Design Optimisation of Hybrid Photovoltaic and Energy Storage Systems through Smart Grid Technologies to Maximise Economic Benefit

Jeremy Paul Every BE(Elec)(Hons 1), BMath

> Supervisor: A/Prof. Li Li

Co-supervisors: A/Prof. Youguang Guo, Prof. David G. Dorrell (External)

Doctor of Philosophy

University of Technology Sydney School of Electrical and Data Engineering Faculty of Engineering and Information Technology

February 2020

Certificate of Original Authorship

I, Jeremy Paul Every, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering of the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Jeremy Paul Every February 8, 2020

Acknowledgements

Firstly, I wish to thank Associate Professor Li Li for his supervision during my candidature. Dr Li's attention to detail has greatly improved the quality of my work and the flexibility he has afforded me to pursue my research areas of interest is greatly appreciated. I wish to thank my external supervisor Professor David Dorrell for first of all taking me on as a PhD student and secondly remaining in the game following his move to Durban, South Africa. Thanks also go to my co-supervisor Associate Professor Youguang Guo for his valued input towards my research publications.

I wish to thank my parents Allan and Libby Every for their support and personal sacrifices enabling me to pursue my chosen career and study interests.

Finally, my deepest appreciation goes to Nancy-Maree Ryan for her patience, understanding and unwavering support over the journey.

Contents

A	bstra	act		xxxiii
1	Inti	coduct	ion	1
	1.1	Contr	ibutions of the Thesis and Claims to Originality	3
	1.2	Thesis	Structure	
	1.3	Assoc	iated Publications	6
2	Bac	kgrou	nd	9
	2.1	The S	mart Grid	9
		2.1.1	Demand Response	10
		2.1.2	Smart Meters	11
			2.1.2.1 Smart Meter Deployment	11
			2.1.2.2 Pricing Strategies	12
			2.1.2.3 Time-of-Use Pricing \ldots	12
			2.1.2.4 Critical Peak Pricing	12
			2.1.2.5 Real-Time Pricing	13
	2.2	Distri	buted Generation	14
	2.3	Distri	buted Storage	14
	2.4	Smart	Grid Trials	15
		2.4.1	Customer Applications Findings	17
		2.4.2	Smart Meter Infrastructure Findings	18
		2.4.3	Distributed Generation and Storage Findings	18
		2.4.4	Comparison of SGSC Findings to Other Literature	20
	2.5	Motiv	ation for Research	22
3	Sola	ar Irra	diation Literature Review	23
	3.1	Solar	Irradiation Databases	24
		3.1.1	Ground-Based Solar Irradiation Databases	24
		3.1.2	Satellite-Based Solar Irradiation Databases	25
		3.1.3	Irradiation Data for Australian Applications	28
	3.2	Solar	Irradiation on the Horizontal Plane	34
		3.2.1	Solar Time	34
		3.2.2	Components of Horizontal Irradiation	34
		3.2.3	Geometric Relationships for Solar Irradiation	35

		3.2.4	Extra-Terrestrial Irradiance
		3.2.5	Clearness Index
		3.2.6	Clear-Sky Irradiation
			3.2.6.1 Linke Turbidity
			3.2.6.2 ESRA Clear-Sky Model
		3.2.7	Models for Global Irradiation
		3.2.8	Diffuse Decomposition Models
			3.2.8.1 BoM BRL Model
		3.2.9	Hourly Irradiation from Daily Data
	3.3	Köppe	en-Geiger Climate Classification
	3.4	Data	Quality Control
	3.5	Solar I	Irradiation on a Tilted Surface
		3.5.1	Transposition Model Comparisons in Literature
		3.5.2	Liu and Jordan Model
		3.5.3	HDKR Model
		3.5.4	Perez Model
		3.5.5	Selected Transposition Model
	3.6	Summ	ary
4	Kör	open-G	Geiger BRL Diffuse Irradiation Models 65
	4.1	Impro	ved BRL Model
	4.2	Resear	rch Methodology
		4.2.1	Quality Control Methodology
		4.2.2	Statistical Indicators
		4.2.3	Satellite Data Time Stamps
		4.2.4	BRL Modelling Procedure
	4.3	Groun	d-Based Data Results
		4.3.1	Diffuse Horizontal Irradiation
		4.3.2	Direct Normal Irradiation
	4.4	Satelli	te-Based Data Results
		4.4.1	Diffuse Horizontal Irradiation
		4.4.2	Direct Normal Irradiation
	4.5	Discus	ssion $\ldots \ldots \ldots$
	4.6	Summ	ary
5	\mathbf{PV}	Desig	n Optimisation 113
	5.1	Litera	ture Review
		5.1.1	Photovoltaic Technologies and Materials
		5.1.2	Geographic Location of PV systems
		5.1.3	PV Installation Incentive Schemes
		5.1.4	PV System Optimisation
	5.2	Photo	voltaic Model
		5.2.1	PV Maintenance Model

	5.3	Econo	mic Model \ldots \ldots \ldots \ldots 121
	5.4	Photo	voltaic System Optimisation Problem
		5.4.1	Problem Definition
		5.4.2	Optimisation Method
		5.4.3	Input Data
			5.4.3.1 Equipment Assumptions
	5.5	Optim	isation Results $\ldots \ldots 130$
		5.5.1	Four Residences
		5.5.2	Large Sample
		5.5.3	Other Locations
	5.6	Updat	es to PV Model $\ldots \ldots 140$
	5.7	Summ	ary
6	BES	SS Des	ign Optimisation 143
	6.1	BESS	Model
		6.1.1	Operation Modes
		6.1.2	BESS Maintenance Model
	6.2	PV M	odel
	6.3	Hybrid	d PV-BESS Optimisation Problem
		6.3.1	Problem Definition
		6.3.2	Optimisation Method
		6.3.3	Input Data
			6.3.3.1 Small Sample
			6.3.3.2 Large Sample
			6.3.3.3 Hourly Temperature Estimates from Daily Extremes 154
			6.3.3.4 Typical Meteorological Year Development
			6.3.3.5 Equipment Assumptions
	6.4	Result	s
		6.4.1	Small Sample
		6.4.2	Large Sample
	6.5	Summ	ary
7	Cas	e Stud	ly 167
	7.1	Weath	er and PV Energy Models
		7.1.1	Hourly Irradiation
		7.1.2	Hourly Temperature
		7.1.3	PV Energy Yield
	7.2	Optim	isation Problem
		7.2.1	Economic Assumptions
		7.2.2	Problem Definition
		7.2.3	Input Data and Equipment Details
	7.3	Result	s
		7.3.1	Energy Model Comparison

