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ABSTRACT

One of the main challenges that faces the Network Functions Virtualization (NFV)

deployment is to optimize the resource allocation of demanded network services in the

NFV environment. In this study, new optimization models have been developed to find

the near to optimal mapping and scheduling for the incoming Virtual Network Function

(VNF) requests. The optimization models are formulated as a multi-objective problem

in general where different objectives and constraints can be defined depending on the

considered scenarios. In the first formulation, three objectives have been defined, namely,

maximizing the number of accepted incoming service requests, optimizing link utilization

and minimizing the overall processing time of service requests. The second development

includes an optimization problem that considers the nonuniform arrival of the incoming

service requests periodically. This optimization problem has been done by maximizing

the number of accepted service requests, minimizing the number of bottleneck links, the

overall processing time. In the third development, the optimization problem considers

the expiry time for those incoming service requests to be processed in the VMs. More-

over, the model considers the uniform and non-uniform arrival of the incoming service

requests. Four different objectives and five constraints have been considered to solve

this optimization problem. Particularly, the model aims to maximize the acceptance rate,

minimize the number of bottleneck links, the overall processing time and the relative

processing time. In the fourth scenario, the optimization model has been developed to

achieve three objectives functions, namely, minimizing the transmission delays occurring
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in every link, minimizing the processing capacity for every VM and minimizing the

processing delay at every VM. The optimization model developed in the fifth formulation

minimizes the processing time for every accepted service request, and at the same time

maximizes the number of accepted service requests. All five scenarios have been treated

as both single-objective and multi-objective optimization problems, where two different

evolutionary algorithms based on a genetic algorithm have been applied for solving the

resulting optimization problems. Via numerical simulations, it is shown that for the first

three scenarios, the proposed algorithms solve the problem efficiently and converge to

near to the optimal solution. Regarding the latter two scenarios, the numerical evalua-

tions provide an evidence that the algorithms developed in this manuscript are scalable

and they outperform the evolutionary algorithms proposed in the literature, namely

genetic bandwidth link allocation (GA-BA) and genetic non-bandwidth link allocation

(GA-NBA) algorithms.
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1
INTRODUCTION

1.1 Introduction

In this chapter, we present an overview for the content of the thesis. Firstly, section 1.2

provides the research background of SDN and NFV concepts including the architecture

of each concept. Secondly, section 1.3 explains briefly the problem statement and provides

the research motivation for the NFV Resource Allocation (NFV-RA) that led us to embark

upon the development of new algorithms to optimize the resource allocation in the NFV

environment. Thirdly, section 1.4 displays the aims of this research along with the main

objectives. Fourthly, section 1.5 shows in details the research gap. Fifthly, section 1.6

depicts the significance of the proposed research problem. Finally, section 1.7 presents

the organization and structure of the thesis.
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Figure 1.1: Traditional Network and Software-Defined Network architecture as proposed
in [1]

1.2 Background

SDN separates the forwarding planes (muscle) from the network control (brains) and

provides a central vision of the distributed network for automation of network services

and effective orchestration. Control plane is used to establish the forwarding tables of the

data plane elements, in other words, determine how the network traffic will be handled.

The Data plane is used to forward the network traffic according to the decisions made by

the control plane.

The main benefit of SDN is that it provides a centralized controller and network

programmability. The important outcome of the SDN concept is the separation between

the network policies implementation in the switching hardware, and the forwarding

of traffic. This separation breaks the network control problem into manageable pieces,

simplifies network management and leads to great flexibility in the network system [2].
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Figure 1.2: SDN architecture and its fundamental abstractions as proposed in [2]

Fig. 1.1 shows the difference between the traditional network and the SDN network.

The SDN architecture separates the forwarding hardware plane from the control logic

plane and enables merging the policy management, middle-boxes, and new functionalities.

The dashed lines in the SDN network define the control-plane links and the solid lines

denotes the data-plane links.

NFV is a new framework which has been proposed to reduce the cost of deployment

and operation of large networks by applying a flexible allocation for network resources,

in addition to integration between new network services and heterogeneous network

architecture. Traditionally, the network service (NS) consists of different sets of network

functions which are processed and implemented on hardware middleboxes (e.g., firewall,

load balancers, network address translators). It needs the data flow/traffic to traverse

in a specific order into a fixed set of middleboxes, which are causes more processing to

serve/process all functions [5]. NFV decouples the physical network equipment from the

functions or services which run on them, e.g. the incoming service can be decomposed into

a different set of virtual network functions (VNFs), and each function can be processed

one after another in software which implements on top of physical nodes placed in data
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centres.

Fig. 1.2 illustrates the innovation of the NFV approach by separating the software-

based from allocated hardware-based appliances to serve the network services such

as routers, deep packet inspection (DPI), firewalls, network address translation (NAT),

Virtual private networks (VPNs), packet data network gateways (PDN-GWs or PGWs), IP

multimedia subsystems (IMSs), and IPTV. NFV runs the network functions on different

hardware (i.e., switches, standard servers, and storage) using software virtualization

techniques, as shown in Fig. 1.2.

This principal flexibility of NFV not only decouples the physical network equipment

from the network services, but also allows operators to process and implement services

quickly and transfer them around as virtual machines to respond to the network needs

[5]. Consequently, instead of installing expensive hardware middleboxes, the processing

for VNFs into software will provide more available network services for customers to use,

moreover, it will reduce the total cost of telecom operators.

1.3 Problem statement

To bring these software-oriented network functions to fruition, many research questions

have to be addressed: VNF placement, service chaining, VNF management and orches-

tration, VNF scheduling for low latency and efficient virtual network resource allocation

with NFV infrastructure among others. One of the main challenges that faces the NFV

deployment is to optimize the resource allocation of demanded network services in the

NFV environment. This problem has been named the NFV Resource Allocation (NFV-RA)

problem.

According to [6], every network service request has a different capacity from the

others, during the transmission for the flow of the VNFs chains of these requests between

the multiple VMs/servers, a transmission delay may occur because of the limited band-
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Figure 1.3: Mapping and scheduling for a set of service requests in the NFV environment

width for the virtual links. Since the implementation of the VNFs chains could take more

time to be processed on different VMs/servers, a processing delay may occur on these

VMs/servers. Both processing and transmission delays will affect the overall processing

time which definitely will reduce the overall network performance and increase the

processing cost for the service providers. Thus, an efficient resource allocation method

is needed to schedule the incoming service requests and to place the VNFs chains in

available VMs, so that the service requests can be served effectively.

This thesis presents a new formulation for the NFV-RA problem by introducing
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different optimization models to cover different network scenarios of the NFV-RA problem.

In this study, two different problems are considered, namely, the incoming requests

scheduling and network resource allocation for the VNFs service request chains. The

first problem seeks to find the best schedule for the arriving service requests to be

processed into VMs/servers which will improve the overall network performance by

minimizing the total execution time of the network services. The second problem seeks

to find the best allocation for VNFs chains to be traversed and processed between the

available VMs/servers to improve the overall network performance by minimizing the

total execution time of the network services.

It is assumed that every VM supports particular VNFs on top of it which can be

shared by different service requests. Besides, the study presents two new multi-objective

optimization algorithms to find the near-to-optimal solution for NFV-RA problem.

1.4 Research Gap

In order to achieve a high utilization for the resources and small latency on VMs in the

NFV environment, different tasks are required.

1. Every VM supports a specific number of VNF which can be shared by multiple

incoming requests. Propose an effective method to find a best scheduling of the

arrival requests on available VMs which will lead to reduced congestion, queuing,

job rejection rate, latency and achieve high resource utilization.

2. Since there is a resources capacities difference between the computing nodes and

VNFs request demand, propose a mathematical model to find the near-optimal

solution which can reduce the execution time and cost and simultaneously increase

the overall resource utilization of the computing nodes.
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3. Propose an efficient model and algorithm to find the optimal way to transfer

the functions from one VM to another and also the optimal scheduling for these

requests to process in order such that different objectives should be met, for

instance, transmission delay, acceptable flow rate, processing delay, link cost,

maximize the profit.

4. Propose an efficient algorithm to determine which VM should deploy the VNFs of

each service request.

1.5 Research Aims and Objectives

1.5.1 Aims

1. Survey and analysis of the virtual resource allocation, characteristics of different

NFV network structures, mapping, and scheduling algorithms.

2. Research on VNFs incoming service request requirements in different NFV network

structures including all VNF resource allocation constraints and the prediction of

resource workload and service workload.

3. Definition of network attributes in the NFV network and set up different mathe-

matical models.

4. Design resource allocation, mapping, and scheduling algorithms to solve the VNFs

requests, which meet the following requirements: utilizes existing virtual and

physical resources effectively, fulfills the VNFs transmission and processing re-

quirements and minimizes the resource fragments.

5. Different objectives are considered to choose the best mapping and scheduling

including transmission and processing delay, load balance, cost, and resource

utilization.

7



CHAPTER 1. INTRODUCTION

1.5.2 Objectives

1. A literature review of current NFV resource allocation problem including mapping

and scheduling for the VNFs service requests.

2. Definition and specification of the VNF network architecture and different network

scenarios.

3. Specification and design of a mathematical formulation to optimize the virtual

resource allocation by finding the best scheduling and mapping for VNFs of the

arrival service requests.

4. Specification and design for different sets of objectives such as maximizing the

number of accepted service requests, optimizing link utilization, minimizing the

number of bottleneck links, the relative processing time, minimizing the overall

processing time of service requests, minimizing the processing capacity for every

VM and minimizing the processing delay at every VM.

5. Design of a model that meets the previous objectives and should consider different

network constraints including the finite capacity of the links between VMs, VNF’s

order, VM capacity, expiry time, link traffic as well as the communication and

processing delays.

6. Specification, design, and implementation of a multi-objective optimization al-

gorithm, considering the expiry time for the service requests to be processed,

supporting both scenarios of the uniform and non-uniform arrival requests and

enabling several tenants and multi-services to access the virtual network resources.

7. Develop efficient mapping and scheduling algorithms to optimize the virtual re-

source allocation. Smart scheduling method considers the best allocation for the

incoming VNFs of the service requests to be carried out on specific VMs taking into

8



1.6. RESEARCH SIGNIFICANCE

consideration a balance between multiple objectives (such as time, performance,

cost) in NFV environment.

8. Apply the algorithms into different network scenarios and several instances to

find the best algorithm achieving the near-to-optimal solution for the proposed

algorithms in every network scenario.

9. Test the model and compare the results with other models proposed previously to

verify the performance of the resource allocation problem.

1.6 Research significance

This study contributes to the enhancement of NFV network quality by optimizing the

virtual resource allocation. The research encourages the smooth migration of VNFs

to be processed through different VMs in the NFV environment. Moreover, the model

accelerates the placement and scheduling for the VNFs of the arrival service requests

to be run on VMs which increase innovation as well as reduce the processing time,

complexity, and cost for VNF providers. The main significance of this study is that the

outcome has the following properties:

• Better availability of virtual resources to serve the new arrival requests

• Better distribution for the VNFs of the incoming service requests.

• Reduce the cost of processing the VNFs on VMs

• Reduce VM instantiation and Provisioning Latency, and provide a balance between

the different VMs to process the VNFs according to their availability.
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1.7 Thesis Contributions

1. Finding an optimal mapping and scheduling for a set of incoming service requests

to process in order through different VMs such that three different conflicting

objectives are considered. In Particular, maximizing the total number of incoming

service requests that can be assigned to VMs, optimizing link utilization and mini-

mizing the processing time while taking into consideration forwarding, assignment

and traffic, and link capacity constraints.

2. Formulating a new mathematical model for three mentioned objectives and con-

straints.

3. Applying scheduling and mapping multi-objective evolutionary algorithm based

on decomposition (SM-MOEA/D) algorithm and introduces a penalty function to

discard any infeasible solutions of the problem. The main advantage of using this

algorithm is to have good scalability and computational efficiency such that a set

of conflicting objectives and constraints are met using the updated information in

the SDN controller as input parameter for the algorithm.

4. Applying (SM-NSGA-II) algorithm to find the near-to-optimal assignments for VNF

service requests to implement in suitable VMs based on the output of the set of

pareto solutions.

5. Finding the optimal mapping and scheduling for a set of non-uniform arriving

service requests to be processed in suitable VMs. The processing deadline for every

incoming request has to be considered.

6. Formulating a mathematical model for the VNF scheduling and mapping problem,

that considers the network constraints and the following three objectives: maximiz-
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ing the number of accepted service requests, minimizing the number of bottleneck

links, and minimizing the overall processing time.

7. Developing algorithms based on genetic algorithms, namely multi-objective evo-

lutionary algorithm based on decomposition (MOEA/D) [7] and Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [8]. The algorithms developed can optimize

different combinations of the provided objectives.

8. Finding an optimal mapping and scheduling for a set of incoming service requests

to process in order through different VMs such that four different conflicting ob-

jectives are considered. In Particular, maximizing the acceptance rate, optimizing

link utilization and minimizing the overall processing, minimizing the relative pro-

cessing time while taking into consideration VNF order link, traffic, link capacity

and expiry time constraints.

9. Formulating a new mathematical model for the four mentioned objectives and

constraints.

10. Applying SM-MOEA/D algorithm and introducing a penalty function to discard any

infeasible solutions of the problem. The main advantage of using this algorithm is

to have good scalability and computational efficiency such that a set of conflicting

objectives and constraints are met using the updated information in the SDN

controller as input parameter for the algorithm.

11. Applying scheduling and mapping Non-dominated Sorting Genetic Algorithm II

(SM-NSGA-II) to find the near-to-optimal assignments for VNF service requests to

implement in suitable VMs based on the output of the set of pareto solutions.

12. Formulating the mapping and scheduling process of a set of arriving service re-

quests at time t among different VMs to be processed in the cloud.
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13. Finding the solution that can optimize the following objectives simultaneously: min-

imizing the transmission delays occurring in every link, minimizing the processing

capacity for every VM and minimizing the processing delay at every VM.

14. Solving the resulting problem by proposing an evolutionary algorithm, the lowest

delay multi-objective evolutionary algorithm based on decomposition algorithm

(LDMOAD/DE).

15. In order to maximize the total income savings for the installed machines in data

centers and maximize the accepted traffic flow simultaneously, we formulate the

mathematical model considering all these objectives and the network constraints.

16. A heuristic algorithm called Resource Utilization Multi-Objective Evolutionary

Algorithm based on Decomposition (RU-MOEA/D) is used to solve the proposed

problem and achieve near-optimal placement and cost effectiveness for incoming

VNF requests.

17. Extensive simulations for different network sizes are executed to evaluate the

performance of the RU-MOEA/D algorithm. The experimental results show that

RU-MOEA/D achieves better results than the GA-NBA algorithm in the objective

values with execution time less than the GA- NBA algorithm.

1.8 Thesis Structure

• Chapter 2 presents the background and related work relevant to the NFA-RA

research problem. Particularly, the chapter discusses the various categories of

the NFV-RA problem such as VNF placement, VNF scheduling, and VNF routing

problems. The chapter also elaborates on the main objectives, solution (method)

and limitations of each category.
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• Chapter 3 explains in detail the research method which is used in this thesis

to solve the proposed VNF-RA problem. There are two new algorithms based on

a genetic algorithm which are applied in this study to find the near-to-optimal

solution for the proposed VNF-RA problem.

• Chapter 4 proposes a network scenario that finds the optimal mapping and schedul-

ing simultaneously for a set of incoming service requests to process in order through

different VMs such that different objectives are considered.

• Chapter 5 focuses on the network scenario that considers non uniform sets of

service requests arriving to the cloud which need to be processed in order by the

installed VMs in the NFV environment.

• Chapter 6 presents the network scenario that considers the expiry time for the

incoming service requests to be processed in the VMs. Moreover, the optimization

model in this chapter is applied to solve both cases of uniform and non-uniform

arrival of the incoming service requests to be processed in order by the installed

VMs in the NFV environment.

• Chapter 7 presents two different algorithms, a mapping algorithm and a scheduling

algorithm, to find the near-to-optimal solution for the proposed network scenarios.

• Chapter 8 presents different network scenarios and the algorithm design that is

tested to maximize the network cost and the admitted traffic. The experiment also

tests the GA-NBA algorithm using a multi objective optimization algorithm.

• Chapter 9 summarises the main contributions of this thesis. Moreover, it provides

a window for future possible works in improving and expanding on the presented

work of the NFV-RA problem.
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2
LITERATURE REVIEW

2.1 Introduction

NFV concentrates on optimizing the network services it; changes the design of networks

transportation by separating software and hardware through leveraging virtualization

technology. The main benefit of NFV is that it increases flexibility, reduces complexity

and speeds up service deployment.

2.1.1 The Relationship between SDN and NFV

SDN and NFV have been proposed to combine relevant network functions, assign target

performance parameters, and map them onto infrastructure resources[9]. SDN serve

NFV by implementing the control plane to run NFs on programmable hardware and to

provide connectivity between these NFs. Accordingly, SDN can support NFV to enhance

the network performance, facilitate its implementation and simplify the deployment

compatibilities [5], [10]. NFV serve SDN by virtualizing the SDN controller to be run
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Figure 2.1: SDN and NFV based mobile packet core (MPC) architecture as proposed in
[3]

on the cloud and finding the best placement for the controller according to the network

needs.

Implementing NFV with SDN together have been proposed several times to utilize the

network. For instance, Pate and Han in [5, 11] enable the data packets to be forwarded by

an optimized data plane, while the control plane function running on a virtual machine

on a rack mount server is used to control distributed forwarding virtual functions.

Authors in [3] proposed a centralized Evolved Packet Core (EPC) control plane (i.e.,

combined gateway handler) to provide programmability, flexibility, and network resources

optimization. As shown in Fig. 2.1, the NFV is responsible for providing the connectivity

locally for the storage and computing resources to the data center. Those resources will

be linked as endpoints for the transport capabilities in the open flow network.
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However, there are some differences between the two concepts SDN and NFV; SDN

aims to separate network forwarding functions from the network control functions,

while NFV aims to decouple NFs away from dedicated hardware and allows the NFs

to be served on servers in the cloud data centers [1]. Moreover, the centralization of

the functions can produce scalability issues through two possibilities [3], namely, the

controller is run in the clustered medium using a shared database or the control functions

(i.e., installation rules of the flow) are decentralized between the switch and the controller.

The scalability problem in the SDN network is an important field of research, research;

however, this issue can mostly be addressed without losing the benefits of SDN [12].

2.1.1.1 SDN Architecture

The network architecture of the SDN consists of four components [2] as shown in Fig. 2.2

1. The separation between the control plane and forwarding hardware plane (data

plane). The control plans is removed from the network devices to be driven by the

controller (called, SDN controller) and the network devices turn into simple packet

forwarding elements (forwarding hardware plane).

2. Forwarding decisions are flow-based for a set of packets for which field values

define a set of instructions. According to the references [13, 14], all packets of the

flow get identical policies at the forwarding devices.

3. Control logic is transferred to an external element called the SDN controller.

4. The network is programmed by software applications running on the controller to

deal with the underlying data plane devices.
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Figure 2.2: SDN architecture and its fundamental abstractions as proposed in [2]

2.1.1.2 SDN Terminology

1. Forwarding Devices (FD): these are software or hardware-based data plane devices

that implement a set of primary operations. These devices have sets of specific

instruction (e.g., flow rules) used to make a decision for the incoming packets (e.g.,

forward to the controller, forward to specific ports or drop).

2. Data Plane (DP): there are different ways to connect between the forwarding

devices such as wired cables or wireless radio channels; this connection represents

the data plane.

3. Southbound Interface (SI): responsible for setting the instruction of the forwarding

devices, and for setting the communication protocol between forwarding devices
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and control plane entities.

4. Control Plane (CP): this is responsible for programming the forwarding devices

using a well-defined SI. Furthermore, it is responsible for setting the control logic

in the controllers and applications.

5. Northbound Interface (NI): this is used to abstract the low-level instruction collec-

tions used by southbound interfaces to program forwarding devices.

6. Management Plane (MP): is a set of applications (i.e., firewalls, routing, monitoring,

load balancers) that influence the functions presented by the NI to execute the

network control and operation logic.

2.1.1.3 NFV ARCHITECTURE

The NFV architecture consist of three elements as proposed in [15–17]: Virtual Network

Functions (VNFs), Network Function Virtualization Infrastructure (NFVI) and NFV

Management and Orchestration (NFV MANO) [16] as shown in Fig. 2.3.

1. Virtual Network Functions (VNFs): the virtualization layer separates the physi-

cal resources and the virtualized infrastructure. It ensures the independence of

the underlying physical platforms and the NFV life cycle by providing standard

interfaces. These functions are provided in the VMs and their hypervisors.

The orchestrator of the virtual infrastructure is responsible to virtualize and

manage the interaction between storage, computing, and network resources with

VNFs. It deploys the VM on a suitable hypervisor and manages the network

connectivity. The orchestrator is also responsible for analyzing the performance

issues and collecting any information about the infrastructure flaw for capacity

planning and optimization.
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The virtualization layer separates the physical resources and the virtualized in-

frastructure. It ensures the independence of the underlying physical platforms and

the NFV life cycle by providing standard interfaces.

VNFs can be defined as an implementation of NFs (for example, firewalls, DHCP

servers) which is processed on virtual resources (e.g., VMs). Every VNF can consist

of single or multiple components which can be processed via multiple VMs; however,

each VM serves (hosts) only one component of the VNF [15].

A service consists of one or more NFs and can be served by a telecommunications

service provider (TSP). In the NFV concept, the NFs are virtualized and processed

on different virtual resources such as VMs. The ordering, type, and the number

of VNFs are determined by the behavioral specification and service functional.

Particularly, the behavior of the service depends on the constituent VNFs.

2. NFV MANO: the orchestrator is in charge of the orchestration and management

of the virtualized hardware infrastructure and software resources to perform the

network services. The VNF manager is responsible for the scaling, instantiation,

update, and termination of the events during the life cycle of a VNF.

In the data center networking, the hardware resources are almost equivalent which

makes their coordination easier but the cost and value of these resources may differ

according to the customer's premises and network points of presence. The NFV

management system is totally different from the scenario proposed in the data

center networking system.

NFV MANO provides different functionality to support all requirements of the

VNFs and all related operations (i.e., the configuration of the VNFs to the VNF

infrastructure layer [4, 16]. It also provides management and orchestration for the

software and/or physical resources to support the VNFs and NFVI. Moreover, it

provides a database which can be used to store the information of the system model,
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resources, services, function properties and deployments. NFV MANO responsible

for all management virtualization tasks for the NFV framework. This framework

provides an interface to communicate the coordination of the traditional network

management systems and all different NFV MANO components.

3. NFVI is the combination between the software and the hardware resources which

form a suitable environment for the VNF to be deployed. The hardware resources

contain storage, computing hardware, commercial-off-the-shelf (COTS) and the

network resources which is responsible for the connectivity and processing of the

VNFs.

In a data center, the storage, computing, and connectivity can be performed as

one or more VMs, while the virtual networks consist of nodes and connected with

virtual links. A virtual node can be defined as a software component has routing

or hosting functionality for the VMs (i.e., the operating system which should be

processed in a VM). A virtual link is responsible for the interconnection between

the virtual nodes, it appears as a direct physical link with dynamically changing

properties [18].

2.1.2 Resource Optimization Problem

Most previous attempts to tackle this problem divided the NFV-RA problem into two

main sub-problems: network function virtual-resource allocation (NFV-RA) and virtual

network embedding (VNE) [4].

• NFA-RA and VNE

The NFV-RA problem aims to find the optimal scheduling and mapping for the VNF

to run in the installed VMs. The VNE problem [19, 20] aims to find the best allocation for

virtual resources into physical network infrastructure (in both links and nodes) [21]. It
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Figure 2.3: SDN architecture and its fundamental abstractions as proposed in [2]

aims to find an efficient mapping for the virtual network requests on a shared substrate

network.

