An Ethically-Guided Domain-Independent Model of Computational Emotions

Suman Ojha

Faculty of Engineering and Information Technology University of Technology Sydney

This dissertation is submitted for the degree of Doctor of Philosophy

Supervisor: Dist. Prof. Mary-Anne Williams

Co-supervisor: Dr. Jonathan Vitale

February 2020

This research is dedicated to my father, Dr. Narayan Ojha, who wanted to see me as a medical doctor like him. Although, I took a path of engineering instead of medicine, I have marched on my way to become a 'doctor' – though not in medicine but in philosophy of Computer Science.

Certificate of Original Authorship

I, Suman Ojha, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature of Student:

Production Note: Signature removed prior to publication.

> Suman Ojha 24 February 2020

Acknowledgements

My research project would not have been successful without the help and support of a number of people. I hereby take an opportunity to personally acknowledge everyone who walked with me in their own ways along the journey of this PhD research. I would like to heartily thank the following people.

- My PhD supervisor, Distinguished Professor Mary-Anne Williams, for being an exemplary advisor. She allowed me to pave my own path for the completion of this journey and supported along the way in every possible manner. She also taught me that paper rejections are the norms as an early career researcher and one should take this as an opportunity to refine one's work and become a better researcher.
- My co-supervisor, Dr. Jonathan Vitale, for being more of a colleague than just a supervisor and helping me in uncountable ways.
- My wife, Asmita Thapa, who took my research as seriously as I did, and went through everything to keep me away from the stress of my studies.
- Dr. Syed Ali Raza and Dr. Richard Billingsley for providing me useful concepts of machine learning approaches for the completion of my research project.
- My family and friends who always treated me as a person rather than just a nerdy research student and never failed to make me realise that I was alive.
- My colleagues at the Innovation and Enterprise Research Lab (The Magic Lab) who helped to improve my research by attending my presentations and providing feedback on the drafts of my papers.
- All the anonymous participants of my research surveys who contributed their valuable data for the evaluation of my computational model of emotion.
- All the anonymous reviewers of my conference and journal papers who provided valuable comments and suggestions for the improvement of my research.

I consider you all as a part of my research journey.

Author's Core Research Contributions

- Ojha, S., Gudi, S. L. K. C., Vitale, J., Williams, M.-A., and Johnston, B. (2017a). I remember what you did: A bheavioural guide-robot. In *International Conference on Robot Intelligence Technology and Applications (RiTA)*.
- Ojha, S., Vitale, J., Ali Raza, S., Billingsley, R., and Williams, M.-A. (2018a). Implementing the dynamic role of mood and personality in emotion processing of cognitive agents. In *Annual Conference on Advances in Cognitive Systems (ACS)*.
- Ojha, S., Vitale, J., Ali Raza, S., Billingsley, R., and Williams, M.-A. (2019). Integrating mood and personality with agent emotions. In *International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*.
- Ojha, S., Vitale, J., and Williams, M.-A. (2017b). A domain-independent approach of cognitive appraisal augmented by higher cognitive layer of ethical reasoning. In *Annual Meeting of the Cognitive Science Society* (*CogSci*).
- Ojha, S. and Williams, M.-A. (2016). Ethically-guided emotional responses for social robots: Should i be angry? In *International Conference on Social Robotics (ICSR)*, pages 233–242. Springer.
- Ojha, S. and Williams, M.-A. (2017). Emotional appraisal: A computational perspective. In *Annual Conference on Advances in Cognitive Systems (ACS)*.
- Ojha, S., Williams, M.-A., and Johnston, B. (2018b). The essence of ethical reasoning in robot-emotion processing. *International Journal of Social Robotics (IJSR)*, 10:211–223.