		7.3.2	Optimisation Results	. 174
	7.4	Discus	sion	. 178
	7.5	Summ	ary	. 178
8	DEI	R Desi	gn Optimisation for Peer-to-Peer Energy Trading	179
	8.1	Literat	ture Review	. 180
		8.1.1	Optimisation of P2P Participation	. 182
		8.1.2	P2P Market Designs	. 184
		8.1.3	International Trial P2P Projects	. 186
		8.1.4	Trial P2P Projects in Australia	. 187
		8.1.5	Cost-Reflective Tariff Structures	. 190
		8.1.6	Research Objective for P2P Trading	. 192
	8.2	P2P N	farket Model	. 194
		8.2.1	P2P Settlement	. 195
		8.2.2	Distribution Network Tariff Structure	. 198
		8.2.3	Energy Flow Models	. 199
			8.2.3.1 P2P Energy Bids	. 200
		8.2.4	DER Penetration Scenarios	. 202
		8.2.5	Weather Models	. 203
			8.2.5.1 Solar Irradiation Model	. 203
			8.2.5.2 Temperature Model	. 204
		8.2.6	Input Data	. 204
	8.3	P2P N	Iarket Simulation	. 205
	8.4	P2P T	rading Optimisation Problem	. 209
		8.4.1	$Problem \ Definition \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 209
	8.5	Trial S	Scenarios	. 211
	8.6	Result	s	. 212
		8.6.1	P2P Market Simulation Cases	. 212
		8.6.2	DER Design Optimisation	. 221
	8.7	Discus	sion	. 229
	8.8	Summ	ary	. 229
9	Con	clusio	n	231
	9.1	Future	e Work	. 235
А	Ret	ail Ele	ctricity Tariffs	237
	A.1	Retail	Tariffs for 2016 - Chapters 5 and 6	. 237
	A.2	Exami	ble Business Retail Tariffs - Chapter 7	. 242
	A.3	Auseri	id Network and Retailer Tariffs - Chapter 8	. 242
Б				
В	Hyp	oothesi	s Tests	245
\mathbf{C}	\mathbf{PV}	Modu	le Input Parameters	247

D	BES	SS Input Parameters	249
\mathbf{E}	P2P	Market Simulation - Results for All Cases	251
	E.1	P2P Market Simulation Price, Energy and Hour Heat Maps	. 251
	E.2	Optimised DER Average Energy Flow	. 258
Bi	bliog	raphy	263

List of Figures

2.1	Electricity dynamic pricing strategies	13
2.2	NPV analysis for national application of Smart Grid technologies in Aus-	
	tralia under a medium macro-economic scenario until 2034	16
2.3	Proportion of customers reporting behavioural changes during the trial	
	(left). Proportion of customers reporting maintained behavioural changes	
	6-8 months after the trial (right)	17
2.4	Expected change in smart meter penetration over time as a stand-alone	
	technology	18
2.5	NPV assessment of DG and DS in a Smart Grid environment under a	
	medium macro-economic scenario	19
2.6	Cost-benefit assessment of a 3 kW PV system under existing tariff structures	21
2.7	Cost-benefit assessment of a 3 kW PV system under under a demand tariff	21
2.8	Break-even installed price of a 7 kWh battery for a house with 3 kW of PV $$	
	installed	22
3.1	Polynomial fit of Linke Turbidity based on SoDa data for Wagga Wagga	40
3.2	Polynomial fit of Linke Turbidity based on SoDa data for Rockhampton $\ . \ .$	40
3.3	Comparison of diffuse fraction models for Adelaide irradiation data	47
3.4	BoM major climate classification groups for Australia	52
3.5	BoM climate classification of Australia (climate classes) $\ldots \ldots \ldots$	53
3.6	Köppen-Geiger climate classification world map	53
3.7	Köppen-Geiger climate classification for Australia based on re-analysis of	
	Rubel et al	54
4.1	Solar irradiation data quality control process flow chart	71
4.2	Quality control tests and filtering process for the BoM Melbourne station $% \mathcal{A}^{(n)}$.	72
4.3	Quality control tests and filtering process for the BoM Wagga Wagga station	72
4.4	Quality control tests and filtering process for the BoM Townsville station $% \mathcal{A}^{(n)}$.	73
4.5	Removal of hourly data below minute count threshold (45 mins) for Melbourne	73
4.6	Removal of hourly data below minute count threshold (45 mins) for Wagga $$	
	Wagga	74
4.7	Removal of hourly data below minute count threshold (45 mins) for Townsville	74
4.8	Outlier envelope of filtered Melbourne data	75
4.9	Outlier envelope of filtered Wagga Wagga data	75

