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Abstract

Visual tracking is a key problem for many computer vision applications such as human-computer interaction, intelli-
gent medical diagnosis, navigation and traffic control management. Most of the existing tracking methods are mainly
based on correlation filters. However, boundary effect, scale estimation and template updating have not been fully
resolved. Herein, this paper presents a new hierarchical tracking method combining structural correlation filters with
a Gaussian Particle Filter (GPF), named KCF-GPF. Weak KCF classifiers are constructed via an Lukas-Kanade (LK)
method and the preliminary target location is presented as a weighted sum of these classifiers. Specially, a facile
weight strategy is implemented to estimate the reliability of each weak classifier. On the basis of the preliminary tar-
get location, the GPF using features from a Convolutional Neural Network (CNN) is employed to predict the location
and scale of a target. Extensive experiments with the OTB-2013 and the OTB-2015 databases demonstrate that the
proposed algorithm performs favourably against state-of-the-art trackers.

Keywords: Structural correlation filter, Gaussian Particle Filter (GPF), Lukas-Kanade (LK), Reliability estimation,
Convolutional Neural Network (CNN)

1. Introduction

Visual tracking is one of the most fundamental prob-
lems in computer vision due to its numerous applica-
tions such as video surveillance, motion analysis, vehi-
cle navigation and human computer interactions[1, 2, 3,
4, 5]. Although a great progress has been seen on devel-
oping algorithms [6, 7, 8, 9, 10] and benchmark eval-
uations [11] for visual tracking, it is still a challenging
problem in the situations of heavy illumination changes,
pose deformations, partial and full occlusions, large s-
cale variations, background clutter and fast motion.

Correlation Filters (CF) have recently attracted a
great attention due to their high speed of calculation
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and robust tracking performance. Bolme et al. [12]
proposed an adaptive correlation filer, called Minimum
Output Sum of Squared Error (MOSSE), for produc-
ing ASEF-like filters by fewer training images. Hen-
riques et al. [13] extended the CF-based trackers to
kernel-based training, called the tracker with the circu-
lant structure and kernels (CSK), to utilize a circulan-
t structure of one image patch to conduct dense sam-
pling, and then improved the kernelized correlation fil-
ter (KCF) tracker [14] by using multi-channel inputs
and HOG descriptors. Danelljan et al. [15] develope-
d the DSST method handling scale changes of a tar-
get, and Choi et al. [16] proposed a spatially attentional
weight map to weight various CFs. Ma et al. [17] used
the CF as a short-term tracker and an online random fer-
n classifier for re-detection as a long-term memory sys-
tem.

Although these CF-based trackers achieved appealing
results both in precision and success rates with the OTB-
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2013 [11] and the OTB-2015 databases [18], they still
drifted or failed to track due to the following issues. (i)
They still underwent boundary effects [19] during tar-
get tracking. When a target appeared near boundaries
of a detection window of the CF, the boundary infor-
mation was always discarded and interfered by a cosine
window. In this way, boundary effects severely inter-
fered with the progress of target detection in the case
of fast motion and motion blur due to relative move-
ments between foreground and background. To resolve
the boundary effects, the SRDCF [19] added spatial reg-
ularization function that penalized filter coefficients re-
siding outside the target region. (ii) A conventional CF
used a fixed-size window to execute learning and detec-
tion process, and this kind of trackers lacked estimation
on target scale. To handle this scale issue, the SRDCF
used different spatial weights to enable the CF to learn
and detect in larger image regions with different extents
in each frame. As these spatial weights were based on
the priori information about the spatial extent of the fil-
ter, these weights were not self-adaptive to real track-
ing scenarios so that the SRDCF also drifted or failed
to track. (iii) As a CF-based tracker was a template-
class method, it was easy to suffer from fast deforma-
tion due to lack of an appropriate strategy for template
updating. As mentioned above, the SRDCF extracted
different-size templates via priori spatial weights so that
these updated templates were inappropriate for a par-
ticular application. In general, CF-based trackers are
worthy of being studied and improved.