Author's Additional Research Contributions

- Gudi, S. L. K. C., Ojha, S., Alam, S., Johnston, B., and Williams, M.-A. (2017a). A proactive robot tutor based on emotional intelligence. In *International Conference on Robot Intelligence Technology and Applications* (*RiTA*).
- Gudi, S. L. K. C., Ojha, S., Clark, J., Johnston, B., and Williams, M.-A. (2017b). Fog robotics: An introduction. In *IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS)*.
- Gudi, S. L. K. C., Ojha, S., Johnston, B., Clark, J., and Williams, M.-A. (2018).
 Fog robotics for efficient, fluent and robust human-robot interaction. In *IEEE* 17th International Symposium on Network Computing and Applications (NCA).
- Herse, S., Vitale, J., Ebrahimian, D., Tonkin, M., Ojha, S., Sidra, S., Johnston, B., Phillips, S., Gudi, S. L. K. C., Clark, J., et al. (2018a). Bon appetit! robot persuasion for food recommendation. In *Companion of the 2018* ACM/IEEE International Conference on Human-Robot Interaction, pages 125–126. ACM.
- Herse, S., Vitale, J., Tonkin, M., Ebrahimian, D., Ojha, S., Johnston, B., Judge, W., and Williams, M.-A. (2018b). Do you trust me, blindly? factors influencing trust towards a robot recommender system. In *International Symposium on Robot and Human Interactive Communication (RO-MAN)*.
- Tonkin, M., Vitale, J., Ojha, S., Clark, J., Pfeiffer, S., Judge, W., Wang, X., and Williams, M.-A. (2017a). Embodiment, privacy and social robots: May i remember you? In *International Conference on Social Robotics (ICSR)*, pages 506–515. Springer.
- Tonkin, M., Vitale, J., Ojha, S., Williams, M.-A., Fuller, P., Judge, W., and Wang, X. a. (2017b). Would you like to sample? Robot engagement in a shopping centre. In *International Symposium on Robot and Human Interactive Communication (RO-MAN)*. IEEE.

- Vitale, J., Tonkin, M., Herse, S., Ojha, S., Clark, J., Williams, M.-A., Wang, X., and Judge, W. (2018). Be more transparent and users will like you: A robot privacy and user experience design experiment. In *Proceedings of the* 2018 ACM/IEEE International Conference on Human-Robot Interaction, pages 379–387. ACM.
- Vitale, J., Tonkin, M., Ojha, S., Williams, M.-A., Wang, X., and Judge, W. (2017). Privacy by design in machine learning data collection: A user experience experimentation. In AAAI Spring Symposium Series.

Table of Contents

1	Intr	oductio	n 1
	1.1	Resear	ch Objectives
		1.1.1	Primary Objectives
		1.1.2	Secondary Objectives
	1.2	Contri	butions
		1.2.1	Theoretical/Conceptual Contributions 7
		1.2.2	Technical/Methodological Contributions
	1.3	Thesis	and Methodology
	1.4	Scope	and Limitations
	1.5	Disser	tation Overview
2	Bac	kground	d and Literature 21
	2.1	What i	s an Emotion?
	2.2	Theori	es of Emotion
		2.2.1	Physiological Theories of Emotion
		2.2.2	Anatomic Theories of Emotion
		2.2.3	Dimensional Theories of Emotion
		2.2.4	Appraisal Theories of Emotion
		2.2.5	Discussion
	2.3	Under	standing Appraisal Dynamics
	2.4	Role o	f Mood and Personality in Emotional Appraisal 49
		2.4.1	Personality Factor
		2.4.2	Mood Factor
		2.4.3	Interaction among Emotion, Mood and Personality 54
	2.5	Emotio	on and Ethics \ldots \ldots 56

		2.5.1	Theories of Ethics	57
		2.5.2	Connecting Ethics to Emotions	59
	2.6	Chapte	r Summary	65
3	Com	putatio	nal Emotion Models and Research Context	82
	3.1	Compu	tational Models of Emotion	82
		3.1.1	Cathexis	84
		3.1.2	FLAME	86
		3.1.3	Model of Egges and Colleagues	88
		3.1.4	FearNot!	90
		3.1.5	ALMA	92
		3.1.6	MAMID	94
		3.1.7	ЕМА	95
		3.1.8	Soar-Emote	96
		3.1.9	WASABI	99
		3.1.10	TAME	01
		3.1.11	FAtiMA	03
		3.1.12	MA/SDEC	06
		3.1.13	EMIA	07
		3.1.14	CAAF	08
		3.1.15	Other Models of Emotion	09
		3.1.16	Summary and Comparison	12
	3.2	Hypoth	neses	17
	3.3	Chapte	r Summary	21
4	Ethi	cal Emo	otion Generation System (EEGS) Details	30
-	4.1	EEGS:	Ethical Emotion Generation System	30
	4.2	Revisit	ing Appraisal Dynamics	31
	4.3	Overall	System Architecture	32
		4.3.1	Emotion Elicitation Module	33
		4.3.2	Cognitive Appraisal Module	34
		4.3.3	Memory Module	34
		4.3.4	Characteristics Module	34
		4.3.5	Affect Generation Module	35
		126	Affect Regulation Module	36