4.10	Outlier envelope of filtered Townsville data	76
4.11	BRL model adjustment and validation procedure	81
4.12	BRL model results for diffuse fraction (left) and DNI (right) for Adelaide $% \operatorname{BRL}$.	82
4.13	BRL model (with BoM variability parameter) results for Diffuse fraction	
	(left) and DNI (right) for Adelaide	82
4.14	BRL model results for diffuse fraction (left) and DNI (right) for Cape Grim	83
4.15	BRL model (with BoM variability parameter) results for diffuse fraction	
	(left) and DNI (right) for Cape Grim	83
4.16	BRL model (with BoM variability parameter) results for diffuse fraction	
	(left) and DNI (right) for Alice Springs	83
4.17	BRL model results for diffuse fraction (left) and DNI (right) for Alice Springs	84
4.18	BRL model results for diffuse fraction (left) and DNI (right) for Townsville	84
4.19	BRL model (with BoM variability parameter) results for diffuse fraction	
	(left) and DNI (right) for Townsville	84
4.20	National BRL model results for diffuse fraction (left) and DNI (right) for	
	all Australian measurement locations	85
4.21	National BRL model (with BoM variability parameter) results for diffuse	
	fraction (left) and DNI (right) for all Australian measurement locations $\ . \ .$	85
4.22	CDFs of diffuse fraction for different BRL models for Adelaide \ldots	86
4.23	CDF error of diffuse fraction for different BRL models for Adelaide. Critical	
	value V_c shown as dotted line $\ldots \ldots \ldots$	86
4.24	CDFs of diffuse fraction for different BRL models for Cape Grim $\ . \ . \ .$.	87
4.25	CDF error of diffuse fraction for different BRL models for Cape Grim.	
	Critical value V_c shown as dotted line $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	87
4.26	CDFs of diffuse fraction for different BRL models for Alice Springs	88
4.27	CDF error of diffuse fraction for different BRL models for Alice Springs.	
	Critical value V_c shown as dotted line $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	88
4.28	CDFs of diffuse fraction for different BRL models for Townsville \ldots .	89
4.29	CDF error of diffuse fraction for different BRL models for Townsville. Crit-	
	ical value V_c shown as dotted line	89
4.30	CDFs of DNI for different BRL models for Adelaide	94
4.31	CDF error of DNI for different BRL models for Adelaide. Critical value V_{c}	
	shown as dotted line	94
4.32	CDFs of DNI for different BRL models for Cape Grim	95
4.33	CDF error of DNI for different BRL models for Cape Grim. Critical value	
	V_c shown as dotted line $\ldots \ldots \ldots$	95
4.34	CDFs of DNI for different BRL models for Alice Springs	96
4.35	CDF error of DNI for different BRL models for Alice Springs. Critical value	
	V_c shown as dotted line $\ldots \ldots \ldots$	96
4.36	CDFs of DNI for different BRL models for Townsville	97
4.37	CDF error of DNI for different BRL models for Townsville. Critical value	
	V_c shown as dotted line	97

4.38	National BRL model results applied to satellite-based data for diffuse frac-	101
4.20	tion (left) and DNI (right) for all Australian measurement locations	. 101
4.39	National BRL model (with BoM variability parameter) results applied to	
	satellite-based data for diffuse fraction (left) and DINI (right) for all Aus-	101
4 40		. 101
4.40	Darwin average hourly profile of AREMI GHI (left) and DNI (right) after	100
4 41		. 108
4.41	Darwin average winter hourly profile of AREMI GHI (left) and DNI (right)	100
4 40		. 109
4.42	Darwin average summer nourly profile of AREMI GHI (left) and DNI (right)	100
4 49		. 109
4.43	Adelaide average hourly profile of AREMI GHI (left) and DNI (right) after	100
4 4 4		. 109
4.44	Adelaide average winter houring profile of AREMI GHI (left) and DNI (right)	110
4 45		. 110
4.45	Adelaide average summer nourly profile of AREMI GHI (left) and DNI	110
	(right) after filtering	. 110
5.1	Installed cumulative capacity of small-scale solar installations in Australia	
	to July 2019	. 115
5.2	Global solar PV installed capacity up to 2018	. 115
5.3	Example average hourly cumulative load and cumulative PV generation	
	profiles for a group of electricity consumers	. 116
5.4	Optimisation problem flow chart	. 127
5.5	Optimisation convergence with ten repetitions (Customer 1)	. 129
5.6	Typical electricity tariff structures	. 130
5.7	NPV sensitivity to system size (Customer 3)	. 133
5.8	NPV sensitivity to tilt and azimuth (Customer 2)	. 134
5.9	Average contribution of each optimisation parameter to total NPV for all	
	Newcastle customers	. 134
5.10	Proportion of lowest cost energy retailers for Newcastle residences with low,	
	medium and high energy consumption	. 135
5.11	Box plots for (a) NPV, (b) system size, (c) plan selection savings, (d) MIRR	
	and (e) payback period for Newcastle residences with low, medium and high	
	energy consumption profiles	. 136
6.1	Optimisation convergence with ten repetitions (Customer X) $\ldots \ldots$. 152
6.2	Optimisation convergence with ten repetitions (Customer Y) $\ldots \ldots$. 153
6.3	TMY development flow chart	. 155
6.4	TMY global, diffuse and direct irradiation data set for Newcastle based on	
	AREMI data	. 157
6.5	TMY hourly temperatures estimated from daily extremes for Newcastle	
	based on CDO data	. 157

