University of Technology Sydney

Faculty of Engineering and Information Technology

Advanced Control Strategies for Multilevel Power Converters in Hybrid Microgrid Applications

A thesis submitted for the degree of **Doctor of Philosophy**

Shakil Ahamed Khan

(2019)

Title of the thesis:

Advanced Control Strategies for Multilevel Power Converters in Hybrid Microgrid Applications

Ph.D. student: Shakil Ahamed Khan E-mail: Shakil.A.Khan@student.uts.edu.au

Supervisor: Professor Youguang Guo E-mail: Youguang.Guo-1@uts.edu.au

Co-Supervisor: Professor Jianguo Zhu E-mail: jianguo.zhu@sydney.edu.au

Address: School of Electrical and Data Engineering University of Technology Sydney, 81 Broadway, Ultimo, NSW 2007, Australia

Certificate of Original Authorship

I, Shakil Ahamed Khan declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Shakil Ahamed Khan

Date: 11 February 2020

Acknowledgments

I would like to express my sincere gratitude to my principal supervisor Professor Youguang Guo, for his guidance and sincere encouragement throughout my graduate studies. I am also grateful to Professor Jianguo Zhu, my co-supervisor, for his mentorship and support in my research. Their opinions and advice have provided me with great assistance in completing my Ph.D. research work.

I would also like to express thanks to my research group mates, in particular Dr. Yam Siwakoti of the Centre for Electrical Machines and Power Electronics, University of Technology Sydney (UTS), for their precious time, mentorship, sharing of knowledge and technical support.

I would also like to express my gratitude to all my friends for their encouragement. I especially would like to thank Mahmudul Hasan Sohag and Sabbir Ahamed Khan for their constant support and encouragement.

My deepest and most gratitude goes to my family members, my father Md Ismail Khan, my mother Mst Shefali Akther. Finally, I would like to thank my loving Sanzida Tafseer Nishat for her endless love, support and continued patience.

Publications and Conference Contributions

The following publications are part of the thesis. **Peer reviewed international journal publications**

- [1] S. A. Khan, Y. Guo, Y. P. Siwakoti, D. D. Lu and J. Zhu, "A Disturbance Rejection Based Control Strategy for Five-Level T-Type Hybrid Power Converters with Ripple Voltage Estimation Capability," *IEEE Transactions on Industrial Electronics*. doi: 10.1109/TIE.2019.2942550 (Early access version is available in online: https://ieeexplore.ieee.org/document/8848848)
- [2] S.A. Khan, Y. Guo and J. Zhu, "Model Predictive Observer Based Control for Single-Phase Asymmetrical T-type AC/DC Power Converter," *IEEE Transactions* on *Industry Applications*, vol. 55, no. 2, pp. 2033-2044, March 2019, Doi: 10.1109/TIA.2018.2877397 (Published)
- [3] S. A. Khan, M. R. Islam, Y. Guo and J. Zhu, "An Amorphous Alloy Magnetic-Bus-Based SiC NPC Converter With Inherent Voltage Balancing for Grid-Connected Renewable Energy Systems," *IEEE Transactions on Applied Superconductivity*, vol. 29, no. 2, pp. 1-8, March 2019, doi: 10.1109/TASC.2018.2882448 (Published)
- [4] S. A. Khan, M. R. Islam, Y. Guo and J. Zhu, "A New Isolated Multi-Port Converter With Multi-Directional Power Flow Capabilities for Smart Electric Vehicle Charging Stations," *IEEE Transactions on Applied Superconductivity*, vol. 29, no. 2, pp. 1-4, March 2019, Doi: 10.1109/TASC.2019.2895526 (Published)
- [5] S. A. Khan, Y. Guo, Yam. S, M. N. Habib Khan and J. Zhu, "Topology, Modeling and Control Scheme for a New 7-Level Inverter with Reduced DC-Link Voltage," *IEEE Transactions on Industrial Electronics*. (Under review)
- [6] S. A. Khan, Y. Guo, and J. Zhu, "A Robust Method for Fast Estimation of Grid Voltage Parameters under Distorted Grid," *IEEE Transactions on Power Electronics*. (Preparing)