The VNE problem can occur online or offline. In the online problem, all the virtual

network requests arrive at the network dynamically and stay for an arbitrary dura-

tion, while the offline problem, the requests are scheduled in advance [22–24]. VNE,

as proposed in [25], is an NP-hard problem and different meta-heuristic or heuristic

algorithms are proposed to solve this problem. Different optimizations objectives to

solve the embedding problem have been proposed such as link bandwidth, QoS, energy

efficiency [26, 27], economical profit, security [28] and embedding cost.

The two problems (NFV-RAs and VNE) can occur in the same domain. However, there

are some differences between these problems as follows:

• The NFV-RAs input request consists of a set of VNFs with resource demands and

precedence constraints which can be represented by some Virtual Network Func-

tion Forwarding Graphs (VNF-FGs). However, in the VNE problem, the network
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topologies are static and the nodes are organized in a predetermined and fixed

order.

• The resource bandwidth demands for the NFV-RAs problem vary according to

the traffic loads assigned to the VNFs, or/and the VNF instances order, while the

resource demands in the VNE problem are mostly fixed. In addition, VNEs inputs

are scheduled previously according to the order of incoming requests as virtual

network topologies are static.

Four main key problems should be addressed carefully to achieve the best efficiency

for the NFV implementation: Virtual Network Functions Scheduling (VNFs-SCH), VNF

Forwarding Graph Embedding (VNF-FGE), Virtual Network Functions placement (VNFs-

PLA) and Service Function Chaining (SFC) [29].

There are two main solutions to solve these mentioned problems, these are: exact

and heuristic solutions.

• Exact algorithms are algorithms that always propose the optimal solution for

the optimization problem. The exact algorithm is used to solve the small instant

optimization problem, and it cannot run in worst-case polynomial time if the

problem is NP-hard.

• Heuristic algorithms are a technique designed to solve a problem faster than the

classic methods when the classic methods are very slow. Moreover, it is proposed to

find the approximate solution (global optimum) when the classic methods cannot

find the exact solution for the optimization problem. Since NFV-RA deals with

online environments, it is important to minimize the execution time for the ser-

vice requests to avoid the delay which may occur to process the service requests.

Accordingly, heuristic solutions have been proposed to solve NFV-RA.
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2.2 VNF-FGE

A lot of works has been proposed to solve the VNF forwarding graph embedding problem

such as [30–35].

Before we talk about VNF-FGE problem, we should explain the VNF-FG process

which is considered the input for the VNF-FGE. The VNF-FG is the VNF chains formu-

lating a graph of the end-to-end network service process, in other words, it a set of VNFs

that process the NS in order to meet the attributes services (i.e., performance, security,

reliability, and availability) [15]. The final graph of the VNF-FG process will be given as

input for the embedding process of the VNF-FGE stage.

VNF-FGE aims to find the best placement for the VNFs in substrate resource consid-

ering the set of network service requests. In addition, a set of objectives and the network

constraints should be achieved to optimize the network resources. In particular, mini-

mizing the energy consumption, installation cost and maximizing the usage of available

network resources.

VNF-FGE can be named as middlebox/network function placement. The main chal-

lenge of this stage is that each VNF has a specific type (such as storage, networking,

computing) and this type has to be placed into the physical node that matches this type.

Fig. 2.2 proposed in [2] explained in detail the deployment of the VNF-FGE stage.

As shown in the figure, the orchestrator is responsible for the management process

between the virtualized hardware infrastructure and software resources to satisfy the

networking services. Furthermore, the virtualization layer is separated from the physical

resources and runs the VNFs on it using standardized interfaces [5]. The NFV physical

layer supports network, computing and storage that provide connectivity, processing and

storage for VNFs in the virtualization layer. The VNFs of the same functionality type

(computing, networking, storage) can be allocated to run on one or more VMs which are

located in network nodes and data centres [36].
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Figure 2.4: VNFs forwarding-graph embedding (VNF-FGE) proposed in [4]

There are three different VNFs deployment architectures as mentioned in [4]. First,

the VNFs are deployed on Container Virtualization [4]; this container can run several

VNFs and different applications in the cloud. Second, VMs are assigned to the hypervisors

which manage the network connectivity [16, 37]. With the third architecture, the VNFs

have access to the servers for physical resources without using the hypervisor [38].

Fig. 2.4 shows an example of the embedding process for the VNFs. First, the orches-

trator is responsible to run the VNF-FGE algorithm which makes embedding decisions,

according to the optimization objective (s). Second, VNF 1 is embedded onto HVS1, VNF

2 is mapped onto HVS 2, VNF3 and VNF 4 are allocated onto HVS 3, and finally VNF 5 is

embedded onto HVS 4. Third, the virtual links which connect the VNFs on VMs/servers

25



CHAPTER 2. LITERATURE REVIEW

are mapped using specific algorithms, the path consist of one or more physical links. For

example, the virtual link connecting the VNF 3 with VNF 4 is mapped into the path

which consists of two physical links HVS 5 - HVS 4 and HVS 3 - HVS 5. The VNF-FGE

problem can be more complex if the problem has to be solved dynamically, in that case,

the orchestrator has to keep tracking the placement of the running VNFs. In other words,

the orchestrator is responsible to rearrange VNFs of different services and move the

VNF from HVS to another to minimize the physical resources allocation.

Many of existing works assume that a VNF-FGE problem is closely related to the

VNE problem [20, 36, 39–41]. The VNF-FGE is a complex problem and has proved

previously to be an NP-hard problem in [25].

2.2.1 VNF-FGE Optimization strategies

Different heuristic and exact algorithms have been applied to solve the VNF-FGE

problem; in the following subsections, we will explain in detail the related works which

have been using those two algorithms to solve this problem.

2.2.2 Exact

The exact solutions have been used in different situations to solve the VNF-FGE problem.

In particular, branch and bound or branch and price have solved the optimization

problem in a small number of instances in reasonable time [42]. Also, Integer Linear

Programming (ILP) solutions have been used in several practical situations for the

formulation of the VNF-FGE problem using software tools available as proprietary (e.g.

CPLEX [43]) or as open-source (e.g. GLPK [44]).

Moens et al. [45] formulated a mathematical model to minimize the number of used

HVSs in NFV environments, then provided a numerical evaluation for the proposed

model. In [39], authors formulated a model to find the best placement for the VNF service
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chains using a mixed ILP method. The model aims to minimize network latency and

traffic engineering in the NFV environment. Martini et al. [6] considers the problem of

VNFs deployment to the network nodes and computing the best path for these VNFs to

traverse from one node to another. The main objective of this paper is to minimize the

overall network latency.

Bauschert et al. [46] formulated a novel mathematical model to solve the problem

of finding the best embedding for the virtual mobile core network considering latency

constraints.

Ref [36] formulated a new embedding model based on ILP formulation considering the

inter-DC network domains and DC load balancing constraints. Authors of [47], provided

a design for the VNFs placement problem and evaluated the performance of the proposed

algorithm in terms of its ability to support end-to-end requests considering the limited

physical resources.

2.2.3 Heuristic

An example of using a heuristic method to solve VNEFGE by minimizing the OPEX is

introduced in [30]. The authors formulated a mathematical model to solve VNF-FGE

problem considering the minimization of TSP's OPEX and provided rounding-based

heuristics algorithm to solve it.

Moreover, authors of [48] proposed a recursive greedy algorithm to solve the VNFFGE

problem in WLANs NFV environments; in particular, the algorithm finds the best map-

ping for the VNFs to network (physical) nodes. Ref [49] proposed a heuristic algorithm

to find the best deployment for the mobile core gateways considering different network

gateways scenarios and delay constraints.

Authors of [33] formulated a mathematical model to find the optimal placement for

the VNFs in packet data centers. Then, they proposed an efficient heuristic algorithm to
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minimize the overall optic-electronic-optic conversion considering the system constraints.

Also, Ref [50] proposed a mathematical model to solve VNF-FG problem which minimizes

the execution time for deploying the network services objective. Furthermore, Ghaznavi

et al. [51] R1 presented a model to find the best deployment for the elastic VNFs problem;

the model aims to minimize the overall cost of providing VNF service.

Bruschi et al. [52] proposed a new energy-aware game theory solution to optimize

the VNFs resources in NFV environments. Authors of [34] provided a mathematical

formulation to find the best placement for the VNF service requests and the optimal

routing for the flows to traverse from one VM to another. The authors proposed a heuristic

algorithm to solve the problem efficiently without imposing a big penalty. Moreover, Ref

[53] proposed a heuristic algorithm to find the best placement for the VNFs to process on

suitable VMs depending on the application-level constraints.

Bagaa et al. [54] provided a model to find the best deployment for the mobile network

functions over a federated cloud. Moreover, three heuristics are proposed to solve this

problem. Then, Nemeth et al. [55] designed a novel model to solve the carrier-grade

networks and evaluated the proposed algorithm to solve this problem. And, authors

in [56] formulated a mathematical model to solve the virtual deep packet inspection

placement problem taking into account minimizing the network setup cost. In addition,

the authors proposed an ILP to solve the multi-commodity flow problem. Lastly, authors

of [57] proposed a solution for the VNF-FGE problem in the multi-domain networks by

applying the vertex-centric based distributed approach to it.

2.2.4 Exact and Heuristic

Authors in [58] firstly, presented an ILP to minimize the OPEX created by service

provider deployment while considering the service delay bounds, then proposed a heuris-

tic algorithm to find the near-to-optimal performance solution while considering the
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reduction of the execution time. Then [59], the authors formulated a mathematical model

to solve the network functions placement problem and presented two different algorithms

to solve the problem. In particular, they proposed an ILP model for the small network

scenario which aims to minimize the number of VNF instances to be deployed in the

cloud and heuristic algorithm to solve the same problem in large size network.

Elias et al. [60] formulated a non-linear optimization model to solve the composition

of the network functions problem; in particular, the model aims to detect and minimize

the congestion occurring in the physical resources. In addition, Ref [61] proposed a

binary integer linear program to find the optimal placement for the radio access network

problem in small network instances. Moreover, a greedy approximation algorithm is

provided to solve the problem in large network instances. Also, Bellavista et al. [62]

presented the challenges of the technical issues facing the optimal VDCs placement

problem considering different physical and virtual resources constraints.

Lin et al. [63] introduced two different solutions to minimize the cost of deploying a

VNF service request and finding the best route for the VNF traffic flow, namely, a heuristic

algorithm based on game theory and mixed-integer linear program. Furthermore, Ref

[64] proposed a model to find the optimal deployment for the VNFs on available radio

resources using a greedy heuristic algorithm. Lastely, Ref [65] introduced a mathematical

model which aims to minimize the total cost of the bandwidth and host set up. A mixed

integer programming is proposed to solve the problem in the small network instance and

a heuristic algorithm is proposed to solve the problem in large network instances.

2.3 Service Function Chaining (SFC)

SFC is end-to-end delivery of services that requires several service functions to process.

SFC is defined as a chain-ordered set of service functions (SFs) that provides network

support for the VNFs through the processing of the chains order, service operation, and
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delivery.

Service chaining is being used with SDN and NFV in several cases, including carrier

networks, virtual customer edge and data centers (chaining together virtual or physical

network functions). The main advantage of using the combination between SFC, NFV

and SDN is to automate virtual network set up to control traffic flows for connected

services. For instance, an SDN controller can control the incoming chain of services

and distribute them to various traffic flows depending on the type of traffic, source

or destination. Moreover, this combination improves the application performance and

reduces the usage of network resources by using SDN analytical tools to show the

network resources availability.

SDN and NFV provide efficiencies and flexibility to the life-cycle of service function

chains. This can happen by composing the chains of the VNFs dynamically and placing

them to physical network nodes such as a set of different operator's objectives should

be achieved [16]. Moreover, SDN provides monitoring and controlling for the topology

service chains using the data plane and transferring the traffic flow across Service

Functions (SFs) using the data plane. SF functions provides special treatment for the

received packets [66].

This combination is being developed in various industry projects such as The Internet

Engineering Task Force (IETF) and The European Telecommunications Standards Insti-

tute (ETSI). IETF [29] is proposing a SFC architecture to provide the best traffic route

between service functions using network flow classification. ETSI [15] has provided a

service chain architecture that finds the best route for traffic between a network service

header and virtual network functions (VNFs) using network forwarding graphs.

Traditionally, the network flows pass through different network functions, these

functions are determined previously. As a result, the network flow has to transfer

between these NFs in a determined order to be processed. This problem is known as
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network service chaining or network function chaining [17, 67]; complete frameworks of

the network function chaining is proposed in [68].

2.3.1 Network Service Chaining

Different ways have been applied to modify the way the network flows are traversed.

Firewalls check the data then may drop particular packets; as a result, the final resulting

flows are less than the incoming flows. DPI checks the type of packet for the incoming

flows, then it can split the flows into different branches according to their type. A video

optimizer may change the video encoding scenario to increase the flows data rate.

In some cases, some of the functions in the chaining have a dependency on each other,

which means traversing these chains through different NFs has to be in a specific order.

For example, if the packets of the incoming flows should pass through WAN optimizer

first then the IDS, in that case, the packet inspection should be processed first before the

WAN optimizer encrypts the contents.

However, in some other cases, these functions do not have a dependency on each

other, therefore, it is possible to execute them all together. There are several factors

which have to be considered in that scenario; one of them is how each function in the

chain can modify the data rate of the flows as different chaining options have a different

effect on the network performance, latency, or on the transmission delays on network

links.

Authors of [69, 70] proposed a mathematical model to solve the Location-routing

problems for chained NFs. In particular, it aims to find the optimal placement of the

VNFs component while minimizing the cost of the links and nodes in the network. These

problems consider that each path has a start and endpoint and did not consider the

scenario if there are several routes between the NFs to traverse the chains. Ref [20]

provided a solution for embedding the chains into a substrate network problem. The
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authors consider nodes and links of the virtual graphs are independent and they did not

consider that the tenants can share the NFs to process the chains.

Authors of [71] presented a mathematical model to express the functionality and

attitude of a specific number of NFs, the model does not consider the computational

resources and their influence on the network traffic. Authors of [72] provided a model to

consider the network-aware orchestration layer for NFs. The model does not consider the

resource requirements of the functions while the traffic is processed. The orchestrator

plays an important role in finding and reserving adequate resources [73].

2.3.2 Exact

Ref [74] formulated a mathematical model to find the optimal placement for the VNFs

taking into account the traffic flows and service chains constraints. Authors of [75]

proposed an online algorithm called ACE (Admission control and Chain Embedding) to

find the best embedding for the VNF service chain and the traffic flow admission control.

2.3.3 Heuristic

A research by Beck and Botero [76] proposed a heuristic algorithm to find the best

deploying for VNF chains into the substrate network. Then, the authors introduced a

recursive heuristic algorithm which initially composes the VNFs in the service chains

then embeds them in the SN. At each step, the algorithm tries to find the best mapping

for the VNFs in the service chains which achieve the best value in a feasible solution.

Reference [77] formulated the problem of deploying the incoming VNF function

chains. The authors proposed a placement and routing scenario for VNF instance to

run in multiple machines and aimed to minimize the network utilization using a mixed

integer programming (MIP) for a small network scale and heuristic called Kariz for the

large scale.
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2.3.4 Exact and Heuristic

A model that specifies the placement of VNFs chaining requests is presented by [78].

First, it formalizes all incoming request chains into different sets of NFs together using

a context-free language within all elements and rules of language. Second, the model

aims to minimize the data rate for the chains after sorting the VNFs in ascending order

based on the ratio of the incoming and outgoing data rate. Thirdly, it finds the best

deployment for the output chains from the previous formalization in the network. The

authors proposed a Pareto set analysis and implemented a mixed integer quadratically

constrained program (MIQCP) for two different chaining sets to solve this optimization

problem and find the actual placement for NFVs.

The authors of [73] proposed two new algorithms based on ILP and heuristic methods

to find the best mapping for the service function chains into the network infrastructure

taking into consideration that the decomposition of the network services is permitted in

their model.

2.4 VNFs Placement (VNFs-PLA)

The problem VNFs-PLA is proposed to exactly find the optimal placement for VNFs in the

NFV network infrastructure, such that a set of objectives is achieved (e.g., minimizing

the link latency of the chosen paths, minimizing network power consumption and the

number of servers used by the network system).

For instance, Ref [21] proposed a new algorithm to find the near to optimal solution

for the VNFs placement problem, but the model does not consider the processing order

for the VNFs.

Earlier studies focused on the VNFs-PLA problem, path selection and the bandwidth

allocation for every selected path to transfer these VNFs into the physical network
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(considering traffic load constraints).

2.4.1 Exact

In [30], the authors proposed a model to determine optimal deployment for VNFs through

the physical network. Authors introduced two models: capacity and incapacity model. A

limited number of users can be served by a particular function which is located at any

node in the capacity model. In contrast, in the incapacity model, the number of clients

that can be served by a function is unlimited. Their study provided a mathematical model

to enhance the network performance, then the authors proposed a theoretical analysis

of the NFV placement problem. Furthermore, their study proposed a combination of

two well-known NP-hard optimization problems: the facility location problem and the

generalized assignment problem (GAP) to solve the VNFs deployment problem. Authors

in [45] had an approach for the virtual network function placement problem (VNFs-PLA)

in NFV environments. In particular, they focused on finding the best placement for the

VMs and services in the request service chains, but they did not take into consideration

the underlying network. The paper used integer linear programming (ILP) to implement

the proposed model and to solve the problem. The proposed model applied in either real

NFV network or in hybrid network, which means many services can be provided by

virtualized network instances only or hybrid with physical hardware.

Clayman et al. [79] introduced a model to find the automatic deployment for the

virtual nodes on the VNF environment and for the NSs in these virtual nodes depending

on the orchestrator structure. The work elaborates details of managing effective commu-

nication between the main four layers (the Application Layer, the Orchestration Layer,

the Abstraction Layer, the Infrastructure Layer) which is composed of a combination of

SDN & NFV architecture.

The application layer contains the management application (software) which may
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be simple or complex and responsible for interaction with the Orchestration Layer.

The Orchestration Layer consists of three components; the Monitoring Manager, the

Placement Engine, and the Service Orchestrator. Firstly, the Monitoring Manager is a

critical element responsible for monitoring and controlling functions to achieve a full

control loop. Secondly, the Placement Engine which is responsible for finding the best

placement of virtual router considering the usage of these virtual routers and the first

topology, moreover, the authors paper proposed three algorithms (Least Used Host,

Least Busy Host and N at a time in a Host) to determine the best placement of these

routers into host. Then the service orchestrator is an application which is running on

virtual routers and responsible for the automatic deployment of services or functions

into these virtual routers. The Abstraction Layer is in charge of the connection between

the Orchestration and Infrastructure layer as it contains the Local controller which

is responsible for starting and stopping of virtual routers and the connection between

routers. The Infrastructure Layer: this layer consists of physical infrastructure, which

is represented by data centres which running VMs on them and virtual infrastructure

which is represented by virtual resources (V.Routers, V.Switches) and how these resources

connect together through this layer.

2.4.2 Heuristic

In [37], a mathematical formulation and algorithm for the VNF Placement and Routing

(VNF-PR) problem were proposed. The main two goals of (VNF-PR) are to find the optimal

demand bandwidth assigned to every VNF chains and find the optimal deployment of

VNF nodes through NFVI clusters. In particular, the work focused on minimizing the

allocated resources and maximum link utilization, taking into consideration the network

constraints and forwarding latency regimes. The optimization objectives covered both

NFVI- level and network level performance metrics. Finally, the problem is formulated as
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a multi-objective math-heuristic approach on realistic settings which allows the provider

to run experiments for significant instances of VNF-PR within an excellent performance

in a reasonable execution time.

Authors of [37, 78] proposed mathematical models to minimize the network opera-

tional costs by finding the best placement for VNFs and assignment flow to the VNFs

while meeting the traffic policy constraints. The paper proposed heuristic algorithms to

solve these problems.

2.4.3 Exact and Heuristic

Reference [80] proposed the joint VNF placement and path selection (JVP) problem,

which consists of two significant problems: the sufficient routing path and the best

placement of (VNF-SC) into different VMs. The main objective of this problem is to

achieve the optimal utilization of the limited resources in servers. The authors proposed

VNFs placement algorithm to determine the best placement for VNFs service chains to

run in suitable VMs according to path capacity.

Reference [81] provided a solution to solve VNF service chains mapping problem

through several VNF instances. The paper aims to minimize the total resource consump-

tion in wide-area network (WAN). The solution consists of three different algorithms:

a model called an integer linear program (ILP), column generation-based ILP, and a

scheme called two-phase column-generation-based model (2PhMod). These solutions are

applied to solve the main objective (minimize the network bandwidth consumed) and

several routing constraints are considered in every scenario.

2.5 VNFs-SCH

Given a set of VMs, each VMs supports a limited number of functions on it. The incoming

service requests need to be processed in a certain order in these network functions, the
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scheduling problem seeks to find the minimum execution time slot for each VNF along

the service chain to be executed in the corresponding server/VM to improve all network

performance.

Several mathematical models and heuristic solutions were proposed to solve the

VNFs-SCH problem such as the following articles.

Authors in [82] formulated the scheduling problem of the incoming service chain

as a flexible job-shop problem. Therefore, there is no exactly polynomial-time solution

existing in their model; the model considers only processing delays for the VNFs as the

main objective.

Ref [83] provided a novel solution to solve the problem of scheduling the VNFs to

process in service chains. The algorithm is called low complexity multi-resource packet

scheduling algorithm; it provides a full analysis for the queue characteristics of the VNFs

depending on their framework but the algorithm does not consider all the features of the

VNFs chaining.

2.5.1 Exact

Authors of [84] formulated a joint service-function deployment and traffic scheduling

(SUPER) problem and defined it as an MLIP. The paper aims to maximize the total

cost profit for NFV providers by maximizing the total number of serving users flows

in the cloud. They then proposed an approximation algorithm based on the Markov

approximation technique to solve the proposed algorithm.

2.5.2 Heuristic

In [85], the authors presented an algorithm to solve the NFVI resources optimization

problem. NFVI Resource Filter is responsible for determining sufficient NFVI resources

requirements. Then, the NFVI Resource Scheduler finds the best schedule for resources
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and stakeholder policies together. Furthermore, authors in [86] defined VNF chains

placement and scheduling problem; the authors provided two algorithms priority-driven

weighted algorithm (BFDSU) and Reverse Complete Karmarkar-Karp (RCKK) algo-

rithm to increase the network resource utilization and minimize the network latency

respectively.

In [87], the authors have suggested the VNF scheduling problem and proposed a

resource optimization algorithm to solve this issue. In particular, the article presented in

detail the VNF transmission and processing delays and formulated a mathematical model

for the problem. Then, the authors provided three different heuristic methods using a

genetic algorithm (GA): GA-without bandwidth allocation (GA-NBA), GA-bandwidth

allocation (GA-BA) and GA-bitrate variation (GA-BRV) to improve the complexity of the

problem in larger instances. The experimental results of this paper showed that the GA

heuristic method provides a good scheduling performance compared with a mixed integer

linear program (MILP). Moreover, the results showed that the Ga heuristic methods

mentioned previously have shorter schedule times in comparison with the simple greedy

best availability scheduling method (GBA) proposed in [82].

The work in [88] formulated the problem of finding the optimal dynamic service

function (SF) placement and the routing for the flow in an SFC network. Two different

objectives are proposed in this paper: minimizing the energy cost and maximizing

acceptable flow rate. The solution first converted the multi-objective optimization problem

into a single objective MILP problem then proposed a polynomial time algorithm based on

rounding and linear relaxation to find a near to optimal solution for the MILP problem.