To resolve above issues, we develop a new hierar-
chical visual tracking method combining structural cor-
relation filters with a Gaussian Particle Filter (GPF).
The proposed method can be divided into two layers.
The first layer is a homogeneous ensemble layer. An
Lukas-Kanade optical flow method (LK) [20] is used
to dynamically execute motion detection via estimating
instantaneous image velocities between two sequential
2D images. By motion detection, potential locations
of a target are preliminary to be found and further re-
detection will be implemented in these locations for re-
ducing the influence of boundary effects (Issue i). Mul-
tiple weak classifiers based on structural correlation fil-
ters are generated in these potential locations and al-
l weak classifiers are assembled as a strong classifier.
Each weak classifier is a homogeneous base classifier
and the weights of all weak classifiers are computed via
two new reliability criteria. A preliminary tracking lo-
cation is inferred by the strong classifier and the scale
estimation is executed in the next layer. The second
layer is a CNN-based GPF layer. The GPF is used to
improve the preliminary visual tracking result by taking

scale information of a target into account (Issue ii). The
GPF can provide the estimations of location and scale
at the same time. Features are extracted by the CNN,
which are invariant to rotation, scaling, translation and
deformation [21] (Issue iii). The GPF computes the fi-
nal tracking result by the weighted sum of all particles.

The contributions in this paper are summarized as fol-
lows.

• A new homogeneous ensemble strategy is pro-
posed to employ same-type structural correlation
filters as homogeneous base classifiers and com-
bine them into a strong classifier.

• The GPF is used for estimating the scale and the
location of a target at the same time. A CNN-
based feature extraction strategy is introduced into
the GPF for reducing the influence of fast deforma-
tion of a target.

• Extensive experiments are conducted with the
OTB-2013 [11] and the OTB-2015 databases [18]
using 11 various attributes to demonstrate the out-
performance of the proposed method in compari-
son with state-of-the-art trackers.

The paper is organized as follows. Section 2 intro-
duces some preliminary methods related to our work
for immediate reference. In Section 3, we provide de-
tailed information on the proposed approach. Section 4
presents qualitative and quantitative comparisons of 16
state-of-the-art approaches and 4 baseline trackers with
the OTB-2013 and the OTB-2015 databases. At last,
some concluding remarks are demonstrated in Section
5.

2. Related Work

A comprehensive tracking review can be found in the
previous literatures [11, 22, 23]. In this section, we dis-
cuss the methods closely related to this work, mainly
regarding structural correlation filters, Gaussian Parti-
cle Filters (GPF) and ensemble trackers.

2.1. Structural Correlation Filters

Qi et al. [24] described the weak correlation filers on
CNN features in each layer and Liu et al. [25] proposed
the concept of the structural correlation filter.

In Qi’s research [24], Xk ∈ RP×Q×D denotes the fea-
ture map extracted from the k-th convolutional layer
with Gaussian function label Y ∈ RP×Q. LetXk = F (Xk)
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andY = F (Y), whereF (·) represents the discrete Fouri-
er transformation (DFT). The objective function of cor-
relation filter method [24] can be extended into its k-th
filter modeled as

Wk = arg min
W
‖Y − Xk · W‖2F + λ‖W‖2F , (1)

where

Xk · W =

D∑
d=1

Xk
∗,∗,d

⊙
W∗,∗,d. (2)

Here, the symbol
⊙

is the element-wise product.
The optimization problem in Eq. 1 has a simple

closed form solution, which can be efficiently computed
in the Fourier domain by

Wk
∗,∗,d =

Y

Xk · Xk + λ

⊙
Xk
∗,∗,d. (3)

Given the testing data Tk from the output of the k-
th layer, they transform it to the Fourier domain T k =

F (Tk), and then the responses can be computed by

Sk = F −1(T k · Wk), (4)

where F −1 denotes the inverse of DFT.
The k-th weak tracker outputs the target position with

the largest response

l(xk, yk) = arg max
xk ,yk

Sk(xk, yk). (5)

2.2. Gaussian Particle Filters (GPF)
Kotecha and Djuric [26] introduced a Gaussian Parti-

cle Filter (GPF), which is used for tracking filtering and
predictive distributions encountered in Dynamic State-
Space models (DSS) [27]. The DSS model represents
the time-varying dynamics of an unobserved state vari-
able. GPF is based on the Particle Filters (PFs) and
Gaussian Filters (GFs) concepts. GFs provide Gaussian
approximations to the filtering and predictive distribu-
tions, and they include Extended Kalman Filter (EK-
F) [28] and its variations [29, 30]. Unlike EKF, which
assumes that predictive distributions are Gaussian and
employs linearization of the functions in the process
and observation equations, GPF updates the Gaussian
approximations using particles. GPF only propagates
the posterior mean and covariance of an unobserved s-
tate variable in a DSS model, and essentially importance
sampling makes the procedure simple.