	4.4	Events,	, Actions and Objects
		4.4.1	Structure of Events, Actions and Objects
	4.5	Emotio	n Elicitation
	4.6	Cogniti	ive Appraisal
		4.6.1	Goals, Standards and Attitudes
		4.6.2	Appraisal Variables
	4.7	Affect	Generation
		4.7.1	Appraisal–Emotion Network
		4.7.2	Data-driven Learning of Appraisal–Emotion Association 160
		4.7.3	Implementation of Affect Generation Process in EEGS 164
	4.8	Affect	Regulation
		4.8.1	Emotion Convergence in Computational Models 182
		4.8.2	Ethical Reasoning for Emotion Regulation in EEGS . 184
		4.8.3	Reasoning Mechanism in EEGS
	4.9	A Guid	leline for the Implementation of EEGS Modules 189
		4.9.1	Implementing the Emotion Elicitation Module 189
		4.9.2	Implementing the Cognitive Appraisal Module 190
		4.9.3	Implementing the Affect Generation Module 193
		4.9.4	Implementing the Affect Regulation Module 195
	4.10	Chapte	r Summary
5	Mod	el Evalı	uation and Thesis Validation 206
	5.1	Introdu	action to a 3-Stage Evaluation Approach
	5.2	Scenari	ios and Data Collection
		5.2.1	Scenario Design
		5.2.2	Data Collection
	5.3	Stage 1	: Cognitive Appraisal Evaluation
		5.3.1	Methodology
		5.3.2	Results
		5.3.3	Additional Discussion
	5.4	Stage 2	P: Affect Generation Evaluation
		5.4.1	Methodology
		5.4.2	Results
		5.4.3	Additional Discussion

	5.5	Stage 3: Affect Regulation Evaluation	237
		5.5.1 Methodology and Results	238
	5.6	Justification of Thesis Validation	247
	5.7	Chapter Summary	249
6	Cone	clusion and Future Directions	256
6	Con 6.1	clusion and Future Directions 2 Contributions and Implications 2	256 257
6	Con 6.1 6.2	clusion and Future Directions 2 Contributions and Implications 2 Limitations and Future Work 2	256 257 261

List of figures

2.1	Interaction of brain regions from the Anatomic view of emo-	
	tional (fear) responses	24
2.2	A circumplex representation of emotional states	27
2.3	A conceptual representation of pleasure, arousal and domi-	
	nance dimensions	28
2.4	Plutchik's wheel of emotions showing different sections of	
	varying colours representing each type of emotion	29
2.5	Plutchik's cone below the wheel of emotions signifying the	
	possible intensity of each coloured section in the wheel	30
2.6	Lövheim's cube of emotion	31
2.7	Process flow from an stimulus event to (1) emotion elicitation,	
	(2) cognitive appraisal, (3) affect generation, and (4) affect	
	regulation	48
2.8	Positive affect and Negative affect dimensions of mood and	
	their relationship with the dimensions of <i>pleasantness</i> and	
	arousal	53
2.9	Interaction between emotion, mood and personality in a medi-	
	<i>ation</i> approach	55
2.10	A consensual process model of emotion generation and regulation	63
3.1	Several components of Cathexis model	85
3.2	FLAME agent architecture	86
3.3	Overview of the integrated personality, mood and emotion	
	model of Egges et al. (2004)	89
3.4	FearNot! affectively driven agent architecture	91

3.5	Process flow in MAMID cognitive-affective architecture 94
3.6	Cognitive-motivational-emotive system architecture of EMA
	model
3.7	A basic PEACTIDM cycle
3.8	Soar-Emote's unification of PEACTIDM and appraisals 98
3.9	The conceptual distinction of cognition and embodiment in
	WASABI architecture
3.10	Conceptual overview of TAME architecture $\ldots \ldots \ldots \ldots \ldots 102$
3.11	FAtiMA Core architecture
3.12	Appraisal mechanism in FAtiMA emotion architecture 104
3.13	EMIA architecture divided into three layers $\ldots \ldots \ldots \ldots \ldots 107$
3.14	Graphical representation of how the validation of Hypothesis
	1 and 2 will involve the evaluation of first part (i.e. emotion
	elicitation, cognitive appraisal, affect generation), and second
	part (<i>i.e.</i> affect regulation) of the overall computational process
	in EEGS
4.1	Process flow from an stimulus event to (1) emotion elicitation,
	(2) cognitive appraisal, (3) affect generation, and (4) affect
	regulation revisited
4.2	Overall architecture of EEGS
4.3	Influence of goals, standards and attitudes in cognitive ap-
	praisal process as suggested by Ortony et al. (1990) 143
4.4	An example of a goal tree in EEGS based on OCC theory 144
4.5	Parallel computation of appraisals in EEGS
4.6	Role of cognitive appraisal in affect generation process 157
4.7	An weighted appraisal-emotion network showing many-to-
	many relationship between appraisal variables and emotions 158
4.8	A general appraisal-emotion network with k appraisal variables
	and l emotion types
4.9	Decomposition of the link between appraisal variable v_1 and
	emotion type e_1
4.10	Mechanism for mapping the angle of an emotion type into a
	signed valence degree
4.11	Cyclic interaction between emotion and mood