Peer reviewed international scientific conference publications

- [7] S. A. Khan, Y. Guo, M. N. Habib Khan, Y. P. Siwakoti and J. Zhu, "Model Predictive Control without Weighting Factors for T-type Multilevel Inverters with Magnetic-Link and Series Stacked AC-DC Modules," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 5603-5609. doi: 10.1109/ECCE.2019.8912486 (Published)
- [8] S. A. Khan, M. N. Habib Khan, Y. Guo, Y. P. Siwakoti and J. Zhu, "A Novel five-Level Switched Capacitor Type Inverter Topology for grid-Tied Photovoltaic Application," *In proc. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC)*, New Orleans, LA, USA, 2020, (Accepted).
- [9] S. A. Khan, Y. Guo and J. Zhu, "Model predictive control applied to a single phase seven-level active rectifier," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, 2017, pp. 1-6. doi: 10.1109/ICEMS.2017.8056405 (Published).
- [10] S. A. Khan, Y. Guo and J. Zhu, "A high efficiency transformerless PV gridconnected inverter with leakage current suppression," *9th International Conference*

on Electrical and Computer Engineering (ICECE), Dhaka, 2016, pp. 190-193. doi: 10.1109/ICECE.2016.7853888 (Published)

- [11] S. A. Khan, Y. Guo, N. Chowdhury and J. Zhu, "A Least Mean Square Algorithm Based Single-Phase Grid Voltage Parameters Estimation Method," *International Conference on Electrical, Computer and Communication Engineering (ECCE)*, Cox'sBazar, Bangladesh, 2019, pp. 1-5. doi: 10.1109/ECACE.2019.8679384 (Published)
- [12] S. A. Khan, M. N. Habib Khan, Y. Guo, Y. P. Siwakoti, and J. Zhu, "A novel single source three phase seven-level inverter topology for grid-tied photovoltaic application." *In proc. International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia)*, Nanjing, 2020. (Accepted)

Abstract

In recent years, the traditional electrical power grids are gradually changing into smart grids and emerging as the next-generation power systems. The application of power electronics is playing a vital role in these changes. The recent advancements in power electronics have provided significant momentum for high penetration of renewable energy sources, energy storages, and modern loads into the hybrid microgrid associated with the smart grid. Nevertheless, it also introduces several challenges in terms of reliability and robustness, power quality, and cost. Developing advanced control strategies and converter architecture to mitigate these challenges will be vital. This thesis presents advanced control strategies and circuit architectures for the grid-connected system in hybrid-microgrid applications. The system parameter variations and uncertain disturbances are critical for achieving the control objectives in AC/DC power conversion. In this thesis, disturbance rejection based control strategies have been proposed and implemented to ensure improved steady-state and dynamic performances to follow the references. The control of power converters connected with the electrical grid requires fast and accurate estimation of grid voltage parameters (i.e., amplitude, phase, and frequency), which are carried out using the grid synchronization method. The performance of synchronization methods is affected by the growing power quality issues. This thesis presents novel methods for fast and accurate estimation of the grid voltage parameters. These methods demonstrate enhanced performance to eliminate the disturbances, such as the presence of DC-offset, harmonically distorted grid, grid frequency variations, voltage sag and swell, etc. This thesis also presents a novel singlesource three-phase multilevel converter with voltage boosting capability for medium-voltage photovoltaic applications. The new circuit structure significantly reduces the DC-link voltage requirements, the number of components and their voltage stresses in comparison to traditional topologies. It can reduce the dc-link voltage requirements by 75% in comparison to the traditional neutral point clamped (NPC), flying capacitors, active NPC (ANPC), hybrid and hybrid clamped ANPC topologies, and 50% to advanced ANPC topologies. It can also reduce the number of required switches and capacitors as well as their voltage stresses compared to these state-of-the-art topologies reported in the literature so far. The performance

of the proposed control techniques and circuit topologies have been validated by simulation and experimental results. **Keywords:** Advanced Control; Hybrid Microgrid; Model Predictive Control; Multilevel Converter; Observer Design; Sliding Mode Control.

