliers (or in other words, the

queue lengths) which are unaffected by the changing order of the tasks within the

queues.
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Chapter 4

Distributed Online Learning of Fog Computing

under Non-uniform Device Cardinality

Distributed online optimization is important given the size of IoT, but challenging

due to time variations of random traffic and non-uniform connectivity (or cardi-

nality) of edge servers and IoT devices. This chapter presents a distributed online

learning approach to asymptotically minimizing the time-average cost of fog comput-

ing in the absence of the a-priori knowledge on traffic randomness, for light-weight,

delay-tolerant application scenarios. The proposed approach is able to address non-

uniform node cardinalities in the absence of the a-priori network knowledge. The

key contributions of this chapter can be summarized as follows.

• By exploiting stochastic gradient descent, we decouple the optimizations be-

tween time slots. As a result, task offloading and result delivery can be for-

mulated as Mixed Integer Programming (MIP). By replacing each edge server

with cardinality of larger than one with multiple one-cardinality virtual server-

s, the MIP problem can be further reformulated to a graph matching problem.

• A distributed linear-time algorithm is proposed to solve the graph matching

with 1
2
-approximation, which is achieved by having each node spontaneously

maximize the total weights of itself and its immediate neighbors.

• We prove that the optimality loss of fog computing can asymptotically dimin-

ish by reducing the stepsize of stochastic gradient descent. In other words,

the increase of the time-average cost of fog computing, resulting from the pro-

posed distributed 1
2
-approximation algorithm, can be suppressed by extending

the learning time.



50

Result 
delivery

Task 
offloading

Edge 
servers Edge 

Computing

Processing

Fog Computing

IoT 
devices

Task 
arrival

Figure 4.1 : An illustrative example of fog computing in IoT networks.

Corroborated by simulations, the proposed distributed online learning approach is

able to increase the throughput by 59% and the energy efficiency by 43%, as com-

pared to the state of the art. With the increase of network scale, the proposed dis-

tributed online learning can save 96% the running time of its centralized counterpart

which obtains the optimal solution of the graph matching by using the Edmonds’

blossom algorithm.

4.1 System Model

Fig. 4.1 illustrates the application of fog computing in IoT networks, where tasks

generated at the IoT devices can be offloaded multiple hops away to nearby network

nodes (i.e., other devices and edge servers) for processing. As shown in Fig. 4.1, we

consider a fog computing network consisting of N IoT devices and M edge servers,

such as access points (APs), cloudlets, and base stations (BSs). Running a network

timing protocol (NTP), the system operates on a slotted basis with slot length T .

The tasks generated by the IoT devices can be offloaded multiple hops away and

processed anywhere in the network, i.e., locally executed, offloaded to other IoT

devices, or remotely processed at the edge servers. Once processed, the result of a

task is returned to the device generating the task. The communication links among

the IoT devices (such as WiFi Direct, Bluetooth, and Zigbee), and between devices

and edge servers (e.g., WiFi and cellular), can support the task offloading and result

delivery within the network. Let N = {1, · · · , N} and M = {1, · · · ,M} collect the

indexes for the devices and edge servers, respectively. The notations used in this
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Table 4.1 : Definitions of Notations

Notation Definition

N The set of mobile devices

T Slot length

Ai(t) Tasks generated by device i at slot t

Amax
i Maximum size of tasks generated by device i at a slot

eij(t) Connectivity between nodes i and j during slot t

ρi CPU cycles for processing a task bit of device i

ξi Ratio of results to unprocessed tasks of device i in size

lij(t) Link activation decisions for link (i, j) during slot t

Ki Maximum number of simultaneous transmissions of server i

Cij(t) Capacity of link (i, j) during slot t

b
(s)
ij (t) Tasks of device s offloaded from devices i to j at slot t

d
(s)
ij (t) Results for device s returned via devices i to j at slot t

Fi(t) Available computing resources of device i at slot t

f
(s)
i (t) Resource allocation of device i for device s’s tasks at slot t

Q
(s)
i (t) Task queue backlog at device i for device s at slot t

D
(s)
i (t) Result queue backlog at device i for device s at slot t

εij(t) Cost for per-bit transmission over link (i, j) during slot t

εmax
ij Maximum cost for per-bit transmission over link (i, j)

εi(t) Cost to run a CPU cycle of device i during slot t

φ(t) Total operational cost of the network at slot t

ε Stepsize of the stochastic gradient descent

chapter are summarized in Table 4.1.

4.1.1 Network Model

The topology of the network can be modeled as a stochastic graph G(t) =

{V,E(t)}, where V = M ∪N is the set of devices and edge servers of the network

and E(t) = {(i, j)|eij(t) = 1, ∀i, j ∈ V} collects the edges (connectivity) among the

nodes. eij(t) = 1, if there is a link (i, j) between nodes i and j at time slot t. Let

Cij(t) ∈ (0, Cmax
ij ] denote the capacity of the bi-directional link (i, j) during slot t,

and εij(t) ≤ εmax
ij denote the cost (e.g., in terms of energy consumption) for per-bit

transmission over the link at the slot. The connectivity and channel capacity are

assumed to remain unchanged within a slot, and can change between slots.
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Each IoT device can only activate a bi-directional link at a time. Edge server i

can establish up to Ki active links at time slot t. Let lij(t) denote the decision of

activating the links; where lij(t) = 1 if link (i, j) is activated at slot t, and lij(t) = 0,

otherwise. The cardinality constraints of activating communication links can be

given by

lij(t) ∈ {0, 1}, ∀i, j ∈ V; (4.1a)∑
j∈N

lij(t) ≤ Ki, ∀i ∈M; (4.1b)∑
j∈V

lij(t) ≤ 1, ∀i ∈ N; (4.1c)

where (4.1a) is self-explanatory, and (4.1b) and (4.1c) specify the maximum active

links for the edge servers and devices at a slot, respectively.

The tasks arriving at device i during time slot t, can be parameterized as a triplet(
Ai(t), ρiAi(t), ξiAi(t)

)
. Ai(t) is the size of the task generated (in bits) at the slot.

It requires ρiAi(t) CPU cycles to be processed, and the size of the results is ξiAi(t)

bits. ρi ≥ ρmin is the number of CPU cycles for processing a bit of the task, and

ξi is the ratio of the results to the corresponding unprocessed tasks in bits. Due to

the background tasks at the edge servers and IoT devices, Fi(t) ≤ Fmax denotes the

available computing resources of node i ∈ V (in CPU cycles per second) during slot

t. εi(t) denotes the cost of node i to run a CPU cycle at slot t.

The task arrival Ai(t) is a stochastic process with the maximum Amax
i . We

assume that tasks can be divided based on the link capacity Cij(t) and the computing

resources Fi(t) per slot. The proposed approach can be readily applied for atomic,

indivisible tasks by rounding the allocated computing resources and link schedules

to the largest integer numbers of atomic tasks which can be supported. This would

not compromise the (asymptotic) optimality of the proposed approach, as will be

discussed in Section 4.3.

4.1.2 Causality Constraints and Queue Dynamics

We design that each node maintains N queues for the unprocessed tasks gener-

ated by all N IoT devices (including the device itself) and another N queues for the
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corresponding processed results. This is because the result of a task is to be returned

to the IoT device generating the task. Q(t) = {Qs
i (t), D

s
i (t)|∀i ∈ V, s ∈ N} collects

the total
(
2N(N +M)

)
queues of the (N +M) nodes in the network at time slot t.

In specific, as per slot t, Qs
i (t) is the backlog of the queue, in which node i buffers

unprocessed tasks generated by device s; and Ds
i (t) is the backlog of the queue, in

which node i buffers processed results destined for device s. Each of the queues is

scheduled on a First-In-First-Out (FIFO) basis.

Let bsij(t) be the size of unprocessed tasks generated by device s and forwarded

to node j through node i at slot t, and dsij(t) be the size of processed results returned

from node i through node j destined for device s at slot t. We have

bsij(t) ≥ 0, dsij(t) ≥ 0, ∀(i, j), s ∈ N; (4.2a)∑
s∈N

bsij(t) + dsij(t) + bsji(t) + dsji(t) ≤ Cij(t)lij(t), ∀(i, j); (4.2b)

where (4.2a) is self-explanatory, and (4.2b) specifies that the total size of tasks and

results transmitted over link (i, j) cannot exceed the link capacity.

Let f si (t) denote the CPU cycles of node i allocated at time slot t to the tasks

generated by device s, satisfying the following constraint:

f si (t) ≥ 0, ∀i ∈ V, s ∈ N; (4.3a)∑
s∈N

f si (t) ≤ Fi(t), ∀i ∈ V. (4.3b)

The backlogs of unprocessed tasks Qs
i (t) can be updated by

Qs
i (t+ 1) = max

{
Qs
i (t)− f si (t)/ρs −

∑
j∈V

bsij(t), 0
}

+
∑

j∈V
bsji(t) + Asi (t), (4.4)

where f si (t)/ρs is the size of tasks that can be processed from the queue at time slot

t, and Asi (t) is the size of tasks arriving at device i into the queue at the time slot.

Aii(t) = Ai(t), and Asi (t) = 0, ∀s 6= i. The first term on the right-hand side (RHS)

of (4.4) gives the remaining unprocessed tasks in the queue at the end of time slot t,
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Figure 4.2 : An illustrative example of task offloading and result delivery in the
proposed multi-hop fog computing.

after part of the tasks have been processed at node i and offloaded to other nodes.

The other two terms give the new task arrivals offloaded from other nodes to node

i or generated locally at the node.

The backlogs of processed results Ds
i (t) can be updated by

Ds
i (t+ 1) = max

{
Ds

i (t)−
∑

j∈V
dsij(t), 0

}
+
∑

j∈V
dsji(t) + ξsf

s
i (t)/ρs, ∀s �= i,

(4.5)

where Di
i(t) = 0 since node i is the sink for the results.

Fig. 4.2 shows an illustrative example of the procedure of the proposed multi-

hop fog computing to process an incoming task in a network of two IoT devices

and an edge server. In particular, the incoming task arrives at device 1 and enters

the corresponding task queue at time slot t0, where the size of the task (in bits) is

denoted by A1(t0); and at time slot t1, it is offloaded to the task queues of edge server

0 for processing, where the size of offloaded data is b110(t1). At slot t2, the task is

processed at edge server 0 and the computation results enter the corresponding data

queue for result delivery to device 1 generating the task. The results are delivered to

device 1 hop by hop with the help of device 2, and the sizes of routed data from edge

server 0 to device 2 at slot t3 and from device 2 to device 1 at slot t4 are denoted by

d102(t3) and d121(t4), respectively. Finally, device 1 retrieves the computation results

of the task A1(t0).
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The multi-hop communications can incur additional costs resulting from the

queue store and forward when using multi-hop communications. However, in the

case of IoT applications, large volumes of data need to be processed, exceeding the

computing capability of network with one-hop transmission. Multi-hop transmission

can be used to enable the computing capability and throughput of network at the

cost of increasing delay of tasks. From Fig. 4.4(a) we can see that compared to the

one-hop transmission, the multi-hop transmission can achieve more than 200% gain

of throughput with the growth of task arrivals.

4.1.3 Problem Statement

We measure the performance of the fog computing in IoT networks by operational

cost. The total operational cost of the network at time slot t can be written as

Φ
(
x(t)

)
=
∑

i,j∈V
ϕij(t) +

∑
i∈V

ϕi(t), (4.6)

where x(t) = {f si (t), bsij(t), d
s
ij(t), lij(t), ∀i, j, s} collects all the variables in regards of

task processing, task offloading, result delivery and link activation, at time slot t.

ϕij(t) = lij(t)
∑

s∈N εij(t)(b
s
ij(t) + dsij(t)) and ϕi(t) =

∑
s∈N εi(t)f

s
i (t) are the costs

of task offloading and result delivery over link (i, j), and task processing at node i

at time slot t, respectively.

The network is stable if and only if all the queues of the network are stable, i.e.,

the following is met [31]

Qs
i (t) <∞, Ds

i (t) <∞, ∀i, s (4.7)

where X(t) = limT→∞
1
T

∑T−1
τ=0 E[X(τ)] denotes the long-term time-average of any

process X(t).

Considering the prevalent randomness of channel conditions, task arrivals and

computing resources, we propose to stochastically minimize the overall system cost

for delay-tolerant tasks in infinite time horizon, while preserving the stability of all

the queues of the network. Quality-of-service (QoS) is not explicitly considered,
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since as suggested in [16], delay-sensitive applications would be typically processed

locally, or offloaded and processed with priority, as will be described in Section 4.5.

The problem of interest can be formulated as

Φ∗ = min
X

Φ
(
x(t)

)
s.t. (4.1), (4.2), (4.3), (4.4), (4.5), (4.7), ∀t;

(4.8)

where X = {x(t), ∀t} collects the variables x(t) across all time slots.

Note that problem (4.8) is coupled across infinite time horizon due to the queue

dynamics (4.4), (4.5) and (4.7), and also between the large number of IoT devices

and edge servers under the non-uniform cardinality constraints (4.1). The optimal

solution to (4.8) would require the a-priori knowledge on task arrivals, channel con-

ditions and computing resources across the entire network over infinite time horizon.

This would violate causality. Moreover, the instantaneous global view of the entire

network may not be available due to the sheer scale and the distributed proper-

ty of IoT [18]. Non-negligible propagation delays over multiple hops prevent the

acquisition of instantaneous global view of the network.

4.2 Fully Distributed Online Learning of Fog Computing

In this section, we propose to fully decentralize the solution for fog computing

and asymptotically minimize the time-average operational cost of fog computing by

exploiting stochastic online learning. The stochastic gradient descent is exploited

to decouple the optimal decisions on task processing, offloading, and result delivery

between time slots in the absence of the a-priori knowledge on network randomness.

The optimal decisions on task offloading and result delivery can be further decou-

pled among devices and edge servers at a bounded cost of 1
2
-approximation to the

optimum. The cost can asymptotically diminish as the decrease of the stepsize of

stochastic online learning, as will be dictated in Section 4.3.
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4.2.1 Stochastic Online Learning for Temporal Decoupling

According to queuing theory [92], a queue is stable, if and only if the time-

average input rate of the queue is no more than the time-average output rate of the

queue. As a result, we reformulate problem (4.8) to suppress the time couplings by

transforming (4.4), (4.5) and (4.7) to (4.9), as given by

Asi (t)− f si (t)/ρs +
∑

j∈N
(bsji(t)− bsij(t)) ≤ 0, ∀i, s;

ξsf si (t)/ρs +
∑

j∈N
(dsji(t)− dsij(t)) ≤ 0, ∀i, s.

(4.9)

We define the network randomness at slot t by ωt = {Ai(t), Cij(t), Fi(t), ∀i, j}.

It is reasonable to assume that ωt is independent and identically distributed (i.i.d.)

across all time slots, since tasks arrive independently at a large number of devices

and the available computing resources are affected by independent background tasks.

As a result, the time-average constraint in (4.9) can be further replaced by the

expectations per slot over ωt, as given by

Eωt

[
Asi (t)− f si (t)/ρs +

∑
j∈V

(bsji(t)− bsij(t))
]
≤ 0, ∀i, s; (4.10a)

Eωt

[
ξsf

s
i (t)/ρs +

∑
j∈V

(dsji(t)− dsij(t))
]
≤ 0, ∀i, s. (4.10b)

By replacing (4.4), (4.5) and (4.7) with (4.10), (4.8) can be rewritten as a per-slot

expectation minimization problem, as given by

Φ̃∗ = min
X

E
[
Φ
(
x(t);ωt

)]
s.t. (4.1), (4.2), (4.3), (4.10a), (4.10b), ∀t.

(4.11)

Stochastic gradient descent is an effective learning method with extensive appli-

cations to support vector machines, logistic regression and artificial neural network-

s [94]. It is particularly useful in the cases where an exact gradient is intractable

in the absence of the a-priori knowledge on the randomness over infinite time. By

taking stochastic gradient descent, (4.11) can be reformulated by interpreting (4.10)
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as the Lagrange multipliers and iteratively updating the Lagrange multipliers with

the stochastic gradient per slot t. As a result, (4.11) can be transformed to (4.12)

which can be carried out at each time slot t and is given by

max
x(t)

µ
(
f(t)
)

+ η
(
b(t),d(t), l(t)

)
s.t. (4.1), (4.2), (4.3).

(4.12)

where f(t) = {f si (t), ∀i, s}, b(t) = {bsij(t), ∀i, j, s}, d(t) = {dsij(t), ∀i, j, s}, and l(t) =

{lij(t), ∀i, j} are the decisions on task processing, task offloading, result delivery, and

link activation at time slot t, respectively; and

µ
(
f(t)
)

=
∑

i,s∈N

[
ε[Qs

i (t)−ξsDs
i (t)]

ρs
− ζi(t)

]
f si (t); (4.13a)

η
(
b(t),d(t), l(t)

)
=
∑

i,j,s∈N ε
[
Qs
i (t)(b

s
ij(t)− bsji(t))

+Ds
i (t)(d

s
ij(t)− dsji(t))

]
− ζij(t)(bsij(t) + dsij(t));

(4.13b)

where ε is the stepsize of the stochastic gradient descent. The Lagrange multipliers

λsi,1(t) and λsi,2(t) associated respectively with (4.10a) and (4.10b), can be suppressed

in (4.13). This is because, with the consistent stepsize ε, the multipliers can be

proved to be equal to the product of the stepsize and the queue backlogs, i.e.,

λsi,1(t) = εQs
i (t) and λsi,2(t) = εDs

i (t).

Proof. Let λ = {λsi,1, λsi,2, ∀i, s}, where λsi,1 and λsi,2 denote the Lagrange multipliers

of (4.11) associated with (4.10a) and (4.10b), respectively. The Lagrangian of (4.11)

can be given by [93]

L(X,λ) = E
[
L(x(t),λ)

]
,

where the instantaneous Lagrangian L(x(t),λ) is given by

L(x(t),λ) = Φ(x(t)) +
∑

i,s∈N λ
s
i,1E
[
Asi (t)− f si (t)/ρs

∑
j∈N(bsji(t)− bsij(t))

]
+
∑

i,s∈N λ
s
i,2E
[
ξsf

s
i (t)/ρs +

∑
j∈N(dsji(t)− dsij(t))

]
.

(4.14)
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The dual problem is max
λ�0
D(λ), where � is taken entry-wise and D(λ) is given by

D(λ) = min
X
L(X,λ)

s.t. (4.1), (4.2), (4.3), ∀t.
(4.15)

At each slot t, x(t) can be updated by

x(t) = arg min
x(t)
L(x(t),λ(t))

s.t. (4.1), (4.2), (4.3).
(4.16)

Without the a-priori knowledge on the statistics of the randomness ω(t), λ̃(t) =

{λ̃si,1(t), λ̃si,2(t), ∀i, s} is an online approximation of the dual multipliers λ based on

the instantaneous decisions x(t) per slot t, as given by

λ̃si,1(t+ 1) = max
{
λ̃si,1(t) + ε

[
Asi (t)− f si (t)/ρs +

∑
j∈N

(bsji(t)− bsij(t))
]
, 0
}

,

(4.17a)

λ̃si,2(t+ 1) = max
{
λ̃si,2(t) + ε

[
ξsf

s
i (t)/ρs +

∑
j∈N

(dsji(t)− dsij(t))
]
, 0
}

; (4.17b)

where ε is an appropriate stepsize of the stochastic gradient descent. With Qs
i (0) = 0

and Ds
i (0) = 0, by comparing (4.4) and (4.5) with (4.17a) and (4.17b), respectively,

the update of dual multipliers per slot can be enclosed in the natural update of

queue backlogs, i.e., λ̃si,1(t) = εQs
i (t) and λ̃si,2(t) = εDs

i (t).

It is worth mentioning that in the absence of the a-priori knowledge on the

network dynamics, there is no training dataset available for our proposed approach.