4.12	Proposed dynamic interaction between emotion, mood and
	personality
4.13	Comparison of different emotion decay functions
4.14	Process of affect regulation in EEGS where conflicting emo-
	tional states are converged to a final stable and regulated emo-
	tional state based on ethical reasoning guided by ethical standards 184
4.15	Normalisation function for appraisal variables in the range [0,1].191
4.16	Normalisation function for appraisal variables in the range [-1,1].191
4.17	Normalisation function for emotion intensities
5.1	Proposed 3-Stage Evaluation approach for computational mod-
	els of emotion
5.2	Accuracy in computation of various appraisals by EEGS as
	compared to appraisals rated by human participants in the
	given scenario
5.3	Accuracy of the overall appraisal of EEGS compared to the
	error in appraisal computation
5.4	Desirability (appraisal) dynamics of EEGS for two different
	scenarios – (i) Two Strangers in a Park and (ii) Husband and
	Wife
5.5	Overall accuracy in prediction of eight emotions over the 10
	training-testing sessions for each of the emotions
5.6	Evolution in learning of the association between appraisal
	variables and emotion for eight different emotions for a train-
	ing session where the test data set was used for prediction of
	emotion intensity after each epoch of the session
5.7	Difference in intensity of joy emotion in Scenario 1 (Two
	Strangers in a Park) when the personality factor of <i>extraver</i> -
	<i>sion</i> (E) is altered
5.8	Difference in intensity of <i>joy</i> emotion in Scenario 3 (Husband
	and Wife) when the personality factor of <i>extraversion</i> (E) is
	altered
5.9	Emotion dynamics of EEGS when initial mood is very positive
	in Scenario 1 (Two Strangers in a Park)

5.10	Emotion dynamics of EEGS when initial mood is very negative	
	in Scenario 1 (Two Strangers in a Park)	. 230
5.11	Learning trend for the association of the appraisal variable de-	
	sirability to the emotion joy averaged over 10 training sessions	
	and the variation in the learned weights across the training	
	sessions	. 232
5.12	Accuracy in prediction of intensity of <i>joy</i> emotion during	
	testing phase.	. 233
5.13	Evolution of the learned model with the increasing epochs.	. 234
5.14	Learning trend for the association of the appraisal variable	
	desirability to the emotion distress averaged over 10 training	
	sessions and the variation in the learned weights across the	
	training sessions	. 235
5.15	Mirrored pattern in learning of the weights for personality	
	factors for the association of the appraisal variable <i>desirability</i>	
	to the emotions <i>joy</i> and <i>distress</i> . Surprisingly, the mood factor	
	did not exhibit a mirrored pattern for <i>joy</i> and <i>distress</i>	. 236
5.16	Mirrored pattern obtained for the weight of mood factor (f_M)	
	when only the mood is considered in the learning process $% \left({{{\mathbf{x}}_{i}}} \right)$.	. 237
5.17	Comparison of the rank distance from the average human rat-	
	ing of the emotion intensity generated by (i) highest intensity,	
	(ii) blended intensity and (iii) ethical reasoning approaches $\ .$. 239
5.18	Cumulative rank distance from the average human rating for	
	the emotion intensity generated by (i) highest intensity, (ii)	
	blended intensity and (iii) ethical reasoning approaches \ldots	. 240
5.19	Emotion dynamics in EEGS using (i) highest intensity ap-	
	proach, (ii) blended intensity approach, and (iii) ethical rea-	
	soning approach in Scenario 4	. 244
5.20	Emotion dynamics in EEGS using (i) highest intensity ap-	
	proach, (ii) blended intensity approach, and (iii) ethical rea-	
	soning approach in Scenario 5	. 246

