UNIVERSITY OF TECHNOLOGY SYDNEY
Faculty of Engineering and Information Technology

Generalized Continuous Wave Synthetic Aperture
Radar

by

Yijiang Nan

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019



Certificate of Authorship/Originality

I, Yijiang Nan, declare that this thesis, is submitted in fulfilment of the requirements
for the award of PhD, in the School of Electrical and Data Engineering, Faculty of
Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged.
In addition, I certify that all information sources and literature used are indicated

in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Production Note:
Signature: Signature removed prior to publication.

Date: H/;a}zol?



ABSTRACT

Synthetic aperture radar (SAR) suffers from several intrinsic limitations caused
by the slow time sampling in azimuth. In this thesis, a generalized continuous wave
synthetic aperture radar (GCW-SAR) is developed based on one-dimensional (1-D)

continuous wave (CW) signalling, thus removing these limitations.

GCW-SAR reconstructs a radar image originally by correlating the received one-
dimensional raw data after self-interference cancellation (SIC) with predetermined
location dependent reference signals. The SIC in GCW-SAR is discussed and then
the system geometry and the original imaging method are proposed. To reduce the
complexity, a novel piecewise constant Doppler (PCD) algorithm based on the linear
approximation of the slant range, is proposed reconstructing a SAR image recursively
in azimuth. Additionally, a faster and more flexible PCD implementation, called
decimated PCD algorithm, is proposed, by which the image azimuth spacing can be

extended further reducing the computational cost significantly.

The PCD algorithm is the key technique for the GCW-SAR. This thesis presents
a theoretical PCD imaging performance analysis. Firstly, the difference between
conventional SAR imaging and PCD imaging is revealed. Exact ambiguity function
expressions of the PCD imaging in range and azimuth are then derived respectively.
An error function of the PCD imaging is further defined and shown to be a function
of an image quality factor to quantify the imaging performance. The decimated

PCD imaging error is also analyzed accordingly.

Passive GCW-SAR system and millimeter wave GCW-SAR system with deramp-
on-receive are proposed respectively. A modified PCD algorithm suited for passive
GCW-SAR is proposed to remove the conventional passive SAR limitations. Using
deramping technique can drastically reduce the receiving sampling rate and the
millimeter wave carrier enables high azimuth resolution as well as short synthetic
aperture which in turn significantly reduces the imaging computational complexity.

The effects of deramp-on-receive in PCD imaging is analyzed accordingly.



Finally, a real GCW-SAR experimental system is developed and the experimen-
tal results are presented. This practical system consists of four subsystems, i.e.,
receiver frontend subsystem, radar control subsystem, positioning control subsys-
tem and digital imaging subsystem. The first two parts are constructed by using
the AWR1843 single-chip 77-GHz FMCW radar sensor made by Texas Instruments,
the third by using the linear moving platform made by FUYU Technology company,
and the digital imaging is possessed by MATLAB off-line processing in a personal
computer (PC). The experimental results validate the advantages of the proposed

GCW-SAR system.
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