PF [31] uses Sequential Importance Sampling (SIS)
[32] to update the posterior distributions. GPF is quite
similar to SIS filters by the fact that Importance Sam-
pling is used to obtain particles. However, a phe-
nomenon called sample degeneration occurs wherein

only a few particles representing the distribution have
significant weights. A procedure called re-sampling
[33] has been introduced to mitigate this problem, but
re-sampling is computationally expensive and gives
limited results. Since GPF approximates posterior dis-
tributions as Gaussians, unlike the SIS filters, particle
re-sampling is not required. This results in a reduced
complexity of GPF. Furthermore, Berzuini et al. [34]
reported that re-sampling of SIS filters is a nonparallel
operation. Fortunately, re-sampling would never occur
in GPF simulation examples, and GPF is amenable to
parallel implementation.

2.3. Ensemble trackers

Multiple component trackers have been combined
with hand-crafted features to develop ensemble track-
ing methods [35, 36, 37] for visual tracking. For exam-
ple, several ensemble methods [35, 36] using a boost-
ing framework [38] constantly trained each component
weak tracker to classify foreground objects and back-
grounds. Wang and Yeung used a conditional particle
filter to infer the target position and the reliability of
each component tracker [37]. Qi et al. [24] treated
tracking as a decision-theoretic online learning task and
the tracked target was inferred by using decisions from
multiple expert trackers. Similar to Qi’s study [24], we
considered visual tracking as a decision-theoretic online
learning task [39], and used it in the structure of multi-
ple correlation filters combining with a GPF. That is, in
every round, each correlation filters makes a decision
and the final decision is determined by a GPF.

3. Proposed Algorithm

In this section, we present the combination of struc-
tural correlation filters with a CNN-based Gaussian Par-
ticle Filter for a hierarchical tracking, namely KCF-
GPF. The KCF method [14, 13] learns a single correla-
tion filter with a fixed-size window. Different from the
KCF method, KCF-GPF is proposed to construct mul-
tiple weak correlation filters in a more reliable search
scope for dealing with fast motion, motion blur issues
and bound effects in the conventional correlation filter-
s. The GPF takes location as well as scale information
into account at the same time, and jointly learns particle
weights based on CNN features to make a final tracking
result. Furthermore, our tracker can effectively handle
scale variations via the sampling strategy of a Gaussian
Particle Filter. Overall, the proposed ensemble method
achieves the following two goals: 1) weak expert track-
ers are tuned to separate an object from background and
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2) the ensemble as a whole ensures the temporal coher-
ence of each part of the tracker.

3.1. Weak Classifiers Based on Structural Correlation
Filters

Figure 1 shows a diagram of computing the optical
flow using an Lucas-Kanade method (LK). Ix and Iy

are an x-axis difference image and a y-axis difference
image, respectively. They can be obtained by using
the Scharr gradients on the input image. It is a time-
axis difference image, which is obtained by computing
the pixel value differences between two images. These
three difference images are utilized to integrate an opti-
cal flow image at Frame 28 via the Least Square method
(LS) [20]. Original pictures in the first column are from
Frame 27 and Frame 28 of Sequence BlurBody in the
OTB-2013 database [11].

As not all pixels in an image move in the same way
between two successive frames in a sequence, we col-
lect an x-axis velocity set of optical flow OXt = [oxk

t ]K
1

and a y-axis velocity set of optical flow OYt = [oyk
t ]K

1
consisting of velocity values that appear most often in
the t-th frame.

Set µt−1 = (x∗t−1, y
∗
t−1,w

∗
t−1, h

∗
t−1) as the last-frame

tracking result, where x∗t−1, y∗t−1, w∗t−1 and h∗t−1 represent
an x-axis position of a target, a y-axis position of a tar-
get, a target width and a target height, respectively, in
the last frame. The k-th potential location of a target is
defined as (xk

t , y
k
t ), which can be computed by

xk
t = oxk

t + x∗t−1, (6)

yk
t = oyk

t + y∗t−1, (7)

where Xt = [xk
t ]K

1 is an x-axis position set and Yt = [yk
t ]K

1
is a y-axis position set.

In this way, a conventional single KCF is extended to
multiple KCFs, and a conventional fixed-size detection
window used in a single KCF is extended to reliable
multiple detection windows for multiple KCFs.