2.5.3 Exact and Heuristic

Authors in [82] merge two scheduling and mapping of VNFs chains problems together.

The was paper concerned with three different objectives: minimizing flow time (the time
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of the arrived head service chain to the time of completed serve tail of the last service

chain), revenue (the total sum of utilized physical network resources) and cost of physical

resources (time gaps of available (non-used) left functions). Authors proposed three

greedy algorithms (Greedy Fast Processing (GFP), Greedy Best Availability (GBA) and

Greedy Least Loaded (GLL)) and tabu search-based heuristic to solve the previous objec-

tives. The results present that the tabu search-based algorithm has a better performance

than all proposed greedy algorithms.

Reference [89] provided mixed-integer linear programming, and a heuristic algorithm

called (JoraNFV) to find the optimal solution for NFV-RA problem. This study aims to

minimize the total service performance and network cost. Firstly, the authors provided

an one-hope algorithm to solve the traffic scheduling problem, then they proposed a

multi-path greedy algorithm to solve VNF-CC and VNF-FGE phases.

A new model to solve the VNF scheduling and placement mechanism in the radio

access network (RAN) is formulated in [53]. Authors in this paper proposed an ILP to

solve the proposed problems in small networks and a heuristic algorithm called Wireless

Network Embedding (WiNE) to solve the problem in the instance of a larger network.

The results reported the updated proof of concept implementation for the solution of the

proposed problem in the NFV environment.

2.6 Conclusion

This chapter studied the literature of NFV-RA problem achieving the best efficiency

for the NFV implementation, in particular, VNFs-SCH, VNF-FGE, VNFs-PLA and

SFC. These approaches are different from our model, as they aim either to find the

best placement only for a set of VNF to serve in suitable VMs or to find the best

schedule for the arriving service requests into an NFV environment considering different

objectives individually instead of solving mapping and scheduling problems together
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and optimizing simultaneously all proposed objectives using evolutionary multi-objective

optimization. our study seeks to solve this problem considering the trade-off between

various objectives including the final acceptance ratio of service request numbers, provide

sufficient bandwidth at each VM to process VNF chains and VM cost for multiple

incoming service request chains by determining the best VNF mapping and scheduling

for the arriving service requests and VNF chains.
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Table 2.1: Summary of VNFs-PlA and VNF_SCH

Reference Category Objectives

(s)

Constraints Algorithm Algorithm

Type

[79] VNFs-PLA ———– ————— 1.Least Used

placement

2. Placement N

of virtual

routers in a

Host at time T.

3.Least Busy

Host

Exact

[30] VNFs-PLA 1. minimize

the total cost

for the

system

(connection

and setup

cost).

——————

2.Minimize

the total cost

of the

network

system.

1.The NFV

demand

2.The setup

cost

3.The NFV size

4. The states

———————

1.the job

demand

2.The

fractional sizes

1. The GAP

Rounding

Algorithm.

——————–

2.The

Uncapacitated

and

Capacitated

NFV-Location

Algorithm.

Exact
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[78] VNFs-PLA-

SFC

1.Maximizing

the

remaining

data rate on

network

links.

2.Minimizing

the used

nodes

number in

the network.

3.Minimize

created paths

latency.

1) Network

Function

Placement.

2) Path

Creation

3) Metrics

Calculation

Mixed Integer

Quadratically

Constrained

Program

(MIQCP).

Exact and

Heuristic

[80] NF-PLA maximize the

total size of

admitted

demands

capacity

1.Link and VM

capacity 2.Path

and Chaining

3.VNF

placement

Dynamic

programming

for solving

Joint VNF

Placement and

Path Selection

(JVP)

Exact and

Heuristic

[45] VNFs-PLA minimize the

number of

used servers.

————— The Integer

Linear

Programming

(ILP)

Exact
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[37] VNFs-PLA 1.minimize

number of

allocated

cores (CPU)

used to run

VNFs

functions.

2.Minimize

the

maximum

network link

utilization.

1.NFVI cluster

capacity

2.VNF flow

and forwarding

latency 3.VNF

node sharing

constraints.

Mixed integer

linear

programming

formulation

(MILP)

Heuristic

[53] VNFs-SCH ————- ————– 1. An integer

linear

programming

(ILP) for small

networks.

2. A heuristic

algorithm

wireless

network

embedding

(WiNE) for the

larger

placements in

NFV

environment.

Exact and

Heuristic
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[81] VNFs-PLA-

SFC

1. Minimize

bandwidth

consumed

Several

routing

constraints

1. an integer

linear program

(ILP)

2. column

generation-

based

ILP

3. scheme

called

two-phase

column-

generation-

based model

(2PhMod)

Exact and

Heuristic

[85] VNFs-SCH 1.

Minimizing

the load

capacity

2.Minimizing

the intra

-data centre

traffic

———— modified

Multi-objective

Genetic

Algorithm

(MOGA)

Heuristic
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[87] VNFs-SCH 1. Minimize

Processing

delay

1.

transmission

delay

2. Link and

VM

bandwidth

1.genetic

algorithm-

without

bandwidth

allocation

(GA-NBA)

2. genetic

algorithm

bandwidth

allocation

(GA-BA)

3. genetic

algorithm

bitrate

variation

(GA-BRV)

Heuristic

[89] VNFs-SCH 1. Minimize

the total

service

performance

2. Minimize

network cost

1. Resource

consumption

of VNFs

2. Traffic

processing

capacity

1. one-hope

algorithm

2.multi-path

greedy

Exact and

Heuristic
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[82] VNFs-SCH

&

VNFs-PLA

1.Minimizing

flow time

2.Maximizing

Revenue

3.Minimiz-

ing

cost

————– 1.Greedy Fast

Processing

2.Greedy Best

Availability

3.Greedy Least

Loaded

4.Tabu Search

Exact and

Heuristic

[86] VNFs-SCH 1.Maximize

the network

resource

utilization of

each

computing

node.

2. Minimize

the average

response

latency

———- 1. priority-

driven

weighted

algorithm

BFDSU

2. Reverse

Complete

Karmarkar-

Karp

(RCKK)

Heuristic
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[84] VNFs-SCH 1. Maximize

the total cost

profit for

NFV

providers by

maximizing

the total

number of

serving users

flows in the

cloud.

Physical

resources

constraints

1. MLIP

2. approxima-

tion

algorithm

based on the

Markov ap-

proximation

technique

Exact

[88] VNFs-SCH 1.

Maximizing

the energy

cost 2.

Maximizing

acceptable

flow rate.

1. SC Flow

Conservation

Constraints

2. Capacity

Constraints

3. SC Order

Constraints

4.Decision

Variable

Constraints

1. Flow

compensatory

rounding-

based

placement

(FCRP)

Heuristic
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3
MULTI OBJECTIVE GENETIC ALGORITHMS

3.1 Introduction

Optimization is a process to find the best (the most effective) solution for a set of

specific objectives (parameters) without violating some specific constraints. Most previous

attempts to tackle this problem divided the decision-making process into six major phases

or steps.

• Identify the problem.

• Define the problem.

• Formulate a mathematical model for the problem.

• Obtain a solution for the proposed model.

• Test the proposed model, evaluate the solution, and analysis.

• Implement the solution.
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The general optimization problems can be put in categories as follows: firstly, the

number of objective functions in which the problem can be a function of a single variable

or multiple objectives (called multi-objective optimization), secondly, the optimization

objective type (minimization or maximization), thirdly, whether the optimization problem

has particular constraints to be considered or not, and finally whether the variable is an

integer (discrete), continuous or mixed. For the multi-objective optimization problem,

the primary rule is to provide the decision-maker to identify a suitable trade-off between

the objectives.

3.2 Genetic algorithms (GAs)

GAs simulates the survival of the fittest with individuals over a successive generations

for solving a problem. Each generation consists of a population which has character

strings similar to the chromosomes in DNA. Each individual is described as a point in a

search space and a potential solution. The individuals in each population are created to

pass through the procedure of evolution.

GAs rely on the similarity with the genetic structure and behavior of chromosomes

within a population of individuals using the basic idea that individuals in a population

compete for resources and mates. Those individuals who win the most in each competi-

tion will create more offspring than those individuals with poor achievements. Genes

from good individuals are distributed across the population; the two parents may create

an offspring that is better than either parent. Thus, every consecutive generation will

become more suitable for the environment. GAs update the population of individuals

regularly, at each iteration, individuals are calculated using the values of the fitness

function. A new generation of the population is formulated by choosing the fitter individ-

uals from the current generation. Some of these individuals are forwarded to the next

generation without any modification; while others have to apply the genetic operators
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such as crossover and mutation to generate a new offspring.

There are six processes to apply the genetic algorithm: generate the initial population,

evaluate the fitness value of each individual in the population, rank the individuals

based on their fitness, select the best individuals to be submitted to the next generation

according to their fitness value, use a genetic operations, such as crossover and mutation

to generate a new population and finally, repeat the process from step 2 until the problem

's objectives are satisfied. GAs are a stochastic search process for solving both constraints

and non-constraints optimization problems that utilize ideas from natural evolution.

A genetic algorithm can present more significant profits than any other typical search

optimization technique in searching for the n-dimensional surface, multi-modal state-

space, or large state-space.

3.2.1 Multi-objective Optimization

The main feature of evolutionary methods is to use the suitable solution of a population

developed in each generation to fit the multi-objective optimization problems. In every

generation, a set of the non-dominated solutions are created, one of the main goals for

Multi-objective Optimization Problem (MOP) solvers is to find a set of non-dominated

solutions with the minimum distance to Pareto front. There are several advantages of

evolutionary algorithms as proposed in [90] such as easy implementation, less vulnerabil-

ity to shape and continuity of Pareto-front, robustness and the capability to be executed

in parallel.

There are three main approaches that can be applied to solve an optimization problem

by using an evolutionary technique: pareto dominance-based algorithms, indicator-

based algorithms, and decomposition-based algorithms. Firstly, pareto dominance-based

algorithms [8, 91] have an excellent performance when applied to solve multi-objective

optimization problems (MOPs). However, the performance of the pareto dominance is
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determinate when it is applied to many-objective problems (more than four objectives),

as reported in [92, 93]. A clear example for pareto dominance method is Non-dominated

Sorting Genetic Algorithm II (NSGA-II).

Secondly, indicator-based approaches [94, 95] employ indicator functions to direct the

search; these functions determine the quality of the approximating set. The hypervolume

indicator is frequently applied. For instance, the authors in [96] showed that the indicator-

based techniques scale comparatively well; however when the optimization problem has

up to seven objectives, this occurs only if the indicator can be evaluated.

Finally, decomposition approaches can solve both a single objective optimization

problem and multiple singles. The two frequently used weight-based decomposition

techniques are the weighted Tchebycheff approach [42] and the weighted sum approach

[97] other scalar techniques like Weighted Lp , augmented Tchebycheff, and modified

Tchebycheff [97–99] which can be applied as a decomposition technique. In the decom-

posing approach, the selection pressure is turned into weight vector diversity; the main

requirement for this stage is to create sufficient weight vectors for the fitness functions.

A number of sub-problems is needed to approximate the Pareto front which also grows

with the number of objectives exponentially. As an example [7] and [100] adress a general

class of continuous multi-objective optimization test instances. These test instances can

be used to study the capability of MOEAs and to provide a new version of MOEA/D

derived from differential evolution (DE) MOEA/D-DE.

In the following, we will explain one example from each approach.

3.2.1.1 NSGA II

Deb et al. [8] proposed the NSGA-II algorithm which is the most famous algorithm using

EMO procedures. It is a genetic algorithm which aims to find several Pareto-optimal

solutions in a multi-objective optimization problem.

At each generation, there is an offspring (Qt), which is generated by the parent (PT)
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population, then the algorithm combines these two populations together and to form a

new population (Rt) with size 2N and calculates the fitness evaluation method which

depends on Pareto dominance value. The new population will be filled with points of

different non-domination fronts. The population with the best filling starts rank (Rank

1) of the non-domination front are temporarily removed from the present population;

then the algorithm starts to fill the next rank (Rank 2) of all non-dominated individuals

in the remaining population, and so on. Since the total size of the population, Rt is

2N, then not all fronts can be fit in the available N slots of the new population, so the

algorithm fills it with the best population ranks until the size of the next generation is

N. In the case of some individuals having the same rank, the algorithm will apply the

second principle method called crowding distance provided in detail in [52]. Briefly, if

individuals have the same rank, individuals in less crowded areas of the objective space

are better than individuals in more crowded areas of the same objective space. Then,

the algorithm applies the genetic operator’s selection, crossover, and mutation to fill an

archive of individuals.

3.2.1.2 Hyper Volume

The Hyper-volume indicator has been introduced in [96]; it is a measuring method

used in the multi-objective optimization problem to evaluate the performance of search

algorithms. The indicator-based techniques scale comparatively well when the number

of objectives is more than one.

3.2.1.3 MOEA/D

We use a decomposition approach to solve our proposer problems to solve single and multi-

objective optimization problems. It decomposes the problem and solves them as multiple

single objective problems. Authors in [7], developed a multi-objective evolutionary al-

gorithm based on decomposition (MOEA/D) technique; MOEA/D uses the Tchebycheff
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decomposition approach [97] to convert the problem from approximating the Pareto front

(PF) into a different number of scalar optimization problems. Each sub-problem uses the

information which comes from the neighboring sub-problems to solve the problem by

developing a population of solutions. At each generation, the population is composed of

the best solutions of each sub-problem. The best solution can be calculated by finding the

shortest distances between the neighborhood and their aggregation coefficient vectors.

At each generation t, the MOEA/D maintains the following variables:

• A population {X1, ..., X N} has a size N, where {X i is the current solution for the i th

sub-problem.

• Calculate the fitness value for each population {FV 1, ...,FV N} which is correspond-

ing to a specific sub-problem, for instance, {FV i = F(x1)} for each i = 1,2, ..., N.

• The reference point Y ∗=(y∗1 , y∗2 , ..., y∗M), where y∗i is the best value for objective

function f i.

• An external population (EP), which is used to store up non-dominated solutions

found through the search.

MOEA/D [7] uses a predefined set of weight vectors to control several sets of trade-off

solutions. MOEA/D has been successfully applied to solve unconstrained multi-objective

evolutionary algorithm MOEA. However, MOEA/D requires two parameters: penalty

parameter and a niching parameter determining the extent of the neighborhood that

must be set right. Authors of MOEA/D have not recommended any effective procedure for

handling constraints using MOEA/D; thereafter, M. A. Jan and Q. Zhang [101] regulate

the replacement, as well as update the scheme of MOEA/D-DE [100] for transacting with

constraints in multi-objective optimization problems. The modified scheme CMOEA/D-

DE-ATP presented a penalty function to reject infeasible solutions.

54



3.3. GENETIC OPERATORS

The penalty function sets a threshold to control the amount of penalty which pro-

vides the infeasible solutions relying on an adaptive threshold value which is provided

previously in the updated scheme of MOEA/D-DE [100].

3.2.1.4 Constraint Handling

Several constraints handling techniques have been proposed previously in the literature,

Michalewicz and Schoenauer [102] divided the methods for handling constraints using

Evolutionary Algorithms into four categories: separate feasible and infeasible solutions,

preserving feasibility of solutions [103], penalty functions and hybrid methods. Based

on the number of feasible solutions for the current solutions, the search process of a

constrained problem can be categorized into three phases [82] taking into consideration

the combined parent-offspring population:

1. No feasible solution

2. At least one feasible solution

3. Combined offspring-parent population has more feasible solutions than the size of

the next-generation parent population.

The main difference between constraints-handling techniques is how to deal with the

infeasible individuals throughout the three search phases.

3.3 Genetic Operators

3.3.1 Initial Population

The initial population is the first task for all Evolutionary Algorithms. The search

techniques initiate different solutions (initial population) and try to improve them in the

direction of some optimal objective values (solutions). The searching process stops when
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the predefined criteria are satisfied. If the prior information for the solution is absent, the

algorithm usually initiates the population randomly. If the problem is a single objective

optimization problem, the best solution will be the solution with the highest fitness value

in the population. On the other hand, if the problem is a multi-objective optimization

problem, the algorithm will check for the optimal solution for all fitness values in the

multi-objective domain.

3.3.2 Selection Operator

The selection operator is the most important point in terms of MOPs, it will mainly

select individuals with higher fitness values from the order list of survival. The upper

part of the list will be used when good chromosomes are needed, while the lower part

represents bad chromosomes [104]. This is one of the reasons for the selection operation

to be sometimes identified as the reproduction operator.

Many methods for selection operator in GA have evolved such as Roulette wheel

selection, in which the parents are chosen based on their fitness values. Alternatively,

Rank Selection, firstly, ranks the population, then ranks each chromosome which re-

ceives fitness from this ranking. The best will have fitness equal to N ( N denotes the

number of chromosomes in the population). The worst fitness will have fitness equal

to 1, second the worst fitness equal to 2 and so on. The main idea is to arrange the

chromosomes in decreasing order according to their fitness values. Finally, the simplest

tournament selection is to choose two random individuals from the population and to

stage a tournament to decide which one is selected.

3.3.3 Crossover

After two parents have been chosen through the selection method, crossover occurs.

Crossover is the genetic operator that combines the two parents (chromosomes) to
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formulate a new offspring chromosome; this new chromosome may be better than both

parents (obtains the best characteristics from both parents).

Several approaches of the crossover operator have been introduced previously in

[105]. Firstly, the single-point crossover is the most frequent crossover technique used

between different crossover techniques. A single point crossover is randomly point

chosen [106, 107]. Second, the two-point crossover is two points are chosen on the parent

organism strings. This type of crossover consists of three types as follows: the binary

string which is derived from one parent, the portion between the first to the second

point is derived from the second parent and the remaining portion is derived from the

first parent. Third, the uniform crossover is a crossover operator that allows the bits

of chromosomes to be mixed randomly from the first and second parent. Finally, the

Arithmetic Crossover (AC), generates children that have a weighted arithmetic mean

which comes from the two parents. The children are feasible and satisfy linear constraints

and bounds.

3.3.4 Mutation

The main goal of the mutation operator is to maintain the diversity of the population

and increase the opportunity of not losing any potential solution in the global optimal

[108], while the crossover operator is a method of quick exploration in the search space.

The mutation is a more common name for the asexual genetic operator; it is executed as

a bit flip to maintain the diversity in the population and inhibit premature convergence.

3.4 Conclusion

Genetic algorithms (GAs) rely on similarity with the genetic structure and behavior of

chromosomes within a population of individuals using the following basic idea: individ-

uals in a population compete for resources and mates. Those individuals who win the
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most in each competition will create more offspring than those individuals with poor

achievements.

Here, to solve the scheduling and mapping problem, we apply two different ap-

proaches of GA, namely Pareto dominance and decomposition approaches.

Pareto dominance approach promotes the non-dominated solutions and selects based

on the preference of the decision maker, while the decomposition approach decomposes a

multi-objective optimization (MOP) into a set of sub-problems and solves them individu-

ally. The main reason for choosing these approaches is to provide good scalability and

computational efficiency under the consideration of a different number of objectives and

constraints.

Hence, we selected the well-known algorithm for each approach, i.e., CMOEA/D-

DE-ATP and NSGA II to solve our proposed problem as single and multi-objective

and achieve a high performance. The algorithm contains all the standard techniques

of the genetic algorithm: generating an initial population, representation, selection,

crossover, and mutation. Authors in [109] used a GA and proved that the GA heuristic

method has a good scheduling performance in running time compared with Mixed Integer

Linear Program (MILP), and simple Greedy Best Availability Scheduling Method (GBA)

proposed in [82].
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4
RESOURCE ALLOCATION AND OPTIMIZATION

SCHEDULING FOR VIRTUAL NETWORK FUNCTION

(VNF) REQUESTS

4.1 Introduction

SDN and NFV have recently integrated together to share the same feature of promoting

creativity, competitiveness, openness and innovation [110], [111]. This chapter focuses

on one of the most important problems related to the NFV problem which is the NFV-RA

problem as we explained previously in chapter 2. Nowadays, by using the virtualization

term, the physical servers can be virtualized as one or more VMs or virtual nodes,

these VMs are connected together using virtual links. Given a network structure with

a different number of nodes (for instance, 5 nodes as shown in Fig. 4.1), with limited

network resources for every VM (computation capacity, CPU type, performance, etc.) and

different number of virtual links to connect between these VMs with limited capacity for
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every link, an unscheduled bottleneck can happen in some of these links and a processing

delay can be also happen in every VM.

In this chapter, we assume that the cloud provider supports several cloud tenants

and each of these tenants use one or more resources in the cloud. The main goal for the

cloud provider is to develop a new strategy, which can serve as many service requests

as possible with minimal cost while maximizing the total unused capacity of each VM.

Our proposed model addresses the scenarios considered in [82, 109]. The VNFs of each

incoming service request should be processed in the order given in the service request.

Communication between different VMs handling different VNFs of the same service

request should be considered in the model too. The main challenge is to assign the

VNFs of the incoming service requests to the VMs in a manner that can maximize the

total number of incoming service requests that can be assigned to VMs, optimize link

utilization and minimize the processing time while taking into consideration forwarding,

assignment and traffic, and link capacity constraints.

As a result of the complexity of the problem, we develop two different algorithms

based on genetic algorithm to solve the problem efficiently, namely, SM-MOEA/D and

SM-NSGA-II. The effectiveness of both algorithms is shown through the numerical

simulation, the simulation finds the near-to-the optimal solution for different applied

scenarios within a reasonable computational time.

This chapter is organized as follows: section 4.2, defines a formal mathematical

model and an example of the problem. Section 4.3, explains in detail SM-MOEA/D and

SM-NSGA-II algorithms which applied to solve the proposed problem. Section 4.4 shows

our experimental results on three different scenarios which are presented and discussed

in details. Finally, Section 4.5 concludes the proposed problem.
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Table 4.1: MATHEMATICAL NOTATIONS

Variable Description
Network Inputs

V A set of VMs nodes installed in the
cloud.

E A set of VLs between VMs.
S A set of incoming service requests.
F A set of unique VNFs supported in

the cloud.
Service Inputs

V Fk The VNFs supported by the k-th VM.
di, j The bandwidth demand of i-th

service request after processing its
j-th VNF.

Rk,l
i, j (t) The traffic flow of the j-th VNF of the

i-th service request passing through
the virtual link (k, l) at t-th time

interval .
f i j Define the j-th VNF of the service

request si.
wi The weight of each service request si

which reflects its priority.
lck,l A transmission capacity of the virtual

link (k, l).
Ak

i, j(t) xk
i, j(t) · (1− xk

i, j(t+1)).
Binary Variables

xk
i, j(t) whether the j-th VNF of the service

request si has been assigned to the
k-th VM at t-th time interval or not.

yk,l
i, j (t) If the current bandwidth demand

(di j) is higher than the available
transmission capacity of the link (i.e.,

di, j > lck,l −∑|S|
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t)) or
not.

σ(Rk,l
i, j (t)) If the traffic flow Rk,l

i, j (t)> 0 or not.

61



CHAPTER 4. RESOURCE ALLOCATION AND OPTIMIZATION SCHEDULING FOR
VIRTUAL NETWORK FUNCTION (VNF) REQUESTS

4.2 VNF Mapping and Scheduling Problem

Formulation

In this section, we formulate the model for the network and the scenario addressed in

this chapter.