6.6	Average hourly TMY irradiation from AREMI and hourly data derived from
	daily data from the CDO database in the period 2011–2015 for Newcastle $% 100000000000000000000000000000000000$
6.7	NPV sensitivity to BESS installed cost (Retailer B, Operation Mode 2) \therefore 160
6.8	Number of batteries in PV-BESS system for varying installed BESS costs
	(Retailer B, Operation Mode 2)
6.9	NPV, PV size and BESS size for a sample of 100 customers at (a) 100%,
	(b) 70% and (c) 50% BESS reference price levels
6.10	MIRR, PV size and BESS size for a sample of 100 customers at (a) 100%,
	(b) 70% and (c) 50% BESS reference price levels
6.11	Proportion of base case lowest cost retail plans amongst 100 test customers 164
6.12	Proportion of lowest cost retail plans amongst 100 test customers with a
	PV-BESS installed at three different BESS price levels
	ľ
7.1	TransGrid iDemand AC system
7.2	Optimisation convergence with ten repetitions (Customer X) $\ldots \ldots 172$
7.3	Optimisation convergence with ten repetitions (Customer Y)
7.4	Comparison of average hourly estimated AC generation versus actual mea-
	sured AC generation in 2015
7.5	Optimal PV array sizes and associated NPVs evaluated for a range of PPAs
	forecast for future years of installation
7.6	MIRR and payback periods of optimised systems for a range PPAs forecast
	for future years of installation
7.7	Comparison of optimised NPVs for three component pricing scenarios (min,
	base and max). Overlaid shaded areas represent the range of PPAs con-
	sidered (lower bound represents $60/MWh$, the upper bound represents
	140/MWh)
7.8	Comparison of optimal system sizes for three component pricing scenar-
	ios (min, base and max). Overlaid shaded areas represent the range of
	PPAs considered (lower bound represents $60/MWh$, upper bound repre-
	sents $140/MWh$)
81	Hybrid P2P market design adapted from Sousa et a 181
8.2	Block diagram of P2P energy supply and financial transactions adapted
0.2	from Nguyen et al
83	P2P energy supply demand settlement examples
8.4	P2P market participant DER penetration rate scenarios
8.5	P2P participant selection process flow chart 206
8.6	P2P market settlement flow chart 207
8.7	P2P settlement for Hour 7 in Vear 1 (P2P simulation case B) 213
8.8	P2P settlement for Hour 15 in the final day of Vear 20 (P2P simulation case
0.0	R)
80	Heat map of P2P clearing prices for each hour of the day (P2P simulation
0.9	case B) 214
	$case D_j$

8	.10	Heat map of P2P cleared energy for each hour of the day in Year 1 and Vear 20 (P2P simulation eace P)	914
8	11	Heat map of P2P clearing prices for each hour of the day in Vear 1 and	. 214
0		Year 20 (P2P simulation case D)	. 215
8	.12	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
		Year 20 (P2P simulation case D) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 215
8	.13	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
		Year 20 (P2P simulation case E) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 215
8	.14	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
		Year 20 (P2P simulation case E)	. 216
8	.15	Average load and DER energy flows for P2P pool of participants in Year 1	01
0	10	and Year 20 (P2P simulation case B)	. 217
8	.10	Average P2P and retail electricity energy sales across the participant pool in Veer 1 and Veer 20 (P2P simulation area P)	917
8	17	Average P2P and retail electricity energy sales across the participant pool	. 211
0		in Year 1 and Year 20 (P2P simulation case E)	. 218
8	.18	P2P settlement for an example hour in Year 20 (P2P simulation case E).	. 220
8	.19	DER design optimisation average NPV for 100 trial customers (Scenarios	
		1a-3b and 6-8)	. 222
8	.20	Average energy purchases and sales across 100 test customers in Year 1 and	
		Year 20 (Scenario 1b) \ldots	. 223
8	.21	Average energy purchases and sales across 100 test customers in Year 1 and	
		Year 20 (Scenario 3)	. 223
8	.22	DER design optimisation average PV size for 100 trial customers (Scenarios	004
0	าว	1a-3b and $b-8$)	. 224
0	.20	DER design optimisation average nominal MIRK for 100 that customers $(\text{Scenarios } 1a-3b \text{ and } 6-8)$	224
8	24		. 44T
0	·	DEB design optimisation average NPV for 50 trial customers under (Sce-	
8		DER design optimisation average NPV for 50 trial customers under (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively)	. 225
	.25	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers	. 225
	.25	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively)	. 225 . 226
8	.25 .26	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70%	. 225 . 226
8	.25 .26	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227
8	.25 .26 .27	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5) MIRR and BESS size for a sample of 100 customers at (a) 100%, (b) 70%	. 225 . 226 . 227
8	.25 .26 .27	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228
8 8 E	.25 .26 .27	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a-4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a-4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5) MIRR and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228
8 8 E	.25 .26 .27	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228 . 251
8 8 E	.25 .26 .27 2.1	DER design optimisation average NPV for 50 trial customers under (Sce- nario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228 . 251
8 8 E	.25 .26 .27	DER design optimisation average NPV for 50 trial customers under (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5) MIRR and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228 . 251 . 252
8 8 E E	.25 .26 .27 2.1 2.2	DER design optimisation average NPV for 50 trial customers under (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) DER design optimisation average nominal MIRR for 50 trial customers (Scenario 4: columns 4a–4j correspond to Retail Plan 1 – 10 respectively) NPV and BESS size for a sample of 100 customers at (a) 100%, (b) 70% and (c) 50% BESS reference price levels (Scenario 5)	. 225 . 226 . 227 . 228 . 251 . 252

E.4	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case B)	. 252
E.5	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case C)	. 253
E.6	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case C)	. 253
E.7	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case D)	. 254
E.8	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case D)	. 254
E.9	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case E)	. 254
E.10	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case E)	. 255
E.11	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case F)	. 255
E.12	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case F)	. 255
E.13	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case G)	. 256
E.14	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case G)	. 256
E.15	Heat map of P2P clearing prices for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case H)	. 256
E.16	Heat map of P2P cleared energy for each hour of the day in Year 1 and	
	Year 20 (P2P simulation case H)	. 257
E.17	Average energy purchases and sales across 100 test customers in Year 1 and	
	Year 20 (Scenario 0)	. 258
E.18	Average energy purchases and sales across 100 test customers in Year 1 and $V_{\rm energy} = 20$ (G s = 1)	250
T 10	Year 20 (Scenario 1a) \ldots 100 to the two New 1	. 258
E.19	Average energy purchases and sales across 100 test customers in Year I and $V_{\rm eq} = 20$ (C = 11)	250
E 90	Year 20 (Scenario Ib)	. 259
E.20	Average energy purchases and sales across 100 test customers in Year 1 and $V_{\text{res}} = 20$ (Converse 1-)	250
E 01	Year 20 (Scenario Ic)	. 259
E.21	Average energy purchases and sales across 100 test customers in Year 1 and Vear 20 (Seeperic 2)	260
\mathbf{E} 99	Autore an emprove purchases and soles are said to test sustained in Year 1 and	. 200
$\mathbf{E}.ZZ$	Very 20 (Scenario 2)	260
\mathbf{F} 05	Average energy purchases and soles percess 100 test sustamore in Vers 1 and	. 200
12.20	Vear 20 (Scenario 6)	261
E 94	Average energy nurchases and sales across 100 test customers in Voor 1 and	. 201
1.24	Year 20 (Scenario 7a)	. 261
		. <u>_</u>

