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ABSTRACT

Performance analysis of Unmanned Aerial Vehicles-enabled Wireless

Networks

by

Xin Yuan

As an indispensable part of mobile communication systems, Unmanned Aerial

Vehicles (UAVs) can be leveraged to complement terrestrial networks by providing

coverage to areas where infrastructures are scarce. Equipped with self-navigation

and strong automation, UAVs have extensive applications to environmental mon-

itoring, disaster recovery, search and rescue, owing to their excellent agility and

autonomy. As a result, an increasing demand arises for ubiquitous connectivity

and reliable communication for data exchange between UAVs, and between UAVs

and ground stations. Since UAVs operate in three-dimensional (3D) space with

strong manoeuvrability, random trajectories and wireless propagation environment

can pose significant challenges to the study on coverage and capacity of UAV net-

works. On the other hand, UAVs are increasingly posing threats to information

security. UAVs can be potentially used to eavesdrop and jam wireless transmissions

between legitimate terrestrial transceivers. It is of practical interest to understand

the robustness of terrestrial wireless communications under exposure to new threats

from aerial adversaries. This thesis studies the coverage and capacity, including

secure coverage and secrecy capacity, of UAV-enabled wireless networks with UAVs

flying under 3D random trajectories based on stochastic geometry and measure con-

vergence theory. The detailed contributions of this thesis are summarised as:

• Capacity analysis of UAV networks under random trajectories. We geomet-

rically derive probability distributions of UAV-to-UAV distances and closed-

form bounds for the capacity can be obtained by exploiting the Jensen’s in-



equality. We extrapolate the idea to dense UAV networks and analyse the

impact of network densification and imperfect channel state information on

the capacity.

• Connectivity analysis of uncoordinated UAV swarms. New closed-form bounds

are derived for the outage probability of individual UAVs, and broadcast con-

nectivity of each UAV which evaluates the reliability of broadcast across the

swarm. The qualifying conditions of the bounds on 3D coverage and impact

of ground interference on the outage are identified.

• Secure connectivity analysis in UAV networks. We propose a trust model

based on UAVs‘ behaviour and mobility pattern and characteristics of inter-

UAV channels. We derive analytical expressions of both physical and secure

connectivity probabilities with/without considering Doppler shift.

• Secrecy capacity analysis against aerial eavesdroppers. We analyse ergodic

and ε-outage secrecy capacities of ground link in the presence of cooperative

aerial eavesdroppers. The “cut-off” density of eavesdroppers under which the

secrecy capacities vanish is identified. By decoupling the analysis of random

trajectories from random channel fading, closed-form approximations with al-

most sure convergence to the secrecy capacities are devised.

Dissertation directed by Professor Ren Ping Liu, Associate Professor Andrew Zhang,

and Dr. Wei Ni

School of Electrical and Data Engineering
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PGF: Probability Generating Functional

PLL: Phase-locked loop

PLR: packet loss rate
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PPP: Poisson Point Process

PRR: Packet Receiving Ratio

QoS: Quality of Service

RF: Radio Frequency

RMS: Root-mean-square

RSRP: Reference Signal Received Power

RSSI: Received Signal Strength Indicator

SC: Selection combining

SINR: Signal to Interference plus Noise Ratio

SNR: Signal-to-noise ratio

SON: Self-Organized Network

SRCM: Semi-Random Circular Movement

ST:Smooth Turn

SVD: Singular value decomposition

TDD: Time Division Duplex

TDMA: Time Division Multiple Access

MTC: Machine Type Communication

ICIC: Inter-Cell Interference Coordination

WiMAX: Worldwide Interoperability for Microwave Access

WSN: Wireless Sensor Networks

U2G: UAV-to-Ground

UAV: Unmanned Aerial Vehicles

VANET: Vehicular Ad hoc Network

ZF: Zero Forcing



Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(·)T denotes the transpose operation.

(·)∗ denotes the complex conjugate operation.

(·)H denotes the conjugate transpose operation.

In is the identity matrix of dimension n× n.

0n is the zero matrix of dimension n× n.

R, R+ denote the field of real numbers, and the set of positive reals, respectively.

(·)+ denotes max{·, 0}.

| · | denotes the modulo operation.

E [·] denotes the expectation operation.

f(·) denotes the probability distribution function.

F (·) denotes the cumulative distribution function.

Pr(·) denotes the probability function.

∂y
∂x

denotes the first order partial derivative of y to x.

∂2y
∂x2

denotes the second order partial derivative of y to x.

1(·) denotes the indicator function.
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B(a, b) denotes the Beta function with parameter a and b.

β(·; ·, ·) denotes the incomplete beta function.

Γ(·) denotes the Γ function.

γ(a, b) =
∫ b

0
e−tta−1dt denotes the incomplete gamma function.

2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
· zn
n!

denotes the Gaussian hypergeometric function.
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