We consider the network structure presented in Fig. 4.1, and model it as an undirected

graph G = (V ,E ) where V = {k|k = 1, ..., |V |} is the set of VM nodes and E = {(k, l)|k, l =
1, ..., |V |,k 6= l} is the set of virtual links (VLs) between VMs. F = { f u

1 , f u
2 , ..., f u

|F|} is the set

of unique VNFs supported in the cloud. The VNFs supported by the k-th VM is denoted

by V Fk for k = 1, ..., |V |. For instance, if V M3 runs { f u
2 , f u

5 } as shown in Fig. 4.1, that

means only VNFs f u
2 and f u

5 of the incoming request can be executed in V M3. Let lck,l

for k 6= l = 1, ..., |V | be the transmission capacity of the virtual link (k, l). In this chapter,

we assume that there is a virtual link between every two VMs. We define the incoming

sequence of service requests as S = [s1, ..., s|S |] and each request si ∈S for i = 1, ..., |S |
has a sequence with different order of VNFs. Let f i, j for i = 1, ..., |S | and j = 1, ..., |si| be

the j-th VNF of the i-th incoming service request (si). We assume that every request si

for i = 1,2, ..., |S | has different number of VNFs. The VNF f i j of the incoming request

should be processed in the given order through the selected VMs.

We define di, j for i = 1,2, .., |S |, j = 1,2, ..., |si|−1 as the bandwidth demand of the

i-th service request si after processing its j-th VNF, and Rk,l
i, j (t) for i = 1,2, .., |S |, j =

1,2, ..., |si|−1 and (k, l) ∈ E as the traffic flow of the i-th service request after processing

its j-th VNF, which is passing through the virtual link (k, l) at t-th time interval.

In next three subsections, we address three main objectives considered for mapping

and scheduling the service requests.
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4.2.1 Maximizing The Acceptance Rate for The Total Number of

Incoming Service Requests

In this subsection, we explain in detail the formulation for the first objective which is

focused on maximizing the acceptable number of incoming requests, while ensuring

particular network constraints are met. This objective function can be defined as below,

(4.1) max
x

Z1(x)=
|S|∑
i=1

|V |∑
k=1

wi · xk
i,1(1)

where wi is the weight of each service request si, which reflects its priority. This weight

is normalized to 1. xk
i j(t) is a binary variable denoting whether if the j-th VNF of the

service request si has been assigned to the k-th VM at t-th time interval. In other words,

(4.2) xk
i, j(t)=



1 If the j-th VNF of the service

request si has been assigned to

the k-th VM at t-th time interval

0 otherwise

The cost function Z1(x) simply counts the number of service request where their first

VNF ( j = 1) has been assigned to any of the VMs at the first time step (t = 1). Here it has

been assumed that no new service requests will be accepted after time t = 0, until all the

current service requests are processed.

4.2.2 Optimizing Link Utilization

The available transmission capacity of link (k, l) is the difference between its transmis-

sion capacity (lck,l) and its current traffic
∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t). When the current band-

width demand (di j) is higher than the available transmission capacity of the link, i.e.,

di, j > lck,l −∑|S|
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t), the link (k, l) becomes an unscheduled bottleneck. The

aim of the objective defined in this subsection is to minimize the number of unscheduled

63



CHAPTER 4. RESOURCE ALLOCATION AND OPTIMIZATION SCHEDULING FOR
VIRTUAL NETWORK FUNCTION (VNF) REQUESTS

bottlenecks. In doing so, we defined the following binary variable,

(4.3) yk,l
i, j (t)=


1 if di, j > lck,l −∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t),

0 Otherwise.

where k represent the current VM where the j-th VNF is finished and l represent the

next VM where the j+1-th VNF will be processed. Formally, this objective function is

defined as below,

(4.4)

min
x

Z2(x)=
T∑

t=1

|S|∑
i=1

|si |−1∑
j=1

|V |∑
k=1

|V |∑
l=1

xk
i, j(t) · yk,l

i, j (t) · xl
i, j+1(t+1)

+ xl
i, j+1(t) ·σ(Rk,l

i, j (t)) · xl
i, j+1(t+1) · yk,l

i, j (t),

where

(4.5) σ(Rk,l
i, j (t))=


1 if Rk,l

i, j (t)> 0,

0 Otherwise,

and T is the maximum number of time steps considered for processing the incoming

service requests. In the cost function defined in (4.4), the first term (xk
i, j(t)·y

k,l
i, j (t)·xl

i, j+1(t+
1)) corresponds to the case where the processing of the j-th VNF of si has been finished

in the k-th VM and next VNF of si (i.e., j+1-th VNF) has to be processed in the l-th

VM. Thus, at time interval t, a transmission will start from k-th VM to l-th VM. If this

transmission is not finished in the t-th time interval, the second term in the cost function

(4.4) (i.e., xl
i, j(t) ·σ(Rk,l

i, j (t)) · xl
i, j(t+1) · yk,l

i, j (t)) will be triggered if the link (k, l) becomes an

unscheduled bottleneck. The function σ(Rk,l
i, j (t)) is for verifying if there is any traffic in

the link (k, l) at time interval t, due to the eventual processing of j-th VNF of si in the

l-th VM.

In Table 4.2, an example of mapping and scheduling has been provided. Also, in Fig.

4.5, an example is provided which shows that during the transmission between two VMs,

64



4.2. VNF MAPPING AND SCHEDULING PROBLEM FORMULATION

in the first time-step, the first term of the cost function Z2(x) determines if the link has

become an unscheduled bottleneck, while in the following time-steps, the second term of

the cost function Z2(x) determines if the link has become an unscheduled bottleneck.

4.2.3 Minimizing Processing Time

The processing time of a service request is the number of time steps from the time

that the service request was accepted until its processing is finished. From each service

request’s point of view, it is important to minimize its processing time. This can be

reflected in the following cost function,

(4.6) min
x

Z3(x)=
|S|∑
i=1

|si |∑
j=1

|V |∑
k=1

T∑
t=1

xk
i, j(t).

Here T is the maximum number of time steps considered for processing the incoming

service requests. When processing of service request si is finished, all future values of

xk
i, j(t) for j = 1, ..., |si|, k = 1, ..., |V | is zero. Therefore, for the accepted service requests,

their total processing time is calculated in the cost function Z3.

Comparing the cost functions Z1(x) and Z3(x), it is obvious that Z1(x) prolongs the

processing time (to maximize the number of accepted service requests), while Z3(x)

minimizes the processing time.

4.2.4 Constraints

Here, we describe the constraints that have been considered and imposed to the opti-

mization problem.

1. Forwarding Constraint:

The first constraint ensures that the traffic for the ( j+1)-th VNF of service request

si start forwarding only if the previous j-th VNF of the same service request si

complete the processing in the current VM. In other words, at time step t+1, the
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( j+1)-th VNF of service request si can be assigned to the l-th VM, if the j-th VNF

of service request si is finished in the k-th VM. This means that xl
i, j+1(t+1) can be

equal to one if xk
i, j(t)·(1−xk

i, j(t+1))= 1 or xl
i, j+1(t)= 1. The term xk

i, j(t)·(1−xk
i, j(t+1))

is equal to one only in the time step where the processing of the j-th VNF of service

request si is finished in the k-th VM. In other words, xl
i, j+1(t+1) is equal to zero

for all values of l, if xk
i, j(t) · (1− xk

i, j(t+1))= 0 and xl
i, j+1(t)= 0, i.e.,

(4.7)
xl

i, j+1(t+1)= 0 if

xk
i, j(t) · (1− xk

i, j(t+1))= 0 or xl
i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si|−1, k, l = 1, ..., |V |.

2. Assignment & Traffic Constraint: The link (k, l) can not have any traffic due

to the ( j+1)-th VNF of service request si if the ( j+1)-th VNF of si has not been

assigned to the l-th VM. This constraint dictates the relation between Rk,l
i, j (t) and

xl
i, j+1(t), where it can be written as

(4.8) Rk,l
i, j (t)= 0 if xl

i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si|−1 and (k, l) ∈ E .

3. Link Capacity Constraint: The total traffic flow passing through every link (k, l)

(i.e.,
∑|S |

i=1
∑|si |

j=1 Rk,l
i, j (t)) should not exceed its capacity (lck,l). This can be shown as

the following constraint.

(4.9)
|S |∑
i=1

|si |∑
j=1

Rk,l
i, j (t)≤ lck,l , ∀(k, l) ∈ E .

4.2.5 Example of Mapping and Scheduling for the total

incoming number of service requests

Consider the network shown in Fig. 4.1 with 4 VMs, and incoming service requests

s1, ..., s5 at time step t = 0. The VNFs of service requests are s1 = { f u
5 , f u

2 , f u
1 }, s2 =
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{ f u
3 , f u

2 , f u
4 , f u

5 , f u
1 , f u

2 , f u
5 }, s3 = { f u

2 , f u
4 , f u

1 , f u
5 }, s4 = { f u

1 , f u
2 , f u

4 , f u
3 , f u

5 }

and s5 = { f u
4 , f u

3 , f u
5 , f u

2 , f u
1 , f u

3 }. As an example, one possible mapping and scheduling for

service request s1 is depicted in Fig. 4.2, where the first and second VNFs of s1 (i.e.,

f5 and f2) are processed in V M3, and its last VNF is processed in V M1. Fig. 4.3 and

Fig. 4.4 show the processing schedule and assignment schedule of one of the possible

mapping and scheduling for the incoming VNFs of the service requests si for i = 1, ...,5.

In this example, it is assumed that each VM can process one VNF at a time. Comparing

Fig. 4.3 and Fig. 4.4, it is obvious that a VNF of a service request can be assigned to a

VM, while it is not being processed. This can be due to two reasons, namely the ongoing

transmission or the processing queue. Hence, at any time step, more than one service

request can be assigned to a VM. While, at any time step, each service request can be

assigned to only one VM.

To further explain the example, in the following we explain how service request s4

is processed. Initially s4 is assigned to V M1, thus x1
4,1(1) = 1. In the second time step,

the second VNF of s4 is assigned to V M3. But either due to the transmission or due to

s1 being processed in V M3, s4 has to wait. Same continues in the third time step for s4.

In the fourth time step, processing of second VNF of s1 is finished in V M3, but s4 can

not be processed in V M3 due to internal reasons. In the fifth time step, V M3 starts to

process the second VNF of s4, while s1 has to wait in the queue. The sixth time step

continues similar to the previous time step. In the seventh and eighth time steps, the

third and fourth VNFs of s4 are assigned and processed in V M4, respectively. In the

ninth, tenth and eleventh time steps, the fifth VNF of s4 is assigned and processed in

V M3. The processing of service request s4 is completed after 11 time steps.

67



CHAPTER 4. RESOURCE ALLOCATION AND OPTIMIZATION SCHEDULING FOR
VIRTUAL NETWORK FUNCTION (VNF) REQUESTS

Figure 4.1: Network structure with VM node capabilities

Figure 4.2: one of the possible mappings and schedules for service request s1
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Figure 4.3: one of the possible mappings including all incoming VNFs of service requests
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Figure 4.4: All possible values of variable x that reflect the assignment schedule for all
incoming service requests
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Table 4.2: Assignment Schedule for Example 4.2.5: The values of variable x which are
equal to one.

t s1 s2 s3 s4 s5

1 x3
1,1(1) x4

2,1(1) x2
3,1(1) x1

4,1(1) x4
5,1(1)

2 x3
1,1(2) x2

2,2(2) x4
3,2(2) x3

4,2(2) x4
5,1(2)

3 x3
1,2(3) x2

2,2(3) x4
3,2(3) x3

4,2(3) x4
5,2(3)

4 x1
1,3(4) x2

2,3(4) x4
3,2(4) x3

4,2(4) x1
5,3(4)

5 x1
1,3(5) x3

2,4(5) x4
3,2(5) x3

4,2(5) x2
5,4(5)

6 x3
2,4(6) x2

3,3(6) x3
4,2(6) x2

5,5(6)

7 x3
2,4(7) x2

3,3(7) x4
4,3(7) x2

5,5(7)

8 x2
2,5(8) x2

3,3(8) x4
4,4(8) x1

5,6(8)

9 x2
2,5(9) x3

3,4(9) x3
4,5(9) x1

5,7(9)

10 x2
2,6(10) x3

4,5(10)

11 x1
2,7(11) x3

4,5(11)

12 x1
2,7(12)

4.3 Algorithm Design

As mentioned previously, we have three main objectives to achieve: maximizing the

acceptance rate for the total number of incoming service requests (4.1), optimizing

link utilization (4.4) and minimizing processing time (4.6). This can be written as the
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Figure 4.5: Example of the cost function of objective 2

following multi-objective optimization problem,

(4.10)

min
x

[−Z1(x), Z2(x), Z3(x)]

st. xl
i, j+1(t+1)= 0 if

Ak
i, j(t)= 0 or xl

i, j+1(t)= 0, for k, l = 1, ..., |V |

Rk,l
i, j (t)= 0 if xl

i, j+1(t)= 0, ∀(k, l) ∈ E∑|S |
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t)≤ lck,l , ∀(k, l) ∈ E .

where Ak
i, j(t)= xk

i, j(t) · (1− xk
i, j(t+1)), i = 1, ..., |S |, j = 1, ..., |si|−1, and the cost functions

Z1(x), Z2(x) and Z3(x) are as defined in (4.1), (4.4) and (4.6), respectively. In this chapter,

we find the algorithms NSGA-II [8] and CMOEA/D-DE-ATP [101] are suitable methods

for solving our proposed problem (6.12). These algorithms have been explained in chapter

2. In the following, we explain our two proposed algorithms namely, SM-MOEA/D and

SM-NSGA-II algorithms, where they utilize NSGA-II [8] and CMOEA/D-DE-ATP [101]

algorithms, respectively, which in turn are based on a genetic algorithm. Both proposed

algorithms follow the framework explained in Alg. 1 and the flow chart presented in Fig.

4.6. Moreover, both proposed algorithms include all the standard procedures of genetic

algorithms that consist of the following steps:
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Output Stopping Criteria

Initialize Population

Start

Perform selection, apply crossover and
mutation to create offspring

Evaluate the fitness values for all
population 

Rank the population

Evaluate the fitness values for the
offspring

Rank the population (Parents and
offspring)

NoYes

Figure 4.6: The flow chart of the proposed algorithms procedures

4.3.1 Input

The input of both algorithms are the network parameters, the list of service requests

(S ), their priorities W = {wi|i = 1, ..., |V |}, and the stopping criteria (for terminating the

algorithm). The network parameters include the set of VM nodes (V ), the set of virtual

links (E ), the set of unique VNFs supported in the cloud (F), the set of VNFs supported by

each VM (denoted by V F) and the transmission capacities of virtual links {lck,l |(k, l) ∈ E }.
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4.3.2 Stopping Criteria

For the SM-MOEA/D algorithm, the stopping criteria are two-fold. First criterion is a

predefined maximum limit on the number of iterations, which is set to 300 iterations

and 100 population size (the total number of repetition is (300∗100)). Second criterion

is defined as the number of iterations where no further enhancement is achieved in

the values of the objective functions. Here this value is set to 100 iterations and 100

population size (the total number of repetition is (100∗100)).

For SM-NSGA-II algorithm, the stopping criteria is an upper limit on the number of

evaluations which in our simulations is set to 25000.

4.3.3 Output

As outputs, both algorithms return the best feasible solution for mapping and scheduling

(i.e., xk
i j(t) for i = 1, ..., |S |, j = 1, ..., |si| and k = 1, ..., |V |) along with the values of their cor-

responding objective functions. By feasible solutions, we refer to mapping and scheduling

(xk
i j(t)) that satisfy the constraints of the problem (6.12).

4.3.4 Initialization

The population initialization is the primary task for all evolutionary algorithms. In the

initialization phase of Alg. 1, an initial uniformly random population is generated. Each

member of the population is a possible mapping and scheduling (defined in terms of

variables xk
i, j), which does not necessarily satisfy the constraints explained in (4.7), (4.8)

and (4.9).

In Alg. 1, the variable X refers to a possible mapping and scheduling.
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4.3.5 Encoding

A chromosome is a set of genes, which can be encoded in different ways. Encoding is dif-

ferent from one from problem to another, depending on the problem definition. Choosing

a suitable chromosome representation will decrease the cost of GA encoding/decoding

during the iterations. Symbolic encoding, floating encoding and binary encoding are

common encoding methods used in genetic algorithms; the proposed algorithms used

a binary encoding. Each candidate solution combination is encoded into a chromosome

with a length that is equal to VNF numbers. Every element value of the chromosome is

represented as a sub-string (x, y,z), where x is an element of array X corresponding to

VNFs assignment of service request si, y is an element of array Y of the corresponding

installed VMs and z is an element of array Z corresponding to the time step t.

4.3.6 Selection

Choosing a good selection operator of the initial population will affect the quality of the

solution significantly. The selection operator selects chromosomes with the highest fitness

(objectives) values. The proposed algorithms use a binary tournament as a selection

operator. Tournament selection is the operation of running different "tournaments"

among a few individuals chosen randomly from the population. In each iteration, the

proposed algorithms select two parents's chromosomes from the closest solutions of the

sub-problem (individuals which have good fitness (objectives) values). In other words,

the selection operator will choose the best two available positions in VMs to process

a j-th VNF of a service request si at time step t as parents. After that, the selected

parents forward chromosomes to the crossover and mutation operators to generate a new

individual.
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4.3.7 Crossover

During the crossover operation, the parent’s output from the selection procedure is

recombined to a new offspring chromosome. If the new combination chromosome is

better than its parent solution, the proposed algorithm will select it, if not the algorithm

will keep the parents's chromosome. There are two different approaches applied in

the proposed algorithms for the crossover operator; SM-MOEA/D algorithm uses a DE

operator presented in [100], with a pre-described probability rate and SM-NSGA-II

algorithm uses simulated binary crossover (SBX) proposed in [8].

4.3.8 Mutation

The mutation operator is applied for different sets of solutions to obtain a new solution

by combining some genes together randomly. The mutation is performed as a bit flip

to maintain diversity in the population and inhibit premature convergence. In SM-

MOEA/D algorithm, the mutation rate is pm= 1/(parameters dimension) while SM-

NSGA-II algorithm has a mutation rate pm= 1/(no. of variables), which means each bit

has a probability of Pm to be flipped. The crossover and mutation operators change VNFs

of the service request positions to process them through different VMs, then mates all

possibilities formed to generate an excellent new solution depending on the objectives

values (4.1, 4.4, 4.6). Finally, the population with the best performance will be selected

as a final result. The final result must satisfy the problem constraints (4.7), (4.8) and

(4.9). If not, the algorithm removes the solution and select another solution, which can

achieve the problem constraints.

4.3.9 Complexity Analysis

The complexity of calculating each one of the constraints (4.7, 4.8, 4.9) is O
(
Q|V |2),

where Q =∑|S |
i=1 si. For given mapping and scheduling (X ), the complexity of calculating
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cost functions Z1, Z2 and Z3 are O (|S ||V |), O
(
Q|V |2) and O (Q|V |T), respectively. The

detailed complexity of tournament selection, crossover and mutation is very dependent

on the setup and parameters of GA, which is out of the scope of this chapter. For further

details see [112]. It is obvious that the complexity of calculating the cost functions and

the constraints grows linearly with the number of incoming service requests (|S |). The

overall complexity of the algorithm depends on the parameters of GA, in particular, the

population size and the maximum number of iterations, which can be modified based on

the requirements of each specific problem.

4.4 computational results

In this section, we present the simulation results for our proposed scheduling and

mapping algorithms, namely SM-MOEA/D and SM-NSGA-II.

4.4.1 Simulation Set-up

1. Simulated Network: we have implemented all the proposed algorithms in MATLAB

and Java and run the experiments on a PC with Intel Xeon Gold 6150 2.7GHz,

128 GB of RAM and Linux operating system. In our simulations, the network

parameters and the simulation set up have been chosen close to those of [82, 109].

We consider four different network instances small, medium, large and extra large

where the network instant contains 100,200,300 and 400 service requests along

with 10,20,30 and 40 VMs, respectively. Moreover, the total capacity for every

virtual link is set to 2 Mbps. The bandwidth demand (di, j) of every service request

si after processing its j-th VNF is distributed uniformly between 30 Kbps and 2030

Kbps. We assume that it takes 1 time steps to process every VNF, independent of

the VM node. Furthermore, it is assumed that every VM supports at a maximum 3
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Algorithm 1 SM-MOEA/D and SM-NSGA-II
1: Input:

• The stopping criterion

• Network parameters: S ,W ,V ,E ,F,V F, {lck,l |(k, l) ∈ E }

2: Output:

• Best feasible mapping and scheduling solution {X1, ..., X N } (xk
i j(t)) satisfying the

constraints of (6.12)

• The values of objective functions corresponding to the best feasible mapping
and scheduling solution

3: Define:

• X = {xk
i j(t)|i = 1, ..., |S |, j = 1, ..., |si|,k ∈ V , t = 1, ...,T}

4: Initialize:

• Generate an initial uniformly random population X1, . . . , X N

5: for X i = X i, ..., X N do
6: if X i passes all constraints (4.7), (4.8), (4.9) then

• Evaluate the cost functions Z1(x), Z2(x), Z3(x) according to (4.1), (4.4), (4.6)

• Tournament selection

• Crossover

• Mutation

• Choosing Best Feasible Solution

7: end if
8: end for
9: Selecting the best answer from the population

10: Termination criterion:

If the stopping criterion (as mentioned in Subsection 4.3.2) is satisfied, then
stop and return the best mapping and scheduling so far as the output.
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unique VNFs.

2. VNFs: we select firewall, IDS, load Balancer, Gatway and NAT as functions in this

experiment.

3. Chains: sources and targets are distributed uniformly in the simulated network.

Poisson distribution are used for the calculation of the arrival rate from the cloud

network to the SDN controller. The controller will forward the chains to be pro-

cessed through the servers using the distribution provided by the proposed algo-

rithms.

4.4.2 Evaluation Scenarios

To evaluate the performance of our algorithms, we apply the proposed algorithms to three

different scenarios. All above mentioned network instances (i.e., small, medium, large

and extra-large) are simulated for every one of the scenarios. Scenario 1 considers each

one of the proposed objective functions individually. Scenario 2 considers all combinations

where two out of the three proposed objective functions are selected. Scenario 3 considers

all three objective functions simultaneously.

4.4.2.1 Scenario 1

The results for this scenario are reported in Fig. 4.7, Fig. 4.8 and Fig. 4.9, where the

optimal value of the three objective functions (i.e., Z1, Z2 and Z3) are reported for all

four network instances using both SM-MOEA/D and SM-NSGA-II algorithms.

For example, the optimal value for Z1 (maximum number of accepted service requests)

achieved when we ran the program in a small network environment is 49 achieved by

SM-NSGA-II algorithm, while in SM-MOEAD the value is equal to 51 respectively as

reported in Fig. 4.7.
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Moving to the optimal value for Z2 (minimize the number of the bottleneck) and

Z3 (minimize the processing time) achieved when we ran the proposed SM-NSGA-II

algorithm is , while using SM-MOEAD algorithm the value is equal to 51 as reported in

Fig. 4.7 and Fig. 4.8 That is because the number of incoming service requests becomes

longer which needs more time to process in the VMs if the number of VMs are fixed

(as proposed in this experiment) or need new more VMs to be launched which leads

to a higher deployment cost. However, increasing the arrival service requests number

lead to increase the probability of bottleneck to be happen in VMs with poor processing

capability. From Fig. 4.7, Fig. 4.8 and Fig. 4.9, it is obvious that for individual objective

functions, the SM-MOEA/D algorithm is outperforming the SM-NSGA-II algorithm,

but as shown in Table 4.3, the computation time of SM-MOEA/D algorithm is higher

than that of the SM-NSGA-II. This is partially due to the use of decomposition in the

SM-MOEA/D algorithm which will keep searching for more combinations of different

VNF placement to serve the arrival service request.