The stochastic gradient descent is typically referred to as the online learning of the

network dynamics (including network topology, channel capacity, task arrivals and

computing resources) from the streaming training data (i.e., the network dynamics

ωt) observed at each time slot t. At every time slot t, stochastic gradient descent is

applied to update the Lagrange multipliers λ̃(t) with the observed network dynamics
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ωt based on (4.17). The decisions on the task offloading, processing and result

delivery of every device are obtained by solving problem (4.12) based on λ̃(t). This

is because the exact gradient is intractable in the absence of the a-priori knowledge

on the randomness over the infinite time. The stochastic gradient is a sample (or an

approximation) of the exact gradient based on the observed network dynamics ωt,

and would asymptotically converge to within O(ε) of the optimal multipliers (i.e.,

the offline optimum which would require the a-priori knowledge on the network

dynamics), as stated in Theorem 3.

Note in (4.12) that µ
(
f(t)
)

and η
(
b(t),d(t), l(t)

)
are decoupled from each other

in both the objective and constraints. The optimal solution on task processing

for (4.13a), and the optimal solutions for task offloading, result delivery and link

activation for (4.13b), can be fully decentralized and implemented in real-time, as

described in the next subsection.

4.2.2 Per-slot Optimal Solutions of Online Learning

A. Optimal Decisions on Task Processing

Since f si (t) can be decoupled from f sj (t), ∀i 6= j, (4.13a) can be further decou-

pled between the devices and edge servers to independently optimize the resource

allocation fi(t) = {f si (t), ∀s} at each node i, as given by

max
fi(t)

∑
s∈N

αsi (t)f
s
i (t), s.t. (4.3); (4.18)

where αsi (t) = ε
[
Qs
i (t) − ξsDs

i (t)
]
/ρs − ζi(t). Here, (4.18) is linear programming of

weighted-sum maximization [99], and its optimal solution can be given by

f si (t) =

 Fi(t), if s = arg maxj α
(j)
i (t) and αsi (t) > 0;

0, otherwise.
(4.19)

B. Optimal Decisions on Task Offloading and Result Delivery

The decisions on task offloading and result delivery cannot be decoupled between

links due to the coupling of link activations across the network in constraint (4.1).
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Nevertheless, the problem of maximizing (4.13b) subject to (4.1) and (4.2) can be

rewritten as

max
b(t),d(t),l(t)

∑
i,j∈V,s∈N

{βsij(t)bsij(t) + γsij(t)d
s
ij(t)}lij(t)

s.t. (4.1), (4.2);

(4.20)

where βsij(t) = ε
[
Qs
i (t)−Qs

j(t)
]
− ζij(t) and γsij(t) = ε

[
Ds
i (t)−Ds

j(t)
]
− ζij(t). (4.20)

is MIP, since the variables b(t) and d(t) are continuous and depend on the binary

decisions on link activation l(t) in (4.2).

We propose to decompose (4.20) into two subproblems. By carrying out alternat-

ing optimization of the two subproblems, we show that (4.20) can be reformulated

to an integer programming problem which can be further transformed to a graph

matching problem:

(1) Given a solution for link activation l(t), the task offloading and result delivery

can be optimized subject to (4.2). The optimization can be decoupled between links.

Let bij(t) = {bsij(t), bsji(t), ∀s} and dij(t) = {dsij(t), dsji(t), ∀s} collect the decisions on

task offloading and result delivery over link (i, j) at slot t, respectively. The problem

can be given by

max
bij(t),dij(t)

∑
s∈N

ηij(bij(t),dij(t)), s.t. (4.2); (4.21)

where ηij(bij(t),dij(t)) = βsij(t)b
s
ij(t) + γsij(t)d

s
ij(t) + βsji(t)b

s
ji(t) + γsji(t)d

s
ji(t).

Problem (4.21) is linear programming of weighted-sum maximization [99]. The

optimal solution can be obtained by evaluating the weights βsij(t), γ
s
ij(t), β

s
ji(t) and

γsji(t) at nodes i and j independently. If maxs{βsij(t), γsij(t)} < 0 or maxs{βsij(t), γsij(t)}

< maxs{βsji(t), γsji(t)}, node i remains idle at slot t, i.e., neither offloading tasks nor

transmitting results to node j. If maxs{βsij(t)} > maxs{γsij(t)}, node i does not

return results. Instead, it offloads tasks to node j with the task size specified by

bsij(t) =


Cij(t), if s = arg max

r
β

(r)
ij (t);

0, otherwise.

(4.22a)

If maxs{βsij(t)} ≤ maxs{γsij(t)}, node i does not offload tasks to node j. Instead, it
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returns results through node j with the result size specified by

dsij(t) =


Cij(t), if s = arg max

r
γ

(r)
ij (t);

0, otherwise.

(4.22b)

From (4.22), we can see that, for an activated link (i, j), the queue that can make

the most use of the link at slot t, i.e., the queue of the maximum weights βsij(t),

βsji(t), γ
s
ij(t) and γsji(t), is selected to occupy the link capacity Cij(t) in whole.

(2) Given the solution for (4.21), i.e., (4.22), problem (4.20) can be reformulated

to an integer programming problem of l(t), as given by

max
l(t)

∑
i,j∈V

wij(t)lij(t), s.t. (4.1); (4.23)

where wij(t) = maxs{βsij(t), γsij(t), βsji(t), γsji(t)}Cij(t) can be obtained by substitut-

ing (4.22) into (4.20).

Recall the network topology graph G(t) = {V,E(t)}. wij(t) is the weight of link

(i, j) in graph G(t). We can translate (4.23) to a standard matching problem in

an undirected weighted graph. It is to find the set of disjoint edges which has the

maximum total weights [100].

We note that the standard matching problem in an undirected weighted graph

requires the cardinality of edge servers to be constrained to no greater than 1 [100].

In contrast, the edge servers can have multiple matched edges in the problem of

interest. Therefore, we reconstruct graph G(t) to G′(t) = {V′,E′(t)}, where edge

server i ∈M is replaced with Ki unconnected virtual nodes, denoted by {i1, · · · , iK},

as illustrated in Fig. 4.3. The Ki virtual nodes have identical weighted edges, i.e.,

wikj(t) = wij(t). Let M′ be the set of virtual nodes for the edge servers M. In graph

G′(t), V′ = N ∪M′ collects all the (N + MK) nodes and E′(t) collects the edges

between the (virtual) nodes. The cardinality constraint of the matching problem

can be satisfied in G′(t).

After the construction, the cardinality constraints (4.1b) and (4.1c) can be rewrit-
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(b) Graph G′(t)

Figure 4.3 : An illustrative example of the graph reconstruction, where there are
N = 4 devices and M = 1 edge server with cardinality K = 2.

ten as ∑
j∈V′

lij(t) ≤ 1, ∀i ∈ V′. (4.24)

By replacing (4.1b) and (4.1c) with (4.24), problem (4.23) becomes

max
l(t)

∑
i,j∈V′

wij(t)lij(t), s.t. (4.1a), (4.24), (4.25)

which is the standard matching problem in the undirected weighted graph G′(t),

and can be optimally solved by Edmonds’ blossom algorithm in a centralized manner

with the complexity O
(
|E′||V′|2

)
[101]. Here, |E′(t)| and |V′| are the numbers of

edges and vertexes of G′(t), respectively.

4.2.3 Distributed Online Learning of Fog Computing

As a standard matching problem in an undirected weighted graph, (4.25) can

also be sub-optimally solved by sequentially selecting the edges with the maximum

weights from the unselected edges, provided the explicit knowledge of the weights of

all edges across the network is available to every node [102]. It was proved in [102]

that such selections yield 1
2
-approximation to the optimal solution of Edmond’s

blossom algorithm. This allows us to fully decentralize the solution for (4.25) and,

in turn, the solutions for (4.20) and (4.12).
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A. Problem Decomposition

We propose to decentralize the solution for (4.20) by decomposing (4.25) into

the subproblems of each node i ∈ V′ maximizing the total weight of itself and its

immediate neighbors, as given by

max
∑

i′∈Ñi,j∈V′
wi′j(t)li′j(t), s.t. (4.1a), (4.24), (4.26)

where Ñi collects node i itself and its immediate neighbors in graph G′(t).

Let l̂(t) denote the approximation solution of link activation given by (4.26), and

l∗(t) be the optimal solution for (4.25) achieved by Edmonds’ blossom algorithm.

W (l(t)) =
∑

i,j∈V′ wij(t)lij(t) is the sum of the edge weights, given a matching l(t).

The approximation ratio of the decomposed problem (4.26) to the optimum in (4.25)

can be established in the following Corollary.

Corollary 1. The solution to (4.26) achieves 1
2
-approximation to the optimum of

(4.25), i.e., W (̂l(t)) ≥ 1
2
W (l∗(t)).

Proof. In (4.26), link (i, j) is selected, i.e., lij(t) = 1, if and only if the link is the

most heavily weighted for each of nodes i and j. As a result, (4.26) achieves the same

results as the sequential selection heuristic developed in [102]. The 1
2
-approximation

ratio of (4.26) to the optimum readily follows the proof in [102].

B. Distributed Task Offloading and Result Delivery

Problem (4.26) can be solved in a distributed manner by allowing the nodes to

send matching requests and accepting others’ requests, as summarized in Algorith-

m 2. Specifically, each node i defines and updates two sets, namely Ni and Ri. Ni

is the set of the nodes which can be connected to node i, and can be initialized as its

immediate neighbors, i.e., Ni = {j|wij(t) > 0}. Ri is the set of nodes, from which

node i has received matching requests. Ri can be initialized by Ri = ∅.

Node i can send a matching request to the one of its immediate neighbor j which

has the largest edge weight in Ni, i.e., j = arg maxj∈Ni
wij(t). When receiving the
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Algorithm 2 Distributed Task Offloading and Result Delivery

Input: Graph G′(t) with the weights wij(t)
Output: The 1

2
-approximation solution of link activation, task offloading and re-

sult delivery
1: Initialize Ni = {j|wij(t) > 0} and Ri = ∅
2: Send a matching request to candidate node c with the largest edge weight, i.e.,
c = arg maxj∈Ni

wij(t)
3: while Ni 6= ∅ do
4: if Receiving a matching request from node j then
5: Ri = Ri ∪ {j}
6: if Node i has sent a matching request to node j then
7: Establish a matching with node j, i.e., l̂ij(t) = 1
8: Send dropping messages to all the nodes in Ni

9: Set Ni = ∅
10: end if
11: end if
12: if Receiving a dropping message from node j then
13: Ni = Ni/{j}
14: if Node i has sent a matching request to node j then
15: Send a matching request to the next candidate node with the largest edge

weight
16: end if
17: end if
18: end while

matching request, node j adds node i into Rj, i.e., Rj = Rj∪{i}. If node i happens

to be which node j has sent a matching request, node j activates the link with node

i, i.e., lij(t) = 1. Then, nodes i and j send dropping messages to their neighbors in

Ni and Nj. When receiving the dropping message from node i, node k removes i

from Nk, i.e., Nk = Nk/{i}. If node i is the current candidate to which node k has

sent a matching request, node k sends a new matching request to the next candidate

with the largest edge weight in Nk. The process repeats until node i is connected

or Ni = ∅.

Note that each node i only needs to send up to one message to each of its

immediate neighbor j, since node i only removes nodes from Ni by sending matching

requests or dropping messages. In particular, a) node i sends a matching request to

node j and removes j from Ni, if node j is selected to be the candidate; or b) node

i sends dropping messages to the remaining nodes in Ni, if node i is connected (or
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Algorithm 3 The Proposed Distributed Online Learning Framework of Fog Com-
puting

Input: The network dynamics observed at each node i at time slot t, including
Ai(t), Fi(t), Cij(t), εi(t) and εij(t)

Output: The decisions on task offloading, processing and result delivery at the
time slot

1: Compute the weights αsi (t), β
s
ij(t) and γsij(t) based on the queues (i.e., Lagrange

multipliers) of its own and immediate neighbors
2: Allocate the computing resources by (4.19)
3: Solve the link activation using Algorithm 2
4: Schedule the offloading and routing based on (4.22)

matched). As a result, the total number of messages during the proposed distributed

algorithm is less than 2|E′|, given the total |E′| edges in G′(t). The time-complexity

of Algorithm 2 is O(|E′|).

Algorithm 3 summarizes the proposed distributed online learning framework of

fog computing. Note that Algorithm 3 is fully distributed with strong scalability

in the era of IoT. In particular, at each time slot t, each node i can optimize the

computing resource allocation, task offloading, result delivery and link activation,

only based on the knowledge of itself and its immediate neighbors.

The time complexity of Algorithm 3 depends on two parts: i.e., the optimal

decisions on task offloading based on (4.19), processing and result delivery based on

(4.22) ( in lines 1, 2,and 4), and the active link construction (Algorithm 2 in line 3).

1. In the first step, Algorithm 3 computes the weights αsi (t), β
s
ij(t) and γsij(t)

based on the queues to make decisions. For node i, the time complexity for

computing weights αsi (t) is O(N), due to s ∈N . For node i, weights βsij(t) and

γsij(t) can be computed together with the time complexity of O(N2 + NM),

due to s ∈ N and j ∈ Ni. N
′
i is the set of immediate neighbors for node

i, and the number of immediate neighbors for node i is less than the number

of IoT devices and edge servers N + M . The time complexity of this step is

O(N2 +NM).

2. In the second step, the time complexity of Algorithm 2 is O(|E′|), where
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E′ is the number of edges in the reconstructed network topology graph, and

|E′| ≤ N(N+KM−1)/2. The time complexity for this step is O(N2+KNM).

As a result, the time complexity of Algorithm 3 is O(N2 + KNM). Compared to

the centralized approach solved by Edmonds’ blossom algorithm with the complex-

ity O
(
|E′||N +KM |2

)
[101], the proposed algorithm with quadratic complexity is

scalable for IoT devices, as shown in Fig. 4.8.

4.3 Optimality Analysis

In this section, we prove that the proposed fully distributed online learning of

fog computing is asymptotically optimal. We find that the optimality loss, resulting

from the sub-optimal matching heuristic, can be compensated and asymptotically

diminish by reducing the stepsize of stochastic gradient descent and delaying the

convergence of online learning.

4.3.1 Asymptotic Optimality and Convergence Time of Centralized

Online Learning

We start by proving that the centralized online learning of fog computing is

asymptotically optimal, where the decisions on task offloading and result delivery

are optimally solved by Edmonds’ blossom algorithm in a centralized manner, as

described in Section 4.2.2.

Let Φ∗(x(t)) denote the long-term time-average cost of the centralized online

learning of fog computing, and Φ∗ be the offline optimum (minimized in a posteriori

manner violating causality). We can establish the asymptotic optimality of the

centralized online learning of fog computing, as stated in the following theorem.

Theorem 3. The gap between Φ(x∗(t)) and Φ∗ satisfies

Φ∗(x(t))− Φ∗ ≤ εU , (4.27)

where U = 1
2
{
∑

i∈N[(ξi + 1)FmaxT/ρmin + 2
∑

j∈NC
max
ij T + Amax

i ]}2 is a constant,

and ε is the stepsize of the stochastic gradient descent.
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Proof. Taking squares on both sides of (4.4) and (4.5), and then exploiting the

identity inequality for (max[a− b, 0] + c)2 ≤ a2+b2+c2+2a(c−b) for any a, b, c ≥ 0,

we obtain

[Qsi (t+ 1)]2 ≤ [Qsi (t)]
2 + 2Qsi (t)[

∑
j∈N

(bsji(t)− bsij(t)) + Asi (t)− f si (t)/ρs]

+[f si (t)/ρs +
∑
j∈N

bsij(t)]
2 + [

∑
j∈N

bsji(t) + Asi (t)]
2,

(4.28a)

[Ds
i (t+ 1)]2 ≤ [Ds

i (t)]
2 + 2Ds

i (t)[
∑
j∈N

(dsji(t)− dsij(t)) + ξs
ρs
f si (t)]

+[
∑
j∈N

dsij(t)]
2 + [

∑
j∈N

dsji(t) + ξs
ρs
f si (t)]2.

(4.28b)

Considering a standard quadratic Lyapunov function L(t) = 1
2

∑
i,s∈N[Qs

i (t)
2 +

Ds
i (t)

2] [31], the drift ∆L(t) readily follows that

∆L(t) = L(t+ 1)− L(t)

≤ U +
∑
i,s∈N

Ds
i (t)[

∑
j∈N

(dsji(t)− dsij(t)) + ξs
ρs
f si (t)]

+
∑
i,s∈N

Qs
i (t)[

∑
j∈N

(bsji(t)− bsij(t)) + Asi (t)− f si (t)/ρs],

(4.29)

where U is a constant by exploiting the Cauchy–Schwarz inequality (
∑

i ai)
2 ≥

∑
i a

2
i

for ∀ai ≥ 0 in (4.28a) and (4.28b).

Taking expectations over ωt and adding 1
ε
E[Φ(x(t))] on both sides (where x(t)

is the optimal policy by solving (4.16)), we arrive at

E[∆L(t)] + 1
ε
E[Φ(x(t))] ≤ U + 1

ε
E
{

Φ(x(t))

+ε
∑
i,s∈N

Ds
i (t)
[∑

j∈N(dsji(t)− dsij(t)) + ξs
ρs
f si (t)

]
+ε

∑
i,s∈N

Qs
i (t)
[ ∑
j∈N

(bsji(t)− bsij(t)) + Asi (t)−
fsi (t)

ρs

]}
= U + 1

ε
E
[
L(x(t)(εQ(t)), εQ(t))

]
= U + 1

ε
D(εQ(t)) ≤ U + 1

ε
Φ∗

(4.30)

where L(x(t),λ) is defined in (4.14); x(t)(εQ(t)) is the optimal primal variable as

given by (4.16) (hence, E[L(x(t)(εQ(t)), εQ(t))] = D(εQ(t))); and the last inequality

in (4.30) is due to the weak duality [93].

Summing up all the telescoping series over time slots {0, 1, · · · , T − 1}, (4.30)
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leads to

E[L(T )]− L(0) +
1

ε

∑T−1

t=0
E[Φ(x(t))] ≤ UT +

T

ε
Φ∗. (4.31)

Due to the fact that L(T ) ≥ 0 and L(0) <∞, we have

Φ∗(x(t)) =
1

T
lim
T→∞

∑T−1

t=0
E[Φ(x(t))] ≤ Φ∗ + εU . (4.32)

This concludes the proof.

Theorem 3 reveals that the time-average cost achieved by the centralized on-

line learning converges to within an optimality bound of O(ε), which diminishes

as the stepsize of stochastic gradient descent ε → 0. The stepsize ε accounts for

the convergence time of the proposed online learning. Given the stepsize ε, the

convergence time of stochastic gradient descent linearly increases with O(1/ε) [94].

The typical [O(1/ε),O(ε)]-tradeoff between convergence time and optimality loss in

terms of the stepsize ε indicates that an O(1/ε) convergence time allows for an O(ε)

close-to-optimal cost.

4.3.2 Asymptotic Optimality of Distributed Online Learning

We proceed to prove that the 1
2
-approximation resulting from the distributed

matching heuristic for task offloading and result delivery can be compensated and

asymptotically diminish by decreasing the stepsize of stochastic gradient descent in

online learning. Let x(t) = {l(t),b(t),d(t), f(t)} denote the optimal solutions under

the centralized online learning in Section 4.2.2, and x̂(t) = {̂l(t), b̂(t), d̂(t), f̂(t)}

denote the solutions achieved by the proposed distributed online learning approach

in Algorithm 3. We can establish that the per-slot optimality loss resulting from

the 1
2
-approximation, is upper bounded and asymptotically diminishes, as stated in

the following theorem.

Theorem 4. The per-slot optimality loss, resulting from the 1
2
-approximation for

distributed task offloading and result delivery, is upper bounded, i.e.,

Φ(x(t))− Φ(x̂(t)) ≤ εB. (4.33)
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where B = (N+MK)
4

CmaxQmax is a constant. Here, Cmax = maxi,j{Cmax
ij } is the

maximum link capacity across the network, and Qmax = maxi,s,t{Qs
i (t), D

s
i (t)} is the

maximum backlogs of unprocessed tasks and results at all the nodes, constrained by

the physical memory of the devices.