Kernel Selection: We choose the Gaussian kernel in
the existing correlation filter tracker [14].

Feature Representation: Similar to KCF [14], we
use HOG features with 31 bins. However, our tracker is
quite generic and any dense feature representation with
arbitrary dimensions can be incorporated.

Compared to the HDT [24] and SCF [25] methods,
which are similar to the proposed weak structural cor-
relation filter, we demonstrate differences among these
approaches as follows.

1. The features of HDT are extracted from one layer
to build a weak tracker, and the part-based corre-
lation filter SCF samples several parts of a target

object to construct features, while KCF-GPF sam-
ples in a search scope based on the Lukas-Kanade
optical flow method in the t-th frame.

2. In HDT, a target position is made by weighted de-
cisions of all experts, and SCF solves the optimiza-
tion problem using the fast first-order Alternating
Direction Method of Multipliers (ADMM) [40].
Unlike them, KCF-GPF exploits Eq. 16 to infer
the ultimate target position.

3.2. Strong Classification via a Homogeneous Ensem-
ble Layer

As shown in Figure 2, an ensemble strategy is used
to combine outputs of all weak classifiers to create a
strong classifier to detect a target among patches. Al-
l used weak classifiers are same-type KCFs, and hence
these weak classifiers as base classifiers are homoge-
neous.

The peak value and the fluctuation of the response
map can reveal the confidence degree about the tracking
results to some extent. The ideal response map should
have only one sharp peak and be smooth in all other ar-
eas when the detected target is extremely matched to the
correct target. The sharper the correlation peak is, the
better the location accuracy is. Otherwise, the whole re-
sponse map can fluctuate intensely, and its pattern is sig-
nificantly different from normal response maps. If we
continue to use uncertain samples to update the track-
ing model, it would be corrupted mostly.

The first criterion is called average peak-to-
correlation energy (APCE) [8], in oder to measure the
fluctuation degree of a response map and the reliability
degree of a tracking result. On the basis of Eq. 5, APCE
of the k-th KCF in the t-th frame can be defined as

APCEk
t =

|S k+
t − S k−

t |
2

mean
(∑

(S k
t (xk

t , y
k
t ) − S k−

t )2
) (8)

where S k+
t , S k−

t denote the maximum and minimum of
the response S k

t (xk
t , y

k
t ) in the t-th frame, respectively.

They are defined as below

S k+
t = max

xk
t ,y

k
t

Sk
t (xk

t , y
k
t ), (9)

S k−
t = min

xk
t ,y

k
t

Sk
t (xk

t , y
k
t ), (10)

where Sk
t (xk

t , y
k
t ) is referred to that in Eq. 4 and Eq. 5.

For sharper peaks and less noise, in the case that the
target fully appearing in a tracking region, APCE be-
comes greater and the response map becomes smoother
except for only one sharp peak. On the other hand,
APCE is small if an object is occluded or missing.
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Figure 1: Diagram of computing the optical flow using an Lucas-Kanade method (LK) [20] between two sequential images. The first column
shows original full images at Frame 27 and Frame 28 from Sequence BlurBody in the OTB-2013 database [11]. The second column denotes an
x-axis difference image Ix, a y-axis difference image Iy and a time-axis difference image It . Ix and Iy are obtained using the Scharr gradients on the
input image. It is obtained by computing the pixel value differences between two images. As shown in the third column, these three output images
of difference are employed to obtain an optical flow image at Frame 28 via the Least Square method (LS) [20].

Figure 2: Diagram of the homogeneous ensemble layer. A sample set is generated via Eq. 6 and Eq. 7. Multiple Structural correlation filters are
regarded as same-type weak classifiers, which are also called homogeneous base classifiers. Then, all weak classifiers are assembled as a strong
classifier via a facile weighted sum strategy based on reliability estimation in Eq. 11.

5



The second criterion is the maximum response score
S k+

t inferred by Eq. 9.
Given reliability degrees of weak classifiers, each

weak classifier will be assigned a weight wk
t to reveal its

reliability of tracking performance in the current round.
In Eq. 11, wk

t is the weight of the k-th KCF in the t-th
frame and it is defined as

wk
t = w

′

t × w
′′

t , (11)

where w
′

t and w
′

t are the weights of the k-th weak classi-
fier in the t-th frame in terms of the largest response and
APCE, respectively. They are defined as follows

w
′

t = 1 − sign(|S k+
t − max

1≤i≤t−1
S +

i |), (12)

w
′′

t = 1 − sign(|APCEk
t − max

1≤i≤t−1
APCE+

i |), (13)

where |·| denotes the absolute value and ‘sign’ represents
the signum function.