4.4.2.2 Scenario 2

The results for joint optimization of Z1 and Z2 are depicted in Fig. 4.10, and those

corresponding to joint optimization of Z2 and Z3 and joint optimization of Z1 and Z3 are

depicted in Fig. 4.11 and Fig. 4.12, respectively. From these figures, it is obvious that

similar to Scenario 1, the SM-MOEA/D algorithm is outperforming the SM-NSGA-II

algorithm, which comes at the expense of greater computational cost.

Increasing the capacity of the links among VMs decreases the optimal value of Z2.

However, after a certain point, increasing the capacity of the links will not have a

major effect on the objective functions Z1 and Z3. Since, the number of VMs and the

combination of unique VNFs supported in each VM will directly impact on the optimal

values of Z1 and Z3.
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Figure 4.7: The optimal solution achieved by both proposed algorithms for the first
objective value via all network instances

Figure 4.8: The optimal solution achieved by both proposed algorithms for the second
objective value via all network instances 80
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Figure 4.9: The optimal solution achieved by both proposed algorithms for the third
objective value via all network instances

Figure 4.10: The near to optimal solution achieved by both proposed algorithms for the
first and the second objective values simultaneously via all network instances
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Figure 4.11: The near to optimal solution achieved by both proposed algorithms for the
second and the third objective values simultaneously via all network instances

Figure 4.12: The near to optimal solution achieved by both proposed algorithms for the
first and the third objective values simultaneously via all network instances
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Table 4.3: Computation time (CPU) only for First, Second and Third objective values
individually

Alg.
Network
Instance

Z1 (only) Z2 (only) Z3 (only)

SM-
MOEA/D

S 5938 6012 5949

M 14826 14989 14778

L 19755 19897 19702

XL 27823 27857 28021

SM-
NSGA-
II

S 2034 2011 2023

M 5963 5994 6012

L 11098 11163 11055

XL 15362 15452 15385

4.4.2.3 Scenario 3

The formulation and structure of this scenario is the same as Scenario 1 and 2 but the

proposed algorithm is applied to optimize all three objective functions Z1, Z2 and Z3,

simultaneously, as formulated in the optimization problem (6.12).

The simulation results presented in Table 7.1 and Fig. 4.13 indicate that the SM-

NSGA-II algorithm has better performance in terms of computational time while the

SM-MOEA/D algorithm performs better in terms of the optimal results obtained for all

three objective functions.
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Table 4.4: First, Second and Third objective values for tested algorithms and CPU
execution time

Alg.
Network
Instance

Z1 Z2 Z3 CPU
time (s)

SM-
MOEA/D

S 51 15 395 6157

M 104 61 798 15102

L 156 134 1198 20123

XL 208 283 1600 28278

SM-
NSGA-
II

S 47 19 398 2559

M 97 77 800 6238

L 140 198 1199 11478

XL 186 506 1600 16235

4.5 Conclusion

This chapter presents two algorithms, namely SM-MOEA/D and SM-NSGA-II algorithms

for finding near to optimal solutions for mapping and scheduling of the incoming service

requests in a cloud. Given a set of VM nodes in the cloud, each VM has particular

properties, including the number of supported unique VNFs. The proposed algorithms

have the following advantages.

1. They automatically determine the maximum number of the incoming service

requests that can be accepted along with the optimal mapping and scheduling for

processing the accepted service requests.

2. They can consider both single objective and multiple objective functions for opti-

84



4.5. CONCLUSION

Figure 4.13: The near to optimal solution achieved by both proposed algorithms for the
first, second and the third objective values simultaneously via all network instances

mizing the mapping and scheduling of the incoming service requests.

In this chapter, three different objective functions are considered, which are (i) maximiz-

ing the number of accepted incoming service requests, (ii) optimizing link utilization

and (iii) minimizing the overall processing time of service requests. The model proposed

in this chapter takes into account different constraints, including the finite capacity of

the links between VMs, the subset of unique VNFs supported in each VM as well as

the communication and processing delays. The priority of the incoming service requests

is modelled via non-negative weights. The proposed algorithms have been evaluated

by simulations for three different scenarios and four different network instances. The

simulation results confirm that in general the SM-MOEA/D algorithm outperforms the

SM-NSGA-II algorithm in terms of optimal value of the objective functions, which comes

at the expense of higher computational cost.
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5
MAPPING AND SCHEDULING FOR NON-UNIFORM

ARRIVAL OF VNF REQUESTS

5.1 Introduction

Under the concept of SDN and NFV, SFC is a set of chained instances that are pro-

grammed to play an important role for the VNF on virtualization platforms. This allow

the virtualization resources, i.e., storage, memory, CPU to be allocated dynamically on

each VNF based on VNF traffic request. Moreover, the SFC can be flexibly deployed on

those VNFs according to customer request.

Despite the advantages of this process, there are a number of issues that still need to

be handled in SFC orchestrating in the NFV environment. One such challenge faced by

the NFV concept is to find the optimal mapping and scheduling for the non-uniform sets

of the incoming service requests which is the focus of this study in this chapter. These

scheduling and mapping have an important impact on the execution time, processing

cost, reliability and the performance of the network. The main problem of this model
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happens when a set of service requests arrive at the cloud at different times asking to

be processed on VMs, while some other service requests are still processed on VMs and

didn’t finish it’s processing from the previous time steps as shown in Fig. 5.1. Another

challenge that we study in this model is to consider the processing deadline for the

incoming requests. In other words, the time which is needed to process the incoming

service request has to be less than or equal to the availability time at VMs.

The main difference between the study presented in this study and those of the

literature is on the objective functions considered for addressing the NFV-RA problem

and for the network formulation scenario. We provide two new evaluation algorithms

based on genetic algorithms, namely MOEA/D [7] and NSGA-II [8]. Both algorithms

consider the following objectives: maximizing the number of accepted service requests,

minimizing the number of bottleneck links, and minimizing the overall processing time.

The performance of both algorithms's solution is evaluated with respect to the optimal

solution for all three objectives together.

This chapter is organized as follows. Section 5.2 formulates the proposed problem

mathematically, considering all objectives, constraints and network structures. Sec-

tion 5.3 includes the proposed solutions, namely Request Scheduling multi-objective

evolutionary algorithm based on decomposition (RSAMOAD) and Request Scheduling

Non-dominated Sorting Genetic Algorithm II (RA-NSGA-II). Section 5.4 discusses the

simulation results for every individual objective and all three objectives applied together.

Section 5.5 concludes this chapter.

5.2 Problem Description and Formulation

Consider the network model represented by undirected graph G = (V ,E ), where V =
{vk|k = 1, ..., |V |} is the set of VM nodes and E = {(k, l)|k, l = 1, ..., |V |,k 6= l} is the set of

virtual links (VLs) between VMs. F = { f u
1 , f u

2 , ..., f u
|F|} is the set of unique VNFs supported
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in the network.

Each VM supports a subset of VNFs denoted by V Fk for k = 1, ..., |V |. For instance, if

v2 runs { f u
1 , f u

3 } as shown in Fig. 5.1, that means only VNFs f u
1 and f u

3 of the incoming

service requests can be processed in V M2.

The sequence of network service requests is denoted by S = {s1, ..., s|S |}. Each request

si ∈S for i = 1, ..., |S | contains a sequence of VNFs denoted by f i, j for i = 1, ..., |S | and

j = 1, ..., |si|, where f i, j ∈ F. Service requests can have different number of VNFs and

their VNFs should be processed in the given sequence. Let lck,l for k 6= l = 1, ..., |V | be the

transmission capacity of the virtual link (k, l).

In this chapter, we assume that there is a virtual link between every two VMs. We

define di, j for i = 1,2, .., |S |, j = 1,2, ..., |si|−1 as the bandwidth demand of the i-th service

request si after processing its j-th VNF, and Rk,l
i, j (t) for i = 1,2, .., |S |, j = 1,2, ..., |si|−1

and (k, l) ∈ E as the traffic flow of the i-th service request after processing its j-th

VNF, which is passing through the virtual link (k, l) at t-th time interval. In next three

subsections, we address three main objectives considered for mapping and scheduling

the service requests.

5.2.1 Maximizing the Number of Accepted Service Requests

This objective function maximizes the number of accepted incoming service requests,

while ensuring particular network constraints are met. This objective function can be

described as below,

(5.1) maxx Z1(x)=
|S|∑
i=1

|V |∑
k=1

wi ·
(
xk

i,1 (1)+
T∑

t=2
U

(
xk

i,1 (t)− xk
i,1 (t−1)

))
where wi is the weight assigned to each service request si reflecting its priority. This

weight is normalized to 1. xk
i j(t) is the binary variable indicating the assignment of j-th
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Figure 5.3: one of the possible mappings including all incoming VNFs of service requests
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Figure 5.4: All possible values of variable x that reflect the assignment schedule for all
incoming service requests every 5 time steps

VNF of the service request si to the k-th VM at t-th time interval. In other words,

(5.2) xk
i, j(t)=



1 If the j-th VNF of the service

request si has been assigned to

the k-th VM at t-th time interval

0 otherwise
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The function U (α) is defined as

U (α)=


1 for α> 0

0 for α≤ 0

T is the maximum number of time-steps, i.e., no further service request arrives after

T-th time-step and all previously accepted service requests should be processed by T-th

time-step.

The first term in the cost function Z1(x) defined in (5.1), (i.e., xk
i,1 (1)) counts the

number of service requests that are accepted at time step t = 1.

While the second term of Z1(x) (i.e.,
T∑

t=2
U(xk

i,1(t)−xk
i,1(t−1))) is for counting the number

service requests that are accepted at the following time steps, i.e., t > 1. It is assumes that

a service is accepted if it can be processed within E time-steps of its arrival, otherwise it

is not accepted. Also, when more than one service requests are assigned to the same VM,

the service requests are processed based on their priority and the time left until their

processing deadline (i.e., the E time steps since arrival of the service request).

5.2.2 Minimizing the Number of Bottleneck links

The available transmission capacity of link (k, l) is the difference between its trans-

mission capacity (lck,l) and its current traffic
∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t). When the current

bandwidth demand (di j) is higher than the available transmission capacity of the link,

i.e., di, j > lck,l −∑|S|
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t), the link (k, l) becomes an unscheduled bottleneck.

The aim of the objective defined in this subsection is to minimize the number of

unscheduled bottlenecks. In doing so, we defined the following binary variable,

(5.3) yk,l
i, j (t)=


1 if di, j > lck,l −∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t),

0 Otherwise.

where k represent the current VM where the j-th VNF is finished and l represent the

next VM where the ( j+1)-th VNF will be processed. Formally, this objective function is
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defined as below,

(5.4)

min
x

Z2(x)=
T∑

t=1

|S|∑
i=1

|si |−1∑
j=1

|V |∑
k=1

|V |∑
l=1

xk
i, j(t) · yk,l

i, j (t) · xl
i, j+1(t+1)

+ xl
i, j+1(t) ·σ(Rk,l

i, j (t)) · xl
i, j+1(t+1) · yk,l

i, j (t),

where

(5.5) σ(Rk,l
i, j (t))=


1 if Rk,l

i, j (t)> 0,

0 Otherwise.

In the cost function defined in (5.4), the first term (xk
i, j(t) · yk,l

i, j (t) · xl
i, j+1(t+1)) corresponds

to the case where the processing of the j-th VNF of si has been finished in the k-th VM

and next VNF of si (i.e., j+1-th VNF) has to be processed in the l-th VM.

Thus, at time interval t, a transmission will start from k-th VM to l-th VM. If this

transmission is not finished in the t-th time interval, the second term in the cost function

(5.4) (i.e., xl
i, j(t) ·σ(Rk,l

i, j (t)) · xl
i, j(t+1) · yk,l

i, j (t)) will be triggered if the link (k, l) becomes

an unscheduled bottleneck. The function σ(Rk,l
i, j (t)) is for verifying if there is any traffic

in the link (k, l) at time interval t, due to the eventual processing of j-th VNF of si

in the l-th VM. Also, in Fig. 5.2, an example is provided which shows that during the

transmission between two VMs, in the first time-step, the first term of the cost function

Z2(x) determines if the link has become an unscheduled bottleneck, while in the following

time-steps, the second term of the cost function Z2(x) determines if the link has become

an unscheduled bottleneck.

5.2.3 Minimizing the Overall Processing Time

The processing time of a service request is the number of time steps from the time

that the service request was accepted until its processing is finished. From each service
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request’s point of view, it is important to minimize its processing time. This can be

reflected in the following cost function,

(5.6) min
x

Z3(x)=
|S|∑
i=1

|si |∑
j=1

|V |∑
k=1

T∑
t=1

xk
i, j(t).

In the time steps before si is accepted and after its processing is finished, all values of

xk
i, j(t) for j = 1, ..., |si|, k = 1, ..., |V | is zero. Therefore, for the accepted service requests,

their total processing time is calculated in the cost function Z3.

Comparing the cost functions Z1(x) and Z3(x), it is obvious that Z1(x) prolongs the

processing time to maximize the number of accepted service requests, while considering

the constraint imposed by the processing deadline E for each service request. On the

other hand Z3(x) aims at minimizing the overall processing time of all accepted service

requests.

5.2.4 Constraints

Here, we describe the constraints that have been considered and imposed to the opti-

mization problem.

1. Forwarding Constraint:

The ( j+1)-th VNF of the si can not be assigned unless the processing of previous

VNF has been completed. This dictates the following constraint,

(5.7)
xl

i, j+1(t+1)= 0 if

xk
i, j(t) · (1− xk

i, j(t+1))= 0 and xl
i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si| −1, k, l = 1, ..., |V |. The term xk
i, j(t) · (1− xk

i, j(t+1)) is

equal to one only in the time step where processing of the j-th VNF of service

request si is finished in the k-th VM.

2. Assignment & Traffic Constraint:

The link (k, l) can not have any traffic due to the ( j+1)-th VNF of service request

94



5.2. PROBLEM DESCRIPTION AND FORMULATION

si if the ( j+1)-th VNF of si has not been assigned to the l-th VM. This constraint

dictates the relation between Rk,l
i, j (t) and xl

i, j+1(t), where it can be written as

(5.8) Rk,l
i, j (t)= 0 if xl

i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si|−1 and (k, l) ∈ E .

3. Link Capacity Constraint:

The total traffic flow passing through every link (k, l) (i.e.,
∑|S |

i=1
∑|si |

j=1 Rk,l
i, j (t)) should

not exceed its capacity (lck,l). This can be shown as the following constraint.

(5.9)
∑|S |

i=1

∑|si |
j=1 Rk,l

i, j (t)≤ lck,l , ∀(k, l) ∈ E .

5.2.5 Example of Mapping and Scheduling for the total

incoming number of service requests

As shown in Fig. 5.1, the network structure consists of 4 VMs node and each VM support

subset of VNFs on it. Moreover, a set of incoming service requests s1, ..., s5 arrived to

the cloud at different time step, 3 service requests s1, s2, s3 are arrived at time step t = 0

and 2 service requests s4, s5 are arrived at time step t = 5. The VNFs of these incoming

service requests at time step t = 0 are s1 = { f u
5 , f u

2 , f u
1 , f u

3 , f u
5 , f u

4 }, s2 = { f u
3 , f u

2 , f u
4 }, and

s3 = { f u
2 , f u

3 , f u
5 , f u

1 , f u
3 }. And, the VNFs of the service requests arrived at time step t = 5

are s4 = { f u
1 , f u

4 } and s5 = { f u
5 , f u

1 , f u
4 , f u

3 }.

Assume that each VM can process one VNF at a time, Fig. 5.4 shown one of the

possibilities to map and schedule the incoming service requests si for i = 1, ...,5 when

they arrived at the cloud at different. Comparing Fig. 5.3 and Fig. 5.4, we can clearly see

that some VNF of the accepted service requests can be assigned to a VM but it is not

being process yet. This can be happened either due to the processing queue or due to

ongoing transmission. At each time step, it is assumed that each VM can process only
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one VNF of the accepted service requests, while more than one VNF of the accepted

service requests can be assigned to this VM.

The following steps explain in details how the incoming service request s3 is processed

once it’s arrived to the cloud at time step t = 0 until the last function of the request

is processed at t = 8. Initially s3 is assigned to V M4 and it needs two time steps to be

processed, thus x1
3,1(1)= 1 and x1

3,1(2)= 1. The second and the third VNF of s4 is assigned

to V M1 at the third, fourth and fifth time steps, so x1
3,2(3)= 1, x1

3,3(4)= 1 and x1
3,3(5)= 1.

In the fifth time step t = 5, the fifth VNF of s3 is assigned to process on V M3, where the

the first VNF of the s3 is arrived to the cloud and assigned to V M3 at the same time t = 5.

As a result of the weigh for the the first VNF of the s4 is larger than the fifth VNF of s3,

so the fifth VNF of s3 has to wait in the queue one time step until the first VNF of the s3

finish its processing as shown in Fig. 5.4. So, the fifth VNF of s3 will process on V M3

at time step t = 7, x3
3,4(7)= 1. In the eighth time step, the fifth VNF of s3 is assigned to

process on the same V M3, thus x3
3,5(8)= 1. It takes 8 time steps to finish processing the

accepted service request s3.

5.3 Algorithm Design

Genetic algorithms (GAs) rely on similarity with the genetic structure and behavior of

chromosomes within a population of individuals using the following basic idea: Individ-

uals in a population compete for resources and mates. Those individuals who win the

most in each competition will create more offspring than those individuals with poor

achievements.

Here, to solve the scheduling and mapping problem, we apply two different ap-

proaches of GA, namely Pareto dominance and decomposition approaches as explained in

Chapter 3. The popular algorithms of Pareto dominance and decomposition approaches

are NSGA-II [8] and MOEA/D algorithm [7], respectively. Authors in [101] developed a
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Table 5.1: Assignment Schedule for Example 5.2.5: The values of variable x which are
equal to one.

t s1 s2 s3 s4 s5

1 x1
1,1(1) x3

2,1(1) x4
3,1(1)

2 x1
1,2(2) x3

2,1(2) x4
3,1(2)

3 x3
1,3(3) x2

2,2(3) x1
3,2(3)

4 x3
1,3(4) x2

2,3(4) x1
3,3(4)

5 x3
1,4(5) x1

3,3(5)

6 x1
1,5(6) x3

3,4(6) x3
4,1(6) x1

5,1(6)

7 x1
1,5(7) x3

3,4(7) x2
4,2(7) x1

5,1(7)

8 x1
1,6(8) x3

3,5(8) x2
4,2(8) x1

5,1(8)

9 x1
5,1(9)

10 x3
5,2(10)

11 x2
5,3(11)

12 x2
5,3(12)

13 x1
5,4(13)

14 x1
5,4(14)

modified version of MOEA/D called CMOEA/D-DE-ATP to solve constraint optimization

problems.

Without performing the original CMOEA/D-DE-ATP algorithm itself, we use the

framework and apply novel changes. In step 1 of Algorithm 2, the network parameters

are initialized. These include the set of incoming service requests (S ), their priority

weights W = {wi|i = 1, ..., |S |}, the processing deadline (E), the number of VMs (|V |), the

set of VNFs supported by each VM (denoted by V Fk for k = 1, ..., |V |), and the transmission

capacity for each virtual link {lck,l |(k, l) ∈ E }. Then, we determine the stopping criteria

of the algorithm. The stopping criteria in LDNSGAII depends on maximum number of

evaluation which is set to 25000. While the stopping criteria in RSAMOAD depends on

the population size set to 100 and the number of iteration set to 300 (300*100).

As shown in step 4, the population size is chosen random for both algorithms. In
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step 5, the algorithm checks the feasibility for output solution of these population by

checking all constraints proposed in (5.7), (5.8), (5.9). Then the algorithm calculates the

fitness function for each population and apply all genetic operations to the proposed

solutions from these populations.

The LDNSGAII algorithm utilizes a binary representation operator, the tournament

selection as the selection operator, and a binary crossover operator with mutation rate

equal to the inverse of the number of variables.

The RSAMOAD algorithm uses a binary representation operator, the mate selection

as the selection operator, and the DE crossover operator with mutation rate equal to the

inverse of the Parameters’ dimension. Using both algorithms, the final output is a near

to optimal mapping and scheduling for the incoming service requests.

Regarding the complexity of the algorithm, there are two main tasks for each popula-

tion. First task is the calculation of the cost functions Z1, Z2 and Z3 (given in (5.1), (5.4)

and (5.6), respectively), where their complexities are of order O (|S ||V |T), O
(
Q|V |2) and

O (Q|V |T), respectively, with Q =∑|S |
i=1 si. The second task is the calculation of the con-

straints (5.7), (5.8), (5.9), where the complexity of every one of them is equal to O
(
Q|V |2).

Note that the complexity of GA algorithm depends on the algorithm parameters as well.

Some of these parameters include population size and number of iteration.

5.4 Simulation Results

In this section, we present the simulation results for the proposed scheduling and

mapping algorithms explained in the previous section.

5.4.1 Simulation Set up

The network structure in this study contains four network cases: small, medium, large

and extra-large consists of 100, 200, 300 and 400 service requests and 10, 20, 30 and 40
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Algorithm 2 RSAMOAD and RA-NSGA-II
1: Input:

• Network parameters:

S ,E,W ,V ,E ,F,V F, {tck,l |(k, l) ∈ E }

• The Algorithm stopping criterion.

2: Output:
The best feasible solution for (xk

i j(t)) which represent the best mapping and
scheduling for VNF of the incoming service requests. This solution has the best
value for the cost functions Z1, Z2, Z3 and it satisfies all the constraints (5.7),
(5.8), (5.9).

3: Define:

• X = {xk
i j(t)|i = 1, ..., |S |, j = 1, ..., |si|,k ∈ V , t = 1, ...,T}

4: Initialize:

• Generate the initial population X1, . . . , X N uniformly in random.

5: for every X i = X1, ..., X N do
6: if X i satisfying all the proposed constraints then

• Evaluate the proposed cost functions Z1(x), Z2(x), Z3(x) according to (5.1), (5.4),
(5.6)

• applying the genetic (i.e., representation, selection, crossover and mutation)
operators to the result

• Choosing the best Feasible Solution after applying the previous parameters

• end if

7: end for
8: Selecting the best result from all populations.
9: Termination criterion:

• if the stopping criterion is satisfied then,

Stop and return the final output as the best mapping and scheduling.
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VM nodes, respectively. The simulations is implemented on Intel Xeon Gold 6150 2.7GHz

Core, 2.7GHz, with 32 GB of RAM running Linux platform, and using the MATLAB and

Java as a programming languages. Two different scenarios are applied in this model to

evaluate the performance of the proposed algorithms. In the first scenario, we assume

that non uniform VNFs service requests arrive to the cloud in different time steps (i.e

at time step = 0, 5, 15 and 20) to be processed by installed VMs. Each of these service

requests does not have any processing deadline to finish it’s processing. In the second

scenario, we assume that non uniform VNFs service requests arrive to the cloud in

different time steps but each of these requests have a processing deadline to be processed

in the VMs before reaching that deadline. At each scenario, the proposed algorithm

implemented to find the near to optimal solution for every objective individual (Scenario

1), any two combination of the aforementioned objectives (Scenario 2) or for the three

objectives together (Scenario 3).