E.25 Average energy purchases and sales across 100 test customers in Year 1 and	
Year 20 (Scenario 7b)	262
E.26 Average energy purchases and sales across 100 test customers in Year 1 and	
Year 20 (Scenario 8)	262

List of Tables

Ground-based solar irradiation databases	26
Satellite-based irradiation databases	30
Temporal and spatial resolution of satellite-based irradiation databases	31
Global irradiation calculation methodology and atmospheric data sources	
for satellite-based irradiation databases $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	32
Clear-sky, diffuse and direct irradiation models used by satellite-based irra-	
diation databases \ldots	33
Köppen-Geiger sub-classes based as defined by Kottek et al	51
Köppen-Geiger climate classification divisions of Australia based on method-	
ology of Rubel et al. and location of One Minute Solar Stations	54
Brightness coefficients for Perez anisotropic sky	62
Quality control tests for raw solar irradiation data	70
Percentage breakdown of retained data following each quality control step $% \mathcal{A}$.	76
Minute time stamps associated with each satellite observation for BoM HSI	
and AREMI data sets	79
Satellite and ground measurement time stamps for Adelaide enabling syn-	
chronous irradiation data comparison (nearest minute)	80
Statistical indicators for diffuse fraction under original BRL model $\ . \ . \ .$	91
Statistical indicators for diffuse fraction under National BRL model (com-	
pared to original BRL model) \ldots	91
Statistical indicators for diffuse fraction under National BRL model (with	
BoM variability parameter) (compared to National BRL model)	92
Statistical indicators for diffuse fraction under Köppen-Geiger zone BRL	
model (compared to National BRL model)	92
BRL model parameters for ground-based measurements	93
Statistical indicators for DNI under original BRL model	98
Statistical indicators for DNI under National BRL model (compared to	
original BRL model)	99
Statistical indicators for DNI under National BRL model (with BoM vari-	
ability parameter) (compared to National BRL model)	99
Statistical indicators for DNI under Köppen-Geiger zone BRL model (com-	
pared to National BRL model)	100
Statistical indicators for original AREMI diffuse fraction data set	102
	Ground-based solar irradiation databases

4.15	Satellite data statistical indicators for diffuse fraction under National BRL model (compared to original AREMI diffuse fraction data set)	102
4.16	Satellite data statistical indicators for diffuse fraction under National BRL	
	model (with BoM variability parameter) (compared to National BRL model)103
4.17	Statistical indicators for diffuse fraction under Köppen-Geiger zone BRL	
	model (with BoM variability parameter) (compared to National BoM model)103
4.18	BRL model parameters for satellite-based global estimates	104
4.19	Statistical indicators for original AREMI DNI data set	105
4.20	Satellite data statistical indicators for DNI under National BRL model	
	(compared to original AREMI DNI data set)	105
4.21	Satellite data statistical indicators for DNI under National BRL model (with	
	BoM variability parameter) (compared to National BRL model)	106
4.22	Satellite data statistical indicators for DNI under Köppen-Geiger zone BRL	
	model (compared to National BoM model)	106
5.1	Comparison of optimised PV systems for different retail electricity plans	
	and different customers	131
5.2	Summary of median values and associated inter-quartile (IQR) ranges for	
	key economic metrics for each energy consumption range in Newcastle	135
5.3	Proportion of Newcastle customers where PV is financially attractive (ac-	
	ceptable MIRR)	137
5.4	Comparison of mean economic performance and system characteristics for	
	optimised PV systems in different locations	139
0.1		150
6.1	Weather station data considered in the small sample assessment	153
6.2	Weather station data considered in the large sample assessment	156
0.3	Characteristics and economic performance of optimised PV-BESSs for dif-	150
C 4	Free provide a sufference of the difference DESC on anothing and des (Teals Desc	159
0.4	Economic performance under different BESS operating modes (Tesia Pow-	161
	erwall 2, $\cos t = 10\%$ of 2010 prices) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	101
7.1	Statistics for measured versus modelled energy production of the iDemand	
	system	174
7.2	NPV of energy cost savings (actual and estimated) of the iDemand system	
	$(2015) \ldots \ldots$	174
8.1	BBL model parameters for satellite-based measurements	204
8.2	Weather station data included in P2P trading model	204
8.3	Average residential solar PV system prices from Jan 2018 to Feb 2019	205
8.4	P2P market simulation cases	209
8.5	P2P sensitivity analysis scenarios	211
8.6	Default customer parameters	212
8.7	P2P market simulation case settlement results – load energy	219
8.8	P2P market simulation case settlement results – PV energy	220

8.9 8.10	P2P market simulation case settlement results – BESS energy
A.1	Flat tariffs for each retail plan and location considered (prices include 10%
	GST)
A.2	Energy blocks associated with each flat tariff rate for each retail electricity plan
A.3	TOU tariffs for each retail plan and location considered (prices include 10% CST) 240
Δ	Hours of the day defining off neak shoulder and neak periods for each retail
л. ч	electricity plan (WD and WE denote weekday and weekend respectively) . 241
A.5	TransGrid iDemand retail electricity tariff assumptions ($P = Peak$, $SH =$
	Shoulder, $OP = Off-peak)$ (prices exclude 10% GST)
A.6	Ausgrid proposed 2019-2020 network tariffs (prices exclude 10% GST) \dots 242
A.7	Retail tariffs for 2019 associated with the Ausgrid network. Adjusted for
	the proposed 2019-2020 tariff structure statement (prices include 10% GST) 243
B.1	Summary of hypothesis tests for distributions of key performance and sys-
	tem metrics
C.1	PV module characteristics for Chapter 5
C.2	PV module characteristics for Chapter 6 (small sample)
C.3	PV module characteristics for Chapter 7
C.4	PV module characteristics for Chapter 6 (large sample) and Chapter 8 248
D.1	System characteristics of two BESSs considered in Chapter 6
D.2	TransGrid iDemand BESS characteristics in Chapter 7
D.3	System characteristics of nine BESSs available in 2019 assessed in Chapter 8250

