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ABSTRACT

Locomotion dynamics of agile canines

by

Hasti Hayati

Principal supervisor: Prof David Eager

Co-supervisors: Dr Paul Walker and Dr Terry Brown

Greyhounds are the fastest of all canine breeds, capable of attaining 70 km/h in

30 metres. The greyhound’s unique sprinting ability has made it an elite sprinter

and racing animal throughout history. Greyhounds sustain specific injuries, mainly

skeletal, that are believed to be race-related and are rarely seen in other breeds

of dogs. This dissertation focuses on studying the locomotion dynamics and foot-

surface interaction of greyhounds. Accordingly, a thorough review was conducted

of the literature on severe musculoskeletal injuries in greyhounds, factors contribut-

ing to injury in greyhound racing, different methods of measuring the locomotion

dynamics of legged mechanisms, and different approaches to simulating legged loco-

motion. This review is presented in Chapter 2. Chapter 3 outlines common types

of severe race-related injuries in racing greyhounds drawn from two years’ worth

of injury data collected on New South Wales greyhound racing tracks by qualified

on-track veterinarians between January 2016 and December 2017. In Chapter 4

the method used to study the functional properties of greyhound race track sand

surfaces is described, and the findings of the effects of altering the moisture content

and rates of compaction on the dynamic behaviour of sand surfaces are presented

and compared with findings from relevant literature. The experimental method

used to derive the stiffness and damping coefficients of sand samples is explained in

detail. Chapter 5 shows how the galloping dynamics of greyhounds were measured

using a single Inertial Measurement Unit (IMU). The IMU which was equipped with

a tri-axial accelerometer was embedded in a pocket located approximately on the



greyhound’s Centre of Mass. The acceleration signals could successfully identify the

turning dynamics regardless of the type of track surface. Finally, Chapter 6 presents

the results of simulations of the hind-leg dynamics during the most critical dura-

tion of the galloping gait using the Spring-Loaded-Inverted-Pendulum method. The

primary purpose of the designed SLIP model was to estimate greyhound hind-leg

dynamics by altering surface properties.
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Nomenclature and Notation

g Gravitational acceleration

l Hind-leg length

l̇ Hind-leg linear velocity

l̈ Hind-leg linear acceleration

mb Overall mass of the greyhound

mc Mass of the Clegg hammer

ml Hind-leg mass of the greyhound

¨[x] Vector of acceleration obtained from the accelerometers

˙[x] Vector of velocity obtained from the accelerometers

[x] Vector of surface penetration obtained from the accelerometers

y Surface compression

ẏ Surface linear velocity

ÿ Surface linear acceleration

Cs Surface damping coefficient

F Impact force of the Clegg hammer

Kl Hind-leg stiffness coefficient

Ks Surface stiffness coefficient

T Kinetic energy

U Potential energy

L Lagrangian

θ Hind-leg angle with respect to the ground

θ̇ Hind-leg angular velocity

θ̈ Hind-leg angular acceleration

Gmax maximum acceleration

Jmax maximum jerk



xii

w moisture content

Mb mass of the container and wet sand

Mc mass of the container and dry sand

Ma mass of the container



Abbreviation

AIS anatomical injury severity

CFL compressed flight phase

CoM center of mass

CWT continuous wavelet transform

DFT discrete Fourier transforms

EFL extended flight phase

FFT fast Fourier transform

GPS global positioning system

GRF ground reaction force

HFR high frame rate

iKMS integrated kinematic measurement system

IMU inertia measurement unit

ISS injury severity index

LF left fore-leg

LH left hind-leg

NSW new south wales

OTV on track veterinarians

RF right fore-leg

RH right hind-leg
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