Contents

С	ertificate of Original Authorship
A	cknowledgmentsii
P	ublications and Conference Contributionsii
A	bstractv
L	ist of Tablesxi
L	ist of Figuresxii
N	omenclature xvi
1	Introduction1
	1.1 Background 1
	1.2 Research Motivation
	1.3 Research Objectives and Limitations
	1.3.1 Research Questions and objectives
	1.3.2 Project Limitations
	1.4 Thesis Outline
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid12
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid 12 2.1 Introduction 12 2.2 Proposed System 16 2.3 Control Algorithm 17 2.3.1 Bidirectional DC/DC Converter 21 2.3.2 Unidirectional DC/DC boost converter 22
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid122.1 Introduction122.2 Proposed System162.3 Control Algorithm172.3.1 Bidirectional DC/DC Converter212.3.2 Unidirectional DC/DC boost converter222.3.3 Grid-side inverter22
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid122.1 Introduction122.2 Proposed System162.3 Control Algorithm172.3.1 Bidirectional DC/DC Converter212.3.2 Unidirectional DC/DC boost converter222.3.3 Grid-side inverter222.4 Simulation Results23
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid122.1 Introduction122.2 Proposed System162.3 Control Algorithm172.3.1 Bidirectional DC/DC Converter212.3.2 Unidirectional DC/DC boost converter222.3.3 Grid-side inverter222.4 Simulation Results232.5 Experimental Results27
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid122.1 Introduction122.2 Proposed System162.3 Control Algorithm172.3.1 Bidirectional DC/DC Converter212.3.2 Unidirectional DC/DC boost converter222.3.3 Grid-side inverter222.4 Simulation Results232.5 Experimental Results272.6 Conclusion30
2	Multi-Sourced Energy Conversion Systems in Residential Microgrid122.1 Introduction122.2 Proposed System162.3 Control Algorithm172.3.1 Bidirectional DC/DC Converter212.3.2 Unidirectional DC/DC boost converter222.3.3 Grid-side inverter222.4 Simulation Results232.5 Experimental Results272.6 Conclusion30Model Predictive Observer Based Control Scheme for Five-level Converters in
2 3 M	Multi-Sourced Energy Conversion Systems in Residential Microgrid 12 2.1 Introduction 12 2.2 Proposed System 16 2.3 Control Algorithm 17 2.3.1 Bidirectional DC/DC Converter 21 2.3.2 Unidirectional DC/DC boost converter 22 2.3.3 Grid-side inverter 22 2.4 Simulation Results 23 2.5 Experimental Results 27 2.6 Conclusion 30 Model Predictive Observer Based Control Scheme for Five-level Converters in licrogrid Applications 31
2 3 M	Multi-Sourced Energy Conversion Systems in Residential Microgrid 12 2.1 Introduction 12 2.2 Proposed System 16 2.3 Control Algorithm 17 2.3.1 Bidirectional DC/DC Converter 21 2.3.2 Unidirectional DC/DC boost converter 22 2.3.3 Grid-side inverter 22 2.4 Simulation Results 23 2.5 Experimental Results 27 2.6 Conclusion 30 Model Predictive Observer Based Control Scheme for Five-level Converters in 31 3.1 Introduction 31

	3.2.1 Dynamic model of 5L-T-AHB converter	34
	3.2.2 D-Q mathematical model	36
	3.3 Proposed Control Scheme	38
	3.3.1 FCS-MPC for 5L-T-AHB power converter	39
	3.3.2 Multi-objective cost function formulation	40
	3.3.3 Reference grid current calculation	41
	3.3.4 ESO-based disturbance observer design	42
	3.3.5 Parameter tuning and stability analysis	44
	3.3.6 ANF based DC value estimation of the DC-link voltage	46
	3.4 Experimental Results	48
	3.5 Conclusion	55
4 N	Disturbance Rejection Based Control Scheme for Hybrid Five-level Converters Iicrogrid Applications	5 in 56
	4.1 Introduction	56
	4.2 System Model and Problem Statement	59
	4.2.1 Analysis of the DC-bus voltage	59
	4.2.2 Dynamic System Model	62
	4.2.3 Necessity of Modelling Uncertainties	64
	4.3 Proposed Control Scheme	65
	4.3.1 Proposed Ripple Voltage Estimation Method	66
	4.3.2 Sliding Mode Control	67
	4.3.3 Observer Design	68
	4.3.4 FCS-MPC	70
	4.3.5 Stability analysis	71
	4.4 Performance Evaluation	74
	4.5 Conclusion	80
5	Designing a Robust Grid Parameter Estimation Method for Power Converters	82
	5.1 Introduction	82
	5.1.1 Phase-locked loop (PLL)	84
	5.1.2. Single-phase pPLL	84