Nomenclature

α	Contraction-expansion coefficient (QPSO)
α	Solar altitude
$\alpha(\cdot),\lambda(\cdot),h(\cdot),\psi(\cdot)$	Penalty function components (PSO)
α_s	Sunset hour solar altitude (-0.833°)
β	Solar collector surface tilt angle
$\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5$	BRL parameter coefficients for
χ	Constriction factor (PSO)
Δ	Brightness index
δ	Maximum depth of discharge
δ	Solar declination
$\delta(m)$	Optical thickness
$\delta_R(m)$	Rayleigh atmosphere optical thickness
ϵ	Clearness index
η_e	Balance of plant efficiency
$\eta_{ac,wire}$	AC wiring efficiency
η_{batt}	BESS round-trip efficiency
$\eta_{dc,wire}$	DC wiring efficiency
η_{inv}	Inverter efficiency
η_{mm}	Module mismatch efficiency
$\eta_{mpp,STC}$	Maximum power point efficiency at standard test conditions
η_{mpp}	Maximum power point efficiency at operating conditions
η_{soil}	Soiling efficiency
γ	Solar collector surface azimuth angle
κ_b	Battery cost reduction rate
κ_{inv}	Inverter cost reduction rate
μ_{mpp}	Maximum power point temperature coefficient
μ_{P2P}	Sale margin of P2P participant
μ_T	P2P trader margin
$\omega, \omega_s, \omega_{z,s}$	Solar hour angle, sunset hour angle and sunset zenith angle (90.833°)
ω_1, ω_2	Solar hour angle 1 and 2

ϕ	Latitude
ψ	Persistence factor
ψ,ψ^2	Particle characteristic wave function and probability density (QPSO)
$ ho_q$	Composite ground reflectance factor
$\theta, \theta_z, \theta_{z,s}$	Direct irradiance angle of incidence, solar zenith angle and zenith angle at sunset
ζ_{batt}	Cycle degradation rate (kWh/cycle)
A_c	PV module area
A_i	Anisotropy index
AST	Apparent solar time
B_T	Direct irradiation on a tilted surface
$B_{BESSsell,qdh}$	BESS sell reservation price of hour h , day d , billing period q
$B_{BUY,qdh}$	Final successful buy reservation price in a P2P bidding hour $h, \mbox{ day } d,$ billing period q
$B_{buy,qdh}$	BESS sell reservation price of hour h , day d , billing period q
$B_{pvsell,qdh}$	PV sell reservation price of hour h , day d , billing period q
$B_{sell,qdh}$	P2P sell reservation price (either $B_{pvsell,qdh}$ or $B_{BESSsell,qdh}$)
c_1, c_2	Acceleration coefficients (PSO)
$C_{\max 0}$	Initial maximum capacity
$C_{\max,qdh}$	Maximum capacity at the start of hour h , day d , billing period q
$C_{base,q}$	Electricity cost in period q without PV installed (lowest cost plan)
$C_{c,qdh}$	Total BESS charge cost up to hour h , day d , billing period q
C_{degrad}	Battery degradation cost
C_{EOL}	End-of-life maximum capacity
$C_{i,n}^j$	Mean best position of particle i in dimension j at iteration n (QPSO)
$C_{pv,q}$	Electricity cost in period q with PV installed
C_{qdh}	Available capacity at the start of hour h , day d , billing period q
C_{STC}	Cost of STC certificates
d	Day number of billing period q
D_q	Days in billing period q
D_T	Diffuse irradiation on a tilted surface
D_y	PV module degradation factor in year y
E	Equation of time
E_{bal}	Energy balance after accounting for DER energy flows and losses
$E_{bd,qdh}$	BESS discharge energy at the end of hour h , day d , billing period q
$E_{bdbid,qdh}$	P2P BESS sell energy bid of hour h , day d , billing period q
$E_{bdloss,qdh}$	BESS energy loss during discharge in hour h , day d , billing period q

$E_{bg,qdh}$	BESS grid-charge energy at the end of hour h , day d , billing period q
$E_{bgloss,qdh}$	BESS energy loss during grid-charge in hour h , day d , billing period q
$E_{bloss,qdh}$	Total BESS energy loss in hour h , day d , billing period q
$E_{bpv,qdh}$	BESS PV-charge energy at the end of hour h , day d , billing period q
$E_{bpvloss,qdh}$	BESS energy loss during PV-charge in hour h , day d , billing period q
$E_{buybid,qdh}$	P2P Buy energy bid of hour h , day d , billing period q
E_{EOL}	Total energy throughput of BESS before reaching end-of-life
$E_{load,qdh}$	Load energy in hour h , day d , period q
$E_{P2P,qdh}$	P2P energy cleared of hour h , day d , billing period q
$E_{pv,qdh}$	PV generated energy in hour h , day d , period q
$E_{pvbid,qdh}$	P2P PV sell energy bid of hour h , day d , billing period q
$E_{through,qdh}$	Cumulative BESS energy throughput up to hour h , day d , billing period q
E_{year}	Yearly energy consumption
F	BESS loss factor
f	Horizon brightening modulating factor
F_{1}, F_{2}	Circumsolar and horizon brightening coefficients
F_{x-y}	View factors for each irradiation component
$g_k(oldsymbol{x})$	Optimisation constraint functions (PSO)
G_T	Incident solar irradiance
$G_n^j, P_{i,n}^j$	Global and personal best positions of particle i in dimension j and iteration $n~(\mathrm{PSO})$
G_o, G_{on}	Extra-terrestrial irradiance incident on a horizontal plane projected from Earth's surface and on the plane normal to propagation
G_{sc}	Solar constant (1367 W/m^2)
Н	Daily global (total) irradiation on the horizontal plane
h	Hour number of day d
H_b, H_d	Daily direct and diffuse irradiation on the horizontal plane
H_o	Daily extra-terrestrial solar irradiation on a horizontal plane projected from Earth's surface
i	Particle number (PSO)
I, I_T	Hourly global (total) irradiation on the horizontal plane and a tilted plane
I_b, I_d	Hourly direct (beam) and diffuse irradiation on the horizontal plane
$I_b n$	Direct normal irradiation
I_o, I_{on}	Hourly extra-terrestrial solar irradiation incident on a horizontal plane projected from Earth's surface and on the plane normal to propagation
$I_{d,cs}$	Circumsolar diffuse irradiation
$I_{d,hz}$	Horizon brightening diffuse irradiation
$I_{d,iso}$	Isotropic diffuse irradiation