Proof. The computing resource allocations given by (4.19) are invariant in the 1
2
-

approximation solution, i.e., f(t) = f̂(t). As a result, the per-slot optimality loss

comes from the 1
2
-approximation decomposition from (4.25) to (4.26), i.e.,

Φ(x(t))− Φ(x̂(t)) = η
(
b(t),d(t), l(t)

)
− η
(
b̂(t), d̂(t), l̂(t)

)
≤ 1

2
W (l∗(t)).

(4.34)

Note that the maximum number of active links in graph G′(t) is |V
′|

2
= N+MK

2
, and

wij(t) ≤ εCmaxQmax. Hence, we have W (l∗(t)) ≤ εN+MK
2

CmaxQmax, and (4.33) can

be proved by substituting this upper bound of W (l∗(t)) into (4.34).

From Theorems 3 and 4, we can assert that the optimality loss, resulting from the

1
2
-approximation decomposition for distributed online learning, is upper bounded

and can asymptotically diminish, as the stepsize of stochastic gradient descent ε

decreases, i.e.,

Φ∗(x̂(t))− Φ∗ ≤ ε(U +B). (4.35)

That is to say, online learning can make up for the optimal loss resulting from the

distributed graph matching heuristic.

4.4 Simulation Results and Analysis

In this section, we evaluate the proposed distributed online learning of fog com-

puting with N = 20 devices and M = 2 edge servers, where we run 5000 slots with

slot length T = 50ms for the simulations of each data point. The CPU capacity of

the devices is uniformly distributed from 2 to 4GHz, and the CPU capacity of the

edge servers is 20GHz. The CPU powers of the devices and edge servers are 1W and

10W, respectively. The background task varies randomly and uniformly from 0 to
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Table 4.2 : Simulation Parameters

Parameters Values

Slot length, T 50ms

Number of device, N 20

Number of edge server, M 2

Maximum transmissions, K 3

Computing capacity of device/edge server 2-4/20GHZ

Computing power of device/edge server 1/10W

Link capacity 5-15Mbps

Transmission powers for D2D/edge server 23/33dBm

Task arrival, Ai(t) 4Mbits/sec

CPU cycles required for processing a task bit 2000cycles/bit

Ratio of results to tasks, ξi 0.5

40% per time slot. Each device is connected to 6 other devices and is in the coverage

of both edge servers. Each edge server can maintain up to K = 3 communication

links with the devices per slot. The link capacity varies randomly and uniformly

from 5 to 15Mbps, and the transmission powers between the devices, and between

the devices and edge servers, are 23dBm and 33dBm, respectively.

The tasks only arrive at 5 out of 20 devices to model the spatial variations of task

arrivals, where Ai(t) is 4Mbits/sec, ρi = 2000cycles/bit and ξi = 0.5. The stepsize

of the stochastic gradient descent is set as ε = 1/80; unless otherwise specified.

Synthetic data are used for the simulations. The parameters of the synthetic dataset

are taken from the state of the art [18, 19, 21], for fair comparisons between the

proposed approach and the state of the art. Table 4.2 summarizes the parameters

used in the simulation.

For comparison purpose, we also simulate four other approaches: (a) local execu-

tion approach (denoted by “Local” in the simulation), where the devices buffer and

execute all the tasks locally; (b) edge computing approach (denoted by “Edge”),

where the devices can only offload tasks to the edge servers for processing, as in

MECO [16–18, 67, 69, 70, 75–78], and do not offload tasks to each other; (c) peer-

to-peer fog computing approach [19, 21, 79–82] (denoted by “Fog”), where each
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(b) Energy efficiency

Figure 4.4 : The comparing of the system throughput and energy efficiency between
the proposed approach and the existing benchmarks, as Ai(t) increases from 1.2 to
7Mbits/sec.

device only offloads its tasks to its peers (i.e., neighboring devices) for processing,

and does not offload tasks to the edge servers; and (d) centralized online learning ap-

proach (denoted by “Proposed, Centralized”), where the optimal task offloading and

result delivery is solved by using the Edmonds’ blossom algorithm with the global

view at a central controller, hence offering little scalability to large-scale networks.

As compared to the proposed approach, the task offloading are confined to either

from devices to edge servers in the edge computing approach, or among devices in

the peer-to-peer fog computing. The decisions on network operations in the edge

computing, peer-to-peer fog computing, and the proposed centralized online learn-

ing approaches are all based on the online learning approach derived in Section 4.2,

with the proved optimality in Theorem 3.

Fig. 4.4 compares the stabilized system throughput and energy efficiency be-

tween the proposed distributed online learning, local execution approach and edge

computing approach, where the task arrival Ai(t) increases from 1.2 to 7Mbits/sec.

We can see in Fig. 4.4(a) that, by unifying the computing resources at the near-

by devices and edge servers, the proposed distributed online learning can process

all the arrived tasks and its system throughput linearly increases to 35Mbps with

the growth of task arrivals. Edge computing approach can process all the tasks

under light traffic conditions, i.e., Ai(t) ≤ 4.4Mbits/sec, but with the increase of
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task arrivals, the system throughput of the edge computing approach stabilizes at

22Mbps after exhausting all the computing resources at the edge servers and the

five devices with task arrivals. The proposed approach is able to increase up to

59% system throughput, as compared to the edge computing approach. Similar to

the edge computing approach, the peer-to-peer fog computing approach can achieve

up to 24Mbps system throughput after using up the computing resources at all

the 20 mobile devices. The local execution approach undergoes the lowest system

throughput by only processing tasks locally, and attains an energy efficiency of

1.2Mbits/Joule under different task arrivals, as shown in Fig. 4.4(b).

We can also see in Fig. 4.4(b) that the energy efficiencies of the proposed dis-

tributed online learning and peer-to-peer fog computing approaches only slightly

drop, are higher than that of the local execution approach when Ai(t) ≤ 4Mbits/sec,

and decline almost linearly when Ai(t) > 4Mbits/sec. This is because, under light

traffic conditions, the tasks arriving at the inexpensive IoT devices are offloaded via

the energy-efficient communication links between proximate devices, and processed

at the powerful devices (e.g., smart phones and laptops) with high energy efficiency.

The energy efficiency of the edge computing approach declines almost linearly with

the increase of task arrivals when Ai(t) ≤ 4.4Mbits/sec due to the additional energy

consumption for task offloading and processing at edge server. The proposed ap-

proach can be up to 43% more energy-efficient than the edge computing approach

under the same system throughput when Ai(t) = 4.4Mbits/sec. After reaching

their maximum system throughputs, the energy efficiencies of the edge computing

and peer-to-peer fog computing only slightly decline with the growth of task ar-

rivals. This is because the system becomes increasingly unstable and additional

energy consumption is required for task offloading with the increase of their system

throughput; see Fig. 4.4(a).

Fig. 4.5 evaluates the stabilized energy efficiency achieved by the proposed dis-

tributed online learning and the other approaches, as N increases from 5 to 30, where

Ai(t) = 4Mbits/slot. In the case of Ai(t) = 4Mbits/slot, the proposed distributed

online learning and edge computing approaches can process all the tasks, as shown in
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Figure 4.5 : The stabilized energy efficiency of the proposed distributed online
learning and the other approaches, as the number of devices N increases from 5 to
30.

Fig. 4.4. We can see in Fig. 4.5 that the energy efficiencies of the local execution and

edge computing approaches are 1.2 and 0.83Mbits/Joule, regardless of the number of

devices. On the other hand, with the increase of N , the proposed distributed online

learning and the centralized online learning can exploit the increasingly available

computing resources at nearby devices, and hence their energy efficiencies linearly

increase when N ≤ 17. After that, their energy efficiencies stabilize at the values

around 1.08Mbits/Joule, since the computing resources at nearby devices are al-

ready sufficient for processing the tasks under Ai(t) = 4Mbits/slot. Note in Fig. 4.5

that there exists a small gap of energy efficiency between the proposed distributed

online learning and the centralized online learning, i.e., the optimality loss result-

ing from the 1
2
-approximation for distributed task offloading and result delivery, as

described in Section 4.3.

Fig. 4.6 plots the stabilized system energy consumption of the proposed dis-

tributed online learning, the edge computing approach, and the centralized online

learning, as the reciprocal of the stepsize of stochastic gradient descent, i.e., 1/ε

increases from 40 to 140. We can see that the the system energy consumptions of

the proposed distributed online learning decrease with the increase of 1/ε, and sta-

bilize when 1/ε ≥ 100. The optimality gap between the proposed distributed online

learning and the centralized online learning (as also shown in Fig. 4.5) diminishes
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Figure 4.6 : The stabilized system energy consumption versus the reciprocal of the
stepsize of stochastic gradient descent, 1/ε.

Figure 4.7 : The convergence of the Lagrange multipliers of the proposed distributed
online learning and the centralized online learning as t evolves.

with the decrease of ε. This validates the asymptotic optimality of the proposed dis-

tributed online learning under the 1
2
-approximation for distributed task offloading

and result delivery, as dictated in Section 4.3.

Fig. 4.7 shows the change of the Lagrange multipliers of the proposed distributed

online learning and the centralized online learning, as t increases from 0 to 2000 time

slots. We can see in Fig. 7 that the values of the Lagrange multipliers of both the

proposed distributed online learning and the centralized online learning first increase

and then stabilize at the same value over time. It is also worth mentioning that in

the case of 1/ε = 80, the Lagrange multipliers of the proposed distributed and

centralized approaches are fluctuant after convergence, due to the large ε. Given ε,
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Figure 4.8 : The running times of the proposed distributed and centralized online
learning approaches, as the numbers of devices and edge servers increase.

the convergence times of the proposed distributed online learning and its centralized

counterpart are similar. With the decrease of the stepsize from 1/ε = 80 to 1/ε =

120, the online learning approaches require increasingly long convergence times to

stabilize the system, but can reduce the energy consumptions, as shown in Fig. 4.6.

This is the typical [O(1/ε),O(ε)]-tradeoff between convergence time and optimality

loss in stochastic gradient descent, as discussed in Section 4.3.

Fig. 4.8 shows the running times of the proposed distributed and centralized

online learning approaches, as the numbers of devices and edge servers increase.

Particularly, the running time of the proposed distributed online learning approach

only increases linearly to the numbers of devices and edge servers, while the running

time of its centralized counterpart increases quadratically. As a result, when the net-

work scales, the running time of the proposed distributed approach can be as much

as 96% lower than that of its centralized counterpart. The 96% saving of running

time is due to the significantly lower time-complexity which the proposed distributed

algorithm requires to solve a suboptimal, 1
2
-approximation solution for (4.25) than

its centralized counterpart requires to use the Edmonds’ blossom algorithm to solve

an optimal solution for (4.25). The loss of the optimality can diminish by extending

the learning time, and the distributed approach can also asymptotically approach

the global optimum, as validated in Figs. 4.6 and 4.7.
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Figure 4.9 : The CDF of the task execution delays of the proposed distributed
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size of tasks under heavy-traffic scenario, hence resulting in unstable task queues
and unbounded queuing delays (increasing with the simulation durations and hence
the CDF of local execution approach under heavy-traffic scenario is not plotted).

Fig. 4.9 plots the cumulative distribution function (CDF) of the task execution

delays of the the proposed distributed online learning approach and local execu-

tion approach under light-weight and heavy traffic scenarios. In the light-weight

scenario with Ai(t) = 1.2Mbits/sec, the proposed distributed online learning ap-

proach experiences longer task execution delays than the local execution approach,

due to the additional time for task offloading and processing remotely, but achieves

higher energy efficiency as shown in Fig. 4.4. With the growth of traffic arrivals,

the task execution delays of the proposed approach under the heavy-traffic scenario

with Ai(t) = 5Mbits/slot is longer than that under light-weight scenario, since tasks

need to be offloaded increasingly to devices hops away for processing. Note that the

local execution approach cannot process the large size of tasks under heavy-traffic

scenario, hence resulting in unstable task queues and unbounded queuing delays

(increasing with the simulation durations and hence the CDF of local execution

approach under heavy-traffic scenario is not plotted.) It is worth mentioning that

the maximum difference of the task execution delays of the proposed approach can

be more than 100 slots under the heavy traffic scenario. The variations of the task

delays result in the unfairness of the proposed approach, as will be discussed in

Section 4.5.

Fig. 4.10 plots the stabilized energy efficiency of the proposed distributed online
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Figure 4.10 : The stabilized energy efficiency of the proposed distributed online
learning approach and the local execution approaches, as the slot length T increases
from 20 to 500ms.

learning approach and the local execution approach, as the slot length T increases

from 20 to 500ms. We can see in Fig. 4.10 that the energy efficiency of the local

execution approach is always 1.2Mbits/Joule, as already shown in Figs. 4.4(b) and

4.5. In contrast, the energy efficiency of the proposed distributed online learning

approach only slightly declines when T ≤ 100, and then linearly decreases with

the growth of T . This is because a shorter slot length T can provide a finer time

resolution for decision-makings on task offloading and processing, and result delivery,

thereby achieving more efficient use of system energy.

4.5 Discussion on Delay-Sensitive Tasks

For illustration convenience, we assume all tasks are of the same priority, and

the queues operate on a simple FIFO basis. This may cause unfairness (i.e., the

variations of task delays), as a head-of-line (HOL) task of a queue can be offloaded,

become the bottom of another FIFO queue, and hence undergoes a significantly

increased queuing delay, as shown in Fig. 4.9.

The proposed approach can be extended to capture the execution delays and

fairness (i.e., the delay variations) of the tasks by setting priority queues with metic-

ulously designed weights. Specifically, we can design the weight of a task (and its

corresponding result) to be the age of the task (in time slots). The age of the task
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grows until the delivery of the result. All the queues operate as priority queues,

where tasks can be arranged in the descending order of task age and the oldest

tasks are placed at the HOL. The priority queues would not affect the asymptotic

optimality of the proposed approach. This is because the proposed approach only

depends on the Lagrange multipliers (or in other words, the queue lengths) which

are unaffected by the changing order of the tasks within the queues.

The proposed approach can also be extended to a general scenario, where tasks

have different priorities and high-priority tasks require short delays. By using pri-

ority queues, the weight of a task (and its corresponding result) is the priority of

the task. As a result, a high-priority task/result can be placed at the HOL of the

queue to expedite the process. The delay of high-priority tasks can be substantially

reduced, and their QoS can be improved.
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Chapter 5

Distributed Online Optimization of Fog

Computing for Internet-of-Things

under Finite Device Buffers

Lyapunov optimization has shown to be effective for online optimization of fog com-

puting, asymptotically approaching the optimality only achievable off-line. However,

it is not directly applicable to the Internet-of-Things, as inexpensive sensors have

small buffers and cannot generate sufficient backlogs to activate the optimization.

This chapter proposes an enabling technique for the Lyapunov optimization to op-

erate under limited finite buffers of data sources, i.e., the practical IoT devices,

without loss of asymptotic optimality. This is achieved by optimizing the biases (al-

so known as “virtual placeholders”) of individual queues to create sufficient queue

differences to drive data to flow. The key contributions of the chapter are beyond

the direct application of Lyapunov optimization, and can be summarized as follows.

• We cast the Lyapunov optimization problem for distributed online optimiza-

tion of fog computing subject to the limited buffers of IoT devices. The asymp-

totic optimality of the solution is proved, provided there are sufficient queues

differences to drive the optimization.

• We optimize the virtual placeholders of all queues to create sufficient queue

differences and drive Lyapunov optimization to operate under limited finite

buffers. The optimization of the virtual placeholders is proved to be a new

three-layer shortest path problem, and solved in a distributed manner by ex-

tending the celebrated Bellman-Ford algorithm.

• The sizes of the optimal virtual placeholders decline fastest along the shortest

paths from the IoT devices through edge servers to the data center, thereby
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Figure 5.1 : The application of fog computing in IoT networks.

preventing unnecessary detours and reducing end-to-end delays.

• Corroborated by simulations, the Lyapunov optimization would require V ≥

200 to achieve the asymptotic optimality. The proposed approach is able to

operate under such large V values, while the direct application of the Lyapunov

optimization stops working for V ≥ 20. Moreover, our approach can reduce

end-to-end delays by 90%, as compared to the direct application of Lyapunov

optimization, even when V = 5.

5.1 System Model

Fig. 5.1 illustrates the application of fog computing in IoT networks, where

a number of IoT devices, connected to an edge cloud through wireless interfaces,

produce big data destined for a data center. The system consists of three types of

nodes, namely, IoT devices, edge servers, and a data center. A large number of IoT

devices with heterogeneous interfaces to an edge cloud generate large amounts of

data destined for the data center (or sink) for big data analytics and services. Edge

servers, such as base stations, access points, switches, routers, and gateways in the

edge cloud, can collaborate for fog computing, by processing data at the point of

capture and delivering results to the data center.

Let N = {0, . . . , N} collect the indexes for the data center and edge servers,

where the data center is labeled by index 0 and the N edge servers are labeled from

1 to N . Let M = {1, . . . ,M} collect the indexes for the IoT devices, and Mi denote
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the set of the IoT devices connected to edge server i. The system operates on a

slotted basis with slot length T .

5.1.1 Network Model and Cascaded Queues

We consider a data queue Dm(t) with maximum buffer size Dmax at each IoT

device m to buffer sensory data, and an unprocessed data queue Qi(t) and a pro-

cessed result queue Ri(t) at each edge server i to buffer the data and results at the

edge server.

Fig. 5.1 also illustrates the data flows in the edge cloud. From bottom to top,

the sensory data can be uploaded from the buffers Dm(t) of the IoT devices to the

queues of unprocessed data Qi(t) at the edge servers. The unprocessed data can be

offloaded to the queues of unprocessed data at its neighboring servers, or processed

and placed into the result queue Ri(t). Any results are forwarded hop-by-hop to the

data center.

A. Data arrival and uploading at the IoT devices

The size of data, arriving at data queue Dm(t) during time slot t, denoted by

Am(t), is assumed to be independent and identically distributed (i.i.d.)∗ and upper

bounded by Amax
m . The sensory data in Dm(t) can be uploaded to the edge cloud via

wireless links. In the presence of background traffic, the number of subchannels at

edge server i available for the IoT devices during slot t, denoted by Ki(t) ≤ L, can

vary between time slots. Multiple IoT devices can be scheduled within a subchannel

via time-division multiplexing. The wireless links are assumed to undergo i.i.d.

block fading, i.e., the channels remain unchanged during a time slot and can vary

between slots. Let cm(t) denote the channel capacity in the uplink of IoT device m

at slot t, and εm denote the cost for transmission per unit time, e.g., the transmit

∗In many cases, the assumption of i.i.d. data size is reasonable, since the data are sensed
from the ambient enviroment of devices. The assumption can be relaxed to be non-i.i.d., e.g., by
adopting a Discrete-Time Markov Chain (DTMC) analysis [31]. This can be achieved by extending
the one-slot drift ∆(t) in (5.14) to a T -slot drift, i.e., ∆T (t) = E[L(t + T ) − L(t)], as discussed
in [31]. By aggregating multiple non-i.i.d. slots (e.g., the recurrence time of a state in the DTMC),
the stochastic process of Lyapunov drift between different T slots can be proved to be i.i.d. at the
interval of T slots.
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power in terms of energy consumption. cm(t) ≤ cmax. cmax is the upper bound of

the link capacity, given the finite transmit power of the device.

B. Data dispatch, processing and result delivery in the edge cloud

The uploaded data can be partitioned, processed and dispatched among multiple

servers. The topology of the edge servers and the data center can be described by

a graph G = {N,E}. Let E collect the wired links between the edge servers.

The capacity of each wired link remains unchanged within a slot, and may change

between slots due to random background traffic. The capacity of link (i, j) at slot t,

denoted by Cij(t) ∈ (0, Cmax
ij ], accounts for the bi-directional transmission between

edge servers i and j. εij(t) denotes the cost of transmitting a bit of data from server

i to server j with εminij ≤ εij(t) ≤ εmax
ij .

Let F̂i (in CPU cycles per second) denote the computing capability of server i,

and δi(t) denote the percentage of background tasks of the server during slot t. The

available computing capacity of the server is Fi(t) = [1− δi(t)]F̂iT . Let εi(t) denote

the computing cost of server i per CPU cycle with εmini ≤ εi(t) ≤ εmax
i .