5.4.2 Evaluation Scenarios

The final results of the first scenario is shown in Fig 5.5, Fig 5.6 and Fig 5.7, where the

near to optimal value of the every objectives Z1, Z2 and Z3 are reported for all four net-

work cases by applying both RSAMOAD and RS-NSGA-II algorithms. We can clearly see

from this figure that Z2 and Z3 values decrease gradually when the number of incoming

service requests (without processing deadline) increases, while Z1 increase slightly by

applying both algorithms. Scenario 2 illustrates the values for any combination between

two of the proposed objectives. For instance, Fig 5.8 shows the final results for the first

and the second cost functions (Z1 & Z2), Fig 5.9 shows the final results for the first and

the second cost functions (Z2 & Z3) and Fig 5.10 shows the final results for the first

and the second cost functions (Z1 & Z3) by using the two developed algorithms in all

implementation.
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Figure 5.5: The Final results for the first cost function (Z1) by using the two developed
algorithms

Figure 5.6: The Final results for the second cost function (Z2) by using the two developed
algorithms
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Figure 5.7: The Final results for the third cost function (Z3) by using the two developed
algorithms

Figure 5.8: The Final results for the first and the second cost functions (Z1 & Z2) by
using the two developed algorithms
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Figure 5.9: The Final results for the second and the third cost functions (Z2 & Z3) by
using the two developed algorithms

Figure 5.10: The Final results for the first and the third cost functions (Z1 & Z3) by using
the two developed algorithms
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Figure 5.11: The Final results for the three cost functions by using the two developed
algorithms considering the expiry time for every service request

Going to the third scenario, the result of Z1, Z2 and Z3 achieved by applying both

RSAMOAD and RS-NSGA-II algorithms considering the expiry date and without con-

sidering the expiry date for the service requests are shown in Fig. 5.11 and Fig. 5.12

respectively.

What can be clearly seen that the difference between two figures is the value of the

first objective decreased. The main reason for this problem is that some of the service

requests have not been accepted by the algorithm due to their processing deadline is

bigger than the the available time in the VMs.

In Fig. 5.13, We study the impact of receiving four different sets of incoming service

request: 500, 600, 700 and 800, respectively, on the cost values and performance time.

The simulation results in all scenarios indicate that the RS-NSGA-II algorithm generally

has a better performance in terms of Z1 (i.e., accepting larger number of service requests),

but this comes at the cost of higher values for Z2 (i.e., more congestion) and Z3 (i.e.,

longer processing time).
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Figure 5.12: The Final results for the three cost functions by using the two developed
algorithms without considering the expiry time for every service request

Figure 5.13: The Final results for the three cost functions considering different number
of incoming service requests along with fixed number of VMs is 50
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5.5 Conclusion

This chapter presents a multi-objective mapping and scheduling algorithm for a set of

incoming requests arrive a cloud in different time steps. Given a set of VMs installed on

the cloud and connected to each other using virtual links, every VM support particular

number of VNF. Those incoming requests need to process in order on these VMs. The

proposed algorithm determines the optimal scheduling and mapping for these incoming

requests. There are three main objectives that are proposed in this chapter: maximizing

the number of accepted service requests, minimizing the number of bottleneck links and

the overall processing time. A mathematical formulation is proposed to describe the prob-

lem and two different developed algorithms are provided to solve the problem, namely

RSAMOAD and RA-NSGA-II. The final results illustrate that RSAMOAD algorithm

perform better than RA-NSGA-II algorithm in term of optimal solution for the objective

values.
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6
JOINT OPTIMIZATION OF MAPPING VNF CHAINS AND

AND SCHEDULING FOR THE SERVICE REQUESTS

6.1 Introduction

This chapter presents a new formulation for the NFV-RA problem by introducing a

new optimization model to cover different network scenarios of the NFV-RA problem.

In practice, a modern network service is expressed by a service request chain which

is composed of a sequence of VNF functions to be processed in order through one or

multiple VMs. One such service request example is shown in Fig. 6.1, where different

service requests arrive to the cloud at different times and need to be processed through

the installed VMs. Every incoming request contains one or more of the following five

network functions: network address translation (NAT), firewall, load balance, gate way,

and intrusion detection system (IDS). Moreover, every VM supports one or more of the

five network functions, has limited network resources (CPU type, capacity). The VMs

are connected together via virtual links.
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The incoming service request should go through these network functions supported

by VMs in order to accomplish the VNFs of the service request. As a result of the limited

capacity for every link, an unscheduled bottleneck can be happening in some of these

links. Furthermore, as a result of limited computation capacity for every VM, a processing

delay can be also happening in every VM.

The major goal of this chapter is to provide a good understanding of the issues related

to the mapping and scheduling for a set of incoming service requests to be processed in

order through different VMs while taking into consideration the network constraints

and different objectives. Generally, there is a set of VNFs request from different clients

that need to be processed by network functions on VMs/servers, where each individual

request requires a subset of the network functions. We provide an efficient SM-MOEA/D

and SM-NSGA-II heuristic algorithm for the automatic mapping and scheduling for the

VNFs of the incoming service requests.

In doing so, the given processing order of the VNFs belonging to each service request

should be considered, as well as the constraints imposed due to the time limit and the

priority for processing each service request. The limited capacity of each VM and the

links among them introduces additional restrictions that should be addressed in the

model.

6.2 System Model

This subsection includes the developed model for the network and the scenarios addressed

in this chapter.

An example network structure considered in this chapter is presented in Fig. 6.1.

We model the network as an undirected graph G = (V ,E ). V = {k|k = 1, ..., |V |} is the set

of VM nodes and E = {(k, l)|k, l = 1, ..., |V |,k 6= l} is the set of virtual links between VMs.

F = { f u
1 , f u

2 , ..., f u
|F|} is the set of unique VNFs supported in the cloud. The VNFs supported
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by the k-th VM is denoted by V Fk for k = 1, ..., |V |. For instance, if V M2 runs { f u
2 , f u

5 }

as shown in Fig. 6.3, that means only VNFs f u
2 and f u

5 of the incoming request can be

executed in V M2. Change according to the example. The number of VNFs that the k-th

VM (capacity) can process simultaneously is denoted by ck for k = 1, ..., |V |. Let lck,l for

k 6= l = 1, ..., |V | be the transmission capacity of the virtual link (k, l). In this chapter, we

assume that there is a virtual link between every two VMs. We define the incoming

sequence of service requests as S = [s1, ..., s|S |] and each request si ∈S for i = 1, ..., |S |
has a sequence with different order of VNFs. Let f i, j for i = 1, ..., |S | and j = 1, ..., |si| be

the j-th VNF of the i-th incoming service request (si). We assume that every request si

for i = 1,2, ..., |S | has different number of VNFs.

The VNF f i j of the incoming request should be processed in the given order through

the selected VMs. Furthermore, we assume that each service request si has a time limit

or expiry time (denoted by E i), where its processing should be finished before this time

limit.

We define di, j for i = 1,2, .., |S |, j = 1,2, ..., |si|−1 as the bandwidth demand of the

i-th service request si after processing its j-th VNF, and Rk,l
i, j (t) for i = 1,2, .., |S |, j =

1,2, ..., |si|−1 and (k, l) ∈ E as the traffic flow of the i-th service request after processing

its j-th VNF, which is passing through the virtual link (k, l) at t-th time interval.

In next four subsections, four main objectives considered in this chapter for mapping

and scheduling the service requests are presented.

6.2.1 Maximizing The Acceptance Rate

In this subsection, the first objective function is introduced. This objective function aims

at maximizing the number of accepted service requests. This objective function can be

defined as below,

(6.1) maxx Z1(x)=
|S|∑
i=1

|V |∑
k=1

wi ·
(
xk

i,1 (1)+
T∑

t=2
U

(
xk

i,1 (t)− xk
i,1 (t−1)

))
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where wi is the weight of each service request si, which reflects its priority. This weight

is normalized to 1. xk
i j(t) is a binary variable denoting whether if the j-th VNF of the

service request si has been assigned to the k-th VM at t-th time interval. In other words,

(6.2) xk
i, j(t)=



1 If the j-th VNF of the service

request si has been assigned to

the k-th VM at t-th time interval,

0 otherwise.

The function U (α) is defined as

U (α)=


1 for α> 0

0 for α≤ 0

No further service request arrives after T-th time-step and all previously accepted service

requests should be processed by T-th time-step. The first term in the cost function Z1(x)

defined in (6.1), (i.e., xk
i,1 (1)) counts the number of service requests that are accepted

at time step t = 1. While the second term of Z1(x) (i.e.,
∑T

t=2U(xk
i,1(t)− xk

i,1(t−1))) is for

counting the number service requests that are accepted at the following time steps, i.e.,

t > 1. It is assumes that service requests are accepted considering their expiry time (E i).

In other words if a service request can not be finished within its expiry time (E i), then it

will never be accepted. Also, when the number service requests assigned to a VM is more

than its capacity, then the service requests are processed based on their priority. The

maximum number of time-steps T represents the time window that network parameters

are assumed to be steady.

6.2.2 Optimizing Link Utilization

The available transmission capacity of link (k, l) is the difference between its transmis-

sion capacity (lck,l) and its current traffic
∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t). When the current band-
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width demand (di j) is higher than the available transmission capacity of the link, i.e.,

di, j > lck,l −∑|S|
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t), the link (k, l) becomes an unscheduled bottleneck. The

aim of the objective defined in this subsection is to minimize the number of unscheduled

bottlenecks. In doing so, we defined the following binary variable,

(6.3) yk,l
i, j (t)=


1 if di, j > lck,l −∑|S|

i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t),

0 Otherwise.

where k represent the current VM where the j-th VNF is finished and l represent the

next VM where the j+1-th VNF will be processed. Formally, this objective function is

defined as below,

(6.4)

min
x

Z2(x)=
T∑

t=1

|S|∑
i=1

|si |−1∑
j=1

|V |∑
k=1

|V |∑
l=1

xk
i, j(t) · yk,l

i, j (t) · xl
i, j+1(t+1)

+ xl
i, j+1(t) ·σ(Rk,l

i, j (t)) · xl
i, j+1(t+1) · yk,l

i, j (t),

where

(6.5) σ(Rk,l
i, j (t))=


1 if Rk,l

i, j (t)> 0,

0 Otherwise,

In the cost function defined in (6.4), the first term (xk
i, j(t) · yk,l

i, j (t) · xl
i, j+1(t+1)) corresponds

to the case where the processing of the j-th VNF of si has been finished in the k-th

VM and next VNF of si (i.e., j+1-th VNF) has to be processed in the l-th VM. Thus, at

time interval t, a transmission will start from k-th VM to l-th VM. If this transmission

is not finished in the t-th time interval, the second term in the cost function (6.4) (i.e.,

xl
i, j(t)·σ(Rk,l

i, j (t))·xl
i, j(t+1)·yk,l

i, j (t)) will be triggered if the link (k, l) becomes an unscheduled

bottleneck. The function σ(Rk,l
i, j (t)) is for verifying if there is any traffic in the link (k, l)

at time interval t, due to the eventual processing of j-th VNF of si in the l-th VM.
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In Table 6.1, an example of mapping and scheduling has been provided. Also, in Fig.

6.4, an example is provided which shows that during the transmission between two VMs,

in the first time-step, the first term of the cost function Z2(x) determines if the link has

become an unscheduled bottleneck, while in the following time-steps, the second term of

the cost function Z2(x) determines if the link has become an unscheduled bottleneck.

6.2.3 Minimizing the Overall Processing Time

From the cloud manager’s point of view, it is valuable to minimize the time it takes

to process all accepted service requests. This can be formulated as the following cost

function,

(6.6) min
x

Z3(x)=
|S |∑
i=1

|si |∑
j=1

|V |∑
k=1

T∑
t=1

xk
i, j(t).

When processing of service request si is finished, all future values of xk
i, j(t) for j = 1, ..., |si|,

k = 1, ..., |V | are zero. Therefore, for the accepted service requests, their total processing

time is calculated in the cost function Z3.

6.2.4 Minimize the Relative Processing Time

The processing time of an individual service request is the number of time steps starting

from the time that the service request was accepted until its processing is finished.

The relative processing time is the average of processing times of all accepted service

requests. From each individual service request’s point of view, it is important to finish

its processing as soon as possible and before reaching its expire time. Hence from the

service requests point of view, it is important to minimize the relative processing time.

This can be reflected in the following cost function,

(6.7) min
x

Z4(x)=
∑|S|

i=1

(∑|si |
j=1

∑|V |
k=1

∑T
t=1 xk

i, j(t)
)/

E i

|S |∑
i=1

|V |∑
k=1

xk
i,1 (1)+

T∑
t=2

U
(
xk

i,1 (t)− xk
i,1 (t−1)

) .
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Here E i is the expiry time for the i-th service request si. The numerator of Z4(x) defined

in (6.7) represents the average time it takes to process the accepted service requests

normalized by their expiry time. Normalization is to ensure that each term in the

summation of the numerator of (6.7) is smaller than one. The denominator of (6.7) is

the number of accepted service requests. Hence, Z4(x) in (6.7) represents the average

processing time of service requests normalized by their expiry time.

Comparing four cost functions introduced above, it is obvious that Z1(x) prolongs the

processing time (to maximize the total number of accepted service requests), while Z3(x)

and Z4(x) minimize the processing time of accepted service requests.

6.2.5 Constraints

Here, we explain the constraints of the model developed in this chapter, and have to be

considered in the optimization problem.

1. VNF’s Order:

VNFs belonging to a given service request si should be processed in the given order.

Hence, the processing or transmission of the ( j+1)-th VNF of service request si

should start only if the processing of the previous j-th VNF of si is completed.

In other words, xl
i, j+1(t+ 1) can be equal to one if xk

i, j(t) · (1− xk
i, j(t+ 1)) = 1 or

xl
i, j+1(t) = 1. Or equivalently xl

i, j+1(t+ 1) is equal to zero for all values of l, if

xk
i, j(t) · (1− xk

i, j(t+1))= 0 and xl
i, j+1(t)= 0. This can be stated as the following,

(6.8)
xl

i, j+1(t+1)= 0 if

xk
i, j(t) · (1− xk

i, j(t+1))= 0 and xl
i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si| −1, k, l = 1, ..., |V |. The term xk
i, j(t) · (1− xk

i, j(t+1)) is

equal to one only in the time step where the processing of the j-th VNF of service

request si is finished in the k-th VM.
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2. Link Traffic Constraint: All the assigned traffic of a link should be the traffic of

the VNFs assigned to the VM in the destination of the link. This constraint can be

written as

(6.9) Rk,l
i, j (t)= 0 if xl

i, j+1(t)= 0,

for i = 1, ..., |S |, j = 1, ..., |si|−1 and (k, l) ∈ E . Constraint (6.9) means that the link

(k, l) can not have any traffic due to the ( j+1)-th VNF of service request si, if the

( j+1)-th VNF of si has not been assigned to the l-th VM. This constraint dictates

the relation between Rk,l
i, j (t) and xl

i, j+1(t).

3. Link Capacity Constraint: This constraint ensures that the total traffic passing

through a link does not exceed the link’s capacity.

(6.10)
|S |∑
i=1

|si |∑
j=1

Rk,l
i, j (t)≤ lck,l , ∀(k, l) ∈ E .

The left hand side of the inequality (6.10) is the total traffic passing through link

(k, l), and lck,l is the capacity of link (k, l).

4. Expiry Time Constraint: This constraint guarantees that the processing of every

accepted service request will be completed before its expiry-time.

(6.11)
|si |∑
j=1

|V |∑
k=1

T∑
t=1

xk
i, j(t)≤ E i, for i = 1, ..., |S |.

The term
∑|si |

j=1
∑|V |

k=1
∑T

t=1 xk
i, j(t) is the total processing time of the i-th service re-

quest (i.e., si) and E i is the expiry-time of si.

6.2.6 Example of Mapping and Scheduling for the total

incoming number of service requests

The network structure of this chapter is shown in Fig. 6.1 with 5 VMs, and 4 incoming

service requests s1, ..., s4 at time step t = 0, 2 incoming service requests s5, s6 at time
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step t = 5 and 1 service request s7 at time step t = 10. The VNFs of service requests

s1, ..., s4 at time step t = 0 are s1 = { f u
5 , f u

3 , f u
4 , f u

5 }, s2 = { f u
2 , f u

3 }, s3 = { f u
4 , f u

1 , f u
4 , f u

2 , f u
5 },

s4 = { f u
3 , f u

5 , f u
4 , f u

1 , f u
3 , f u

2 }. And, the VNFs of service requests s5, s6 at time step t = 5 are

s5 = { f u
4 , f u

3 , f u
5 },s6 = { f u

4 }, s7 = { f u
3 , f u

4 , f u
3 , f u

5 }. And, the VNFs of service requests s8, s9

at time step t = 10 is s8 = { f u
5 , f u

3 , f u
4 , f u

1 }, s9 = { f u
4 , f u

2 , f u
5 }. And, the VNFs of service

requests s10 at time step t = 15 is s10 = { f u
1 , f u

2 , f u
3 , f u

4 }. One of the possible mapping and

scheduling for theses incoming VNFs of the service requests si for i = 1, ...,10 is shown in

Fig. 6.2 and Fig. 6.3. The figures show the processing schedule and assignment schedule

for the incoming VNFs at every time step.

Comparing Fig. 6.2 and Fig. 6.3, it is obvious that a VNF of a service request can be

assigned to a VM, while it is not being processed. This can be due to two reasons, namely

the ongoing transmission or the processing queue. At each time step one or more than

one VNF of the accepted service requests can be assigned to a VM. While, each VM can

process only one VNF of the accepted service requests.

In the following example, we explain how service request s4 is processed. Initially

s4 is assigned to V M4 and it needs two time steps to be processed, thus x1
4,1(1)= 1 and

x1
4,1(2)= 1. In the third time step, the third VNF of s4 is assigned to V M5, so x1

4,1(3)= 1.

However, either because of the second VNF of s1 is being processed in V M5 or because of

the transmission process, s4 has to wait to be processed in the fourth time step. In the

fifth time step, the fifth VNF of s4 is assigned and starts to be processed on V M3, where

the s5 is just assigned to V M3 at the same time but it has to wait in the queue until

s4 finishes its processing. The sixth VNF of s4 is assigned to process on V M1 and the

same continues in the seventh, eighth and ninth time steps, respectively. In the tenth

and eleventh time steps, the sixth VNF of s4 is assigned to process on V M2. It takes 11

time steps to finish processing the service request s4.
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Figure 6.1: one of the possible mappings for the arriving service requests

Table 6.1: Assignment Schedule for Example 7.2.5: The values of variable x which are
equal to one.

t s1 s2 s3 s4 s5

1 x3
1,1(1) x4

2,1(1) x2
3,1(1) x1

4,1(1) x4
5,1(1)

2 x3
1,1(2) x2

2,2(2) x4
3,2(2) x3

4,2(2) x4
5,1(2)

3 x3
1,2(3) x2

2,2(3) x4
3,2(3) x3

4,2(3) x4
5,2(3)

4 x1
1,3(4) x2

2,3(4) x4
3,2(4) x3

4,2(4) x1
5,3(4)

5 x1
1,3(5) x3

2,4(5) x4
3,2(5) x3

4,2(5) x2
5,4(5)

6 x3
2,4(6) x2

3,3(6) x3
4,2(6) x2

5,5(6)

7 x3
2,4(7) x2

3,3(7) x4
4,3(7) x2

5,5(7)

8 x2
2,5(8) x2

3,3(8) x4
4,4(8) x1

5,6(8)

9 x2
2,5(9) x3

3,4(9) x3
4,5(9) x1

5,7(9)

10 x2
2,6(10) x3

4,5(10)

11 x1
2,7(11) x3

4,5(11)

12 x1
2,7(12)
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Figure 6.2: one of the possible scheduling for all VNFs of the arriving service requests

Figure 6.3: All possible values of variable x that reflect the assignment schedule for all
incoming service requests
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Figure 6.4: Example of the cost function of objective 2
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6.3 Algorithm Design

Consider the problem formulation mentioned in the previous section, four main objectives

are proposed in this chapter to be achieved. Particularly, maximizing the acceptance

rate (6.1), optimizing link utilization (6.4), minimizing the overall processing (6.6) and

minimizing the relative processing time 6.7.

Formally, the whole multi-objective optimization problem can be written as follows:

(6.12)

min
x

[−Z1(x), Z2(x), Z3(x), Z4(x)]

st. xl
i, j+1(t+1)= 0 if

Ak
i, j(t)= 0 or xl

i, j+1(t)= 0, for k, l = 1, ..., |V |

Rk,l
i, j (t)= 0 if xl

i, j+1(t)= 0, ∀(k, l) ∈ E∑|S |
i′=1

∑|si |
j′=1

Rk,l
i′ , j′

(t)≤ lck,l , ∀(k, l) ∈ E

|si |∑
j=1

|V |∑
k=1

T∑
t=1

xk
i, j(t)≤ E i, for i = 1, ..., |S |.

where Ak
i, j(t)= xk

i, j(t) · (1− xk
i, j(t+1)), i = 1, ..., |S |, j = 1, ..., |si|−1, and the cost functions

Z1(x), Z2(x) and Z3(x) are as defined in (6.1), (6.4), (6.6) and (6.7), respectively.

Considering this problem formulation, three main approaches based on GA can be

applied to find the near to optimal solution for the problem, namely, pareto dominance-

based algorithms (i.e., NSGA-II [8]), indicator-based algorithms and decomposition-based

algorithms (i.e., MOEA/D) explained in detail in chapter 3. This section accordingly

adopts and presents novel changes in dealing with the two algorithms (NSGA-II) and

(CMOEA/D-DE-ATP [101]) to solve the proposed problem. The two new algorithms called

and follow the framework explained in Alg. 2. Additionally, both proposed algorithms

contains the standard procedures of genetic algorithms initial population, selection,

crossover and mutation.
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6.3.1 Representation

The candidate solution (i.e., a set of VMs in this problem) is encoded into a chromosome,

the chromosome is a set of genes that may be encoded in different ways. The encoding

of the problem depends on the problem definition. Several encoding methods are used

such as floating encoding, binary encoding and symbolic encoding, however, both of our

proposed algorithms use a binary encoding method. Each chromosome has sub-strings

length equal to VNF numbers and each VM k ∈ |V | composed of a sub-string of the VNF

type Φk = (xk) (VNF can be supported by this VM). While the length of the sub-string is

fixed, the length of the chromosome is variable depending on the number of sub-strings

(VMs).

6.3.2 Initial population

The initial population generates the sub-string in a chromosome randomly, the number of

sub-strings for a position of available VMs is picked randomly from one of possible index

[1,2, ..., |V |]. Each chromosome is represents by and defines xk
i, j(t) the possible mapping

and scheduling for a set of incoming service requests to be processed on available VMs.

Additionally, each chromosome is adjusted to validate the problem constraints (6.8), (6.9),

(6.10) and (6.11) and therefore provide a set of feasible solutions that will represent the

initial solution.

6.3.3 Selection Operator

Selection is the first operator implemented on the population after the initial population

is generated. Selection operator selects good strings in a population and formulates a

mating pool. In selection operation, the method of normal selection causes that individual

that encodes successful structures to create copies more regularly. The chance that a

chromosome will be chosen is proportional to its fitness.
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At each generation, the method selects the best chromosome based on its fitness value

(objectives values) for creating a new offspring. In this study, we used the tournament

selection as a selection operator for the proposed algorithms; it selects some of the

individuals randomly from the population and copies the best individual from this group

into the population medium used for selection approaches in evolutionary algorithms. In

other words, the selection operator selects the best two available VMs to process the j-th

VNF of the incoming service request si at time step t as parents.

6.3.4 crossover

The outputs from the selection procedure are recombined to a new offspring chromosome

using the crossover operator; the operator checks if the new offspring gets the charac-

teristics better than the parents, thus the new combination is fitter than its parents to

be forwarded to the mutation operator. In this study, SM-NSGA-II algorithm applies a

binary crossover (SBX) proposed in [8] and SM-MOEA/D algorithm applies a DE operator

as a crossover operator presented in [100].