$I_{d,T}$	Diffuse irradiation on a tilted surface
I_{gc}, I_{dc}, I_{bnc}	Global, diffuse and direct normal clear-sky irradiation
$I_{op,qdh}$	Off-peak BESS charge/discharge control variable for hour $h,\mathrm{day}\ d,\mathrm{billing}$ period q
$I_{pk,qdh}$	Peak BESS charge/discharge control variable for hour $h, \mbox{ day } d, \mbox{ billing period } q$
$I_{sh,qdh}$	Shoulder BESS charge/discharge control variable for hour $h,\mathrm{day}\ d,\mathrm{billing}$ period q
J	Number of unique buy reservation prices in particular bidding hour
j, J	Particle dimension and dimensionality of the problem (PSO)
K	Number of problem constraints (PSO)
K	Number of unique sell reservation prices in particular bidding hour
K_T, k_T	Daily and hourly clearness indexes
$L_{i,n}^j$	Delta potential well characteristic length (QPSO)
L_{st}, L_{loc}	Longitudes of the standard meridian and the location in question
M	Particle swarm size (PSO)
m	Air mass
m	Comprehensive learning refreshing gap (CLQPSO)
M_x	BESS operation mode variable
M_{life}, M_{loc}	SRES contribution length and location multipliers
n	Day number of the year
n, N	Iteration number and maximum number of iterations (PSO)
Р	Payback period
p, p_0	Mean site elevation and sea level atmospheric pressure
$P_{\max,pvbatt,q}$	Maximum power demand with a PV-BESS system
$P_{\max,q}$	Maximum power demand without a PV-BESS system
$P_{c,i}$	Learning probability of particle i (CLQPSO)
$P_{c,qdh}, P_{d,qdh}$	BESS charge and discharge permission control parameters of hour h,day $d,\mathrm{billing}$ period q
$p_{i,n}^j$	Local attractor of particle i in dimension j at iteration n (QPSO)
$P_{pv,rat}$	PV module rated power
P_{pv}	PV module output power
Q	Number of billing periods q in system lifetime
q	Billing period of year y
R^2	Coefficient of determination
R_b	Ratio of direct irradiance on a tilted plane versus the horizontal plane
r_e	Effective real electricity price growth
R_T	Ground-reflected irradiation on a tilted surface

R_{\max}	Maximum BESS charge/discharge rate
$R_{BUY,qdh}$	Supply and demand ratio at the final successful buy reservation price of hour h , day d , billing period q
$R_{buy,qdh}$	Supply and demand ratio for a particular P2P participant buying energy of hour h , day d , billing period q
r_{deg}	Degradation rate
r_d	Effective real discount rate per billing period
r_e	Effective real electricity price growth rate per billing period
$r_{i,n}^j, R_{i,n}^j$	Sequence of uniformly distributed random numbers (PSO)
r_{inf}	Rate of inflation
r_{nom}	Annual nominal discount rate
r_{real}	Annual real discount rate
$R_{SELL,qdh}$	Demand and supply ratio at the final successful sell reservation price of hour $h,\mathrm{day}\ d,\mathrm{billing}\ \mathrm{period}\ q$
$R_{sell,qdh}$	Demand and supply ratio for a particular P2P participant selling energy of hour $h,{\rm day}\ d,{\rm billing}\ {\rm period}\ q$
S_b	Total BESS cost
S_{pv}	PV system cost
t	Number of discounting (billing) periods per year
T_a	Ambient temperature
T_c	PV module temperature
$T_L(m)$	Linke Turbidity
$T_{\max,der,qd}$	Maximum power demand with DERs
T_{\max}, T_{\min}	Maximum and minimum daily temperatures
$T_{c,qdh}$	Moving average electricity tariff for BESS charging up to hour $h, \; {\rm day} \; d,$ billing period q
$T_{DC0,qd}, T_{DC,qd}$	Network demand charge under lowest cost and alternative plans
$T_{fit,qdh}$	PV feed-in tariff
$T_{luos,qdh}$	LUoS energy charge of hour h , day d , billing period q
T_{NOCT}	Nominal operating cell temperature
$T_{P2P,qdh}$	P2P clearing price of hour h , day d , billing period q
$T_{pv,qdh}$	PV feed-in tariff or power purchase agreement supply rate
$T_{ret0,qdh}, T_{ret,qdh}$	Retailer tariff under lowest cost and alternative plan
$T_{sc0,qd}, T_{sc,qd}$	Daily supply charge under lowest cost and alternative plans
$T_{tuos,qdh}$	TUoS energy charge of hour h , day d , billing period q
U_b	Per unit battery cost
U_{inv}	Unit inverter replacement cost $(%/W)$
U_{pv}	Unit cost of PV system replacement(W_p)