5.1.2 Causality Constraints and Queue Dynamics

Over the wireless links, τm(t) denotes the scheduled transmission duration of

IoT device m during slot t. Since a typical IoT device is inexpensive, simple and

narrow-band [103], it can only access a subchannel at the same time, satisfying

0 ≤ τm(t) ≤ T , ∀m ∈M; (5.1)

∑
m∈Mi(t)

τm(t) ≤ Ki(t)T , ∀i ∈ N, (5.2)

where (5.1) indicates that a narrow-band IoT device can only be allocated part

of a subchannel; and (5.2) ensures that the total transmission time of the devices

must not exceed the number of available subchannels, i.e., Ki(t), for each edge

server i within a slot. The amount of data uploaded from IoT device m to it-

s connected edge server i, denoted by dm(t), is proportional to the transmission

duration, and upper bounded by the available buffering data at the device, i.e.,
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dm(t) = min{Dm(t), cm(t)τm(t)}. Hence, Dm(t) satisfy the following causality con-

dition:

Dm(t+ 1) = [Dm(t)− dm(t)] + min{Am(t), Dmax −Dm(t) + dm(t)}, (5.3)

where min{Am(t), Dmax−Dm(t) + dm(t)} gives the size of the new data that can be

admitted at slot t with the maximum buffer size Dmax. This is different from the

setting of most Lyapunov optimization designs [18, 19, 21, 82].

In the edge cloud, fi(t) is the computing resources of edge server i allocated to

process data at slot t, satisfying

0 ≤ fi(t) ≤ Fi(t), ∀i ∈ N. (5.4)

Per time slot t, let bij(t) denote the volume of data forwarded from server i to

server j, and rij(t) denote the volume of results dispatched from server i through

server j to the data center. Since the total amount of data and results delivered over

a link cannot exceed the link capacity, it is easy to establish the following causality

constraint:

bij(t) + rij(t) + bji(t) + rji(t) ≤ Cij(t), ∀(i, j) ∈ E;

bij(t) ≥ 0, rij(t) ≥ 0, ∀(i, j) ∈ E.
(5.5)

As a result, the backlog of unprocessed data at edge server i, Qi(t), can be

updated per time slot t, according to

Qi(t+ 1) = max{Qi(t)− fi(t)/ρ−
∑

j∈N
bij(t), 0}+

∑
j∈N

bji(t) +
∑

m∈Mi

dm(t),

(5.6)

where fi(t)/ρ gives the volume of processed data output from the queue of server

i, ρ is the number of CPU cycles for processing a bit of data, and
∑

m∈Mi
dm(t) is

the number of data uploaded from the IoT devices at slot t. The first term on the

right-hand side (RHS) of (5.6) accounts for the data in the queue at the end of time

slot t, after part of the data have been processed at server i or dispatched to other

servers. The second and the third terms account for new data dispatched from other
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servers or uploaded from the IoT devices, respectively.

Likewise, the backlog of results at server i, Ri(t), can be updated as given by

Ri(t+ 1) = max{Ri(t)−
∑

j∈N
rij(t), 0}+

∑
j∈N

rji(t) + ξfi(t)/ρ, (5.7)

where ξfi(t)/ρ is the size of results injected into the queue via data processing,

and ξ is the ratio of a result to its unprocessed data in terms of size. Note that

R0(t) = 0 ∀t, since the data center acts as the sink of data.

The system is stable, if and only if the following is met [31]

Dm(t) <∞, Qi(t) <∞, Ri(t) <∞, ∀i,m, (5.8)

where X(t) = limT→∞
1
T

∑T−1
τ=0 E[X(τ)] denotes the time-average of a stochastic

process X(t).

5.2 Fog Computing under Large IoT Buffers

5.2.1 Problem Statement and Reformulation

We take cost as a generic measure of the performance of fog computing. The

total cost can be written as

ϕ(t) =
∑

m∈M
εmτm(t) +

∑
i,j∈N

ϕij(t) +
∑

i∈N
ϕi(t), (5.9)

where ϕij(t) = εij(t)(bij(t) + rij(t)) and ϕi(t) = εi(t)fi(t) are the costs for data dis-

patch over link (i, j) and data processing at edge server i at time slot t, respectively.

Considering the stochastic nature of wireless channels, data arrivals and back-

ground traffic, we are interested in minimizing the overall time-average system cost

while preserving the stability of the network. The problem of interest can be for-

mulated as

min
X
ϕ(x(t))

s.t. (5.1)–(5.8), ∀t,
(5.10)
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where x(t) = {τm(t), fi(t), bij(t), rij(t), ∀m, i, j} collects all the variables in regards

of the data uploading, processing, dispatch, and result delivery at time slot t, and

X collects the variables across all time slots.

Minimizing the time-average cost of fog computing over an infinite time horizon

in (5.10) is challenging. In particular, the variables are coupled in time due to the

queue dynamics (5.3), (5.6) and (5.7). The queue backlogs in (5.6) and (5.7) can also

result in strong couplings of variables in space. For instance, the processing decisions

of downstream edge servers depend on the output of their upstream counterparts,

i.e., the optimal decisions of different edge servers are coupled.

The Lyapunov optimization is a widely adopted stochastic optimization tech-

nique to decouple temporally and spatially coupled variables and derive asymptoti-

cally optimal solutions, which has been extensively used for smart grid [104], network

function virtualization [20], and fog computing [18, 19, 21, 82]. It is designed to min-

imize an upper bound of a drift-plus-penalty function at each slot, and proved to

achieve an [O(V ),O(1/V )]-tradeoff between the drift (i.e., the queue lengths) and

the penalty (i.e., the time-average cost to be minimized).

By applying the Lyapunov optimization, problem (5.10) can be reformulated as

max
f(t),b̃(t),r̃(t),τ (t)

g(f(t)) + φ(b̃(t), r̃(t)) + η(τ (t))

s.t. (5.1), (5.2), (5.4), (5.5);

(5.11)

where τ (t) = {τm, ∀m ∈ M}, f(t) = {fi(t), ∀i ∈ N}, b̃(t) = {bij(t), bji(t), ∀i, j ∈

N}, and r̃(t) = {rij(t), rji(t), ∀i, j ∈ N} are the decisions of data uploading, pro-

cessing, dispatch, and result delivery, respectively; and

g(f(t)) =
∑

i∈N
[(Qi(t)− ξRi(t))/ρ− V εi(t)]fi(t); (5.12a)

φ(b̃(t), r̃(t)) =
∑

i,j∈N
Qi(t)[bij(t)− bji(t)]

+Ri(t)[rij(t)− rji(t)]− V εij(t)(bij(t) + rij(t));

(5.12b)

η(τ (t)) =
∑

i∈N,m∈Mi

[Dm(t)−Qi(t)]dm(t)− V εmτm(t). (5.12c)
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Here, V is a predefined non-negative coefficient to adjust the tradeoff between the

queue lengths and the optimality loss (in terms of the time-average cost).

Proof. A quadratic Lyapunov function L(t) can be defined as [31]

L(t) =
1

2
{
∑

i∈N
[Qi(t)

2 +Ri(t)
2] +

∑
m∈M

Dm(t)2}. (5.13)

A drift-plus-penalty function can be defined to minimize the time-average system

cost while preserving the system stability, as given by

∆V (t) = ∆(t) + V E [ϕ(t)] , (5.14)

where E [ϕ(t)] is the expectation of system cost at slot t. The upper bound of ∆V (t)

is given in the following Lemma.

Lemma 3. For any queue backlogs and actions, ∆V (t) is upper bounded by

∆V (t) ≤ U + V E [ϕ(t)] +
∑
m∈M

Dm(t)E[Am(t)− dm(t)]

+
∑
i∈N

Qi(t)E[
∑
m∈Mi

dm(t)− fi(t)/ρ+
∑
j∈N

(bji(t)− bij(t))]

+
∑
i∈N

Ri(t)E[ξfi(t)/ρ+
∑
j∈N

(rji(t)− rij(t))],

(5.15)

where

U =
1

2
{[
∑
i∈N

(ξ + 1)F̂i/ρ+MTcmax +
∑
i,j∈N

Cmax
ij ]2 + [

∑
m∈N

(Amax
m )2 + (cmaxT )2]}.

(5.16)

Proof. Taking squares on both sides of (5.3), (5.6) and (5.7), and then exploiting

the inequality for (max[a− b, 0] + c)2 ≤ a2 + b2 + c2 + 2a(c − b) for any a, b, c ≥ 0,
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and Dm(t+ 1) ≤ Dm(t)− dm(t) + Am(t), we can obtain

Dm(t+ 1)2 −Dm(t)2 ≤ Am(t)2 + dm(t)2 + 2Dm(t)[Am(t)− dm(t)]; (5.17a)

Qi(t+ 1)2 −Qi(t)
2 ≤ [fi(t)/ρ+

∑
j∈N

bij(t)]
2 + [

∑
j∈N

bji(t) +
∑

m∈Mi

dm(t)]2

+ 2Qi(t)[
∑
j∈N

(bji(t)− bij(t)) +
∑
m∈Mi

dm(t)− fi(t)/ρ];

(5.17b)

Ri(t+ 1)2 −Ri(t)
2 ≤ [

∑
j∈N

rji(t) + ξfi(t)/ρ]2

+ [
∑
j∈N

rij(t)]
2 + 2Ri(t)[ξfi(t)/ρ+

∑
j∈N

(rji(t)− rij(t))].
(5.17c)

Plugging (5.17) into (5.14), we can achieve (5.15) with U satisfying

2U ≥
∑
m∈N

E[Am(t)2 + dm(t)2] +
∑
i∈N

E{[fi(t)/ρ+
∑
j∈N

bij(t)]
2

+ [
∑

j∈N
bji(t) +

∑
m∈Mi

dm(t)]2 + [
∑

j∈N
rij(t)]

2 + [
∑

j∈N
rji(t) + ξfi(t)/ρ]2}.

(5.18)

Exploiting the inequality (
∑

i ai)
2 ≥

∑
i a

2
i for ∀ai ≥ 0, (5.16) provides an upper

bound for (5.18) by replacing the expectations with their maximums. This concludes

the proof.

From Lyapunov optimization, (5.10) can be transformed to minimizing (5.15)

at each time slot t, subject to the instantaneous constraints (5.1), (5.2), (5.4) and

(5.5). By rearranging (5.15), this problem can be rewritten as (5.11), where both U

and Am(t) are independent of the optimization variables and suppressed.

It is non-straightforward for the solution of (5.11) to asymptotically achieve the

optimality of (5.10) though. This is because the limited finite buffers of practical

IoT devices Dmax typically cannot satisfy the condition of asymptotic optimality in

Lyapunov optimization, i.e., V � 0. In other words, the bounded queues of the IoT

devices are typically not long enough to approach the optimality. As a matter of

fact, Dmax can be much shorter than the queues at the edge servers, and can even

prevent the IoT devices from uploading data and the direct application of Lyapunov
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optimization from functioning. We propose to set up biases to enlarge the queues

of individual devices, thereby not only enabling the Lyapunov optimization but also

achieving optimality asymptotically.

5.2.2 Distributed Online Optimization under Large IoT Buffers

The reformulation from (5.10) to (5.11) is a direct application of Lyapunov op-

timization. Nevertheless, (5.11) provides a new and specific problem and requires

specific solutions, as developed in this subsection. We observe in (5.11) that the

decisions on data processing, the decisions on data dispatch and result delivery, and

the schedules of IoT data uploading are ready to be decoupled. g(f(t)) can be max-

imized subject to (5.4) for data processing; φ(b̃(t), r̃(t)) can be maximized subject

to (5.5) for data dispatch and result delivery; and η(τ (t)) can be maximized subject

to (5.1) and (5.2) for the schedules of data uploading.

A. Data Processing, Dispatch, and Result Delivery

From (5.12a), the optimization of computing resources can be decoupled between

edge servers, as given by

max
fi(t)

[(Qi(t)− ξRi(t))/ρ− V εi(t)]fi(t) s.t. (5.4), (5.19)

which is linear programming of weighted-sum maximization problem [99], and its

optimal solution can be given by

fi(t) =

 Fi(t), if (Qi(t)− ξRi(t))/ρ− V εi(t) > 0;

0, otherwise.
(5.20)

From (5.12b), the optimization of data dispatch and result delivery can be de-

coupled between links, and the problem for link (i, j) can be rewritten as

maxb̃ij(t),r̃ij(t) φij(b̃ij(t), r̃ij(t)) s.t. (5.5), (5.21)

where φij(b̃ij(t), r̃ij(t)) = βij(t)bij(t) + βji(t)bji(t) + γij(t)rij(t) + γji(t)rji(t) can be
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Algorithm 4 Online Optimization at Edge Servers

For each server i at every time slot t:
1: Acquire Fi(t), εi(t), and εij(t)
2: Observe the queues of its own and immediate neighbors
3: Allocate computing resources according to (5.20)
4: Schedule data dispatch and result delivery based on (5.22)

obtained by decoupling (5.12b) between links; βij(t) = Qi(t)−Qj(t)− V εij(t); and

γij(t) = Ri(t)−Rj(t)− V εij(t).

Here, (5.21) is also a weighted-sum maximization [99], and its optimal solution

can be obtained by evaluating the weights βij(t), βji(t), γij(t) and γji(t) at edge

servers i and j independently. If max{βij(t), γij(t)} < 0 or max{βij(t), γij(t)} <

max{βji(t), γji(t)}, server i remains idle at slot t, i.e., neither dispatching data nor

delivering results on link (i, j). Otherwise, server i occupies the link. Particularly,

if βij(t) > γij(t), server i withholds from delivering results via server j. Instead, it

dispatches data to server j with the data size specified by

bij(t) =

 Cij(t), if βij(t) > γij(t);

0, otherwise.
(5.22a)

If βij(t) ≤ γij(t), server i withholds from dispatching data to server j. Instead, it

delivers results through server j with the result size specified by

rij(t) =

 Cij(t), if βij(t) ≤ γij(t);

0, otherwise.
(5.22b)

From (5.20) and (5.22), we can see that the optimal decisions of data processing,

data dispatch, and result delivery can be made locally at every individual server

in O(1) time-complexity, based on the local information of the server itself and its

immediate neighbors. Algorithm 4 summarizes the decision-making process at each

of the servers.
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B. Data Uploading of IoT Devices

From (5.3), it is clear that device m cannot send more data than the data avail-

able in its buffer at slot t, i.e., τm(t) ≤ Dm(t)/cm(t). Therefore, (5.1) can be

tightened to

0 ≤ τm(t) ≤ Tm(t), ∀m ∈M, (5.23)

where Tm(t) = min{Dm(t)/cm(t), T}. By rearranging (5.12c), each server i can

optimize its own schedule τi(t) for its associated devices in Mi, as given by

max
τi(t)

∑
m∈Mi

αim(t)τm(t) s.t. (5.2) and (5.23), (5.24)

where

αim(t) = [Dm(t)−Qi(t)]cm(t)− V εm. (5.25)

By interpreting αim(t) as the unit profit of the i-th “item” and Ki(t)T in (5.2) as the

capacity of a knapsack, (5.24) becomes the linear relaxation of a knapsack problem.

The optimal solution for the knapsack problem can be found by selecting the “item”

with higher unit profit to fulfill the knapsack capacity [105].

Without loss of generality, we assume that the devices are sorted in the descend-

ing order of unit profit, i.e., αim(t) ≥ αim′(t) for m > m′. The optimal solution is

τ ∗m(t) = Tm(t) if
∑m

j=1 Tj(t) ≤ Ki(t)T . The breaking item is the first device allo-

cated part of its requested transmission duration Tm(t), as specified in (5.23). The

index of the breaking item b can be identified, as given by

b = arg min
m

∑m

j=1
Tj(t) > Ki(t)T . (5.26)

As a result, the optimal uploading schedule of the IoT devices can be given by

τm(t) =


Tm(t), if m < b;

Ki(t)T −
∑b−1

j=1 Tj(t), if m = b;

0, otherwise,

(5.27)

which involves ordering the devices against their unit profits, and can be achieved
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Algorithm 5 Online Optimization at IoT Devices

For each IoT device m at every slot t:
1: Feed back Dm(t), cm(t) and εm(t) to the edge server

For each edge server i at every time slot t:
2: Acquire Ki(t) and Qi(t)
3: Collect feedbacks from IoT devices and evaluate (5.25)
4: Schedule the data uploading of IoT devices by (5.27)

by using the quicksort algorithm with a complexity of O(Mi logMi) [106], where Mi

is the number of IoT devices associated with edge server i. Algorithm 5 summarizes

the proposed algorithm for producing the optimal schedules of IoT data uploading.

Note that (5.27) requires explicit knowledge on cm(t), and Dm(t) for m ∈Mi. In

other words, at each time slot t, each IoT device needs to feed back its link capacity

cm(t) and queue backlog Dm(t), so that the edge server can evaluate τm(t) based on

(5.27). By referring to our recent work [18], Algorithm 5 can be readily extended

to operate based on out-of-date information on cm(t) and Dm(t) to substantially

reduce the feedback.

5.3 Distributed Optimization of Virtual Placeholders for S-

mall IoT Buffers

From (5.20), (5.22) and (5.27), we can see that the data uploading, dispatch,

processing, and result delivery are all driven by the differences of backlogs between

the IoT devices, edge servers, and the data center. It is important to enlarge the

differences of queues along the shortest paths from the IoT devices to the data

center. However, the queue lengths at the IoT devices are practically constrained

by their physical buffers Dmax, which can be much shorter than the queues at the

edge servers. Not only would this prevent achieving the asymptotic optimality of

Lyapunov optimization, but would even prevent the direct application of Lyapunov

optimization from functioning.

We propose to place virtual placeholders (i.e., biases) into the queues, hence vir-

tually enlarging the queues and increasing their differences. We prove that the opti-
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mization of the virtual placeholders can be translated into a new three-layer shortest

path problem, and solved in a distributed manner by extending the Bellman-Ford

algorithm. As a result, the virtual placeholders enable the distributed online opti-

mization of fog computing under small IoT buffers, inviolate the solutions developed

in Section 5.2, and achieve the asymptotic optimality of the solutions.

5.3.1 Optimality and Limitations of Lyapunov Optimization

We show the provisional asymptotic optimality of the solutions developed in

Section 5.2.2, and the bounded instantaneous queue backlogs of the resultant fog

computing system. Let ϕ(t) denote the stochastically minimized time-average cost

based on the solutions, and ϕopt be the cost of (5.10) minimized off-line (in a pos-

teriori manner) by overlooking causality. The gap between ϕ(t) and ϕopt can be

shown to converge with the growth of V , as revealed in the following theorem.

Theorem 5. The gap between ϕ(t) and ϕopt is within O(1/V ), as given by

ϕ(t)− ϕopt ≤ O(1/V ), (5.28)

i.e., ϕ(t) is asymptotically optimal.

Proof. Let π denote any feasible control policy. We have

∆V (t) ≤ U + V E [ϕ(t)|π] +
∑
m∈M

Dm(t)E[Am(t)− dm(t)|π]

+
∑
i∈N

Qi(t)E[
∑
m∈Mi

dm(t)− fi(t)/ρ+
∑
j∈N

(bji(t)− bij(t))|π]

+
∑
i∈N

Ri(t)E[ξfi(t)/ρ+
∑
j∈N

(rji(t)− rij(t))|π].

(5.29)

According to [31], for any σ > 0, there exists at least one randomized stationary
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control policy π∗ (i.e., the policy is independent of the backlogs), such that

E[ϕ(t)|π∗] ≤ ϕopt + σ;

E[Am(t)− dm(t)|π∗] ≤ σ;

E[
∑

m∈Mi
dm(t)− fi(t)/ρ+

∑
j∈N(bji(t)− bij(t))|π∗] ≤ σ;

E[ξfi(t)/ρ+
∑

j∈N(rji(t)− rij(t))|π∗] ≤ σ;

(5.30)

Plugging (5.30) into (5.29) and then taking σ → 0, we have

∆V (t) ≤ U + V ϕopt. (5.31)

Taking expectations on both sides of (5.31), we can obtain

E[L(t+ 1)− L(t)]− V E[ϕ(t)] ≤ U + V ϕopt. (5.32)

Summing up all the telescoping series over {0, 1, · · · , T − 1}, (5.32) leads to

E[L(T )]− E[L(0)] + V
∑T−1

t=0
E[ϕ(t)] ≤ UT + V Tϕopt. (5.33)

Given the fact that E[L(T )] ≥ 0 and L(0) = 0, we have

ϕ(t) =
1

T
lim
T→∞

∑T−1

t=0
E[ϕ(t)] ≤ ϕopt +

U

V
. (5.34)

This concludes the proof.