6.3.5 Mutation

After crossover operator is implemented, the mutation operator is performed to the

individual solution where a gene is changed randomly by a small probability to produce a

new chromosome. In this study, the mutation operator rate of the SM-NSGA-II algorithm

is pm= 1/ (no.of variables) while, the mutation operator rate of the SM-MOEA/D algorithm

is pm=1/(parameter dimension), i.e., the probability for each bit to be flipped is pm.

6.3.6 Stopping Criteria

The stopping criterion of the SM-NSGA-II algorithm is the maximum number of the

evaluations set to 25000 in this simulation. The stopping criteria of the SM-MOEA/D
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algorithm is either the maximum number of iterations set to 300 iterations with 100

population size ( the total number of repetition is 300*100) in our simulation or if there is

no further enhancement obtained for the values of the objective functions after a defined

upper limit for the number of iteration (100 iterations in this simulation).

6.3.7 Output

After sorting the output individuals depending on the objectives values (6.1), (6.4), (6.6),

(6.7), the population with the best performance will be selected as a final result. This

result has to achieve the problem constraints ( 6.8), ( 6.9), (6.10) and (6.11). If any of these

constraints are not achieved, the algorithm removes the solution and selects another

solution, which can meet the problem constraints.

The output of both algorithms is the best feasible solution for mapping and schedule

for the VNFs of the arrival service requests. In other words, the output is the best

value for the variable xk
i j(t) for i = 1, ..., |S |, j = 1, ..., |si| and k = 1, ..., |V | along with the

corresponding objective values achieved by this variable x.

6.3.8 Complexity Analysis

The complexity for both algorithms consists of three parts: the calculation of the objective

functions, the calculation of the constraints and the calculation of the genetic operators.

For the first part, the complexity of calculating the objective functions Z1, Z2, Z3 and

Z4 are O (|S ||V |T), O
(
Q|V |2), O (Q|V |T) and O (|S ||V |T), respectively, with Q =∑|S |

i=1 si.

For the second part, the complexity of calculating the proposed problem constraints

(6.8) (6.9) (6.10) (6.11) can be calculated as follows O
(
Q|V |2), where Q =∑|S |

i=1 si.

For the last part, the complexity of the GA parameters (i.e., Iteration number, popu-

lation size) and operators (i.e., the tournament selection, crossover, and mutation) vary
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based on the problem specification; this complexity is out of the scope of this study, more

details about this complexity are available on [112].

Algorithm 3 RSAMOAD and RA-NSGA-II
1: Input:

• Network parameters:

S ,E,W ,V ,E ,F,V F, {tck,l |(k, l) ∈ E }

2: Output:

• X = {xk
i j(t)|i = 1, ..., |S |, j = 1, ..., |si|,k ∈ V , t = 1, ...,T} along with the values of

their corresponding objective functions.

3: begin:

• Generate the initial population X1, . . . , X N uniformly in random.

• for every X i = X1, ..., X N do

• if X i satisfying all the proposed constraints then

• Evaluate the proposed cost functions Z1(x), Z2(x), Z3(x) according to (6.1), (6.4),
(6.6)

• applying the genetic (i.e., representation, selection, crossover and mutation)
operators to the result

• Choosing the best Feasible Solution after applying the previous parameters

• end if

• end for

4: Selecting the best result from all populations.
5: Termination criterion:

• The Algorithm stopping criterion.

• if the stopping criterion is satisfied then,

Stop and return the final output as the best mapping and scheduling.

6.4 Experiment Result

To evaluate the performance of the (SM-MOEA/D and SM-NSGA-II) algorithms, we

conducted extensive simulations considering the VNF service chains network proposed
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in [89]. It is assumed that every virtual link has a fixed bandwidth equal to 2 Mbps.

Furthermore, the VM bandwidth is equal to 8 Mbps and the bandwidth demand (di, j) of

every service request si after processing its j-th VN ranges from 30 Kbps and 2030 Kbps.

6.4.1 Simulation set up

The number of the incoming service requests varies from 100 to 400, each of which

requests contains a VNF chain composed of at most 5 VNF different chains. We scale the

number of VMs from 10 to 40 VMs, every VM can support at most 3 VNFs of the total

number of VNFs which is 5. Theses VNFs have to include some of the common deployed

VNFs such as Firewall (FW), Detection System (IDS), Network Address Translator

(NAT), Intrusion, WAN Optimizer, Flow Monitor (FM) and Load Balancer (LB).

The simulations for both algorithms are implemented using Java and MATLAB

software and solved on a machine with Intel Xeon Gold 6150 2.7GHz, 128 GB of RAM

and Linux operating system.

6.4.2 Evaluation Scenarios

We adopt the scale of the network topologies, simulation set up and network parameters

proposed in [89, 109]. One unit of VM capacity indicates the ability to serve one VNF

chain of the service request per time, precisely

Two different network scenarios (single objective and multi objectives) and four

different network instances are provided in this section to provide insight into the

performance of both algorithms. The four different network instances consist of 100,

200, 300 and 400 service requests along with 10, 20, 30 and 40 VMs, respectively. The

first network scenario considers every proposed objective (first, second, third and fourth)

individually. The second scenario considers all four objectives functions simultaneously.
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6.4.2.1 Scenario 1

We applied all the network instances small, medium, large and extra-large along with

every objective independently. The results of the first scenario are represented in Fig. 6.5,

Fig. 6.6, Fig. 6.7 and Fig. 6.8. We can clearly see that SM-MOEA/D algorithm slightly

outperforms SM-NSGA-II algorithm in the four types of network instances, however, we

observe that these two algorithms are comparable. Overall, the figures prove that both

proposed algorithms are comparable and allow exploring nearly to the optimal solution

for every proposed objective individually, any possible combinations of the proposed

objectives (if needed) or for all proposed four objectives simultaneously.

6.4.2.2 Scenario 2

The near to optimal results obtained by applying our proposed algorithms for all objective

function values are collected in Table 6.2. It is clear that SM-MOEA/D algorithm is better

than SM-NSGA-II algorithm in terms of obtaining the near-to-optimal solution for all

the objective functions. However, the CPU computational time of SM-MOEA/D algorithm

is higher than SM-NSGA-II. It is obvious that when the number of incoming service

requests increases, the problem becomes more complicated and takes more computational

time to be solved.

6.5 Conclusion

This chapter formulates a mathematical model to find the best mapping and scheduling

for a set of incoming service requests to be processed in order through VMs/servers.

The model considers four different objectives, in particular, maximizing the acceptance

rate, optimizing link utilization, minimizing the overall processing time and minimize

the relative processing time, while the model has to satisfy the system constraints,
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Figure 6.5: The optimal solution achieved by both proposed algorithms for the first
objective value via all network instances

Figure 6.6: The optimal solution achieved by both proposed algorithms for the second
objective value via all network instances
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Figure 6.7: The optimal solution achieved by both proposed algorithms for the third
objective value via all network instances

Figure 6.8: The optimal solution achieved by both proposed algorithms for the fourth
objective value via all network instances
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Table 6.2: First, Second, Third and Fourth objective values for both tested algorithms

Alg.
Network
Instance

Z1 Z2 Z3 Z4

RSAMOEAD

S 51 15 395 0.5

M 104 61 798 0.66

L 156 134 1198 0.76

XL 208 283 1600 0.79

RA-
NSGA-
II

S 47 19 398 0.42

M 97 77 800 0.59

L 140 198 1199 0.68

XL 186 506 1600 0.65

particularly, VNF order link, traffic constraint, link capacity constraint and expiry time

constraint. Two heuristic algorithms are proposed, namely, SM-MOEA/D and SM-NSGA-

II to find the near to optimal solution for the proposed problem.
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7
MAPPING AND SCHEDULING OF VIRTUAL NETWORK

FUNCTIONS USING MULTI OBJECTIVE OPTIMIZATION

ALGORITHM

7.1 Introduction

Within the context of SDN, the problem of resource allocation for a set of incoming VNF

service requests has been the focus of many studies. As mentioned previously in chapter

2, given great flexibility provided by combining the NFV and SDN concepts, this chapter

will study the difficulty of the placement and scheduling for a set of incoming requests

since it arrived to process and transfer between multiple VM nodes running in the same

network. The topology of the network and the links among VMs are assumed to be time

invariant in this model.

By merging SDN and NFV technologies, the future internet will be a virtualized

environment in which the service providers can manage and customize the deployment
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of the VNFs into the NFV environment. SFC is an order list of network function in-

stances which need to be processed through VMs/servers according to the network policy.

Therefore, using the SFC deployment model with NFV and SDN technologies will add

more control of the traffic flows for the connected services and manage the network set

up.

Being able to determine the best mapping of the incoming service requests could allow

operators to implement more of the arrival service requests according to the admission

policies which will maximize the overall network revenues. Moreover, the ability to

find the best scheduling for the VNFs service chains of the incoming service requests

to be processed on the available VMs could allow operators to implement VNFs faster

according to their priority which will minimize the execution time and the overall cost.

A new optimization model has been developed to find the near to optimal mapping

and scheduling for the incoming VNF service requests in this chapter. This model

aims to achieve three objectives functions, namely, minimizing the transmission delays

occurring in every link, minimizing the processing capacity for every VM and minimizing

the processing delay at every VM under traffic flow, VM resource, processing start

and transmission start constraints. Solving the resulting problem by proposing an

evolutionary algorithm, the lowest delay multi-objective evolutionary algorithm based

on decomposition algorithm (LDMOAD). Simulation results illustrate that the resulting

algorithm is scalable while considering delay and it outperforms the genetic bandwidth

link allocation (GA-BA) and genetic non-bandwidth link allocation (GA-NBA) algorithms.

The main advantage of using the decomposition approach to solve the proposed

problem in this chapter is to have a good scalability and computational efficiency such

that all above mentioned objectives and constraints are met by using the updated data

received from the orchestrator. The remainder of this chapter is as below. In Section

7.2, the network model and the mathematical formulation for the VNF scheduling and
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mapping problem are provided. The MOAD-DE algorithm as the proposed solution for

the resulting multi-objective optimization problem is proposed in Section 7.3. Section 7.4

discusses the simulation results and Section 7.5 concludes the study of the this chapter.

7.2 NFV Network Model

In this section, the problem of mapping and scheduling for a set of incoming service

requests to process through different VMs is investigated. However, the scheduling

of VNFs into physical nodes is out of the scope of this chapter. Consider the network

model represented by undirected graph G = (V ,E ) where V = {vk|k = 1, ..., |V |} is the set

of VMs nodes and E = {(k, l)|k, l = 1, ..., |V |,k 6= l} is the set of virtual links between VMs.

F = { f1, f2, ..., f|F|} is the set of unique VNFs supported in the cloud. Each VM supports

a subset of VNFs denoted by V Fk for k = 1, ..., |V |. The sequence of network service

requests is denoted by S = [s1, ..., s|S |]. Each request si ∈S for i = 1, ..., |S | contains a

sequence of VNFs denoted by f i, j for i = 1, ..., |S | and j = 1, ..., |si|, where f i, j ∈ F. f i, j is

the j-th VNF of the i-th incoming service request (si). In this model, we assume that

every service request si for i = 1,2, ..., |S | has different number of VNFs. Let ck for

k = 1,2, ..., |V | be the processing capacity of k-th VM. This capacity can be defined based

on memory and computing capabilities of physical machine that run each VM. For every

VL a transmission capacity can be define as tck,l for k = 1,2, ..., |V | and l = 1,2, ..., |V |.
Let di, j for i = 1,2, .., |S | and j = 1,2, .., |si| be the bandwidth demand of processing the

j-th VNF of the i-th arrived service request. And Rk,l
i, j for i = 1,2, .., |S |, j = 1,2, .., |i|,

k = 1,2, .., |V | and l = 1,2, .., |V | be the traffic flow of the j-th VNF of the service request

si passing through (k, l)-th link.
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7.2.1 Minimizing the transmission delay

One of the main objectives in this chapter is to minimize the transmission delay experi-

enced by the traffic flow of the arrived request si using the corresponding link (k, l) (where

k, l ∈ |V | and k 6= l) to transfer between VMs. Let di, j for i = 1,2, .., |S | and j = 1,2, .., |si|
be the amount of data (in bits or packets) needed to process the j-th VNF of the i-th

arrived service request. The transmission delay of link (k, l) link corresponding to i-th

service request can be evaluated by di, j

tck,l−Rk,l
i, j

. We define variable βi, j for i = 1,2, ..., |S |
and j = 1, ..., |si|−1 as the starting time of the transmission between the VMs performing

the f i, j and the f i, j+1, respectively. Note that f i, j is the j-th VNF of the i-th incoming

service request si. Then, the mathematical formulation for this objective can be described

as follows:

(7.1) MinZ1(X )=
|S |∑
i=1

|si |−1∑
j=1

βi, j +
|V |∑
k=1

xk
i, j ·

|V |∑
l=1

di, j

tck,l −Rk,l
i, j



(7.2) xk
i, j =



1 If the J-th VNF of request

si can process on VM node k

0 otherwise

7.2.2 Minimize the processing capacity

This objective adopts the idea of fair distribution for processing capacity to process all

incoming network service requests si according to their priorities. Then, the principle

goal of this objective is to find the correct VM to process the j-th VNF of the i-th service

request si according to the current status of the VM processing capacity and bandwidth

demand di, j of the incoming service requests. Consequently, this process will maximize

the sufficient capacity for every VM which will maximize the system sufficiently. Formally,
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this objective can be described as follows.

(7.3) Max Z2(X )=
|V |∑
k=1

ck −
|S|∑
i=1

|si |∑
j=1

di, j · xk
i, j

7.2.3 Minimizing the processing delay

When a sequence of incoming service requests are sent to be processed on VMs, a

potential delay may occur during the processing operation. The principal advantage

of this objective is to measure the quality of the system by minimizing the processing

delay for every service request. This advantage enables the VM to process the incoming

service requests quickly. Let us define the starting processing time for j-th VNF of service

request si as αi j. The mathematical formulation for this objective can be described as

follows.

(7.4) MinZ3(X )=
|S|∑
i=1

|si |∑
j=1

αi, j +
|V |∑
k=1

xk
i, j · qk

i, j

Where qk
i, j is a processing delay occurred for the j-th VNF of service request si while its

processing on the k-th VM.

7.2.4 Constraints

In this model, a set of network constraints are set to meet a feasible solution of the

proposed algorithm. The system constraints are described as follows.

(1) The traffic flow Rk,l
i, j for the j-th VNF of the incoming service request si for

i = 1,2, ..., |S | passing through the (k, l)-th link should not exceed the link capacity tck,l .

Formally, Rk,l
i, j (t)

(7.5)
∑
k

∑
l

xk
i, j ·Rk,l

i, j < tck,l

133



CHAPTER 7. MAPPING AND SCHEDULING OF VIRTUAL NETWORK FUNCTIONS
USING MULTI OBJECTIVE OPTIMIZATION ALGORITHM

(2) There is at most one VM node selected to serve the j-th VNF of service request si for

j = 1,2, ..., |si| and for i = 1,2, ..., |S |. Formally,

(7.6)
∑
k

xk
i j ≤ 1

(3) The j-th VNF function of service si for i = 1,2, ..., |S | must start to process on k-th VM

after the previous VNF function j−1th of the same service request si finish its processing.

This constraint ensures that all VNFs of the same service requests should be processed

in order. Formally,

(7.7)
|S |∑
i=1

|si |∑
j=2

βi, j−1 +
|V |∑
k=1

xk
i, j−1 ·

|V |∑
l=1

di, j

tck,l −Rk,l
i, j

≤αi j

(4) The traffic of the j-th VNF for the same service request si after finishing its processing

on k-th VM should transfer from this k-th VM to the next l-th VM in order. This

constraints ensures that j+1-th VNF should not start to transmit to the next VM except

if the j-th VNF of request si complete their processing on k-th VM. Formally,

(7.8)
|S |∑
i=1

|si |−1∑
j=1

αi, j +
|V |∑
k=1

xk
i, j · qk

i, j ≤βi, j

7.2.5 Example of Mapping and Scheduling for a set of incoming

service requests

A clear example of the proposed problem is shown in Figures 7.1 and 7.2. Consider the

network structure consists of 7 VMs, and every VM supports different VNF functions on it

(eg. 1. Firewall, 2. Video Transcoder, 3. Proxy 4. Nat, 5. VPN and 6. Load Balancing). A set

of incoming service requests s1, ..., s4 arrives at time t = 0 asking to be processed in these

VMs as shown in Fig. 7.1. Every service request contains a subset of VNFs in different

order s1 = { f6, f3, f4, f5, f1}, s2 = { f4, f2, f3, f5, f1, f2, f5}, s3 = { f2, f1, f5}, s4 = { f6, f3}. If these

VNFs distribute to process on VMs randomly, then some of the VMs will be busy by

processing these VNFs and others will not. For instance, the first VNF of s1 (i.e., f6) is
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Figure 7.1: Network structure and one of the possible mappings for s1

Figure 7.2: Illustration of the possible mappings and schedules for the incoming service
requests
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processed in VM2, then the second, third, fourth and fifth VNFs of s1 (i.e., f3, f4, f5, f1)

are processed in VM1,VM4,VM6,VM7, respectively, as shown in Fig. 7.1. It is assumed

that each VM can process one VNF at a time. During the transmission of these VNFs

from one VM to another, a transmission delay may occur for some of these VNFs as

shown in Fig. 7.2. The first VNF of s2 (i.e., f3) arrives to the cloud at the same time

t = 0, this VNF can be processed in VM2 or VM4. In the case of assigning this function

( f3) to VM2 as shown in Fig. 7.2, it has to wait one time slot to be processed (as the

VM2 is still processing the first VNF of s1). However, the function can be assigned to

VM4 to avoid this delay. Furthermore, during the processing of these VNFs on VMs, a

processing delay can occur for these VNFs as shown in Fig. 7.2, the second VNF f2 of s2

is assigned to V M2 but it has to wait one time slots to start its processing. To optimize

all mentioned problems in this example, the first (7.1), second (7.3) and third objectives

(7.4) are provided in this study.

7.3 Proposed Algorithm

We use decomposition approaches explained previously in chapter 3 to solve the multi-

objective optimization problem proposed in this chapter. It decomposes the problem and

solves it as multiple single objective problems. Authors in [101] provided a framework of

CMOEA/D-DE-ATP for solving constrained optimization problems. we found CMOEA/D-

DE-ATP is the best algorithm which can be used to solve the proposed problem (as single

and multi-objective) in this chapter.

Hence, we proposed LDMOAD/DE algorithm based on CMOEA/D-DE-ATP algorithm,

Fig. 7.3 shows the flow chart of the LDMOAD/DE algorithm procedures that consist of the

following steps. Firstly we initialize the network parameters, number of incoming service

requests (S ) and the weight W for every service request, VNFs number of each request,

VMs number (V ), ck is a processing capacity for every node, set of VNFs supported by
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Output final results Stopping Criteria

Initialize the population

Select the parents and perform crossover and
mutation to create offspring population

Evaluate the individual fitness for the
initial population 

Select ranked population

Evaluate the objective functions

Combine parents and offspring, then
rank the population

NoYes

Specify the problem and
network parameters 

Start

Figure 7.3: The flow chart of the proposed algorithms procedures

each VM, number of virtual links between VMs (E ), the transmission capacity for each

of these links {tck,l |(k, l) ∈ E }.

The stopping criteria has been determined in the LDMOAD/DE algorithm depends

on the number of population size (set to 100) and the number of iterations (set to 300), so

the total number of repetition is 300*100. Moving to step 4, the proposed algorithm uses

binary values as representation operator to represent the main network variable xi jk

which describes if the VNF function of request si can process on node k. The selection
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operator which is used in this algorithm mating selection. The proposed algorithm uses

DE operator presented in [113]. Finally, the proposed algorithm set the rate equal to

pm = 1/(Parametersdimension).

The algorithm will check the feasibility for output solution by checking all constraints

proposed in subsection 7.2.4. The final output will be the near to optimal mapping and

scheduling for the incoming requests.

Two main process should be taken into consideration while we calculate the com-

plexity of the proposed algorithm. First LDMOAD algorithm, the algorithm should map

the incoming requests to the available VMs. This operation requires O
(
Q|S ||V |2) where

Q =∑|S |
i=1 si computation as shown in Alg. 4. Second GA algorithm, the complexity of the

GA algorithm is changeable and depends on the network parameters (e.g population size,

number of objectives).

7.4 NUMERICAL RESULTS

The network structure in this chapter contains four network cases: small, medium, large

and extra-large. The small network covers 100 service requests (with service request

demand distributed frequently from 1 to 100 Kb, respectively) and 10 VM nodes. The

medium network contains 200 service requests (with capacity distributed regularly from

1 to 200 Kb, respectively) and 20 VM nodes. The large networks consist of 300 network

requests (the capacity spread frequently from 1 to 300 Kb) and 30 VM nodes. Finally,

the extra-large network is composed of 400 service requests (the size is spread regularly

from 1 to 1000 Kb) and 40 VM nodes. The VM node processing capacities in all network

structures set 1000 Mb (except for the extra-large network set 2000 Mb).

The simulation results in this study are near-to-optimal scenarios proposed in [109].

The simulations are implemented using the MATLAB program on Intel Xeon Gold 6150

2.7GHz Core, 2.7GHz, with 128 GB of RAM running Linux platform. Then, we modified
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Algorithm 4 LDMOAD/DE
1: Input:

Network parameters (|S |, f i j, |V |, |E |ck, tck,l ,R
k,l
i, j ,di, j). The algorithm stopping crite-

rion.
2: Output:

The set of feasible solutions which represent the mapping and scheduling result for
each VNF of the incoming service request {X1, ..., X N }.

3: Define:
X = xk

i j, ϕ=Φk,l ;
4: Initialize:

xi jk = {0},Φk,l = {0}
Generate the initial population X1, . . . , X N for the proposed problem by using a
uniform random sampling.

5: for service request i = 1 : |S | do
6: for VMs k = 1 : |V | do
7: for VL l = 1 : |E | do

8: Calculate the current status capacity of every V M node → Ck
9: Evaluate the fitness values for the three objectives (FV )i = F(X i).

10: Applying all the genetic operators to the results.
11: Calculate the start transmitting and processing time. (Algo. 5)
12: Find the best feasible solution for all objective(s) from all population.
13: end for
14: end for
15: end for

(GA-BA) and (GA-NBA) algorithms [109] and applied them to the main function of the

CMOEA/D-DE-ATP algorithm to compare our results with the results of both (GA-BA)

and (GA-NBA) algorithms.

For a fair comparison, we applied the first and second objectives, and all extra constraints

in subsection 7.2.4 over (GA-NBA) and (GA-NBA) algorithms, as both algorithms only

support processing delay objective. Moreover, every k-th VM node support at most 3

VNFs functions on it, while every incoming request has a fixed number of VNFs (set

to 5) which are required to process on these VMs. The expected processing delay time

for every VNFs to be processed on VM nodes is set to be chosen randomly from [1, 10]

milliseconds (ms). Fig. 7.4, 7.5 and 7.6 show the results for the first objective Z1 only,
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Algorithm 5 Processing and Transmission Starting Time
1: Input:
2: The current available time for every VM
3: The current schedule (S, f i j,K , ck, N, A,D) (|S |, f i j, |V |, |E |ck,di, j).
4: Output:
5: The best processing starting time qi j for the j-th VNFs of the i-th service request to

process in the available VM.
6: The best transmission starting time αi j for the j-th VNFs of the i-th service request

to transmit using the available virtual link.
7: Define:
8: t: the index of the available time in each V M.
9: stk,l : the index of the starting time.