As shown in Figure 2, a strong classifier L(Xt,Yt) is
made by the weighted sum of K weak classifier outputs

L(Xt,Yt) =

K∑
k=1

l(xk
t , y

k
t ) · ŵk

t , (14)

ŵk
t =

wk
t∑K

k=1 wk
t

, (15)

where l(xk
t , y

k
t ) is referred to Eq. 5 and ŵk

t is obtained by
normalization of wk

t .
In the homogeneous ensemble layer, the target posi-

tion in the t-th frame is inferred as

(x′t, y′t) = L(Xt,Yt). (16)

3.3. Gaussian Particle Filter Using CNN Features
Figure 3 shows a diagram of tracking using a Gaus-

sian Particle Filter based on CNN features. The GPF in
the t-th frame approximates the posterior mean µt and
covariance Σt of the unknown state variable xt using
Bayesian importance sampling. Samples {x j

t }
M
j=1 in the

t-the frame are drawn from the importance function π(·)
by using

π(xt |y0:t) = N(xt−1;µt−1,Σt−1), (17)
µt−1 = (x′t, y′t,w

∗
t−1, h

∗
t−1). (18)

Here, y0:t is the observations from the first frame to the
t-th frame, and N(·) represents a Gaussian function.

The respective weights are computed by

w j
t =

p(yt |x j
t )N(xt = x j

t ;µt,Σt)

π(x j
t |y0:t)

, (19)

where the distribution p(yt |x j
t ) represents the observa-

tion equation yt conditioned on the unknown state vari-
able x j

t in the t-th frame.
Eq. 12 can be rewritten as follows from Eq. 13:

w j
t ∝ p(yt |x j

t ). (20)

In this paper, we adopt a pre-trained VGG-Net [41]
to extract CNN features. Then, we set p(yt |x j

t ) = | f ∗ −
f (x j

t )|, where |·| denotes the absolute value, f (x j
t ) is the

CNN features of the j-th particle in the t-th frame, and
f ∗ represents the CNN features of the template. Hence,
each Gaussian particle weight can be calculated with

w j
t ∝ | f

∗ − f (x j
t )|. (21)

Normalize the weights as

w̄ j
t =

w j
t∑M

j=1 w j
t

. (22)

The mean and the covariance in the t-th frame are
estimated by

µt =

M∑
j=1

w̄ j
t x

j
t , (23)

Σt =

M∑
j=1

w̄ j
t (µt − x j

t )(µt − x j
t )

H , (24)

where H represents the Hermitian Matrix.
The mean results µt of all particles with location and

scale information are regarded as the final tracking re-
sult in the t-th frame. There is

(x∗t , y
∗
t ,w

∗
t , h
∗
t ) = µt. (25)

3.4. KCF-GPF Tracker
Figure 4 illustrates the flowchart of the proposed al-

gorithm. The process can be divided into two layers,
namely the homogeneous ensemble layer and the CNN-
based GPF layer. In the homogeneous ensemble layer,
we execute motion detection using an LK optical flow
method to find the potential locations of a target, gen-
erate weak classifiers in this potential locations, and as-
semble the weak classifiers to construct a strong classi-
fier to obtain a target location. In the CNN-based GPF
layer, samples are generated in the target location and
CNN features are extracted from each sample via a pre-
trained VGG-Net. The weight of each sample is mea-
sured. Samples with weights are combined to predict
the final location and scale of a target.

An overview of the proposed method is summarized
in Algorithm 1.

6



Figure 3: Diagram of tracking using a Gaussian Particle Filter based on CNN features. The first column is an object in the last frame, and the
second column denotes M Gaussian random samples with different target locations and different target scales in the current frame. Then, CNN
features are extracted from each sample by using a pre-trained VGG-Net. Finally, a weighted sum strategy is employed to obtain the location and
scale of a target in the current frame.