From Theorem 5, the proposed approach is asymptotically optimal, i.e., the op-

timality gap between the proposed approach and the off-line optimum can asymp-

totically diminish as V increases. We can further show the instantaneous backlogs

of all queues are upper bounded in the following theorem.

Theorem 6. The backlogs of all the queues at the edge servers are strictly bounded
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at each time slot t, i.e., Qi(t) ≤ Qmax
i and Ri(t) ≤ Rmax

i , ∀i, t, as given by

Qmax
i = Dmax −

V εm
cm

+ LTcmax +
∑
j∈Ni

Cmax
ji ; (5.35a)

Rmax
i = [Qmax

i − V ρεi]/ξ + ξF̂i/ρ+
∑
j∈Ni

Cmax
ji , (5.35b)

where Ni collects the immediate neighbors of server i.

Proof. We first prove (5.35a) through mathematical induction. The upper bound

holds at slot 0 due to the fact that Qi(0) = 0. Suppose that the upper bound

holds at slot t. According to (5.25), if Qi(t) ≥ Dm(t)− V εm/cm, dm(t) = 0 and we

have Qi(t + 1) ≤ Qi(t) +
∑

j∈Ni
Cmax
ji . Otherwise, if Qi(t) < Dm(t) − V εm/cm, the

maximum uploaded data at this slot is LTcmax, and hence, Qi(t + 1) ≤ Dm(t) −

V εm/cm+LTcmax +
∑

j∈Ni
Cmax
ji , i.e., the upper bound also holds at slot (t+ 1). By

replacing Dm(t) with its maximum Dmax, the proof of (5.35a) is concluded.

Likewise, we can prove (5.35b) through mathematical induction. (5.35b) holds

for t = 0. We assume that it also holds at slot t. According to (5.20), if Ri(t) ≥

[Qmax
i −V ρεi]/ξ, no data is processed and Ri(t+1) ≤ Ri(t)+

∑
j∈Ni

Cmax
ji . Otherwise,

if Ri(t) < [Qmax
i −V ρεi]/ξ, the result of processed tasks at slot t cannot exceed ξF̂i/ρ,

leading to Ri(t+ 1) ≤ [Qmax
i − V ρεi]/ξ + ξF̂i/ρ+

∑
j∈Ni

Cmax
ji . As a result, (5.35b)

also holds at slot (t + 1). This concludes the proof.

From Theorem 6, the upper bounds of the instantaneous queue backlogs at edge

server i, i.e., Qmax
i and Dmax

i in (5.35), are restrained by the finite IoT buffers Dmax.

Both the upper bounds decrease linearly with V . This is because, from (5.20), (5.22)

and (5.27), the queue differences required for data uploading, processing, dispatch,

and result delivery increase linearly with V . As a consequence, Qmax
i and Rmax

i

would become negative with the increase of V in (5.35), preventing the asymp-

totic optimality in (5.28), or even stopping the proposed approach in Section 5.2

from functioning.
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5.3.2 Virtual Placeholder Design

A virtual placeholder can be rigorously optimized for every queue to establish

sufficient queue differences along the shortest paths from the IoT devices to the data

center. The largest placeholders are placed at the IoT devices, hence making up for

the limited finite buffers of the IoT devices. The placeholders need to satisfy the

following property [107].

Property 1. There exists a non-negative queue backlog vectorQ0 = {Qi,0, Ri,0, Dm,0,

∀i,m ∈Mi(t)}, as such that: if Q(0) � Q0, we have Q(t) � Q0 for all t ≥ 0.

According to Property 1, the placeholders give a threshold (or instantaneous

lower bound) Q0, and once the backlogs of the queues exceed Q0, the backlogs can

by no means fall below Q0. In other words, the virtual placeholders Q0 can be

neither dispatched nor processed while running Algorithms 4 and 5. They are only

used to enlarge the differences between queues to accelerate data processing and

result delivery. Decoupled from the actual backlogs, Q̃i(t), R̃i(t) and D̃m(t) are the

effective backlogs after placing the placeholders into the queues, as given by

Q̃i(t) = Qi(t) +Qi,0, ∀i; (5.36a)

R̃i(t) = Ri(t) + Ri,0, ∀i; (5.36b)

D̃m(t) = Dm(t) +Dm,0, ∀m. (5.36c)

Given the property of the virtual placeholders, Algorithms 4 and 5 can remain

unchanged, except that Qi(t), Ri(t) and Dm(t) are replaced by the effective backlogs

Q̃i(t), R̃i(t) and D̃m(t) in (5.36). The asymptotic optimality proved in Theorem 5

is intact, since the placeholder Q0 at slot 0 does not affect the average utility in the

long term.

The virtual placeholders can be formulated in the following Corollary.
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Corollary 2. Q0 satisfying Property 1 can be given by

Ri,0 =

 0, if i = 0;

max{minj{Rj,0 + ∆ij}, 0}, otherwise;
(5.37a)

Qi,0 = max{minj{ξRi,0 + ∆i, Qj,0 + ∆ij}, 0}; (5.37b)

Dm,0 = max{Qi,0 + ∆i
m, 0}, m ∈Mi; (5.37c)

where ∆ij = V εmin
ij − Cmax

ij ; ∆i = V ρεmin
i − F̂i/ρ; ∆i

m = V εm/c
max − cmaxT ; and

∆ij, ∆i and ∆i
m are restricted by the gap between the minimum cost and maximum

capacity of transmission or processing for the servers and IoT devices, and can be

adjusted by V .

Proof. Note that Ri,0 = 0 satisfies Property 1, since Ri(t) ≥ 0 due to the queue

dynamics in (5.7). Then, we only need to show that Ri,0 = minj{Rj,0 + ∆ij} also

satisfies Property 1 to prove (5.37a). By exploiting (5.22b), we can prove this

through mathematical induction. Suppose that Ri(t) ≥ minj{Rj,0 + ∆ij} holds

at slot t. According to (5.22b), if Ri(t) ≤ minj{Rj,0 + V εmin
ij }, γij(t) ≤ 0 for all

neighboring servers, i.e., Ri(t + 1) ≥ Ri(t), since no result can be dispatched from

server i. Otherwise, if Ri(t) > minj{Rj,0 + V εmin
ij }, the size of results dispatched

from server i cannot exceed the maximum link capacity Cmax
ij , and hence, Ri(t+1) ≥

minj{Rj,0 + ∆ij}. This concludes the proof of (5.37a).

We proceed to prove that Qi,0 = minj{ξRi,0 + ∆i, Qj,0 + ∆ij} satisfies Property

1. Similar to the proof of (5.37a), by exploiting (5.22a), the second term Qi,0 ≤

minj{Qj,0 + ∆ij} can be proved through mathematical induction. For the first

term, suppose that Qi(t) ≥ ξRi,0∆i holds at slot t. According to (5.20), if Qi(t) ≤

ξRi,0 + V ρεmin
i , no data will be processed and Qi(t + 1) ≥ Qi,0(t). Otherwise, if

Qi(t) > ξRi,0 + V ρεmin
i , the processed data cannot exceed F̂i/ρ, and Qi(t + 1) ≥

ξRi,0 + ∆i. This concludes the proof of (5.37b).

Likewise, (5.37c) can be proved by exploiting (5.27) through mathematical in-

duction. Assume that Dm(t) ≥ Qi(t) + ∆i
m holds at slot t. According to (5.27),

if Dm(t) ≤ Qi(t) + V εm/c
max, αim(t) ≤ 0 and device m will not be scheduled, i.e.,
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Dm(t + 1) ≥ Dm(t). Otherwise, if Dm(t) > Qi(t) + εm/c
max, the uploaded data

cannot exceed cmaxT , and hence, Dm(t+ 1) ≥ Qi(t) + ∆i
m. This concludes the proof

of (5.37c).

As shown in Corollary 2, the virtual placeholders increase linearly with V , due

to the linearly increasing ∆ij, ∆i and ∆i
m in (5.37). This can compensate for the

linearly decreasing parts of the instantaneous queue upper bounds in (5.35), since

the effective backlogs of the queues in (5.36) are additively enlarged by the virtual

placeholders. Hence, the proposed distributed online optimization is enabled to

operate under small IoT buffers and achieve asymptotic optimality under large V

values.

5.3.3 Three-layer Shortest Path Problem of Placeholders

The placeholder Dm,0 of device m ∈Mi depends on the data queue placeholder

Qi,0 of its associated edge server i in (5.37c), while Qi,0 of edge server i depends on

the result queue placeholder Ri,0 in (5.37b). By exploiting the optimal substructure

of (5.37), the design of the placeholders can be reformulated as a three-layer shortest

path problem. The detail of the interpretation is discussed in the following.

On the bottom layer, Ri,0 in (5.37a) shares the same optimal substructure as

shortest path problems [108]. Ri,0 requires explicit knowledge on Rj,0 of its neigh-

boring server j, except that R0,0 = 0 is known in prior for the sink at the data

center. As a result, Ri,0 in (5.37a) can be interpreted as the total distance from

server i to the data center, measured by the total of the weights ∆ij on all hops of

the shortest path.

We proceed to replace Qi,0 and Dm,0 with Q̂i,0 = Qi,0/ξ and D̂m,0 = Dm,0/ξ to

transform (5.37b) and (5.37c) as shortest path problems from the nodes on the top

and middle layers to the sink R0,0 on the bottom layer, respectively, as given by

Q̂i,0 = max{minj{Ri,0 + ∆i/ξ, Q̂j,0 + ∆ij/ξ}, 0}; (5.38a)

D̂m,0 = max{Q̂i,0 + ∆i
m/ξ, 0}, m ∈Mi, (5.38b)
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Figure 5.2 : An illustrative example of the three-layer placeholder graph formation.

where, between the layers, Q̂i,0 corresponds to Ri,0 with weight ∆i/ξ for data pro-

cessing; and D̂m,0 is adjacent to Q̂i,0 with weight ∆i
m/ξ for data uploading.

The new three-layer shortest path problem is illustrated in Fig. 5.2, where the

vertexes on the three layers correspond to Ri,0, Q̂i,0 and D̂m,0, respectively. The solid

lines represent data dispatch and result delivery in the edge cloud with weights ∆ij

and ∆ij/ξ, and the dotted lines denote data processing at server i with the weight

∆i/ξ and data uploading from device m with weight ∆i
m/ξ.

The three-layer shortest path problem can be solved by finding the distance

from the data center (i.e., the sink) with R0,0 = 0 to the node of virtual placeholders

on the corresponding layer. The distances from the sink R0,0 = 0 in the three-layer

graph, i.e., Ri,0, Q̂i,0 and D̂m,0, can be obtained through the distributed single-source

shortest path algorithms, such as the celebrated Bellman-Ford algorithm, where an

approximation to the correct distance is gradually improved by more accurate values

until the eventual convergence to the optimum [109]. After the three-layer shortest

path problems are solved, the placeholders Qi,0 and Dm,0 can be finally given by ξQ̂i,0

and ξD̂m,0. Algorithm 6 summarizes the optimization of the virtual placeholders.

We note that the IoT buffers on the top layer have the longest distances to the

sink on the bottom layer (i.e., the data queue of the data center with R0,0 = 0)

in Fig. 5.2. In the new three-layer shortest path optimization, the sizes of virtual

placeholders are based on the distances to the sink, and hence decline fastest along
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Algorithm 6 Distributed Optimization of Virtual Placeholders

1: Construct the three-layer placeholder graph, as illustrated in Fig. 5.2
2: Calculate the distances Ri,0 and Q̂i,0 and D̂m,0 based on distributed Bellman-

Ford algorithm [109]

3: Attain Ri,0 = Ri,0, Qi,0 = ξQ̂i,0 and Dm,0 = ξD̂m,0

4: Obtain the effective backlogs based on (5.36)

the shortest paths from the IoT devices through edge servers to the data center. This

can drive the data to flow along the shortest paths to the sink, hence preventing

unnecessary detours and reducing end-to-end delays.

5.4 Simulation Results

Extensive simulations are carried out to evaluate the new distributed online

optimization of fog computing in a network of N = 50 servers organized in a complete

ternary tree. The root is the data center, each of the 33 leaf nodes (i.e., edge servers)

is connected to N = 100 IoT devices, and the others act as intermediate edge servers

(such as gateways, routers and switches) without IoT connections. For each IoT

device, sensory data are queued in a buffer with the size of Dmax, and the data arrival

follows a uniform distribution from 0.5 to 1.5Mbits [18]. There are L subchannels

per edge server for IoT transmissions. L follows a uniform distribution between

10 and 20; unless otherwise specified. The capacity per subchannel is randomly

and uniformly distributed from 125 to 250kbps, accounting for background traffic

and time-varying channels [18]. The transmit power of an IoT device is 23dBm.

The computing capacity of an edge server ranges from 3 to 15GHz with background

computing task uniformly distributed from 0 to 40% [21]. The link capacity between

servers randomly and uniformly ranges from 10 to 30Mbps. 10000 slots are simulated

for each data point.

For comparison purpose, we also simulate: (a) a benchmark approach (denoted

by “Benchmark”) which schedules IoT devices in a round-robin manner and all the

data uploaded from the IoT devices are dispatched to the data center for processing,

as typically done in traditional cloud computing; and (b) the direct application of
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Figure 5.3 : The steady-state system throughput and cost as the parameter V
increases from 1 to 250. Note that the proposed direct application of Lyapunov
optimization cannot operate for V ≥ 20 in Fig. 5.3(a), and hence incurs no cost in
Fig. 5.3(b).

Lyapunov optimization, i.e., the distributed online approach developed in Section 5.2

(denoted by “No Placeholder”), where there is no virtual placeholder.

The benchmark approach provides little scalability with the increase of data, as

it separately schedules IoT devices and routes data in the edge cloud with all the

data processed at the data center. Compared to the proposed approach with virtual

placeholders, the direct use of Lyapunov optimization fails to create sufficient queue

differences along the shortest paths, which only operates under large IoT buffers

and undergoes much longer delays. It is worth mentioning that the globally optimal

centralized offline scheme is computationally prohibitive to simulate, due to the

large number of variables over time and space. Nevertheless, Theorem 5 proves that

the optimality gap between the proposed Lyapunov optimization approach and the

centralized offline optimum would asymptotically diminish with the increase of V .

Fig. 5.3 plots the steady-state system throughput and cost achieved by the pro-

posed approach with virtual placeholders, the proposed approach without virtual

placeholders (i.e., the direct application of Lyapunov optimization), and the bench-

mark approach, as the parameter V increases from 1 to 250, where the IoT buffer

sizes Dmax = 30 or 60Mbits. We see in Fig. 5.3(a) that when Dmax = 60Mbits, the

proposed approach with virtual placeholders can always achieve the maximum sys-



102

tem throughput of 86.4Mbps after draining the computing resources at the servers.

In the case that Dmax = 30Mbits, the system throughput first increases with V

and then stabilizes at the maximum under Dmax = 60Mbits when V ≥ 12. This is

because there exist negative parts (i.e., the link rates and computing capacities) in

∆ij, ∆i and ∆i
m for the sizes of virtual placeholders, and these static parts would

lead to insufficient virtual placeholders under small V values when Dmax = 30Mbits.

In Fig. 5.3(b), the system cost of the proposed approach with virtual placeholders

decreases with V and stabilizes when V ≥ 200. This validates the asymptotic opti-

mality of the approach, as dictated in Theorem 5, i.e., the optimality loss against the

global optimum would diminish with the growth of V . Compared with the proposed

approach, the benchmark approach always achieves 11% of system throughput but

suffers 35% system cost.

It is worth pointing out in Fig. 5.3 that the direct use of Lyapunov optimization

without virtual placeholders cannot operate properly due to the limited buffer sizes

of IoT devices, and the system throughput quickly diminishes with the growth of

V . We can see in both Figs. 5.3(a) and 5.3(b) that the direct use of Lyapunov

optimization cannot process any data, when V ≥ 10 in the case that Dmax = 30Mbits

and when V ≥ 20 in the case that Dmax = 60Mbits. This is because, when V is

large, the buffer sizes of IoT devices are even smaller than the minimum data sizes

required to enable the system, as will be shown in Fig. 5.4.

Fig. 5.4 shows the evolution of the effective backlogs of IoT devices and system

throughput, as t increases from 0 to 1500, where Dmax = 60Mbits and V = {10, 20}.

We can see in Fig. 5.4(a) that the backlogs of the direct use of Lyapunov optimization

and the benchmark approach increase and then stabilize at the IoT buffer size over

time. The effective backlogs of Lyapunov optimization with virtual placeholders

exhibit the similar phenomenon but stabilize at much larger values than Dmax. This

is because virtual placeholders can compensate for the limited buffers of the IoT

devices and create the sufficient backlog differences to drive the distributed online

Lyapunov optimization; see (5.36). As a result, in Fig. 5.4(b), the system throughput

of the proposed approach with virtual placeholders can be significantly improved.
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(a) Effective backlogs (b) System throughput

Figure 5.4 : The change of the effective queue backlogs of IoT devices and the system
throughput over time. When V = 20, the virtual placeholders exceed the buffers
Dmax = 60Mbits, and by no means can the direct use of Lyapunov optimization
establish enough queue backlogs to function.

The corresponding time to stabilize the system can be substantially reduced.

We also see in Fig. 5.4(a) that the virtual placeholders (i.e., the sufficient back-

logs to drive the distributed online optimization) increase with V , due to the typical

[O(V ),O(1/V )]-tradeoff between the queue lengths and optimality loss of Lyapunov

optimization. In the case that V = 20, the virtual placeholders exceed the maximum

IoT buffer Dmax = 60Mbits, and by no means can the direct use of Lyapunov opti-

mization, as developed in Section 5.3, establish enough queue backlogs to function.

This is also validated in Fig. 5.4(b) that the direct use of Lyapunov optimization

only operates when the IoT backlogs exceed the corresponding virtual placeholders

in the case that V = 10, and no data can be processed when V = 20.

Fig. 5.5 plots the system throughput of the three approaches, as the buffer size

of IoT devices Dmax increases from 100 to 1000Mbits, where V = {50, 100}. We

can see that the proposed approach with virtual placeholders can always achieve the

maximum system throughput of 86.4Mbps, as also validated in Fig. 5.3(a). With the

increase of Dmax, the system throughput of the direct use of Lyapunov optimization

gradually enhances and stabilizes at the maximum system throughput, in both the

cases that V = 50 and 100. With the increase of V , increasingly large IoT buffer

sizes are required to achieve the maximum system throughput in the direct use of
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Figure 5.5 : The system throughput as the buffer sizes of IoT devices Dmax increase.
When V = 100, the direct use of Lyapunov optimization requires the buffers to be
at least 850Mbits which is not practical in inexpensive IoT devices.
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Figure 5.6 : The steady-state system throughput and average delay, as L increases
from 5 to 20, where Dmax = {30, 60}Mbits and V = 5. It is worth noting that
the benchmark approach can lead to congestions around the data center and hence
unbounded growth of delays, e.g., over 1000sec, and therefore is not plotted.

Lyapunov optimization. In particular, when V = 100, the algorithm requires the

IoT buffer sizes to be at least 850Mbits which may not be practical in inexpensive

IoT devices.

Fig. 5.6 evaluates the steady-state system throughput and average delay, as the

number of subchannels per edge server L increases from 5 to 20, where Dmax =

{30, 60}Mbits. It should be noted that, in order to evaluate the average delays of

both the proposed approach with virtual placeholders and the direct use of Lya-



105

punov optimization without virtual placeholders, V is set to 5 according to Fig. 5.3.