10: tdi j−1: transmission delay of j−1th VNF chain of service request si
11: for k = 1 : V Ms do
12: for t = 1 : T (time intervals do
13: Sort the current available time t for every k-th VM by the earliest availability

(st11 < st12....< st1t).
14: if the j-th VNF of the service request si is the first of network service ( j = 1)
15: if xk

i j q
k
i j < stkt

16: qi j = stkt
17: break;
18: else qk

i j ≤ stkt&αi j−1 + tdi j−1 ≤ qi j qi j =αi j−1 + tdi j−1
break; qi j = stkt

19: end for
20: end for
21: for all V.links m = 1 : V .l inks number do

Sort the current available time t for every V.links connected with VMs by the earliest
availability and assign it to start time stkt. For instance the first virtual machine,
st11 < st12....< st1t

22: for all time interval t = 1 : TimeInterval do
jth VNF chain of service request si is the first of network service (j = 1) xk

i j q
k
i j < stkt

qi j = stkt
break;
qk

i j ≤ stkt&αi j−1 + tdi j−1 ≤ qi j qi j =αi j−1 + tdi j−1
break; qi j = stkt

23: end for
24: end for
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the second objective Z2 only and the third objective Z3 only using the tested algorithms

via a different number of incoming service requests (different network type). We can

clearly see that Z1 and Z3 values increase gradually when the number of the incoming

service requests increases, while there is a slight difference in Z2 values using the tested

algorithms.

The experimental results in Table 7.1 illustrate the optimal values achieved for objec-

tives Z1, Z2 and Z3 simultaneously by applying the proposed algorithm LDMOAD/DE,

the modified GA-BA and GA-NBA algorithms. For instance, the optimal solution for

the three objectives obtained by LDMOAD/DE algorithm in the large network instance

is 17767 (ms), 2789 Kbps and 18235 (ms) with 10235 CPU execution time per run by

applying LDMOAD/DE algorithm. While the optimal results obtained by applying a mod-

ified GA-NBA and GA-BA algorithms in large network instance for the three objectives

are 19896 (ms), 5248 Kbps, 19632 (ms) with 12632 CPU execution time and 162527,

2096, 162643 with 12993 per run CPU time respectively. We can clearly see that our

LDMOAD/DE algorithm is better than GA-BA algorithm in both objective values and

CPU running time.

Moreover, table 7.1 reveals that there has been a steady rise in the execution time for

all algorithms by increasing the network size. However, there is still a small difference in

running time between the three algorithms. For instance, the running time by applying

GA-NBA algorithm is more than the execution time of LDMOAD/DE algorithm in

all network instances due to the way of calculating the processing and transmission

starting time. Moreover, the running time by applying GA-BA algorithm is more than

the execution time of GA-NBA algorithm in all network instances due to the way of

calculating the bandwidth allocation for every virtual link. To conclude, it is clear that

our LDMOAD/DE algorithm performs better than the GA-BA and GA-NBA algorithms

in both objective Z1, Z2 and Z3 values and the CPU execution time for LDMOAD/DE
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algorithm is less than the modified GA-BA and GA-NBA algorithms.

Table 7.1: First, Second and Third objective values for LDMOEA/DE, modified GA-NBA
and modified GA-BA algorithms and CPU execution time

Alg.
Network
Instance

Z1 Z2 Z3 CPU time
(s)

LDMOEA/DE

S 5353 1524 5378 243

M 11448 2798 11320 2954

L 17767 4106 17285 10365

XL 23330 5921 23932 18235

Modified
GA-NBA

S 7346 1513 7456 350

M 12639 3352 12584 3562

L 19896 5248 19632 12632

XL 29536 7096 29480 20256

Modified
GA-BA

S 6876 1507 6934 423

M 11782 3025 11778 3765

L 18627 5008 18643 12993

XL 27660 6682 27611 20882

7.5 Conclusion

This study presents a multi-objective mapping and scheduling algorithm for incoming

NFV service requests. Given a set of VMs in the cloud and connected to each other

using virtual links, every VM supports particular VNFs and has a particular properties

(capacity, cost, and so on). We provide a mathematical formulation for the proposed

problem and solve it as a multi-objective optimization problem using a LDMOEA/DE

algorithm. The proposed algorithm determines the optimal scheduling and mapping

for these incoming requests. There are three main objectives that are proposed in this

chapter: minimizing the transmission delays occurring in every link, minimizing the

processing capacity for every VM and minimizing the processing delay at every VM. The
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Figure 7.4: The optimal solution achieved by both proposed algorithms for the first
objective value via all network instances

Figure 7.5: The optimal solution achieved by both proposed algorithms for the second
objective value via all network instances
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Figure 7.6: The optimal solution achieved by both proposed algorithms for the third
objective value via all network instances

experimental results illustrate that the performance of LDMOAD/DE is better than that

of the GA-NBA and GA-BA algorithms.
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8
MULTI OBJECTIVE RESOURCE OPTIMISATION FOR

NETWORK FUNCTION VIRTUALISATION REQUESTS

8.1 Introduction

NFV is a new research concept for both academia and industry; however, it faces many

challenges to be improved by the network operators. One of the main challenges faces

NFV-RA problem addressed in this chapter is to find the optimal placement for a set of

incoming requests with VNF service chains to serve in suitable VMs such that a set of

conflicting objectives are met. Mainly, the focus is placed on maximizing the total saving

cost by increasing the total CPU utilization during the processing time and increasing

the processing time for every service request in the cloud network. Moreover, we aim to

maximize the admitted traffic simultaneously, while considering system constraints.

SFC is a series of network functions that need to pass through a specific service flow.

SFC provides flows classification and flow routes policy according to the availability

of the network status. Several policies for the VNF service chains set up for different
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services should be considered.

For example, take a network structure of VMs with limited resources (e.g. VMs’

bandwidth, CPU type, performance) and virtual link (each virtual link connected be-

tween two VMs is assigned with a limited capacity) as shown in Fig. 8.1. If VM node n2

(k ε [1,K]z) runs { f1, f2} on top of it, that means only VNFs chains f1and f2 can be exe-

cuted or served at this VM node. If five different VNF requests s1 = [ f5, f2, f1 f3, f4],s2 =
[ f3, f2, f4, f5, f1],s3 = [ f2, f4, f1, f5, f3],s4 = [ f1, f2, f4, f3, f5] and s5 = [ f4, f3, f5, f2, f1] arriv-

ing to the cloud need to be processed through the available VMs/servers. According to

network structure, the node n2 will run only functions f1 and f2 from these incoming

request then will transfer it to another VM to process the other VNFs of the same request.

During the processing of VNF service chains in VMs/servers, many physical resources

(running time and CPU usage) can be utilized. Running VNFs in the data centre using

commercially available hardware is significantly more cost effective than using costly

dedicated hardware middle-boxes. Therefore, finding the best placement for the arrival

requests with VNF chains to be processed on a suitable VM hosted on data-centres is a

timely and vital problem which needs further research.

In this chapter, we formulate the problem as a multi-objective optimization problem

and use a Resource Utilization Multi-Objective Evolutionary Algorithm based on De-

composition (RU-MOEA/D) algorithm to find a near-optimal solution for the proposed

problem considering the two objectives simultaneously. Extensive simulations are carried

out to evaluate the effects of the different network sizes, genetic parameters and the

different number of resources on the acceptable ratio of the arrival VNF service chains

to run in the available VMs. The empirical results illustrate that the proposed algorithm

can solve the problem efficiently and compute the optimal solution for two objectives

together within a reasonable running time.

This chapter is organized as follows: Section 8.2 presents a network formulation and
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Figure 8.1: NFV Network structure

system modelling for the proposed problem. section 8.3 explains the proposed algorithm

to solve the problem. Section 8.4 proposes the simulation results and the evaluation of

the proposed solution and other proposed in the literature. Finally, section 8.5 conclude

the main contribution proposed in this chapter.

8.2 VNF Mapping and Scheduling

In this section, we study resource optimization problem in NFV network structure, this

structure is composed of a set of VMs/servers to run the arrival VNF service requests. Let

M = [m1, .....,mk] defines the final installed number of VMs in the cloud network, every

VM has a capacity cm(m ∈ [1,k]z) which can set by network operators or using a specific

evaluation system. These VMs are connected together perfectly via set of virtual links

vlb(b ∈ [1, L]z), (the placement of these VMs in different servers and the final structure

to connect between these VMs together using virtual links is out of the scope of this
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chapter).

We assume that the virtual links can transfer only one traffic flow Ri per unit time un-

til the complete transmission of all chains of the current network service request is sent.

A set of VNFs are supported by the installed VMs can be defined by F = [ f1, f2, ...., fB].

8.2.1 Network Formulation

Assume a sequence of incoming service requests are defined as R = [r1, r2, ...., rd]z, where

D defines the total number of the incoming service requests. Each service request r i ∈ R

∀i ∈ [1,D] contains a set of VNFs in different order.

Let f i j ∀i ∈ [1,D], j ∈ [1,H] defines the j-th VNF function of network service r i. Every

request has a demand capacity sci(i ∈ [1,D]), and each request has assigned with traffic

flow ti to transfer from the source VM to the destination. The model proposed in this

chapter considers the total buffer required for the j-th VNF of the service request r i as

τi j.

8.2.2 Definition of Variables

we define xi jk to describe the assignment for the j-th VNF of the request r i to serve on

the available VM.

(8.1) xi jk =



1 If the J−th VNF of the incoming service request i

is accepted to run at k- th VM

0 otherwise

Let Φi jk (i ∈ [1,D]z, j ∈ [1,H]z,k ∈ [1,K]z) describes the estimated processing time

which required to process the j-th VNF functions of each service request r i through the

k-th VM. And, Ψi (i ∈ [1,D]z) defines the estimated processing time which required to

process all request si.
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We define tsi and te i(i ∈ [1,D]z) to define the starting and ending processing time for

j-th VNF chain of request r i. Simultaneously,αi jindicate the starting forwarding time

for j-th chain traffic flow of request r i passing through v.links lm(m ∈ [1, L]z).

8.2.3 Problem constraints

in this model, a set of system and network constrains are presented and applied for any

solution to be feasible. These constraints are described as follow.

1. CPU usage constrain: the demand CPU U i j for j-th VNF chains of request r i∀i ∈
[1,D] to be run in the VM should not be exceed the total usage Uk of every VM

node mk (k ∈ [1,K]z).

(8.2) (δi j ≤Uk)

2. VMs available capacity constraint: The incoming requests r i∀i ∈ [1,E] has a traffic

flow demand rate Ri, this flow to run in available VM node nk(k ∈ [1,K]z) should

not exceed the current available capacity for this VM cm(k ∈ [1,K]z). Formally,

(8.3)
∑

i
xi jk ∗Ri ≤ cm ( j ∈ [1,H]z,k ∈ [1,K]z)

3. VM processing constraint: for j-th VNF chain of incoming request service r i(i ∈
[1,D]z), should be served by at least one available VM. Formally,

(8.4)
∑
k∈K

xi jk ≤ 1

8.2.4 Optimization Objective

• Maximize the total saving cost

While every VNF function of network service request r i ∈ R is processing through VM

node mk (k ∈ [1,K]z), there are physical network resources (both CPU usage and time)
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utilized during this processing time, we define it as a cost in this model. First, CPU

utilization is used to predict the system performance and calculated as sum of work

controlled by a central processing. Let Uk denotes the CPU capability of every VM node

nk (k ∈ [1,K]z).

The core advantage of this objective is to count the total income saving in our system

when the algorithm finds the optimal placement for incoming requests and utilize the

network physical resources while its processing in a suitable VM node.

In other words, we need to maximize CPU capability Uk of every VM node nk (k ∈
[1,K]z) after serving all j-th VNF chains τi j of request si ∀i ∈ [1,E] and also maximize the

total processing time for every arrival requestsi∀i ∈ [1,E] through VM nodes. Formally,

the mathematical formula can be describe as follows.

(8.5) Max Z1(X )=
E∑

i=1

H∑
j=1

K∑
k=1

[(Θ∗ (Uk −τi j))+ϕ∗ (tsi − te i)]∗ xi jk

s.t. constraint (1) to (3)

where Θ,ϕ are constants proposed to scale the total saving costs for resources by

utilizing the CPU and processing time. In this model, these constraints are set to 0.2.

• Maximize the admitted traffic

On one side, we aim to maximize the total quantity of admitted traffic to serve in the

suitable VM nodes as expressed in equation. But on the other side, each VM can accept

only a limited number of incoming VNF requests due to resource constraint in every VM

including storage, CPU, and memory. In this model, we consider only CPU capability.

In order to increase Z2, it requires increasing the processing rate in every VM which

will lead to higher costs. Therefore, the main goal is to increase the incoming sufficient
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flow rate while considering a CPU capability for every VM. This objective is described as

follow.

(8.6) Max Z2(X )=
E∑

i=1

H∑
j=1

K∑
k=1

(Υk ∗ xi jk)− sci

s.t. constraint (1) to (3)

where Υk define the unit cost of VM node nk (k ∈ [1,K]z) resource consumed by

running the incoming requests sci

8.3 Proposed Algorithm

In this section, the proposed RU-MOEA/D algorithm is studied in details to get the near

optimal placement for arrival VNF chains.

We used the updated framework of the CMOEA/D-DE-ATP schema to solve constrains

multi objective VNF chains placement problem. The framework contains all the standard

techniques of the genetic algorithm: generating an initial population, representation,

selection, crossover, and mutation.

We first initialize the problem parameters (total iterations, decomposition method of

choice, total function evaluation number). The binary code is used to represent variable

xi jk which defines the VNF function of request r i if can process on node nk or not. After

that, construct an initial population, representing different individuals of the population,

selecting the fittest individuals. In our (RU-MOEA/D) algorithm, the population size

is set to 300 (for each population size, the algorithm repeats 300 iteration, so the

total number of repetition is 3000 (300*100)), and the initial populations are chosen

randomly. Applying a crossover operation that mates individuals, a mating selection is
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used for selection operation, and DE operator is used for crossover operation. Finally,

(1/parameters dimension) is used as a mutation rate in this schema.

The algorithm will stop when it reaches the maximum number of iterations (300

iterations in this model (can be set by the provider)) or only after 100 iterations if

there is not any enhancement in the value of the objective. After that, the termination

criterion checks the new solution to decide whether the search should stop or continue at

every iteration. The final output should satisfy the problem constraints mentioned in

subsection 8.2.3, otherwise, the solution will be removed.

8.4 NUMERICAL RESULTS

In this section, we implement RU-MOEA/D algorithm, after modifying the main function

of the CMOEA/D-DE-ATP algorithm and apply the simulation settings including the

genetic standard techniques explained in the previous section, network topology, and

algorithm parameter settings. In RU-MOEA/D, we provide a heuristic approach to

maximize and organize the distribution of the incoming VNF chains and find a suitable

VM to run on top of it with the cheapest cost. If a VM node has enough resources to host

the incoming VNF chains, then the program automatically search to another valid and

available VM to run these VNF chains in it.

To evaluate the performance of the RU-MOEA/D algorithm, three different network

structures were presented to find the optimal solution of our proposed problem. Firstly,

we applied the proposed algorithm to evaluate the first objective and find the maxi-

mum number of VNF chains that can run in installed VMs and achieve the minimum

cost (explained in detail previously in first objective). Second, the proposed algorithm

implemented to evaluate only the second objective while considering the network con-

straints. Finally, we present simulation results and explanations for the two objectives

simultaneously of the proposed algorithm.
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Simulation set up: We implement all proposed algorithms in MATLAB and run

the experiments on Intel Core i7-5300U CPU, with 32GB of RAM running on Redhat

platform. In these network instance, the network contains 10 VM nodes (fully connected

between virtual network), and the network service sizes are distributed uniformly 10

KB to 1600 KB respectively depending on their number in every topology. The VM

capacity is set to be 10 Mbps, and the link bandwidth is put equally 1 Mbps. Moreover,

the total capacity set for every virtual link equals 1 Mbps. Moreover, we assume that

the processing time is chosen from time set [0, 10] milliseconds(ms), and the processing

delay is set from time [10, 20].

Evaluation: In this model, we used the platform of genetic non-bandwidth link allo-

cation (GA-NBA) algorithm presented in [109]. We adapted this scheme and applied it

in the main function of MOEA /D-DE algorithm to achieve a fair comparison between

two algorithms. Furthermore, we added the network topology, objective function, and

constraints to the algorithm.

Table 8.1 explains the final output near-optimal solutions for the first objective and

second objectives achieved by implementing the proposed algorithm via different no. of

VNF chains. We can clearly see that the execution time for our schema RU-MOEA/D is

less than the running time in GA-NBA algorithm. This is mainly due to the function

used to calculate the start processing and transmission time. For example, the execution

time for 100 requests is 56 second (s) for RU-MOEA/D scheme while it is 240 (s) for

GA-NBA algorithm.

The final outcomes are shown in Fig. 8.4 which were achieved from 30 trials. We can

see that our approach with RU-MOEA/D performs slightly better than the outcome of

GA-NBA, for instance when the no. of requests are 200, the first and second objectives

values are 4053 and 8421 respectively ac hived by our RU-MOEA/D algorithm, while, the

first and second objectives values are 3990 and 8359 respectively achieved by GA-NBA.
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The core advantage of the algorithm is that we can use it to find the optimal solution for

single or multi objectives problem at the same time. For instance, fig. 8.4 summarizes

the final results of the first objective only when we applied both algorithms to solve the

problem via different number of arrival requests. The graph shows that there has been a

gradual increase in the value of objective Z1 achieved by applying RU-MOEA/D scheme.

Table 8.1: Near optimal solution values achieved for two objectives simultaneously

Alg. Service
No.

Z1 Z2 CPU
time (s)

RU-MOEA/D

50 300 885 36

100 2119 5762 56

150 3237 7961 78

200 4053 8421 102

250 5137 9368 131

300 6239 9856 163

GA-NBA

50 278 803 41

100 1198 3707 240

150 3139 7887 365

200 3990 8359 523

250 5089 9275 749

300 6165 9345 163

Similar to the objective Z2, we applied both algorithms to find the optimal solution

for objective Z2 as shown in Fig. 8.4. What can be clearly seen in this figure is the slight

difference between the two objective values but RU-MOEA/D scheme is better than

GA-NBA in most of the test instances.
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Figure 8.2: Near optimal VNF chains placement achieved by finding the best values for
the first and second objectives together through various service requests number

Figure 8.3: First Objective values via different numbers of incoming service request
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Figure 8.4: The outperform of the proposed algorithms by achieving the near to optimal
solution for the second objective value after changing the number of incoming service
requests

8.5 Conclusion

In this chapter, we considered one of the main problems faced by NFV which is to find

the best placement for the incoming VNF service chains to process through suitable

VMs with the aim of maximizing the CPU utilization of the machines running in the

datacenters and minimize the network cost simultaneously. We formulated the mathe-

matical model for the two objectives and considering system and network constraints.

We proposed a heuristic RU-MOEA/D algorithm to find the near optimal solution for

both objectives simultaneously with low computational complexity compared with the

GA-NBA algorithm.
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CONCLUSION AND FUTURE WORK

9.1 Conclusion

VNF service requests resource allocation is a vital problem to be solved for mapping and

scheduling incoming service requests in the NFV environment. This thesis has presented

the implementation and evaluation to find the near-to-optimal solution for mapping and

scheduling of VNFs of the incoming service requests.

Assume the NFV environment consists of a set of VM nodes each of which has specific

properties and supports a particular number of the unique VNFs, and also a set of

incoming service requests, each of which has a predefined non-negative weight, for which

of this weight reflects the request priority.

A formal mathematical formulation for different network scenarios and several

optimization strategies have been presented. We studied the relationships of mapping

the incoming service requests to the available VMs then finding the best schedule for

the VNFs of these requests to process in order on different VMs. Moreover, we proposed

157



CHAPTER 9. CONCLUSION AND FUTURE WORK

different network constraints and several approaches to cover all the network scenarios

for this problem.

The first formulation aims to maximize the number of accepted incoming service

requests, and to minimize the link utilization and the overall processing time of ser-

vice requests, while considering the capacity of the links between VMs, as well as the

forwarding transmission and processing delays constraints. The developments of the

second goal consider the scenario of accepting different service requests which arrive to

the cloud periodically. The developments of the optimization problem have been done by

maximizing the acceptance rate of the non-uniform arrival service requests, minimizing

the number of bottleneck links and the overall processing time.

The optimization model of the third goal has been developed to consider the uniform

and non-uniform arrival of the incoming service requests and also the model considers the

expiry time of the incoming service requests to be processed in the VMs. The model aims

to achieve four objectives functions, namely, maximizing the acceptance rate, minimizing

the number of bottleneck links, the overall processing time and the relative processing

time, while considering the VM capacity, link traffic, VNF’s order, expiry time and link

capacity constraints.

The optimization model developed in the fourth formulation minimizes the processing

delay at every VM, the transmission delays occurring at every link, and processing

capacity of every VM, while taking into consideration the delay constraints. In the fifth

and final scenario, the optimization model aims to minimize the processing time for every

accepted service request, and maximize the number of accepted service requests, while

considering the system constraints, including the processing capacity of the VMs.

All five scenarios have been addressed as both a single-objective and a multi-objective

optimization problem where two different evolutionary algorithms based on genetic

algorithm have been applied for solving both cases. In particular, the two algorithms are
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based on multi-objective evolutionary algorithm based on decomposition (MOEA/D), and

Non-dominated Sorting Genetic Algorithm II (NSGA-II).

The numerical simulations show that the proposed algorithms solve the first, second

and the third scenario efficiently and converge to the near to optimal solution. With

respect to the last two scenarios, the numerical evaluations demonstrate that the devel-

oped algorithm are scalable and that outperform the evolutionary algorithms proposed in

the literature, the GA-BA and GA-NBA algorithms. The execution times of all proposed

algorithms are also analyzed for all five scenarios.

9.2 Future Work

The research of optimizing NFV resource allocation is largely needed for deployment of

future network architectures based on NFV. The scope of this research topic provides

many directions for future work:

• Propose an organized way to select a suitable network link and VM elastically

depending upon the number of service requests, VNF chain demands and network

constraints. In particular, determine the best route for VNFs for each service

request to be transferred between VMs given network link availability. Further,

identify the best VM to process VNFs for arriving service requests according to VM

capacity and usage. The solution should achieve multiple objectives simultaneously

and also check whether the VNFs for arriving requests should be deployed through

additional VMs or be deployed through resources provided by existing VMs.

• Develop a new model that combines VNF-FGE with mapping (locations of the VNFs

to be processed) and scheduling (time for VNFs of arriving service requests to start

transmission or processing) problems presented in this thesis. This combined

model would aim to identify the best mapping and scheduling of incoming service
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requests. Further it would simultaneously find the best deployment of VNFs to be

executed through different VMs. The new model would explore service execution

time, network performance and costs (processing and transmission).

• Propose an efficient scheme to deploy VNF chains across VMs and effectively

schedule the arriving service requests to be processed by the VMs. This should

maximize utilization of VMs, minimize the transmission and processing of each

VNF for each service request and simultaneously minimize the execution time to

successfully process these service requests.

• Investigate the performance of different genetic algorithms by applying different

GA operators to solve the VNF-RA problem. Given the outcomes of the results,

choose the best selection, crossover, and mutation operators to be applied in the

NFV-RA algorithms.

• Propose an efficient algorithm to transmit the VNFs for individual service requests

between VMs, such that varying objectives such as operating cost, energy-saving,

failure recovery, and load balancing may be met.

• Explore other improvements that could be achieved by applying and testing the

proposed algorithms using a real test-bed scenario. The results obtained from

this real test-bed scenario will help further development of NFV-RA to mapping,

scheduling and routing problems.
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