Figure 4: Diagram of the architecture of the proposed KCF-GPF method. In the homogeneous ensemble layer, we execute motion detection using
an LK optical flow method to find the potential locations of a target, generate weak classifiers in this potential locations, and assemble the weak
classifiers to construct a strong classifier to obtain a target location. In the CNN-based GPF layer, samples are generated in the target location
and CNN features are extracted from each sample via a pre-trained VGG-Net. The weight of each sample is measured. Samples with weights are
combined to predict a final location and scale of a target.
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Algorithm 1: KCF-GPF tracking algorithm

Input: Frames {It}
T
1 ;

Output: Target location and target scale in each
frame µt = (x∗t , y

∗
t ,w

∗
t , h
∗
t ).

1 for Frame t = 1 : T do
2 if t = 1 then
3 Initialize the target location and the target

scale (x∗1, y
∗
1,w

∗
1, h
∗
1);

4 else
5 Homogeneous Ensemble Layer:
6 Generate a potential location set of a target

based on an LK optical flow method via Eq.
6 and Eq. 7, where k = 1, 2, . . . ,K;

7 Construct K KCFs as weak classifiers
based on the location set in the last step and
compute their responses using Eq. 4;

8 Output K target positions inferred by KCFs
using Eq. 5;

9 Calculate weights of all KCFs via Eq. 11;
10 Construct a strong classifier and output

target location via Eq. 16;
11 CNN-Based GPF Layer:
12 Extract samples of a GPF via Eq. 17;
13 Extract CNN features via a VGG-Net;
14 Calculate weight of each sample via Eq. 22;
15 Estimate the target location and the target

scale (x∗t , y
∗
t ,w

∗
t , h
∗
t ) using Eq. 25;

16 end
17 end

4. Experiments

Here, we present qualitative and quantitative compar-
isons of 16 state-of-the-art approaches and 4 baseline
trackers with the OTB-2013 database and the OTB-2015
database.

4.1. Experimental Setups
Implementation Details. The conventional features
used for KCF-GPF are composed of HOG features
and CNN features. Our tracker is implemented on
MATLAB on a PC with a 2.40 GHz CPU and achieves
0.18 frame per second (FPS) in Table 1.

Databases. Experimental evaluation is based on the
OTB-2013 database [11] consisting of 50 sequences
and the OTB-2015 database [18] consisting of 100
sequences. The images are annotated with ground truth
bounding boxes and 11 various visual attributes include
scale variation, out of view, out-of-plane rotation, low
resolution, in-plane rotation, illumination, motion blur,
background clutter, occlusion, deformation, and fast
motion. In this paper, we show the results based on
OTB-2013 and OTB-2015 databases.

Evaluation Metrics. We compare the proposed
method with state-of-the-art tracking methods using
evaluation metrics and code provided by the respective
benchmark datasets. For testing on OTB datasets, we
employ the one-pass evaluation (OPE) and use two
metrics: precision and success plots. The precision
metric computes the rate of frames whose center loca-
tion is within some certain distance from the ground
truth location. The success metric computes the overlap
ratio between the tracked and ground truth bounding
boxes. In the legend, we report the area under curve
(AUC) of success plot and precision score at a 20 pixel
threshold (PS) corresponding to the one-pass evaluation
for each tracking method.

4.2. Comparison with State-of-the-Art
We evaluate KCF-GPF with the OTB-2013 dataset

[11] and compare it with 16 state-of-the-art tracker-
s including LMCF [8], CFNet [7], CFN [42], CFN
[42], CNT [9], BIT [43], SINT [44], SCT [16], Staple
[45], SiamFC [46], SRDCF [19], DSST [47], MEEM
[48], KCF [14], TLD [49] and Struck [50]. Among
them, LMCF, CFN, CFN , Staple, KCF, SRDCF, DSST,
CFNet and SCT are CF based algorithms. SINT,
SiamFC, CFNet, CNT and BIT are convolutional net-
work based algorithms. MEEM is developed based on
regression and multiple trackers. TLD is based on an

8



Table 1: Tracking results of all 17 evaluated trackers over all 50 sequences using OPE evaluation with the OTB-2013. The entries in red denote the
best results and the ones in blue indicate the second best.

LMCF[8] CFNet[7] CFN[42] CFN [42] CNT[9] BIT[43]

precision 0.842 0.803 0.813 0.784 0.723 0.816

success 0.800 0.775 0.675 0.630 0.656 0.745

SINT[44] SCT[16] Staple[45] SiamFC[46] SRDCF[19] DSST[47]

precision 0.851 0.836 0.793 0.809 0.838 0.740

success 0.791 0.730 0.754 0.783 0.781 0.670

MEEM[48] KCF[14] TLD[49] Struck[50] KCF-GPF(ours) mean FPS(ours)

precision 0.840 0.740 0.608 0.656 0.857
0.18

success 0.706 0.623 0.521 0.559 0.805

ensemble classifier, and Struck is based on a structured
SVM.