List of tables

2.1	Summary of the relationship between Panksepp's primary emo-
	tional systems to specific brain regions
2.2	Levels of monoamine neurotransmitters in various emotions
	according to the theory of Lövheim (2012)
2.3	Appraisal variables proposed in the theory of Frijda (1986) 34
2.4	Summary of Stimulus Evaluation Checks in appraisal theory
	of Scherer (2001)
2.5	Summary of Appraisal Components in Cognitive-Motivational-
	Emotive theory of emotion Smith et al. (1990) 40
2.6	Functional analysis of some emotions based on core relational
	theme
2.7	Appraisal variables and evaluation criteria in OCC theory of
	emotion
2.8	Emotion groups and emotion types in OCC theory of emotion 44
2.9	Appraisal dimensions in appraisal theory of Roseman (1979). 45
2.10	Evolutionary history of five factors of personality 51
2.11	Definition of some affective states in the context of current
	dissertation
2.12	Normative theories of ethics. List of selected ethical theories
	adapted from Robbins and Wallace (2007)
2.13	Definition of believability and social acceptability in the con-
	text of current dissertation
3.1	List of computational models of emotion

3.2	Comparison of several computational implementations of emo-
	tion in artificial agents over the last two decades $\ldots \ldots \ldots \ldots 116$
41	An avample of some events 120
4.1	An example of some events
4.2	
4.3	An example of some objects
4.4	An example of some emotion and action related standards in
	EEGS 146
4.5	Mapping of the angles of the circumplex into valence degree
	for various emotions
4.6	Association of various appraisal variables with different emo-
	tions as suggested in the OCC theory
4.7	A summary of different emotion decay mechanisms used in
	various computational models of emotion
4.8	An example of a set of ethical standards for <i>anger</i> emotion 186
4.9	Input(s) and output(s) of cognitive appraisal module 190
4.10	Appraisal variables in EEGS and their value ranges 192
4.11	Input(s) and output(s) of affect generation module
4.12	$Input(s) \ and \ output(s) \ of \ affect \ regulation \ module. \ \ . \ . \ . \ . \ . \ 195$
51	Summary of the scenarios considered 210
5.1	Error in appraical computation of EEGS
5.2	Paired t Test to compare the appreciate computed by EEGS to
5.5	the ratings provided by human participants
5 1	Or and a supervised by human participants
5.4	Overall accuracy in prediction of various emotion intensities. 223
5.5	Best classification accuracy obtained by Meuleman and Scherer
	$(2013). \ldots \ldots$
5.6	Comparison of median distances from the human assessment
	for (i) highest intensity, (ii) blended intensity and (iii) ethical
	reasoning approaches in EEGS
5.7	Quantified emotion values of (i) highest intensity approach,
	(ii) blended intensity approach, and (iii) ethical reasoning
	approach in response to various actions of Rose (Dementia
	patient) to Lily (service robot) in Scenario 4

5.8	Quantified emotion values of (i) highest intensity approach,
	(ii) blended intensity approach, and (iii) ethical reasoning
	approach in response to various actions of Andrew (little boy)
	to Robert (companion robot) in Scenario 5
6.1	A summary of contributions and implications of the presented
	dissertation

Abstract

Advancement of artificial intelligence research has supported the development of intelligent autonomous agents. Such intelligent agents, like social robots, are already appearing in public places, homes and offices. Unlike the robots intended for use in factories for mechanical work, social robots should not only be proficient in capabilities such as vision and speech, but also be endowed with other human skills in order to facilitate a sound relationship with human counterparts.

Phenomena of emotions is a distinguishable human feature that plays a significant role in human social communication because ability to express emotions enhances the social exchange between two individuals. As such, artificial agents employed in social settings should also exhibit adequate emotional and behavioural abilities to be easily adopted by people.

A critical aspect to consider when developing models of artificial emotions for autonomous intelligent agents is the likely impact that the emotional interaction can have on the human counterparts. For example, an *emotional robot* that shows an angry expression along with a loud voice may scare a young child more than a *non-emotional robot* that only denies a request. Indeed, most modern societies consider a strong emotional reaction towards a young child to be unacceptable and even unethical.

How can a robot select a socially acceptable emotional state to express while interacting with people? I answer this question by providing an association between emotion theories and ethical theories – which has largely been ignored in the existing literature. A regulatory mechanism for artificial agents inspired by ethical theories is a viable way to ensure that the emotional and behavioural responses of the agent are acceptable in a given social context. As such, an intelligent agent with emotion generation capability can establish social acceptance if its emotions are regulated by ethical reasoning mechanism.

In order to validate the above statement, in this work, I provide a novel computational model of emotion for artificial agents – EEGS (short name for Ethical Emotion Generation System) and evaluate it by comparing the emotional responses of the model with emotion data collected from human participants. Experimental results support that *ethical reasoning mechanism can indeed help an artificial agent to reach to a socially acceptable emotional state*.