Fig. 5.6(a) shows that the throughput of the the proposed approach with virtu-

al placeholders can be 8 times higher than the 9Mbps throughput of the bench-

mark, and increases with the number of subchannels and stabilizes at the maximum

throughput of 86.4Mbps, since an increasing amount of data can be transmitted

from the IoT devices to the servers for remote processing. The placeholder design is

also shown to help increase the throughput, especially in the case where the buffer

storage Dmax = 30Mbits is small and the initial queue differences play a key role of

driving data to flow and be processed, as shown in Fig. 5.3(a).

We can see in Fig. 5.6(b) that the use of virtual placeholders can substantially

reduce the average delay of fog computing by 90%, as compared to the direct use

of Lyapunov optimization. This is achieved by driving data along the shortest

path, and the delay is relatively stable for different numbers of subchannels L. In

contrast, the delay of the direct use of Lyapunov optimization grows when Dmax =

60Mbits, due to the increase of system throughput in Fig. 5.6(a), which approaches

the processing capacity and leads to unnecessary routing among busy servers and

subsequently the growth of the queuing delay. The throughput of the benchmark

approach is only 8Mbps independent of the value of L, limited by the capacity of

the data center. Under such throughput, the system is not stable and experiences

excessive delays over time. This is the consequence of separate operations of wireless

transmission and processing in the benchmark approach.
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Chapter 6

Profitable Cooperative Region for Distributed

Online Edge Caching

Cooperative caching can unify network storage to improve efficiency, but the effective

placement and search of files are challenging especially in distributed edge clouds

with neither a-priori knowledge on file requests nor instantaneous global view.

This chapter proposes a new profitable cooperative region for every IoT data/file

request admitted at an edge server, within which the file can be retrieved profitably

as compared to a direct retrieval from the network backbone. A novel approach is

proposed for distributed and automated formation of the regions in the absence of

the a-priori knowledge on request arrivals and the instantaneous global view of the

network. The region narrows down the search for cached files in response to admit-

ted requests. The caching density of the file can also be significantly reduced, e.g.,

to a cached copy per region. Our approach is based on an asymptotically optimal,

distributed framework of cooperative caching, where each server can optimize its de-

cisions on the admission, dispatching and grant of file requests, and the file delivery

for granted requests, based on its knowledge on its own and its one-hop neighbor-

ing servers. The proposed distributed framework of cooperative caching is based on

stochastic gradient descent (SGD) [94], with the following new contributions.

• A new problem is formulated to optimize the admission, dispatching and grant

of file requests, and delivery of granted requests, to maximize the time-average

profit (or cost-saving) of cooperative caching (as compared to direct retrievals

from the network backbone). The problem and its solution provide the step-

ping stone for the development of the new profitable cooperative caching region

in edge clouds.
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Figure 6.1 : The network of cooperative caching in the edge cloud.

• The new problem is decoupled over time at an asymptotically diminishing

loss of optimality by exploiting SGD, and then judiciously optimized at each

individual time slot to secure the asymptotic optimality inherited from SGD.

The motivation of using SGD for multi-hop cooperative edge caching is novel.

• We design the profitable cooperative caching region for the requests admitted

at every server, within which the files can be retrieved profitably. Specifically,

the instantaneous upper and lower bounds for the backlog of files that the

other servers can deliver profitably to the server of interest, are interpreted

as shortest path problems and achieved in a fully distributed manner. The

servers with positive gaps between the bounds can form the region.

• Preserving the asymptotic optimality, the proposed profitable cooperative

caching region can operate in conjunction with simple caching policies of indi-

vidual servers, such as least recently/frequently used (LRU/LFU) [110], to au-

tomate content placement with reduced density and improved efficiency. Such

automated content placement has yet to be addressed in the literature [32–43].

Extensive simulations show substantially improved profit (or cost-effectiveness) of

the proposed approach over existing solutions.
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6.1 System Model

As illustrated in Fig. 6.1, the network of interest consists of N edge servers

equipped with caching memories, where N = {1, · · · , N} denotes the set of servers.

Let F = {1, · · · , F} denote the set of all files requested across the edge cloud. The

network operates on a slotted basis. Each edge server receives requests from mobile

users. The requests for the data/files arriving at an edge server can be dispatched

to the network backbone or other edge servers that cache the files, for retrieving the

files to the server admitting the requests∗.

The request arriving at edge server i for file f at slot t can be denoted by its size

Ai,f (t) in terms of bits of data. Without the a-priori knowledge on traffic arrivals,

Ai,f (t) is a stochastic process over time with the maximum Amax
i,f . For generality, we

assume that edge server i can admit part of the request, denoted by ai,f (t), to the

edge cloud based on the network availability. The rest of the file
(
Ai,f (t) − ai,f (t)

)
can be retrieved from the network backbone. ai,f (t) satisfies

0 ≤ ai,f (t) ≤ Ai,f (t), ∀i, f, t. (6.1)

The capacity of link (i, j) between servers i and j can change between time

slots due to time-varying background traffic. The capacity of link (i, j) during slot

t, denoted by Cij(t) ∈ (0, Cmax
ij ], accounts for bi-directional transmissions over the

link, and is assumed to remain unchanged within the slot. Let ζij(t) denote the cost

(e.g., in terms of energy consumption) of delivering a bit over link (i, j) at time slot

t, and αi,f denote the cost of server i for retrieving a bit of file f from the network

backbone.

As illustrated in Fig. 6.2, each edge server needs to maintain NF request queues

to track the requests of F files admitted at all N edge servers (including the edge

∗Here, we assume that the user requesting a file remains within the coverage of the same edge
server until the file is retrieved. This assumption is reasonable for users with low to moderate mo-
bility, as extensively assumed in the literature [32–43, 45–49]. Nevertheless, the proposed approach
can be extended to schedule content delivery to a different server from the server admitting the
request, as will be discussed in Section6.3.3.
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Figure 6.2 : An illustration of the queues and operations at an edge server.

server itself); and N data queues for the files retrieved and destined for different

edge servers. As per slot t, Rs
i,f (t) denotes the queue backlog of edge server i for the

request of file f admitting at edge server s; and Ds
i (t) denotes the queue backlog of

edge server i for the file destined for edge server s. For illustration convenience, the

files to be delivered to the same edge server are not differentiated in the data queues.

The use of N(F + 1) queues per server is typically required to retrieve up to F files

from N edge servers and deliver the files to where admitted. In this chapter, we

relax the requirement of N(F + 1) queues per server by establishing the profitable

regions for every file and edge server.

Let rsij,f (t) denote the size of the request for file f admitted at edge server s and

dispatched to edge server j through edge server i, and dsij(t) denote the size of the file

returned from edge server i to s through edge server j. The dispatch of requests only

incurs negligible signaling (typical a few bytes to specify the edge server admitting

the request and the index and size of the requested file) over the links, as compared

to the delivery of files. As a result, the variables of request dispatch and file delivery

satisfy:

∑
s∈N

[dsij(t) + dsji(t)] ≤ Cij(t), ∀(i, j), t; (6.2a)∑
s∈N,f∈F

[rsij,f (t) + rsji,f (t)] ≤ Cij(t), ∀(i, j), t; (6.2b)

rsij,f (t) ≥ 0, dsij(t) ≥ 0, ∀i, j, f, s, t, (6.2c)

where (6.2b) is set to avoid dispatching too many files through link (i, j), and (6.2a)

and (6.2c) are self-explanatory. The dispatch of requests between edge servers in
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(6.2b) only involves the transmission of a short packet, which is negligible compared

to the delivery of contents/files of up to Gigabytes in (6.2a). For example, a 4-

byte unsigned integer (e.g., the uint32 data type in C++ that can represent 232

integers within [0,4294967295]) is sufficient to represent the queue backlogs of up to

4.3GB. As a result, constraint (6.2a) captures the capacity (or data rate) of link (i,

j), and constraint (6.2b) is set up to avoid dispatching too many requests and stop

the requested files from being returned through link (i, j). Given the fact that the

a-priori knowledge of the time-varying link capacities is hard to predict, we use the

link capacity at the current time slot to approximate the file request constraint.

Let bsi,f (t) denote the size of file f requested earlier at server s and granted by

server i at slot t, and Fi(t) ≤ Fmax denote the maximum size of requests that server i

can grant per slot t in the presence of varying background services, such as firewall

and anti-virus software. We have

∑
f∈F,s∈N

bsi,f (t) ≤ Fi(t), ∀i, t; (6.3a)

0 ≤ bsi,f (t) ≤ ci,fFi(t), ∀i, f, s, t, (6.3b)

where (6.3b) ensures that an edge server can only support the requests for the files

cached locally. Let ci,f ∈ {0, 1} denote the placement of file f at edge server i. If

server i caches file f , ci,f = 1; otherwise, ci,f = 0.

Note that the variables on the admission, dispatching and grant of a request,

i.e., ai,f (t), rsij,f (t) and bsi,f (t), and the file delivery of the granted request dsij(t), are

continuous variables. This is under the assumption that the files are divisible and

a file can be delivered in part from different edge servers caching the file, as widely

assumed in the state of the art [32–43, 45–49]. However, the proposed approach can

be extended to support indivisible files, as will be discussed in Section 6.3.3.

As a result, the backlog of the requests for file f at server i from server s, denoted
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by Rs
i,f (t), can be updated by

Rs
i,f (t+ 1) = max{Rs

i,f (t)− bsi,f (t)−
∑

j∈N
rsij,f (t), 0}+

∑
j∈N

rsji,f (t) + asi,f (t),

(6.4)

where asi,f (t) is the size of the request for file f admitted to the queue of server i

at slot t. aii,f (t) = ai,f (t), and asi,f (t) = 0 ∀s 6= i. The first term on the right-hand

side (RHS) of (6.4) gives the size of requests at the end of slot t, after part of the

requests have been granted or dispatched to other edge servers. The second and

the third terms account for new requests dispatched from other edge servers to, or

admitted at, server i.

At server i, the backlog of the files which are retrieved to be delivered to server

s, i.e., Ds
i (t), can be updated by

Ds
i (t+ 1) = max{Ds

i (t)−
∑

j∈N
dsij(t), 0}+

∑
j∈N

dsji(t) +
∑

f∈F
bsi,f (t), ∀s 6= i,

(6.5)

where Di
i(t) = 0 since edge server i sends the files to its associated users and acts

as the sink for the files.

6.2 Distributed Optimization of Cooperative Edge Caching

The prominent contribution of this chaper is to establish the profitable coopera-

tive region for each file request admitted at an edge server, thereby narrowing down

the search for cached files, reducing the caching density of every file, and accommo-

dating more files. It is prudent to first optimize the distributed operations of the

servers on the admission, dispatching and grant of file requests, and the file delivery

for granted requests, given file placement. The legitimacy of the proposed profitable

cooperative regions relies on the effectiveness and (asymptotic) optimality of the

distributed operations of the servers.

6.2.1 Problem Statement

We first propose the fully distributed, asymptotically optimal framework for the

operations of the servers. To achieve this, we start with the configuration of N(F+1)
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queues per edge server, as discussed in Section 6.1. By taking cost as the generic

measure of cooperative caching, at any time slot t, the instantaneous cost can be

given by

Φ(xt) =
∑

i,j∈N
φij(t) +

∑
i∈N,f∈F

αi,f (Ai,f (t)− ai,f (t)),

where xt = {bsi,f (t), rsij,f (t), dsij(t), ai,f (t), ∀i, j, f, s} collects all variables at slot t;

φij(t) = ζij(t)
∑

s∈N d
s
ij(t) is the cost of routing files over link (i, j) at slot t; and

αi,f (Ai,f (t)− ai,f (t)) is the cost of retrieving file f from backbone to server i at slot

t.

We also ensure the stability of the edge cloud, with the following constraint

Rs
i,f (t) <∞, Ds

i (t) <∞, ∀i, f, s, (6.6)

where X(t) = limT→∞
1
T

∑T−1
τ=0 E[X(τ)] denotes the time-average of a process X(t).

We aim to minimize the time-average cost of cooperative edge caching in the

absence of the a-priori knowledge on the network dynamics (e.g., the request arrivals,

link capacity, and resource availability), while preserving the system stability. The

problem of interest can be formulated as

Φ∗ = min
X

Φ(xt)

s.t. (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), ∀t.
(6.7)

where X = {xt, ∀t} collects all the variables on the admission and dispatching of

requests, and the retrieval of files, across all time slots.

According to queuing theory [92], a queue is stable, if and only if the time-

average input rate of the queue is no more than the time-average output rate of the

queue. As a result, we reformulate problem (6.7) to suppress the time couplings by

transforming (6.4), (6.5) and (6.6) to (6.8), as given by

asi,f (t)− bsi,f (t) +
∑

j∈N(rsji,f (t)− rsij,f (t)) ≤ 0, ∀i, f, s;∑
f∈F b

s
i,f (t) +

∑
j∈N(dsji(t)− dsij(t)) ≤ 0, ∀i, s.

(6.8)
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As a result, (6.7) can be reformulated as

Φ̃∗ = min
X

Φ(xt)

s.t. (6.1), (6.2), (6.3), (6.8), ∀t.
(6.9)

With the time-averages in the objective and the constraint (6.8), the optimal solution

to (6.9) would require the a-priori knowledge on the random process across the

network over the infinite time horizon. This would violate the causality.

6.2.2 Distributed Online Optimization of Edge Caching

The proposed optimization of (6.9) is based on SGD and consists of two stages.

By exploiting SGD, we first decouple the problem of interest (6.7) over time into

(6.10) to be optimized online slot by slot. Provided that (6.10) is optimally solved

per slot, the optimality loss of the decoupling diminishes, as the stepsize ε grows.

Then, we decouple problem (6.10) into subproblems (6.17a) to (6.17d) which contain

the variables on file delivery dt, request admission at and dispatching rt, and request

grant bt, respectively. This is because the variables are not coupled in the objective

of (6.10), and neither are they in constraints (6.1) – (6.3). Subproblems (6.17a) to

(6.17d) can be separately solved to provide the exact optimal solution to (6.10), and

secure the asymptotic optimality inherited from SGD. Details are provided in the

following.

A. Temporal Decoupling via SGD

By taking SGD, (6.9) can be reformulated by interpreting (6.8) as the Lagrange

multipliers and iteratively updating the Lagrange multipliers with the stochastic

gradient per slot t. As a result, (6.9) can be transformed to (6.10) which can be

carried out at each time slot t in the absence of the a-priori knowledge, as given by

max
xt

g(at) + µ(bt) + η(rt) + γ(dt)

s.t. (6.1), (6.2), (6.3).
(6.10)
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where

g(at) =
∑

i∈N,f∈F
[αi,f − εRi

i,f (t)]ai,f (t); (6.11a)

η(rt) =
∑

i,j,s∈N,f∈F

εRs
i,f (t)(rsij,f (t)− rsji,f (t)); (6.11b)

γ(dt) =
∑
i,j,s∈N

εDs
i (t)(d

s
ij(t)− dsji(t))− ζij(t)dsij(t); (6.11c)

µ(bt) =
∑

i,s∈N,f∈F

ε(Rs
i,f (t)−Ds

i (t))b
s
i,f (t); (6.11d)

In (6.11), the Lagrange multipliers of SGD are suppressed. This is because the

evolutions of the multipliers at every time slot are interpreted as queue backlogs:

λsi,f (t) = εRs
i,f (t) and λsi (t) = εDs

i (t). Here, ε is the stepsize and accounts for the

optimality loss of SGD.

Proof. Concatenate the random variables of the system into a vector ωt = {Ai,f (t),

Cij(t), Fi(t), ∀i, j, f}. ωt is independent and identically distributed (i.i.d.), since the

requests independently arrive at the edge servers and the link capacity is affected

by background traffic. (The results of this chapter can be readily extended to non-

i.i.d., e.g., Markovian, randomness; see [111].) As a result, we can replace the

time-averages in (6.8) by their expectations over i.i.d. random parameters, as given

by

E[a
(s)
i,f (t)− b(s)

i,f (t) +
∑

j∈N
(r

(s)
ji,f (t)− r(s)

ij,f (t))] ≤ 0, ∀i, f, s; (6.12a)

E[
∑

f∈F
b

(s)
i,f (t) +

∑
j∈N

(d
(s)
ji (t)− d(s)

ij (t))] ≤ 0, ∀i, s. (6.12b)

The time-average in the objective of (6.9) can be replaced by its expectation, and

(6.9) can be rewritten as

Φ̃∗ = min
X

E[Φ(xt;ωt)]

s.t. (6.1), (6.2), (6.3), (6.12), ∀t.
(6.13)
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The Lagrangian of (6.13) can be given by [93]

L(X,λ) = E[Lt(xt,λ)],

where Lt(xt,λ) is the instantaneous Lagrangian, as given by

Lt(xt,λ) = Φ(xt) +
∑

i,s∈N,f∈F

λsi,fE[asi,f (t)− bsi,f (t) +
∑
j∈N

(rsji,f (t)− rsij,f (t))]

+
∑
i,s∈N

λsi
′E[
∑
f∈F

bsi,f (t) +
∑
j∈N

(dsji(t)− dsij(t))].
(6.14)

Here, λsi,f and λsi
′ are the Lagrange multipliers associated with (6.12a) and (6.12b),

respectively. λ = {λsi,f , λsi
′, ∀i, s} � 0.

The primal values xt can be given by

min
X
L(X,λ)

s.t. (6.1), (6.2), (6.3), ∀t.
(6.15)

An exact gradient is intractable in the absence of the a-priori knowledge on the

randomness over infinite time. At every time slot t, SGD is applied to update the

Lagrange multipliers with the observed network dynamics ωt, as given by

λsi,f (t+ 1) = max{λsi,f (t) + ε[asi,f (t)− bsi,f (t) +
∑

j∈N
(rsji,f (t)− rsij,f (t))], 0},

(6.16a)

λsi (t+ 1)′ = max{λsi (t)
′ + ε[

∑
f∈F

bsi,f (t) +
∑

j∈N
(dsji(t)− dsij(t))], 0}. (6.16b)

With Qs
i,f (0) = 0 and Ds

i (0) = 0, the updates of the multipliers per slot are linear

to the updates of queue backlogs, as observed by comparing (6.4) and (6.5) with

(6.16a) and (6.16b), respectively. As a result, we can reformulate (6.9) into (6.10)

by replacing the Lagrange multipliers by the queue backlogs.
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B. Per-slot Optimal Operations to Problem (6.10)

Note that at = {ai,f (t), ∀i, f}, rt = {rsij,f (t), ∀i, j, f, s}, dt = {dsij(t), ∀i, j, s}, and

bt = {bsi,f (t), ∀i, f, s} are decoupled from each other; Further, ai,f (t) is decoupled

from aj,f (t); bsi,f (t) is decoupled from bsj,f (t), ∀i 6= j; and η(rt) and γ(dt) can be

decoupled between links. For each link (i, j), let r̃ij(t) = {rsij,f (t), rsji,f (t), ∀f, s} and

d̃ij(t) = {dsij(t), dsji(t), ∀s}. As a result, (6.10) can be solved by separately pursuing

(6.17a), (6.17b), (6.17c) and (6.17d):

max
ai,f (t)

gi,f (t)ai,f (t), s.t. (6.1); (6.17a)

max
r̃ij(t)

∑
s∈N,f∈F

ηsij,f (t)rsij,f (t) + ηsji,f (t)rsji,f (t), s.t. (6.2b), (6.2c); (6.17b)

max
d̃ij(t)

∑
s∈N

γsij(t)d
s
ij(t) + γsji(t)d

s
ji(t), s.t. (6.2a), (6.2c); (6.17c)

max
bi(t)

∑
f∈F

µsi,f (t)bsi,f (t), s.t. (6.3); (6.17d)

where gi,f (t) = αi,f−εRi
i,f (t), ηsij,f (t) = ε(Rs

i,f (t)−Rs
j,f (t), γsij(t) = ε[Ds

i (t)−Ds
j(t)]−

ζij(t), and µsi,f (t) = ci,fε(R
s
i,f (t) − Ds

i (t)) can be obtained by decoupling (6.11a),

(6.11b), (6.11c) and (6.11d) between links and edge servers. For example, gi,f (t)

in (6.17a) can be obtained by decoupling between edge servers, since the objective

g(at) in (6.11a) and constraint (6.1) can be respectively rewritten as the sums of the

objectives and constraints of individual edge servers.