4.3. Quantitative Comparison

The characteristics and tracking results are summa-
rized in Table 1. The mean FPS here is estimated on
all sequences in the OTB-2013 and achieves 0.18 fps.
LMCF achieves the second best performance in terms
of the success metric and SINT shows the second best
performance in terms of precision metric. Figure 6 il-
lustrates the precision and success plots of all trackers
under all challenging attributes in the OTB-2013. KCF-
GPF is also superior to other up-to-date trackers with
precision and success evaluation metrics using the OTB-
2013 benchmark.

For detailed analyses, we also evaluate KCF-GPF
with state-of-the-art trackers on various challenging at-
tributes in the OTB-2013 benchmark database and the
results are shown in Figure 5. The results demonstrate
that KCF-GPF is ranked on top three in each attribute
and achieves the best performances in the general suc-
cess plots. Besides that, the proposed method outper-
forms other trackers in terms of deformation, out-of-
plane rotation and occlusion attributes.

4.4. Qualitative Comparison

To demonstrate the effect of the proposed KCF-
GPF algorithm, we make a qualitative comparison with
above trackers using the OTB-2013 with 11 different at-
tributes. As shown in Figure 7, these trackers perform
well, but the existing trackers have the following issues.

SCT: This tracker cannot work well for the attribute
of scale variation in Liquor, Woman and Dog1. This
is because that SCT lacks estimation of the scale of a
target.

CFNet: CFNet cannot handle occlusion (e.g., in Lem-
ming, Skating 1, Subway, Singer 2, Suv, Liquor, Wom-
an and Soccer), background clutters (e.g., in Skating 1,
Subway, Singer 2, Suv, Liquor and Soccer), and defor-
mation (e.g., in Skating1, Subway, suv, Singer 2 and
Woman) , and out-of-plane rotation (e.g., in Lemming,
Skating1, Singer 2, Liquor, Woman and Soccer). This
is due to a lack of reliability estimation on tracking re-
sults, and hence CFNet has a large tracking error when
a target has a big appearance change.

KCF: KCF drifts when illumination variation occurs
(e.g., in Shaking, Lemming and Woman), fast motion
(e.g., in Woman and Soccer) and scale variation (e.g.,
in Shaking, Lemming, Woman and Dog1), and out-of-
plane rotation (e.g., in Shaking, Woman, Soccer and
Lemming). This is because that KCF suffers from the
boundary effect, and a tracking box with fixed size can
also limit performance of feature extraction of a target.

TLD: TLD is susceptible to illumination variation
(e.g., in Shaking, Skating 1, Singer 2 and Soccer),
occlusion (e.g., in Lemming, Subway, Singer 2, Suv,
Liquor, Woman and Soccer), and scale variation (e.g.,
in Lemming and Dog 1). This is because that the used
target feature is based on gray images and this feature
is susceptible to illumination variation. Meanwhile, the
used normalized cross correlation works well in the cal-
culation of overlap rate between a template and a sample
when a target does not change a lot. However, this nor-
malized cross correlation fails to align a template with
a sample when a target suffers from a severe occlusion
and scale variation. Hence, TLD fails to make an accu-
rate tracking.

Struck: Struck is difficult to deal with illumination
variation (e.g., in Shaking, Skating 1, Singer 2 and Soc-
cer), occlusion (e.g., in Lemming, Subway, Singer 2,
Suv, Liquor, Woman and Soccer), and scale variation
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Figure 5: Success plots over all 50 sequences using OPE evaluation with the OTB-2013 dataset. The evaluated trackers are LMCF, CFNet, CFN,
CFN , CNT, BIT, SINT, SCT, Staple, SiamFC, SRDCF, DSST, MEEM, KCF, TLD, Struck and KCF-GPF. All 11 tracking challenges include scale
variation, out of view, out-of-plane rotation, low resolution, in-plane rotation, illumination, motion blur, background clutter, occlusion, deformation,
and fast motion. The numbers in the legend indicate the average AUC scores for success plots. Our KCF-GPF method performs favorably against
the state-of-the-art trackers.
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Figure 6: Precision and success plots over all 50 sequences using OPE evaluation with the OTB-2013 database. The numbers in the legend indicate
the average precision scores for precision plots and the average AUC scores for success plots. Our KCF-GPF method performs favorably against
the state-of-the-art trackers.
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(e.g., in Lemming and Dog 1). This is because that the
Struck adopts a haar feature, which is susceptible to il-
lumination variation. Due to the limit of detection scope
of a tracker, a large scale of orderless movement makes
a tracker fail. Therefore, the Struck based on a multi-
scale traversal search method is unable to search for a
target with a great scale change.