	5.2 Proposed PLL Structure	88
	5.2.1 Fourier Linear Combiner	89
	5.2.2 Modified Weighted-Frequency Fourier Linear Combiner	91
	5.3 Small-Signal Modelling and Stability Analysis of the Proposed PLL Method	94
	5.4 Design Example of the Proposed Method	97
	5.5 Experimental Results	99
	5.6 Conclusion	105
6	Modeling, Analysis, and Design of a QSG-PLL Method for Power Converter	rs . 107
	6.1 Introduction	107
	6.1.1 Single-Phase QSG-PLLs	108
	6.1.2 Single-phase QSG -FLLs	112
	6.2 Proposed PLL Structure	115
	6.2.1 Proposed QSG Algorithm	116
	6.2.2 Parameter Tunning of the Proposed PLL	117
	6.3 Experimental Results	118
	6.4 Conclusion	126
7	6.4 Conclusion Topology, Modelling and Control Scheme Design for Multilevel Power Conv 127	126 v erters
7	 6.4 Conclusion	126 v erters 127
7	 6.4 Conclusion	126 v erters 127 133
7	 6.4 Conclusion	126 v erters 127 133 136
7	 6.4 Conclusion	126 v erters 127 133 136 139
7	 6.4 Conclusion	126 verters 127 133 136 139 142
7	 6.4 Conclusion	126 verters 127 133 136 139 142 147
7	 6.4 Conclusion	126 verters 127 133 136 139 142 147 152
8	 6.4 Conclusion	126 verters 127 133 136 139 142 147 152 154
8	 6.4 Conclusion	126 verters 127 133 136 139 142 147 152 154
7 8	 6.4 Conclusion	126 verters 127 133 136 139 142 147 152 154 155
8	 6.4 Conclusion	126 verters 127 133 136 139 142 147 152 154 155 155

References	159
8.2 Possible Future Works 1	56
8.1.4 Voltage Boosting Capability-Based Multilevel Converter 1	56

List of Tables

List of Figures

Fig. 2.1 Structure of a typical hybrid microgrid system.	.14
Fig. 2.2 Traditional two typical power converter structures installed in residential/industrial	
applications, (a) without, and (b) with the magnetic-link.	.15
Fig. 2.3 Proposed circuit structure for residential/industrial applications	.17
Fig. 2.4 Proposed control scheme block diagram.	.18
Fig. 2.5 Switching states in $dq0$ plane.	.20
Fig. 2.6 Principle of operation of the proposed CMBMC employed to interface PV and ES into the	Э
grid.	.24
Fig. 2.7 Principle of operation of the proposed CMBMC employed to interface PV and ES into the	Э
grid	.25
Fig. 2.8 Principle of operation of the proposed CMBMC employed to interface PV and ES into the	Э
grid	.26
Fig. 2.9 Measured waveform showing output voltage levels and current	.28
Fig. 2.10 Measured waveform showing output voltage levels and current	.28
Fig. 2.11. Experimental results during reference grid current transient case	.29
Fig. 2.12 Experimental waveforms of the magnetic link, (a) winding 1 excitation voltage and curre	ent
waveforms, (b) winding 2 induced voltage and current waveforms, (c) winding 3 induced voltage	
and current waveforms, and (d) winding 4 induced voltage and current waveforms	.29
Fig. 3.1 Topology of the 5L-T-AHB converter.	.36
Fig. 3.2 Equivalent circuit of the 5L-T-AHB converter	.38
Fig. 3.3 Block diagram of the proposed ESO-based AC/DC converter control system	.39
Fig. 3.4 DC- offset rejection based SOGI-PLL.	.44
Fig. 3.5 Equivalent transfer function of extended state observer	.45
Fig. 3.6 Root loci of the proposed system for the change of capacitance value.	.46
Fig. 3.7 ANF performance in estimating the DC value of the DC-link voltage.	.49
Fig. 3.8 Experimental setup.	.49
Fig. 3.9 (a) Experimental results of the voltage produced by the 5L-T-AHB AC/DC converter (vc:	
35 V/div), input current (i: 4 A/div), and DC-link voltages (V _{DC} : 10 V/div), (b) magnified view of	•
the voltage and current waveforms.	.50
Fig. 3.10 Experimental performances with the general FCS-MPC scheme, and the capacitor voltage	ges
unbalancing and its influence on the output voltage levels, (vc: 70 V/div), (vc1,: 20 V/div), (vc2,:	23
V/div)	.50
Fig. 3.11 Experimental performances with the proposed FCS-MPC scheme, (vc: 46 V/div), (vc1,:	20
V/div), (vc2,: 20 V/div).	.51
Fig. 3.12 Comparative study of the proposed PI-ESO-based control strategy, and PI control strategy	зу
when a step change in the DC-link voltage references is introduced, (vc: 70 V/div), (i: 4 A/div),	
(V_DC: 10 V/div), (a) PI-ESO (70 V to 80 V), (b) PI (70 V to 80 V)	.52
Fig. 4.1 Equivalent circuit of a single-phase AC/DC converter.	.60
Fig. 4.2 DC-bus voltage waveform of a single-phase converter during turn-on transient, as given b	уy
(4.11)	.62