By closely assessing (6.17a), we see the optimal solution ai,f (t) depends on the

sign of the parameter gi,f (t). If gi,f (t) > 0 (or in other words, Ri
i,f (t) < αi,f/ε), then

ai,f (t) takes its maximum Ai,f (t). Otherwise, ai,f (t) = 0. Therefore, the optimal

solution can be given by

ai,f (t) =

 Ai,f (t), if Ri
i,f (t) < αi,f/ε;

0, otherwise;
(6.18)

Problems (6.17b) and (6.17c) are linear programming of weighted-sum maximiza-

tion [99], and their optimal solutions can be obtained by evaluating the weights
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Algorithm 7 Distributed Online Operations of Cooperative Edge Caching

For each server i per time slot t:
1: Measure Ai,f (t), Fi(t), Cij(t) and ζij(t);
2: Observe the queue backlogs of its neighboring server j, i.e.,
{Rs

j,f (t), Ds
j(t), ∀f, s};

3: Admit requests according to (6.18);
4: Schedule the request dispatching and file routing by (6.19);
5: Satisfy the requests based on (6.20);
6: Update Rs

i,f (t) and Ds
i (t) according to (6.4) and (6.5).

ηsij,f (t), ηsji,f (t), γsij(t) and γsji(t), at edge servers i and j. For (6.17b), if maxf,s{ηsij,f (t)}

< 0 or maxf,s{ηsij,f (t)} < maxf,s{ηsji,f (t)}, edge server i does not dispatch requests

over link (i, j). Otherwise, edge server i dispatches requests to edge server j, with

the request size as specified by

rsij,f (t) =

 Cij(t), if (f, s) = arg maxf,s η
s
ij,f (t);

0, otherwise.
(6.19a)

For (6.17c), if maxs{γsij(t)} < 0 or maxs{γsij(t)} < maxs{γsji(t)}, edge server i does

not deliver files through link (i, j). Otherwise, edge server i delivers files through

edge server j with the following file size

dsij(t) =

 Cij(t), if s = arg maxs γ
s
ij(t);

0, otherwise.
(6.19b)

Lastly, (6.17d) is also weighted-sum maximization. If maxf,s{µsi,f (t)} < 0, edge

server i remains idle, i.e., does not satisfy requests. Otherwise, the size of optimally

satisfied requests can be given by

bsi,f (t) =

 Fi(t), if (f, s) = arg max
f,s

µsi,f (t);

0, otherwise.
(6.20)

From (6.18), (6.19) and (6.20), the optimal decisions of the admission, dispatch

and grant of requests, and the file delivery for granted requests, can be optimized at
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individual edge servers, based on the information of the server itself and its one-hop

neighbors, as summarized in Algorithm 7. At each time slot t, each server i measures

the request arrivals Ai,f (t) and server availability Fi(t) of its own, and the conditions

of its links, i.e., Cij(t) and ζij(t), in Step 1. The server requests the information on

the queue backlogs of its neighboring servers, i.e., {Rs
j,f (t), Ds

j(t), ∀f, s}, in Step 2.

Given the information acquired in Steps 1 and 2, edge server i grants the requests

in the queue of the most cost-effectiveness according to (6.20) in Step 3. Then, in

Step 4, the edge server and the queue with the most cost-effectiveness are activated

to dispatch requests and retrieve files based on (6.19). Finally, each edge server

updates its queue backlogs Rs
i,f (t) and Ds

i (t) according to (6.4) and (6.5) in Step 5.

C. Optimality and Complexity

By referring to [21, Theorem 1], it can be readily proved that Algorithm 1 is

asymptotically optimal. This is due to the asymptotic optimality of decoupling (6.7)

over time into (6.10) (as inherited from SGD). It is also because the solutions to

(6.10) are optimal at every time slot with no further optimality loss. As a result, the

time-average cost of edge caching converges to within O(ε) of the offline optimum,

which diminishes as ε→ 0. The stepsize ε accounts for the convergence time of SGD.

Given the stepsize ε, the convergence time of SGD linearly increases with O(1/ε) [94].

The typical [O(1/ε),O(ε)]-tradeoff between convergence time and optimality loss in

terms of the stepsize ε indicates that an O(1/ε) convergence time allows for an O(ε)

close-to-optimal cost. Readers are referred to [21, Theorem 1] for details.

The time-complexity of both (6.19) and (6.20) is dominated by the selection of

the most cost-effective queue from the total NF request queues (i.e., the arg max(·)

operation), which is O(NF ) per link of an edge server. The time-complexity of

(6.18) is O(1) per file. There are a total of up to δ links and F files per server.

δ < N is the maximum degree of the network. As a result, the time-complexity of

Algorithm 7 is O(δNF + F ) = O(δNF ) per edge server.
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6.2.3 Extensions to High-Mobility Users and Indivisible Files

A. Users with High Mobility

The proposed approach can be readily applied to schedule file delivery to a

different server from the server admitting the request. For a user which is currently

in the coverage of edge server i and requests file f , instead of being placed in the

request queue Ri
i,f , the request can be placed into the queue Rj

i,f . The file is to be

delivered to edge server j where the user is expected to download the file from. The

edge server j can be predicted by using popular mobility and trajectory prediction

methods [112].

B. Indivisible Files

The proposed approach can also be readily extended to the scenario where files

are not divisible and must be delivered in whole. In (6.18), the request admission

decision is integer, and a file request is either admitted or rejected in whole. The

decisions on the dispatching and grant of requests in (6.19a) and (6.20), and the

file delivery for granted requests in (6.19b), can be rounded to the largest integer

numbers of files which can be accommodated, i.e., bCij(t)

Sfile
c and bFi(t)

Sfile
c, respectively,

where Sfile is the size of a file, and b·c stands for the floor function.

The rounding does not violate the asymptotic optimality of the proposed ap-

proach. According to (6.17), the optimality loss of (6.10) resulting from the round-

ing is upper bounded by ηsij,f (t)Sfile, γ
s
ij(t)Sfile, and µsi,f (t)Sfile, since the maximum

rounding error is Sfile. Given the upper bounds of the queue backlogs (as stated in

Theorem 8), these upper bounds are further bounded by

ηsij,f (t)Sfile ≤ εRs
f,maxSfile; (6.21a)

γsij(t)Sfile ≤ εDs
i,maxSfile; (6.21b)

µsi,f (t)Sfile ≤ εRs
f,maxSfile; (6.21c)

which are obtained by suppressing the negative terms in ηsij,f (t), γsij(t) and µsi,f (t),

and relaxing the rest by their maximums. From (6.21), we see that the optimality
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loss due to rounding asymptotically diminishes as ε → 0, hence preserving the

asymptotic optimality of the proposed approach.

6.3 Distributed Formation of Profitable Cooperative Region

We proceed to establish the profitable cooperative region for every file request

admitted at an edge server, given the asymptotically optimal distributed operations

of cooperative caching developed in Section 6.2. The regions provide the necessary

condition for file placement with guaranteed retrieval and profit. The request only

needs to be dispatched within the region to retrieve the file profitably. The number

of queues maintained per server and the time-complexity of Algorithm 7 can be

dramatically reduced without compromising the asymptotic optimality.

6.3.1 Definition of Profitable Cooperative Caching Regions

The profitable cooperative caching region for each file request admitted at an

edge server can be set up by deriving the lower and upper bounds of the queue

backlogs at all the other servers. The bounds are based on the topology of the net-

work and the costs of retrieving files among servers and from the network backbone.

The profitable cooperative region for a request of file f admitted at edge server s

is denoted by Rf
s , beyond which the lower bounds of the backlogs, denoted by Q0,

would exceed the profitable upper bounds, denoted by Qmax, at the servers. As a re-

sult, file retrieval beyond the region would be less cost-effective than direct retrieval

from the network backbone.

To identify the profitable cooperative region, we start by deriving the lower

and upper bounds of the backlogs, Q0 and Qmax. The lower bounds of the queue

backlogs, also known as placeholders [107], can be defined as follows.

Definition 1. Q0 = {Rs
i,f,0, D

s
i,0, ∀i, f, s} collects the lower bounds for all the queues

of the system, such that, if Q(t0) � Q0 at slot t0, Q(t) � Q0 for t > t0, where

Q(t) = {Rs
i,f (t), Ds

i (t), ∀i, f, s} collects the backlogs for all the queues at slot t and

� is taken entry-wise.

From Definition 1, we can see that, once the queue backlogs exceed Q0 at slot t0,
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by no means can the backlogs be shorter than Q0 after that. That is to say, Q0 is

neither dispatched nor delivered, without compromising the asymptotic optimality

of Algorithm 7. By assessing the operations of Algorithm 7, we can formulate the

lower bounds Q0 satisfying Definition 1 in the following theorem.

Theorem 7. The lower bounds of the queue backlogs Q0 can be given by

Rs
i,f,0 = max

{
minj{Ds

j,0 − Fmax}, 0
}

, (6.22a)

Ds
i,0 =

 0, if i = s;

max
{

minj{Ds
j,0 + wij}, 0

}
, otherwise;

(6.22b)

where wij = ζmin
ij /ε− Cmax

ij , and ζmin
ij is the lower bound of ζij(t).

Proof. For brevity, the proof is suppressed here. Please refer to the proof of Theo-

rem 6 in Chapter 5 for the details.

Here, (6.22) indicates that the lower bounds of the queues for requests and files

to be delivered at a server depend on those of its neighboring servers, as well as the

cost of retrieving files from the neighboring servers.

We proceed to derive the upper bounds of the queue backlogs in the following.

Theorem 8. The instantaneous queue lengths are bounded at each time slot t, and

there exist Rs
f,max and Ds

i,max satisfying Rs
i,f (t) ≤ Rs

f,max and Ds
i (t) ≤ Ds

i,max, ∀i, f, s.

The upper bounds Rs
f,max and Ds

i,max are given by

Rs
f,max =

αs,f
ε

+ Amax
s,f + θs; (6.23a)

Ds
i,max = min

{
max
j
{Ds

j,max − wij}, Ds
max

}
, (6.23b)

where

Ds
max = maxf

{
Amax
s,f +

αs,f
ε

}
+ 2θs + Fmax. (6.24)

The parameter θs =
∑

j∈Ns
Cmax
js is the maximum of request and file arrivals at

edge server s per slot via request dispatching and file delivery; and Ns collects the

immediate neighbors of server s.
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Proof. For brevity, the proof is suppressed here. Please refer to the proof of Corol-

lary 2 in Chapter 5 for the details.

Note that the upper and lower bounds in Theorems 7 and 8 are server and file

specific, and they are derived for developing the new profitable cooperative regions.

The profitable cooperative region of the requests for file f admitted at edge server

s, i.e., Rf
s , can be decided by evaluating the lower and upper bounds of the queue

backlogs. In specific, edge server i can be precluded from Rf
s , if the requests in Qs

i,f

or the files in Ds
i can by no means be dispatched or retrieved, respectively. That

is to say, the delivery from edge server i is not profitable, i.e., the cost-effectiveness

measures, ηsij,f (t), γsij(t) and µsi,f (t) in (6.19) and (6.20), are negative across all time

slots. Rf
s can be given by

Rf
s =

{
i|Ds

i,0 < Ds
i,max and Rs

i,0 < Rs
f,max

}
. (6.25)

This is because, for server i /∈ Rf
s , γ

s
ij(t) and µsi,f (t) are always negative according

to (6.25). The delivery of file f from server i to server s would be non-profitable,

and by no means can the queues be scheduled for the delivery according to (6.19)

and (6.20). This narrows down the search of the file. Server s only needs to search

within the region Rf
s for file f .

The lower and upper bounds of the data queues, Ds
i,0 and Ds

i,max in (6.22b) and

(6.23b), have recurrence expressions. Ds
i,0 and Ds

i,max require the knowledge on Ds
j,0

and Ds
j,max of its one-hop neighboring server j, except that Ds

s,0 = 0 for (6.22b) and

Ds
i,max ≤ Ds

max for (6.23b) are known in prior. The calculation of the bounds can be

non-trivial due to the dependency between neighboring servers.

6.3.2 Distributed Optimization of Profitable Cooperative Regions

Both (6.22b) and (6.23b) exhibit the optimal substructure of the Bellman e-

quations in dynamic programming [113]. (6.22b) can be regarded as an extended

shortest path problem, where Ds
i,0 can be interpreted as the “distance” from server

i to s. The “distance” satisfies the following properties:
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• The distance from server s to itself is 0, i.e., Ds
s,0 = 0;

• The distance is sub-additive in the measures of wij, i.e., Ds
i,0 ≤ Ds

j,0 + wij, if

wij ≥ 0;

• The distance is non-negative, i.e., Ds
i,0 ≥ 0.

By exploiting the optimal substructure, we can derive the solutions for Ds
i,0 and

Ds
i,max by decomposing them into subproblems.

Exploiting the optimal substructure, the calculation of Ds
i,0 and Ds

i,max is based

on the results of their subproblems. The subproblems, D̂s
i,0(h) and D̂s

i,max(h), denote

the lower bounds and upper bounds (i.e., the “distance”) up to h hops away from

edge server s, respectively. D̂s
i,0(h) and D̂s

i,max(h) can be constructed from their

subproblems D̂s
j,0(h − 1) and D̂s

j,max(h − 1) of its own and its one-hop neighboring

servers. In specific, D̂s
i,0(h) = D̂s

i,0(h−1) unless it can be further reduced by extend-

ing the paths from one of its immediate neighbors, j ∈ Ni, i.e., D̂s
j,0(h − 1) + wij.

As a result, D̂s
i,0(h) for (6.22b) can be reconstructed as

D̂s
i,0(h) = max

{
min
j

{
D̂s
i,0(h− 1), D̂s

j,0(h− 1) + wij
}
, 0
}

. (6.26a)

Likewise, D̂s
i,max(h) for (6.23b) can be given by

D̂s
i,max(h) = min

max
j

 D̂s
i,max(h− 1),

D̂s
j,max(h− 1)− wij

 , Ds
max

 ; (6.26b)

Exhibiting the optimal substructure of the Bellman equations, (6.26) can be

solved recursively to compute Ds
i,0 and Ds

i,max in a distributed manner, as sum-

marized in Algorithm 8. This is due to the fact that (6.26) only requires the

knowledge of the server itself and its immediate neighbors. Algorithm 8 initial-

izes D̂s
i,max(0) = Ds

max and D̂s
i,0(0) = −∞, except that D̂s

s,0(0) = 0. D̂s
i,0(h) and

D̂s
i,max(h) are updated according to (6.26) based on D̂s

j,0(h − 1) and D̂s
j,max(h − 1)

from its one-hop neighboring servers j ∈ Ni. D
s
i,0 = D̂s

i,0(h) and Ds
i,max = D̂s

i,max(h)

upon convergence.
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Algorithm 8 Distributed Formation of Profitable Cooperative Caching Regions

1: Initialize D̂s
i,max(0) = Ds

max and D̂s
i,0(0) = −∞ except for D̂s

s,0(0) = 0, and the
iteration index h = 1;

For each server i:
2: repeat
3: Observe D̂s

i,0(h− 1) and D̂s
i,max(h− 1) of its own and immediate neighbors;

4: Update D̂s
i,0(h) and D̂s

i,max(h) by (6.26);
5: Increase the iteration index h = h+ 1;
6: until D̂s

i,0(h) = D̂s
i,0(h− 1) and D̂s

i,max(h) = D̂s
i,max(h− 1)

7: Ds
i,0 = D̂s

i,0(h) and Ds
i,max = D̂s

i,max(h);
8: Establish the profitable region according to (6.25);

Identifying the paths with the shortest “distances” through the optimal sub-

structure, Algorithm 8 is an extension of the Bellman-Ford algorithm. The time-

complexity of Algorithm 8 depends on the complexity for updating (6.26) per iter-

ation and the number of iterations required for convergence. At each iteration, a

server evaluates the results of the last iteration from its one-hop neighboring servers

in O(N) time. There are up to (N − 1) iterations for guaranteed convergence, since

the maximum length of a path is (N−1) hops in a network of N servers. Algorithm 8

has the time-complexity of O(N2).

6.3.3 Implementation of Profitable Cooperative Regions

The profitable cooperative regions can be incorporated in Algorithm 7. Within

the region for file f requested at server s, the file only needs to be cached at one of

the servers, i.e., server i (i ∈ Rf
s ), to guarantee profitable retrieval of the file to server

s. As a result, instead of maintaining all N(F + 1) queues, server i only maintains

a request queue and a data queue in regards of requests admitted at server s for file

f , if server i is in the profitable cooperative region Rf
s . The number of queues per

server can be substantially reduced. Recall that the time-complexity of Algorithm 7

depends on the number of queues per server. The complexity of Algorithm 7 can

be reduced from O(δNF ) to O(δ|R|F ), where |R| denotes the average size of the

profitable cooperative regions. As will be shown in Fig. 6.5(a), |R| � N . The

profitable cooperative regions improve the scalability of the proposed approach.
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The regions can also operate in conjunction with existing techniques which place

contents based on content popularity and its geographical distribution [36–43], to

automate the placement of contents and prevent repeatedly caching the same con-

tents within a region. Take the LRU policy for example [110]. Each edge server

caches all the requested contents until it runs out of memory. After that, when

receiving a new content request, instead of only searching its local cache, an edge

server searches the cached contents within its profitable region. If the server fails to

locate the requested content in its region, it fetches the content from the network

backbone and replaces the least recently used content in its own cache. Nearby

servers can benefit from this, if the same content is later requested. They can re-

trieve the content from the server (rather than directly retrieving from the network

backbone and caching).

6.4 Simulation Analysis

In this section, we evaluate the proposed approach for cooperative edge caching

in a network of N = 100 edge servers and a total of F = 50 files. Each server is

associated with M = 3 servers, and can cache up to 10 files. The files requested

across the edge cloud have the size of 15Mbits. The popularity of each file is assumed

to follow a Zipf-distribution with the skew parameter β = 0.8 [114], and the servers

cache the files according to their popularity. For per-Mbit size of data, the price of

backhaul delivery αi,f is 0.5, and the price of file delivery between edge servers ζij

is independently and uniformly distributed from 0.05 to 0.15 [34]. The reciprocal of

stepsize 1/ε is 60; unless otherwise specified.

The proposed approach is compared against the following three benchmark ap-

proaches.

• Local (non-cooperative) caching, where a file can be retrieved from either the

local cache of the server admitting the request or the network backbone.

• “K-hop” file retrieval is extended from the state-of-the-art offline coopera-

tive caching approach [37], where each edge server dispatches requests to, and
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Figure 6.3 : The profit of different caching schemes as t evolves, where F = 50. The
proposed approach achieves the highest profit and significantly reduces the time for
stabilization.

retrieves files from, the servers up to K-hop away. The original offline ap-

proach [37] did not respond to random time-varying changes in the network

and would degrade dramatically in the presence of random temporal variation-

s. For the purpose of fair comparison, we enhance the offline state of the art

with the proposed asymptotically optimal admission, dispatching and grant

of requests, and file delivery for granted requests, whereas any file delivery is

confined within up to K hops.

• “All-cooperation” file retrieval is extended from a centralized multi-hop co-

operative edge caching approach [32], where there was no restriction on the

maximum number of hops for file delivery, but the file delivery had to be ac-

complished within a single slot. We decentralize the centralized approach by

allowing buffering at the edge servers, and hence the file delivery is relaxed to

multiple slots.

Fig. 6.3 plots the profit of different caching schemes (i.e., the cost-saving com-

pared to retrieving all the files from the network backbone) as t evolves from 0 to

5000, where F = 50. The caching profit first increases and then stabilizes with

time, and the proposed approach achieves the highest profit of all the schemes. In

specific, the profit of local caching is always 15. The stabilized profit of K-hop

file retrieval increases with the growth of K. However, it is shown that the K-hop
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Figure 6.4 : The cache hit ratio/probability, the corresponding retrieval cost from
the edge cloud, and the total file retrieval cost, as the number of requested files
increases.

retrieval approach incurs increasing delays to stabilize the network, as K grows. By

adaptively establishing the optimal profitable region for every server and file, the

proposed approach significantly reduces the time for stabilization.