KCF-GPF: In the aspect of general comparison based
on 50 videos from the OTB-2013 database, KCF-GPF
is superior to other state-of-the-art tracking approaches.
This is because that the adopted multiple structural cor-
relation filters can execute a large scale of target search
to enable KCF-GPF to be free from the interference of
the boundary effect, so as to make KCF-GPF perfor-
m well in the scenarios with abrupt large-scale motion.
In addition, KCF-GPF also introduces a reliability as-
sessment on each weak classification result for a GPF
to execute re-location and scale estimation of a target.
Therefore, KCF-GPF has a higher accuracy.

In conclusion, the designed KCF-GPF in this paper
can effectively deal with fast motion, background clut-
ter, scale variation and so on. Particularly, KCF-GPF
outperforms other 16 representatives of the well-known
tracking algorithms in terms of target deformation, out-
of-plane rotation and occlusion. This is mainly due to
the following factors: (1) KCF-GPF uses multiple weak
KCFs to detect a target in a large scale search area, and
executes a reliability evaluation on each weak KCF. The
most reliable KCF is chosen to provide its tracking re-
sult as a reference for a GPF to make a further track-
ing. The above process not only enables KCF-GPF to
make a strong suggestion, but also infers a final loca-
tion of a target in scenarios with fast motion, deforma-
tion, appearance variation and occlusion. (2) KCF-GPF
employs an LK optical flow method to perform motion
detection so as to provide preliminary target locations
for further re-detection. (3) KCF-GPF integrates a GPF
method to match a target with various scales, and hence
the designed KCF-GPF can reduce the interference of
target scale variation. (4) KCF-GPF method uses CNN
features, and hence this tracker is invariant to deforma-
tion.

4.5. Comparison with baseline trackers
In this section, we show the contribution of each part

of the proposed tracking method. The proposed tracking
method is the basic framework, and experimental meth-
ods are with or without an LK optical flow method, GPF
with HOG features and GPF with CNN features.

As showed in Table 2 and Figure 8, the proposed
method with an LK method and GPF with CNN fea-
tures achieves the best results. For a real-time applica-

tion, the proposed method with an LK method and GPF
with HOG features is the best choice, since it achieves
the second best results and can satisfy the need for real
time.

From the results, an LK method can tackle the motion
issues, such as motion blurs and fast motions. GPF can
further estimate the location and size of a tracked target.

For detailed analyses, we also evaluate KCF-GPF
with state-of-the-art trackers on various challenging
attributes in the OTB-2015 database and the result-
s are shown in Figure 8. Results demonstrate that
LK+KCF+GPF+CNN is ranked on top three in each at-
tribute and achieves the best performances in the general
success plots.

5. Conclusion

In this paper, a new tracker has been proposed to com-
bine multiple structural correlation filters with a Gaus-
sian Particle Filter, namely KCF-GPF. The proposed
method has exploited motion detection in successive
frames to provide potential tracking locations in order to
generate weak classifiers. KCF-GPF has taken multiple
structural KCFs as weak classifiers to construct a homo-
geneous ensemble layer. The reliability degree of each
weak classifier has been introduced in experiments as a
weight to be assigned to each weak classifier. The en-
semble layer has made a preliminary tracking result for
GPF via using weighted sum of all results of weak clas-
sifiers. As a result, the proposed KCF-GPF has the ad-
vantages of the existing correlation filter trackers, such
as, computational efficiency and robustness. Moreover,
KCF-GPF can deal with scale variations because GPF
has taken location and scale estimations into account at
the same time. In addition, CNN features have been in-
tegrated with GPF so that the KCF-GPF has been invari-
ant to rotation, scaling, translation, and deformation.
The proposed KCF-GPF tracking algorithm has outper-
formed the state-of-the-art methods with the OTB-2013
and OTB-2015 benchmarks in terms of qualitative and
quantitative evaluations.
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