$v_{i,n}^j, x_{i,n}^j$	Velocity and position of particle i in dimension j & iteration n (PSO)
W_q	Maintenance cost
X	Number of batteries
$x_{ ho,j}, y_{ ho,k}$	Unique buy and sell reservation prices in a particular bidding hour
$x_{\xi,j}, y_{\xi,k}$	Cumulative energy bids up to a unique buy and sell reservation price in a particular bidding hour
y	Year number
Y_{EOL}	Cycle life
Y_{qdh}	Operational cycles at the end of hour h , day d , billing period q
Z, Z_{\max}	Number of PV modules and maximum number of modules permitted
AEMC	Australian Energy Market Commission
AER	Australian Energy Regulator
AMI	Advanced metering infrastructure
AREMI	Australian Renewable Energy Mapping Infrastructure
ARENA	Australian Renewable Energy Agency
BAU	Business-as-Usual
BESS	Battery energy storage system
BoM	Australian Bureau of Meteorology
BRL	Boland–Ridley–Lauret diffuse fraction model
BSRN	Baseline Surface Radiation Network+
CDF	Cumulative distribution function
CDO	Climate Data On-line
CdTe	Cadmium telluride
CER	Australian Government Clean Energy Regulator
CIGS	Copper indium gallium selenide
CPI	Combined Performance Index
CPP	Critical peak pricing
CSV	Comma-separated variable
DAP	Day-ahead pricing
DER	Distributed energy resource
DG	Distributed generation
DHI	Diffuse horizontal irradiation
DLC	Direct load control
DLT	Distributed ledger technology
DNI	Direct normal irradiation
DNSP	Distribution Network Service Provider
DR	Demand response

DS	Distributed storage
DSM	Demand-side management
DUoS	Distribution use-of-system
ESRA	European Solar Radiation Atlas
ET	Extra-terrestrial
FiT	Feed-in tariff
GEBA	Global Energy Balance Archive
GHI	Global horizontal irradiation
GW	Gigawatt
GWh	Gigawatt hour
HDKR	Hay-Davies-Klucher-Reindl
HSI	Hourly Solar Irradiance Data
ICT	Information and communications technology
IWEC2	International Weather files for Energy Calculations (Second Generation)
KSI	Kolmogorov-Smirnov Integral
kW	Gigawatt
kWh	Kilowatt hour
LCOE	Levelised cost of energy
LGC	Large-scale generation certificate
LGNC	Local general network credit
LNC	Local network charge
LRET	Large-scale Renewable Energy Target
LRMC	Long-run marginal cost
LUoS	Local use-of-service
MBE	Mean bias error
MeAPE	Median absolute percentage error
MINLP	Mixed-Integer Non-Linear Programming
MIRR	Modified internal rate of return
MMR	Mid-market rate
MW	Megawatt
MWh	Megawatt hour
NASA	National Aeronautical and Space Administration
NEM	National Electricity Market
NOCT	Nominal operating cell temperature
NPV	Net Present Value
NREL	National Renewable Energy Laboratory
NSRDB	National Solar Resource Database

NUoS	Network use-of-system
OMS	One Minute Solar Data
OVER	Relative frequency of exceedence from KSI
P2P	Peer-to-peer
PPA	Power purchase agreement
PSO	Particle swarm optimisation
PTR	Peak-time rebates
PV	Photovoltaic
QDPSO	Quantum delta potential well-based particle swarm optimisation
QPSO	Quantum-behaved particle swarm optimisation
RET	Renewable Energy Target
rMBE	Relative mean bias error
RMSE	Root mean square error
rRMSE	Relative root mean square error
RTP	Real-time pricing
SAM	System Advisor Model
SBS	Solar Bonus Scheme
SDR	Supply and demand ratio
SGSC	Smart Grid, Smart City
SoDa	Solar Radiation Data
SRES	Small-scale Renewable Energy Scheme
SSE	Surface Meteorology and Solar Energy
STC	Small-scale technology certificate
STC	Standard test conditions
TMY	Typical Meteorological Year
TOU	Time-of-use
TSS	Tariff structure statement
TUoS	Transmission use-of-system
UTC	Coordinated Universal Time
W	Watt
WMO	World Meteorological Organisation
WRDC	World Radiation Data Centre

Abstract

ADVANCES in photovoltaic and battery energy storage system (BESS) technologies have made hybrid PV-BESS systems an attractive prospect for residential energy consumers. However, the process to select an appropriate system is non-trivial due to the relatively high cost of batteries, a multitude of available retail electricity plans, the removal of incentive schemes and the impending introduction of disruptive technologies such as peer-to-peer energy trading.

The introduction of Smart Grid technologies, particularly smart meters, enables consumers to leverage high temporal resolution energy consumption data to optimise system design based on an individual customer's circumstance. In this research, real-world energy consumption data for a large sample of homes are applied to an optimisation strategy developed to the select system size, tilt, azimuth and retail electricity plan for a residential PV-BESS based on a customer's temporal load profile. A case study examining a real world hybrid PV-BESS is presented to demonstrate the potential benefit of applying the optimisation process established in this research.

Particle swarm optimisation (PSO) is utilised as the underlying optimisation algorithm given its suitability to mixed integer non-linear programming problems, characteristic of the energy models developed in this research. To improve global search performance with minimal parameter adjustments, various forms of PSO are applied including quantumbehaved PSO and a modified version with a comprehensive learning component.

To facilitate energy yield modelling, accurate hourly solar irradiation and photovoltaic array generation models are critical to the optimisation process. Numerous models have been developed to estimate diffuse and direct irradiance components based on global irradiation measurements. The Boland–Ridley–Lauret (BRL) model consists of a single set of parameters for all global locations. There is scope to improve the BRL model to better match local climatic conditions. In this research, the Köppen-Geiger climate classification system is considered to develop a set of adjusted BRL models for Australian conditions, which are subsequently applied to the energy models developed in this research.

With the future application of peer-to-peer energy trading markets, prospective investors would benefit from prior consideration of market conditions and the penetration rates of participant PV-BESS systems when designing such systems. In this research, a lifetime assessment of PV-BESS systems is undertaken for a hypothetical peer-to-peer market of over 2,000 participants. Trader margin, participant margin, network tariff structures and PV-BESS penetration rate scenarios are considered to examine the impacts on the optimal PV-BESS design maximising the economic return.