In Fig. 6.3, the proposed approach stabilizes after t ≥ 500, and the convergence

time of the all-cooperation scheme is about t ≥ 4000. The proposed approach re-

quires only 12.5% of convergence time of the all-cooperation approach, and achieves

at least the same steady-state caching profit as the enhanced all-cooperation ap-

proach [32]. This is because, without restraining the maximum offloading hops K,

the enhanced all-cooperation approach dispatches the requests unnecessarily further

away from the edge server admitting the request, hence slowing down the conver-

gence of the system. The simulation results in the rest of the figures, i.e., Figs. 4

to 8, are the steady-state performance. 5000 slots are run for each data point, and

the results are collected and evaluated when t ≥ 2000 and the system is in the

steady state.

Fig. 6.4 evaluates the cache hit ratio (or in other words, the cache hit probability),

the corresponding retrieval cost from the edge cloud, and the total file retrieval cost,

achieved by the proposed approach, local caching and 1-hop file retrieval, as the

number of requested files F increases. We can see in Fig. 6.4(a) that the proposed

approach is superior in terms of retrieving the requested files from the edge cloud

with up to 6 times the cache hit ratio of the local caching scheme. The cache hit

ratio first remains 1 when F ≤ 10, and then declines with the increasing number of
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Figure 6.5 : The average and CDF of the profitable region sizes as the number of
servers N increases. The average region size quickly stabilizes with N and substan-
tially increases with the connectivity per server M .

the requested files. This is because each server is set to cache at most 10 files due

to the limited memory size of the server. When F ≤ 10, an edge server can cache

all the files locally (i.e., all the requests can be satisfied from the local memory),

and the cache hit ratio is always 1.0 in Fig. 6.4(a) with zero file retrieval cost in

Fig. 6.4(b). When F > 10, the probability that an edge server caches a specific

file decreases with the increase of files. The file is increasingly likely to be retrieved

from the backbone, resulting in the decline of cache hit ratio in Fig. 6.4(a).

We notice that the local caching scheme can always achieve zero file retrieval

cost, as shown in Fig. 6.4(b). This is because the edge file retrieval cost is the cost

for cooperatively retrieving files from the edge cloud (which does not include the

cost of retrieving files from the network backbone), while the local caching scheme

does not support cooperative caching. However, the total cost of the local caching

scheme is still the highest, as shown in Fig. 6.4(c), since the scheme does not cache

files cooperatively and more files need to be retrieved from the backbone than the

other schemes.

Fig. 6.5 plots the average and the cumulative distribution function (CDF) of the

sizes of the profitable cooperative regions, as the number of servers N increases,

when the connectivity per server is set to M = 3, 5, and 7. The profitable region

is plotted from the proposed upper and lower bounds: only the server, which has
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a positive gap between the upper and lower bounds of its profitable queue backlog

for the files another server is interested in, is part of the cooperative caching region

for the latter server, as described in Section 6.3. We can see in Fig. 6.5(a) that

the average region size stabilizes as N increases. The collaborated region size does

not grow with the increasing scale of network. This is because the servers too far

away could not deliver files more cost-effectively than the direct retrievals from the

network backbone, and would not contribute to enlarging the profitable caching

region.

In Fig. 6.5, we see that the number of servers each server is associated with, i.e.,

M , can have a strong impact on the region sizes. As shown in Fig. 6.5(a), the size of

the regions is only 30 out of a total of 400 servers when M = 5, and can be further

reduced to 12 when M = 3. As shown in Fig. 6.5(b), the CDFs of the region sizes

under the same connectivity are overlapped, while the growth of connectivity can

significantly enlarge the regions. The reason is that the increase of connectivity can

help decrease the cost of file delivery between a pair of servers due to the improved

delivery path diversity. In this sense, the density of file placement in an edge cloud

is expected to grow with the decreasing connectivity of the edge cloud, as the result

of the increasing size of the profitable regions.

Fig. 6.6 evaluates the average size of the profitable regions for file retrieval in

the edge cloud, as the requested file size and the backbone delivery price (e.g., the

unit price for delivering a megabit of data) increase. In Fig. 6(b), the backbone

delivery price is up to 1.2, which can be as large as 24 times of the one-hop delivery

price ranging from 0.05 to 0.15 [34]. The backbone price is large enough that the

profitable regions can cover the entire network of N = 100 servers when M = 5,

as shown in Fig. 6.6(b); in other words, a further increase of the price would not

enlarge the profitable cooperative caching regions. We can see that the average

region size increases with the request size and file delivery price from the backbone

in both Figs. 6.6(a) and 6.6(b). This finding indicates that large files, such as the

high-resolution videos, which would incur high file delivery price from the backbone,

can be dispatched to large regions of the edge cloud with profitable file delivery. In
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Figure 6.6 : The average region size with the increase of request size and backbone
delivery price. The size of profitable cooperative regions increases with the request
size and backbone delivery price, indicating that SVC-based videos should be placed
with different density.
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Figure 6.7 : The steady-state caching profit as 1/ε increases. The asymptotic opti-
mality of the proposed approach is validated.

contrast, small files, such as low-resolution videos, can only be dispatched to small

regions. Consider SVC-based video contents [115]. As indicated by the finding,

the base layer of videos containing low-resolution baseline profiles can be placed

and cached with a high density across the edge cloud, while the enhancement layer

containing additional high-resolution profiles can be placed with a low density. They

can be cached at one server optimally identified per region under different request

sizes accounting for different video resolutions.

Fig. 6.7 plots the steady-state caching profit of the proposed approach, local
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caching and 1-hop file retrieval, as 1/ε increases from 20 to 80. The asymptotic

optimality of the proposed approach is validated in the figure. In particular, the

profits of the proposed approach and 1-hop file retrieval first increase with 1/ε and

stabilize when 1/ε ≥ 50. The proposed approach can achieve higher steady-state

profit than 1-hop file retrieval, and the profit of local caching is always 15, as already

shown in Fig. 6.3.
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Chapter 7

Conclusion and Future Work

This thesis illustrated the implementation of MEC for future IoT in four different

cases, respectively, including 1) multi-user single-cell task scheduling, 2) multi-user

multi-cell cooperative computing, 3) large-scale fog computing under limited IoT

buffers, and 4) large-scale cooperative region for edge caching. Four new approaches

are proposed to address the challenges. The novelties and contributions are sum-

marized as follows.

1. In Chapter 3, we established a new hybrid learning approach for instantaneous

local processing and predictive computation offloading decisions by integrat-

ing the learning techniques of SGD and OCO in the primal-dual optimization

framework via Lagrange duality. The proposed hybrid learning approach can

be decentralized between the BS and mobile devices for scalability by decom-

posing the primal problems into independent local processing and computation

offloading subproblems separately. Simulation results validated the asymptot-

ic optimality of the proposed hybrid learning approach in the presence of

differently-aged network states.

2. In Chapter 4, we presented a fully distributed online learning approach to

asymptotically minimizing the time-average cost of fog computing. Stochastic

gradient descent was exploited to decouple the optimal operations between

time slots, and a distributed heuristic was developed to decouple the spatial

couplings in graph matching and achieve 1
2
-approximation to the optimum.

The optimality loss resulting from distributed scheduling can be compensated

and asymptotically diminish in online learning. Simulations showed that the

proposed distributed online learning is significantly superior to the state of the

art in terms of throughput and energy efficiency.
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3. In Chapter 5, we enabled Lyapunov optimization to operate under finite buffer-

s of IoT devices without loss of asymptotic optimality, by optimizing virtual

placeholders of individual queues. Sufficient differences can be therefore estab-

lished to drive the online optimization. The optimization of the virtual place-

holders was proved to be a three-layer shortest path problem, and achieved in

a distributed manner by extending the Bellman-Ford algorithm. Corroborated

by simulations, the proposed approach can significantly increase the through-

put and achieve asymptotically minimized time-average cost, as compared to

the direct application of Lyapunov optimization.

4. In Chapter 6, we defined and established the profitable cooperative regions

for distributed edge caching, and derived the necessary condition for data/file

placement with guaranteed retrieval and profit. The cooperative regions were

developed under the asymptotically optimal, distributed framework of coop-

erative caching, and achieved by formulating and solving extended shortest

path problems for the instantaneous bounds of data/file requests yet to be

delivered. Extensive simulations showed the average size of the profitable co-

operative regions is only 30 out of a total of 400 servers.

This thesis focuses on the separated studies of computing and storage resource

allocation in MEC. However, the joint optimization of computing and caching can

improve the performances of MEC significantly. Nevertheless, based on the exist-

ing works, the approach in chapter 6 can be considered to operate in conjunction

with the proposed approaches in Chapter 3–5 to improve the efficiency of MEC.

This is because that these approaches are based on queues to operate, and can be

integrated in the future work. We consider the service caching problem in the re-

alistic systems. The services need to be pre-installed to enable the corresponding

computation tasks to be processed. Caching the popular services in advance can

improve the effectiveness of computing resources and reduce the end-to-end delay.

In addition, the wireless IoT devices operate in shared wireless media, which have

unique characteristics of unpredictable and time-varying channels. Therefore, the

joint optimization of caching, computing, and communication is non-trivial due to
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the couplings of network operations and stochastic nature of user preference, wire-

less channel conditions, and network states. These will be the focus of our future

work.
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Romero, I. Trajkovska, P. S. Khodashenas, L. Goratti, M. Paolino et al.,
“Technology pillars in the architecture of future 5g mobile networks: Nfv,
mec and sdn,” Computer Standards & Interfaces, vol. 54, pp. 216–228, 2017.

[67] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource alloca-
tion for mobile-edge computation offloading,” IEEE Transactions on Wireless
Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[68] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling,” IEEE Trans-
actions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[69] X. Chen, “Decentralized computation offloading game for mobile cloud com-
puting,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–983, April
2015.

[70] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offload-
ing for mobile-edge cloud computing,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 5, pp. 2795–2808, 2015.

[71] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative scheduling
scheme of local cloud and internet cloud for delay-aware mobile cloud com-
puting,” in 2015 IEEE Globecom Workshops (GC Wkshps). IEEE, 2015, pp.
1–6.



141

[72] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource alloca-
tion for overall energy minimization in mobile cloud computing system,” in
Proceedings of the 2012 ACM/IEEE international symposium on Low power
electronics and design. ACM, 2012, pp. 279–284.

[73] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,” IEEE
Transactions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[74] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang, and D. H. Tsang, “De-
centralized and optimal resource cooperation in geo-distributed mobile cloud
computing,” IEEE Transactions on Emerging Topics in Computing, vol. 6,
no. 1, pp. 72–84, 2015.

[75] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, “Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks,” IEEE Access, vol. 4, pp. 5896–5907, 2016.

[76] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint multi-user resource scheduling
and computation offloading in small cell networks,” in Wireless and Mobile
Computing, Networking and Communications (WiMob), 2015 IEEE 11th In-
ternational Conference on, Oct 2015, pp. 794–801.

[77] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. 1, no. 2, pp.
89–103, June 2015.

[78] K. Wang, K. Yang, and C. Magurawalage, “Joint energy minimization and
resource allocation in c-ran with mobile cloud,” IEEE Trans. Cloud Comput.,
2016.

[79] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online algorithms for ge-
ographical load balancing,” in Proc. 2012 Int. Green Comput. Conf. (IGCC),
June 2012, pp. 1–10.

[80] H. Xu, C. Feng, and B. Li, “Temperature aware workload management in geo-
distributed data centers,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 6,
pp. 1743–1753, June 2015.

[81] J. Luo, L. Rao, and X. Liu, “Spatio-temporal load balancing for energy cost
optimization in distributed internet data centers,” IEEE Trans. Cloud Com-
put., vol. 3, no. 3, pp. 387–397, July 2015.

[82] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, “Software defined
cooperative offloading for mobile cloudlets,” IEEE/ACM Trans. Netw., vol. 25,
no. 3, pp. 1746–1760, June 2017.



142

[83] O. Muz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and com-
putational resources for energy efficiency in latency-constrained application
offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4738–4755, Oct
2015.

[84] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[85] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast
beamforming for cache-enabled cloud ran,” IEEE Trans. Wireless Commun.,
vol. 15, no. 9, pp. 6118–6131, Sept 2016.

[86] B. Zhou, Y. Cui, and M. Tao, “Stochastic content-centric multicast schedul-
ing for cache-enabled heterogeneous cellular networks,” IEEE Trans. Wireless
Commun., vol. 15, no. 9, pp. 6284–6297, Sept 2016.

[87] ——, “Optimal dynamic multicast scheduling for cache-enabled content-
centric wireless networks,” IEEE Trans. Commun., vol. 65, no. 7, pp. 2956–
2970, July 2017.

[88] T. Chen, Q. Ling, and G. B. Giannakis, “An online convex optimization ap-
proach to proactive network resource allocation,” IEEE Transactions on Signal
Processing, vol. 65, no. 24, pp. 6350–6364, 2017.

[89] A. Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm for net-
worked online convex optimization,” IEEE Transactions on Signal Processing,
vol. 63, no. 19, pp. 5149–5164, 2015.

[90] H. Yu and M. J. Neely, “Learning aided optimization for energy harvesting
devices with outdated state information,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 1853–1861.

[91] X. Cao, J. Zhang, and H. V. Poor, “A virtual-queue-based algorithm for con-
strained online convex optimization with applications to data center resource
allocation,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 4, pp. 703–716, 2018.

[92] A. O. Allen, Probability, statistics, and queueing theory. Academic Press,
2014.

[93] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[94] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
in COMPSTAT, 2010, pp. 177–186.

[95] S. Shalev-Shwartz et al., “Online learning and online convex optimization,”
Foundations and Trends R© in Machine Learning, vol. 4, no. 2, pp. 107–194,
2012.



143

[96] R. L. Burden and J. D. Faires, “2.1 the bisection algorithm,” Numerical anal-
ysis, 1985.

[97] H. Yu and M. J. Neely, “A simple parallel algorithm with an o(1/t) convergence
rate for general convex programs,” SIAM Journal on Optimization, vol. 27,
no. 2, pp. 759–783, 2017.

[98] E. U. T. R. Access, “Further advancements for E-UTRA physical layer as-
pects,” 3GPP TR 36.814, Tech. Rep., 2010.

[99] G. Dantzig, Linear programming and extensions. Princeton University Press,
2016.

[100] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle
River, 2001, vol. 2.

[101] H. N. Gabow, “A scaling algorithm for weighted matching on general graphs,”
26th Annual Symposium on Foundations of Computer Science, pp. 90–100, Oct
1985.

[102] R. Preis, “Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs,” in Annual Symposium on Theoretical Aspects of
Computer Science. Springer, 1999, pp. 259–269.

[103] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and
L. Ladid, “Internet of things in the 5G era: Enablers, architecture, and busi-
ness models,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp. 510–527, March
2016.

[104] X. Chen, W. Ni, T. Chen, I. B. Collings, X. Wang, and G. B. Giannakis,
“Real-time energy trading and future planning for fifth generation wireless
communications,” IEEE Wireless Commun., vol. 24, no. 4, pp. 24–30, 2017.

[105] D. Pisinger, “Algorithms for knapsack problems,” 1995.

[106] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

[107] L. Huang and M. J. Neely, “Delay reduction via lagrange multipliers in s-
tochastic network optimization,” IEEE Trans. Autom. Control, vol. 56, no. 4,
pp. 842–857, April 2011.

[108] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dy-
namic programming and optimal control. Athena scientific Belmont, MA,
1995, vol. 1, no. 2.

[109] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle
River, 2001, vol. 2.



144

[110] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“LRFU: A spectrum of policies that subsumes the least recently used and
least frequently used policies,” IEEE Trans. Comput., vol. 50, no. 12, pp.
1352–1361, Dec. 2001.

[111] T. Chen, A. Mokhtari, X. Wang, A. Ribeiro, and G. B. Giannakis, “Stochas-
tic averaging for constrained optimization with application to online resource
allocation,” IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3078–3093, June
2017.

[112] Z. Zhao, L. Guardalben, M. Karimzadeh, J. Silva, T. Braun, and S. Sargen-
to, “Mobility prediction-assisted over-the-top edge prefetching for hierarchical
vanets,” IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1786–1801, Aug
2018.

[113] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dy-
namic programming and optimal control. Athena Scientific Belmont, MA,
1995, vol. 1, no. 2.

[114] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: evidence and implications,” in IEEE INFOCOM, Mar
1999, pp. 126–134 vol.1.

[115] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h.264/avc standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 9, pp. 1103–1120, Sept 2007.


	Title Page
	Certificate of Authorship/Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	Abbreviation
	1 Introduction
	1.1 Background
	1.1.1 Future Internet-of-Things (IoT)
	1.1.2 Mobile Edge Computing MEC
	1.1.3 MEC for Future IoT

	1.2 Challenges of MEC for Future IoT
	1.2.1 Scenarios of MEC for Future IoT
	1.2.2 Technical Challenges in Four Cases

	1.3 Thesis Organization

	2 Literature Review
	2.1 Architecture of IoT and MEC
	2.1.1 Architecture of IoT
	2.1.2 Architecture of MEC
	2.1.3 Implementation of MEC for Future IoT

	2.2 Summary of Related Work

	3 Hybrid Learning of Predictive Mobile-Edge Computation Offloading under Differently-Aged Network States
	3.1 System Model
	3.1.1 Differently-aged Network States
	3.1.2 Network Operations
	3.1.3 Problem Formulation

	3.2 Hybrid Learning of Predictive Computation Offloading under Differently-aged Network States
	3.2.1 Hybrid Learning under Differently-aged Network States
	3.2.2 Implementation of Hybrid Learning Framework

	3.3 Performance and Optimality Analysis
	3.3.1 Simulation Results and Analysis
	3.3.2 Discussion on Delay-Sensitive Tasks


	4 Distributed Online Learning of Fog Computing under Non-uniform Device Cardinality
	4.1 System Model
	4.1.1 Network Model
	4.1.2 Causality Constraints and Queue Dynamics
	4.1.3 Problem Statement

	4.2 Fully Distributed Online Learning of Fog Computing
	4.2.1 Stochastic Online Learning for Temporal Decoupling
	4.2.2 Per-slot Optimal Solutions of Online Learning
	4.2.3 Distributed Online Learning of Fog Computing

	4.3 Optimality Analysis
	4.3.1 Asymptotic Optimality and Convergence Time of Centralized Online Learning
	4.3.2 Asymptotic Optimality of Distributed Online Learning

	4.4 Simulation Results and Analysis
	4.5 Discussion on Delay-Sensitive Tasks

	5 Distributed Online Optimization of Fog Computing for Internet-of-Things under Finite Device Buffers
	5.1 System Model
	5.1.1 Network Model and Cascaded Queues
	5.1.2 Causality Constraints and Queue Dynamics

	5.2 Fog Computing under Large IoT Buffers
	5.2.1 Problem Statement and Reformulation
	5.2.2 Distributed Online Optimization under Large IoT Buffers

	5.3 Distributed Optimization of Virtual Placeholders for Small IoT Buffers
	5.3.1 Optimality and Limitations of Lyapunov Optimization
	5.3.2 Virtual Placeholder Design
	5.3.3 Three-layer Shortest Path Problem of Placeholders

	5.4 Simulation Results

	6 Profitable Cooperative Region for Distributed Online Edge Caching
	6.1 System Model
	6.2 Distributed Optimization of Cooperative Edge Caching
	6.2.1 Problem Statement
	6.2.2 Distributed Online Optimization of Edge Caching
	6.2.3 Extensions to High-Mobility Users and Indivisible Files

	6.3 Distributed Formation of Profitable Cooperative Region
	6.3.1 Definition of Profitable Cooperative Caching Regions
	6.3.2 Distributed Optimization of Profitable Cooperative Regions
	6.3.3 Implementation of Profitable Cooperative Regions

	6.4 Simulation Analysis

	7 Conclusion and Future Work
	Bibliography