Fig. 4.3 Topology of the adopted single-phase T-type hybrid power converter	63
Fig. 4.4 Proposed control system of the hybrid power converter.	65
Fig. 4.5 Block diagram of the PLL.	66
Fig. 4.6 Equivalent transfer function of ESO	71
Fig. 4.7 Root loci of the modified model G_p for the variation of DC-bus capacitance	73
Fig. 4.8 Root loci of the modified model G_p for the variation of R_p	73
Fig. 4.9 Performance comparison of the ripple estimation methods: (a) DC-bus voltage ripple	
tracking performance of the proposed method, (b) reference DC-bus voltage tracking performanc	e of
the conventional NF based method, and (c) reference DC-bus voltage tracking performance of the	е
proposed ripple estimation method.	75
Fig. 4.10 Performance comparison of the control methods under step-up load condition, (a) PI, (b)
PI-ESO, (c) SMC, and (d) SMC-ESO	77
Fig. 4.11 Performance comparison of the control methods under step-down load condition, (a) PI	,
(b) PI-ESO, (c) SMC, and (d) SMC-ESO.	78
Fig. 4.12 Performance of the proposed method under grid voltage variations, (a) amplitude step	
changes from 325 V to 250 V, and (b) amplitude step changes from 325 V to 350 V	79
Fig. 5.1 A classification of synchronization methods.	83
Fig. 5.2 Basic structure of a PLL.	84
Fig. 5.3 Basic pPLL structure.	85
Fig. 5.4 Block diagram of LPFpPLL structure.	85
Fig. 5.5 Block diagram of NFpPLL structure.	86
Fig. 5.6 Structure of the FIRNF-pPLL.	86
Fig. 5.7 Structure of the MMPD-pPLL.	87
Fig. 5.8 Proposed MWFLC-pPLL structure.	89
Fig. 5.9 Block diagram of the Fourier linear combiner	90
Fig. 5.10 Block diagram of the weighted-frequency Fourier linear combiner	92
Fig. 5.11 Block diagram of the proposed MWFLC for n=1.	92
Fig. 5.12 Small-signal model of the WFLCPLL method	95
Fig. 5.13 Signal flow diagram presenting signal propagation in FLC.	96
Fig. 5.14 Bode plot of open-loop transfer function (5.27) and (5.30), ($Ts = 0.00004$ s, $\mu = 0.006$, k	$k_p =$
255, and $k_i = 20000$)	97
Fig. 5.15 Accuracy assessment of the proposed PLL with sampling period $T_s = 0.00004$ s, $\mu = 0.00004$ s, $\mu = 0.0000000000000000000000000000000000$	06,
$k_p = 255$, and $k_i = 20000$, when a $\pm 10^{\circ}$ phase jump and a ± 2 Hz frequency shift occur	97
Fig. 5.16 Estimated input voltage amplitude in response to: (a) 50% voltage sag condition, and (b)
when the input voltage is changed back to the nominal value	100
Fig. 5.17 Estimated input voltage amplitude in response to: (a) 20° phase jump condition, and (b)	+2
Hz frequency jump condition	101
Fig. 5.18 Performance comparison between the MWFLC-pPLL and ANF-pPLL in response to +2	2
Hz frequency jump, (a) MWFLC-pPLL, and (b) ANF-pPLL.	102
Fig. 5.19 Performance comparison between the MWFLC-pPLL and ANF-pPLL in response to 90)°
phase jump condition, (a) MWFLC-pPLL, and (b) ANF-pPLL.	103

Fig. 5.20 Performance comparison between the MWFLC-pPLL and ANF-pPLL in response to 50%
voltage sag condition, (a) MWFLC-pPLL, and (b) ANF-pPLL104
Fig. 5.21 Performance comparison between the MWFLC-pPLL and ANF-pPLL in response to
harmonically-distorted grid condition (10% third harmonic and 5% fifth harmonic)105
Fig. 6.1 Standard structure of the SRF-PLL
Fig. 6.2 Structure of the standard TD-PLL
Fig. 6.3 Structure of the NTD-PLL110
Fig. 6.4 Structure of the IPT-PLL
Fig. 6.5 Structure of the SOGI-PLL111
Fig. 6.6 Structure of the frequency fixed SOGI-PLL-1
Fig. 6.7 Structure of the frequency fixed SOGI-PLL-2
Fig. 6.8 Structure of the SOGI-FLL
Fig. 6.9 Structure of the SOGI-FLL with prefilter
Fig. 6.10 Structure of the SOGI-FLL with in-loop filter
Fig. 6.11 Proposed QSG-PLL structure
Fig. 6.12 Experimental results under +2 Hz frequency shift, (a) proposed PLL, (b) SOGI-FLL, and
(c) SOGI-PLL
Fig. 6.13 Experimental results under 20° phase step in the input signal, (a) proposed PLL, (b) SOGI-
FLL, and (c) SOGI-PLL
Fig. 6.14 Experimental results under 50% voltage sag, (a) proposed PLL, (b) SOGI-FLL, and (c)
SOGI-PLL
Fig. 6.15 Experimental results under subharmonic distortion, (a) proposed PLL, (b) SOGI-FLL, and
(c) SOGI-PLL
Fig. 6.16 Experimental results in response to the presence of high order harmonics, (a) proposed
PLL, (b) SOGI-FLL, and (c) SOGI-PLL.
Fig. 6.17 Experimental results in response to the presence of DC-offset, (a) proposed PLL, (b)
SOGI-FLL, and (c) SOGI-PLL
Fig. 7.1 A broad classification of multilevel converter structures
Fig. 7.2 Phase legs of the traditional seven-level inverter structures: (a) seven-level NPC [198, 199],
(b) seven-level flying capacitor [189], (c) seven-level ANPC-I [187], (d) generalized seven-level
[190], (e) hybrid seven-level ANPC-I [193], (f) hybrid clamped seven-level-ANPC [200], (f) hybrid
7L-ANPC-I [14], (g) hybrid seven-level ANPC-III [201], (h) hybrid seven-level-ANPC-II [187], (i)
seven-level ANPC-II [24], and (j) DTT-7L-BANPC inverter [202]. Here $X \in (R, Y, B)$ phases130
Fig. 7.3 Output voltage levels of different seven-level inverter topologies (for $V_{dc-link} = V_{DC} = 1 p$.
<i>u</i> .)
Fig. 7.4 Different front end converter topologies for the common MLIs: (a) front-end step-up
DC/DC converter, (b) series-connected PV modules, (c) low frequency step-up transformer-based
system, and (d) multi-winding transformer-based isolated system
Fig. 7.5 (a) Proposed three-phase inverter circuit for seven-level operation, (b) output line voltage
(U_{RY}) , and phase voltage (U_{R0})
Fig. 7.6 Four switching states of the proposed inverter: (a) State A: 0, (b) State B: +1. (c) State C:
+2, and (d) State D: +3

Fig. 7.7 Gate signals of the switches	135
Fig. 7.8 Three-phase seven-level inverter switching states in dq0 plane	136
Fig. 7.9 Some important simulated waveforms of the proposed inverter for seven-level ope	ration:
input DC source voltage, switched capacitor voltages, line and phase voltages, grid voltage	, and
inverter output current waveforms	143
Fig. 7.10 Voltage stress across the switches.	144
Fig. 7.11 Current stress across the switches	145
Fig. 7.12 Some simulated waveforms of the proposed inverter during lagging and leading p	ower
factors: reactive power references, switched capacitor voltages, line and phase voltages, gr	d voltage,
and inverter output current waveforms.	146
Fig. 7.13 Steady state operating junction temperature of the semiconductor devices	147
Fig. 7.14 Line voltage and grid current waveforms.	148
Fig. 7.15 Phase voltage before filter and grid voltage waveforms	148
Fig. 7.16 Voltage stress across the switches.	149
Fig. 7.17 Voltage across the switched capacitors.	150
Fig. 7.18 Grid voltage and current waveforms in different power factor, (a) unity power factor	tor, (b)
lagging power factor, and (c) leading power factor.	151
Fig. 7.19 Line to line voltage and current waveforms under transient condition	152

Nomenclature

Global abbreviations used in this thesis

AC	=	Alternating Current
ANPC	=	Active Neutral Point Clamped
APF	=	Active Power Filters
AHB	=	Asymmetrical H-Bridge
ANF	=	Adaptive Notch Filter
AFE	=	Active Front End
BW	=	Bandwidth
CMBMC	=	Common Magnetic-Bus Multilevel Converter
CHB		Cascaded-H-bridge
DC	=	Direct Current
DES	=	Distributed Energy Source
DG	=	Distributed Generation
DSP	=	Digital Signal Processor
DPC	=	Direct Power Control
EV	=	Electric Vehicle
ES	=	Energy Storage
ESS	=	Energy Storage Systems
ESO	=	Extended State Observer
EMI	=	Electromagnetic Interference
EMC	=	Electromagnetic Compatibility
FCS	=	Finite Control Set
FIR	=	Finite Impulse Response
FLL	=	Frequency-Locked Loop
FLC	=	Fourier Linear Combiner
FC	=	Flying Capacitor
G2V		Grid-to-Vehicle
IIR	=	Infinite Impulse Response
IPT	=	Inverse Park Transformation
LPF	=	Low Pass Filter
LMS	=	Least Mean Square
MLI	=	Multilevel Inverter
MC	=	Multilevel Converter
MPC	=	Model Predictive Control
MMC	=	Modular Multilevel Converters
MAF	=	Moving Average Filter
MMPD	=	Modified Mixer Phase Detector
MWFLC	=	Modified Weighted-Frequency Fourier Linear Combiner
NPC	=	Neutral Point Clamped
NF	=	Notch Filter
PI	=	Proportional Integral

PR	=	Proportional Resonant
PV	=	photovoltaic
PCC	=	Point of Common Coupling
PLL	=	Phase-Locked Loop
PD	=	Phase Detector
PWM	=	Pulse Width Modulation
QSG	=	Quadrature Signal Generation
RES	=	Renewable Energy Source
RECS		Renewable Energy Conversion System
SMC	=	Sliding Mode Controller
SVR	=	Step Voltage Regulator
STATCOM	=	Static Synchronous Compensator
SOGI	=	Second-Order Generalized Integrator
SRF	=	Synchronous Reference Frame
THD	=	Total Harmonic Distortion
TD	=	Transfer Delay
UPS		Uninterruptible Power Supplies
VSC	=	Voltage Source Converter
V2G	=	Vehicle-to-Grid
VOC	=	Voltage Oriented Control
VCO	=	Voltage-Controlled Oscillator
WES	=	Wind Energy System
WFLC	=	Weighted-Frequency Fourier Linear Combiner